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GPGPU parallel algorithms for structured-grid CFD

codes

Christopher P. Stone∗

Computational Science and Engineering, LLC, Seattle, WA, 98144, USA

Earl P.N. Duque†

Intelligent Light, Rutherford, NJ, 07070, USA

Yao Zhang‡, David Car§, John D. Owens¶ and Roger L. Davis∥

University of California, Davis, Davis, CA, 95616, USA

A new high-performance general-purpose graphics processing unit (GPGPU) computa-
tional fluid dynamics (CFD) library is introduced for use with structured-grid CFD al-
gorithms. A novel set of parallel tridiagonal matrix solvers, implemented in CUDA, is
included for use with structured-grid CFD algorithms. The solver library supports both
scalar and block-tridiagonal matrices suitable for approximate factorization (AF) schemes.
The computational routines are designed for both GPU-based CFD codes or as a GPU
accelerator for CPU-based algorithms. Additionally, the library includes, among others, a
collection of finite-volume calculation routines for computing local and global stable time-
steps, inviscid surface fluxes, and face/node/cell-centered interpolation on generalized 3D,
multi-block structured grids. GPU block tridiagonal benchmarks showed a speed-up of 3.6x
compared to an OpenMP CPU Thomas Algorithm results when host-device data trans-
fers are removed. Detailed analysis shows that a structure-of-arrays (SOA) matrix storage
format versus an array-of-structures (AOS) format on the GPU improved the parallel block-
tridiagonal performance by a factor of 2.6x for the parallel cyclic reduction (PCR) algo-
rithm. The GPU block tridiagonal solver was also applied to the OVERFLOW-2 CFD code.
Performance measurements using synchronous and asynchronous data transfers within the
OVERFLOW-2 code showed poorer performance compared to the cache-optimized CPU
Thomas Algorithm. The poor performance was attributed to the significant cost of the
rank-5 sub-matrix and sub-vector host-device data transfers and the matrix format con-
version. The finite-volume maximum time-step and inviscid flux kernels were benchmarked
within the MBFLO3 CFD code and showed speed-ups, including the cost of host-device
memory transfers, ranging from 3.2–4.3x compared to optimized CPU code. It was deter-
mined, however, that GPU acceleration could be increased to 21x over a single CPU core
if host-device data transfers could be eliminated or significantly reduced.

I. Introduction

Recently, programmable graphics processing units (GPUs) have received much attention due to their high
floating-point rate and low power consumption compared to commodity multi-core CPUs. In fact, at the time
of this writing, 3 of the top 5 fastest1 and 10 of 20 most efficient2 supercomputers in the world employ GPU-
based accelerators. The GPU has historically been optimized for graphics operations; however, the relatively
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recent addition of programmability to the graphics pipeline has allowed a variety of application domains
to realize significant performance gains. These gains come from the combination of fine-grain parallelism,
high arithmetic rates and high memory bandwidth compared to modern multi-core CPUs. Algorithms must
be designed with a high degree of parallelism, specifically fine-grained parallelism, in order to exploit the
available processing power of these GPUs.

The goal of this research endeavor is to develop and evaluate a set of commonly employed computational
tools, used widely in modern structured-grid CFD codes, that can be efficiently implemented in CUDA. This
collection of efficient yet generalized CUDA kernels can simplify the implementation of GPU acceleration
in existing CFD codes. Several factors critical to efficient GPU performance were addressed during the
development such as memory layout, data transfer costs and parallelism. Since many structured-grid CFD
algorithms share a similar design, these kernels can also act as templates for further GPU development.

Two classes of CUDA-based GPGPU utilities have been developed and will be introduced in the following
sections: (i) parallel block-tridiagonal solvers for alternating direction implicit (ADI) CFD algorithms and
(ii) a set of parallel finite-volume utilities for computing grid reduction operations (e.g., min, max, sum,
etc.); local and global stable time-step size; inviscid (i.e., Euler) fluxes; and numerical dissipation schemes
for multi-block, explicit algorithms. The parallel block tridiagonal solvers are the first known implementation
of their kind in CUDA.

In the following section, several parallel scalar and block tridiagonal solution algorithms are introduced
and their performance characteristics are analyzed as they pertain to GPU implementations. Benchmark
results are then given for each of these algorithms. The first benchmark uses a simplified and easily controlled
test problem. The parallel algorithms are then benchmarked within the approximate factorization Beam and
Warming3 scheme of the OVERFLOW-2.4 OVERFLOW-2 is a widely used overset-grid compressible flow
solver from NASA. The second class of GPGPU CFD utilities, the finite-volume time-step and inviscid
flux calculators, are then implemented and benchmarked within the 3d, multi-block CFD code MBFLO3.5,6

All GPU benchmarks presented were performed on the latest NVIDIA computational hardware (e.g., Fermi
C2050) and using single and double-precision arithmetic. Comparisons with optimized, parallel CPU-based
algorithms are presented to give real-world speed-up characteristics.

II. Tridiagonal Methods

Tridiagonal matrix systems arise frequently in finite-difference approximations for ordinary differential
equations in a wide range of applications. Examples abound, including the finite-difference approximations
for the 1-d Poisson and Laplace equations and spectral methods for the 2-d Poisson equation. As as result,
the rapid solution of the tridiagonal systems is critical for efficient numerical solutions.

A typical asymmetric tridiagonal matrix is shown in Eqn. 1. There, a, b and c represent the lower,
middle, and upper diagonal bands and u and f the solution and right-hand-side (RHS) vectors.

b1 c1 0 . . . 0

a2 b2 c2
. . .

...

0
. . .

. . .
. . . 0

...
. . . an−1 bn−1 cn−1

0 . . . 0 an bn
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
u1

u2

...

un−1

un

 =


f1
f2
...

fn−1

fn

 (1)

The diagonal and RHS vector elements may be scalars or, more generally, sub-matrices and sub-vectors. In
this work, tridiagonal matrices of scalar elements shall be referred to as scalar tridiagonal systems and those
with sub-matrix elements as block tridiagonal systems.

The approximate factorization (AF) and alternating direction implicit (ADI) methods7 are often used in
computational fluid dynamics (CFD) solutions of the Navier-Stokes equations (NSE), the governing equa-
tions for fluid flow. These methods are designed to implicitly solve the NSE on structured grids using
finite-differences. AF schemes factorize a multidimensional problem into a sequence of simpler and, more
importantly, cheaper one-dimensional problems. The result of the factorization is a set of block tridiag-
onal matrix systems. Another tridiagonal CFD application is high-order compact (HOC) finite-difference
schemes.8 There, a variety of implicit finite-difference equations for the spatial derivatives result in scalar
tridiagonal systems. These schemes are popular due to their spectral-like accuracy while retaining a compact
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stencil on structured grids. The rapid and accurate inversion of these systems is critical for an efficient CFD
algorithm.

In the AF and ADI schemes, the tridiagonal systems along a coordinate direction are independent and
may be processed concurrently resulting in a coarse level of parallelism. The coarse-grained approach is
well-suited for many vector and multi-processor systems. However, the granularity of multi-core systems
is rapidly increasing requiring algorithms that can exploit finer levels of parallelism. For example, modern
programmable graphical processing units (GPUs) are becoming available that contain many hundreds of
processing cores.

The solution of Eqn. 1 is commonly found through the Thomas algorithm (TA). TA is a specialization
of Guassian Elimination that exploits the tridiagonal structure of the system and has a computational time
O(nm3) where m is the rank of the elements and n is the system size (i.e., number of rows). While the
algorithm operates in linear time with n, it exhibits only O(1) parallelism. As such, it is poorly suited for
the fine-grained GPU parallel environment.

The parallel solution of Eqn. 1 has been investigated for many decades. Hockney and Jesshope9 gave a
detailed numerical and performance analysis of the Cyclic Reduction (CR) algorithm for scalar systems on
theoretical pipeline and distributed memory parallel systems. More recently, Hirshman et al.10 presented
a detailed performance analysis and benchmark study of a block tridiagonal CR solver, BCYCLIC, on a
modern distributed memory cluster with multiple cores per node. There, the sub-matrix element rank
(m) was assumed to be large (i.e., m ≫ 1) that limits the relevance to the intended CFD setting. In
AF schemes, sub-matrix elements are typically 5x5 (i.e., rank-5) for three-dimensional problems. However,
their generalized performance analysis highlights the salient features of the TA and CR algorithms for block
tridiagonal systems.

Zhang et al.,11 Davidson et al.,12 Davidson and Owens13 and Goddeke and Strzodka14 reported on the
performance of CR applied to scalar tridiagonal system on GPUs. In Zhang et al.,11 CR was compared to
Parallel Cyclic Reduction (PCR), Recursive Doubling (RD) and hybrid combinations of the three. These
were all compared to dense solver solutions showing a factor of up to 12 speed-up. They found that the
combination of CR and PCR gave the best overall performance (speed and stability) for scalar systems.
They also noted that the various algorithms were highly sensitive to shared memory bank conflicts in the
NVIDIA GPUs using CUDA. Goddeke and Strzokda,14 however, did not observe the same issue in their
CR performance studies. There, the tridiagonal solver was used as a smoothing algorithm within a broader
mixed-precision, multigrid Poisson solver, an application with many similarities to the ADI scheme. Davidson
et al.12 introduced a method for efficiently solving arbitrarily large scalar tridiagonal systems on the GPU and
Davidson and Owens13 presented a register packing optimization method for improving the scalar tridiagonal
CR solver. Sakharnykh15 reported on the use of the Thomas Algorithm to concurrently solve multiple scalar
tridiagonal systems on the GPU within an incompressible CFD ADI scheme. There, parallelism across many
100s or 1000s of concurrent systems is exploited, a straightforward strategy commonly employed in multi-
core CPU systems. The current research focuses on the solution of block tridiagonal systems and studies
the performance of CUDA-based parallel CR and PCR algorithms.

III. Tridiagonal Algorithms

Several algorithms for solving tridiagonal matrices are presented in this section. In each description, the
tridiagonal matrix has n rows and the individual elements are dense rank-m sub-matrices. Further, n is
assumed to a power-of-two (i.e., n = 2k). This is not a requirement for the following algorithms but greatly
simplifies the description and analysis. The extension of the algorithm to non-powers-of-2 is described in
Hirshman et al.10

The Thomas algorithm (TA) is the most common solution method for tridiagonal systems. TA is a
specialized application of Gaussian elimination taking into account the banded structure of the tridiagonal
system. TA proceeds in two phases: forward elimination and backward substitution. In the forward elimina-
tion phase, the lower diagonal is eliminated from the second row onward. Backward substitution then begins
from the nth row, which can be directly solved, and recursively solves each row in reverse order. The total
computational work is O(nm3) and takes 2n − 1 steps. However, both the forward and backward phases
must proceed sequentially (or serially), resulting in only O(1) parallelism.

During the TA forward elimination phase, the kth row’s lower element (ak) is sequentially eliminated
using the following equations:
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a′k = ak − akb
−1
k−1bk−1

b′k = bk − akb
−1
k−1ck−1

c′k = ck

f ′
k = fk − akb

−1
k−1fk−1 (2)

where a′k is equivalently zero. As can be seen, the elimination of ak is dependent upon ak−1 having been
previously eliminated leading to the serial recursion.

A parallel alternative to TA is Cyclic Reduction (CR).9 In CR, half of the rows are recursively eliminated
at each reduction step. After log2(n) steps, the system is reduced to a single equation that is then solved
directly. Then, backward recursion allows the solution at each step to be found from the preceding step
exclusively. At every forward and backward step, there is O(n/2p) parallelism where p = 1 to log2(n). A
potential weakness of this algorithm is the decrease in parallelism towards the end of the reduction phase:
the parallelism tends to 1.

The CR method recursively eliminates the upper and lower diagonal coefficients with the following rela-
tions for each step p.

a′k = −akb
−1
k−δak−δ

b′k = bk −akb
−1
k−δck−δ − ckb

−1
k+δak+δ

c′k = − ckb
−1
k+δck+δ

f ′
k = fk−akb

−1
k−δfk−δ − ckb

−1
k+δfk+δ (3)

where δ = 2p−1. Note, since only the even rows are modified at each step in CR, the coefficients can be
updated in-place (i.e., no temporary storage is required). TA has this same feature. The total storage
requirement for CR and TA is O(n(3m2 + 2m)).

Parallel Cyclic Reduction (PCR) is a variant of CR that is designed to maintain uniform parallelism
throughout the reduction steps. The same reduction scheme is applied (i.e., Eqn. 3) in PCR as in CR.
However, instead of only eliminating the even rows at each stage, both the even and odd rows are eliminated
in PCR. At each reduction step, the current system is split into two linearly independent systems: one for
the even and one of the odd rows. After p = log2(n) forward reduction steps, the original matrix system
is reduced to n linear independent equations each that can be directly solved. As a result, PCR does not
require a reserve solution phase. And, as designed, the parallelism of PCR is maintained at n throughout
the algorithm.

Since PCR eliminates both the even and odd equations at each step, the updated coefficients must be
temporarily stored. The total storage requirement for PCR scales as O(n(5m2 + 2m)), roughly 66% greater
than CR assuming m ≫ 1.

III.A. Computational effort

A detailed listing of the computational complexity and parallelism for each algorithm is given in Table 1.
The scaling estimates are for a block tridiagonal matrix with n rows and sub-matrix elements of rank m.
The columns from left to right present the number of steps, the total computational work per step, the total
integrated work, the available parallelism and the parallel time assuming perfect parallel machine. Estimates
are given for the forward and reverse phases from top to bottom for each algorithm. The symbols Cinv,
Cmat, and Cvec represent the cost of matrix inversion, matrix-matrix and matrix-vector multiplications,
respectively, for a given platform and implementation. (For this analysis, only the scaling and not the
distinct costs of each are relevant.) The cost of these matrix and vector operations scale as m3, m3 and
m2, respectively. In practice, LU factorization10 is used instead of direct inversion but does not affect the
original m3 scaling.

Comparing the above estimates, TA is seen to have the lowest total work of the three. CR has the same
scaling as TA but requires relatively more work in total. Hirshman et al.10 estimated the CR-to-TA work
ratio as approximately 2.6. As a result, it can be assumed that a minimum parallelism of three is required
by CR to be match the TA serial performance. With hundreds of processing cores per device, the intended
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Table 1. Comparison of Thomas (TA), Cyclic Reduction (CR) and Parallel Cyclic Reduction (PCR) algorithms applied
to a block tridiagonal matrix with n rows and with rank-m sub-matrix elements.

Algorithm Number of Work per step (k) Total work Parallelism Parallel time

steps per step (k)

TA n Cinv + 2Cmat + Cvec nm3 1 nm3

n− 1 Cvec nm2 1 nm2

CR log2 n n/2k(Cinv + 6Cmat + 2Cvec) nm3 n/2k m3 log2 n

log2 n− 1 n/2k(2Cvec) nm2 n/2k m2 log2 n

PCR log2 n n(Cinv + 6Cmat + 2Cvec) nm3 log2 n n m3 log2 n

1 n(Cinv + Cvec) nm3 n m3

GPU devices should far exceed this limit. Unlike CR and TA, the cost of PCR is not linear with n but
increases by a factor of log2 n. That is, the total computational work for PCR increases with the system size
and may negate the improved parallelism for large n.

It is important to note that the above algorithms can be applied equally to scalar and block tridiagonal
systems. Additional arithmetic optimizations are possible for scalar elements (e.g., matrix inversion is
replaced with simple scalar division). However, these differences do not affect the theoretical performance
analysis presented above.

III.B. CFD Application: Approximate Factorization Scheme

The governing fluid dynamics equations, the Navier-Stokes equations, can be written in strong conservative
form and in a generalized 3-d coordinate system as,

∂U

∂t
+

∂E

∂ξ
+

∂F

∂η
+

∂G

∂ζ
= 0 . . . U =

1

J
[ρ, ρu, ρv, ρw, ρe0]

T (4)

where ρ, (ρu, ρv, ρw) and ρe0 are the density, momentum and stagnation energy. The Beam and Warming3

(BW) implicit time-step scheme is widely used to solve Eqn. 4 on structured grids. In the BW algorithm, the
nonlinear flux vectors (E, F, G) are linearized about the current time-step to form a linear implicit scheme.
For example,

En+1 ≈ En + [A](Un+1 −Un) (5)

where [A] is the flux Jacobian matrix (e.g., [A] = ∂E/∂U). The flux Jacobian matrices in the η and ζ
directions are similarly defined as [B] = ∂F/∂U and [C] = ∂G/∂U.

After linearization, an implicit scheme can be written compactly with Un+1 = Un +∆Un+1 as{
I +

δt

1 + ϕ

(
∂[A]

∂ξ
+

∂[B]

∂η
+

∂[C]

∂ζ

)}
∆Un+1 =

ϕ

1 + ϕ
∆Un − δt

1 + ϕ

{
∂E

∂ξ
+

∂F

∂η
+

∂G

∂ζ

}n

. (6)

The temporal accuracy can be varied from 1st to 2nd-order by adjusting the free parameter ϕ. Using
second-order central differences for the LHS derivatives leads to a banded block matrix with three upper
and lower-diagonals of length Nξ × Nη × Nζ and where each element is a 5x5 sub-matrix. Nichols et al.16

solved Eqn. 6 iteratively using a successive symmetric over relaxation (SSOR) scheme. Alternately, Eqn. 6
can be approximately factorized (AF) into three components as{

I +
δt

1 + ϕ

(
∂[A]

∂ξ

)}{
I +

δt

1 + ϕ

(
∂[B]

∂η

)}{
I +

δt

1 + ϕ

(
∂[C]

∂ζ

)}
∆Un+1 = Rn (7)

Here, R is the right-hand side (RHS) of Eqn. 6. Note, Eqn. 7 differs from the original by terms on the order
of δt2 and δt3. This error tends to zero at convergence and does not significantly impact the formal accuracy
of the scheme (O(δt2,δx2)) in steady-state problems.

Equation 7 is solved in three sequential steps:
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{
I +

δt

1 + ϕ

(
∂[A]

∂ξ

)}
∆Uξ = Rn{

I +
δt

1 + ϕ

(
∂[B]

∂η

)}
∆Uη = ∆Uξ{

I +
δt

1 + ϕ

(
∂[C]

∂ζ

)}
∆Un+1= ∆Uη (8)

where ∆Uξ and ∆Uη are intermediate solutions. Each step requires the inversion of a set of one-dimensional
block tridiagonal matrices whose length is equal to the coordinate dimension (e.g., Nξ). The solution of these
tridiagonal matrices is significantly cheaper than solving Eqn. 4 in both computational time and storage
requirements.

While the approximately factorized BW scheme must proceed in sequence, several levels of parallelism
still exist. For a given coordinate direction, inversion along the two remaining coordinates can proceed
concurrently. For example, when solving along the ξ coordinate, there are Nη × Nζ independent tridiagonal
matrices that can be solved in parallel. Further, the construction of the LHS block matrix coefficients at
each step can occur concurrently facilitating functional pipelining. The combination of these two strategies
is expected to fit well within the targeted throughput-oriented GPU devices. However, only the parallel
solution of the block tridiagonal matrices is investigated presently.

III.C. CUDA Implementation

The current work employs NVIDIA’s Compute Unified Device Architecture (CUDA). This architecture sup-
ports fine-grained data parallelism through a hierarchical multi-processor and multi-core design. These
devices are designed around one or more streaming multiprocessors (SMs). Each SM in turn contains a set
of scalar processors (SPs) along with local on-chip shared memory. All processors have access to the GPU
global memory at high bandwidth. Threads are scheduled rapidly via a hardware-based thread workload
manager on each SM. Blocks of threads are launched together and can work collectively through per-block
synchronization instructions. Increased performance is achieved by scheduling multiple blocks per SM. This
allows memory latency to be hidden increasing the realized throughput.

To achieve reasonable performance in CUDA, it is necessary to properly manage memory access. Unlike
commodity CPUs, CUDA does only limited hardware-managed memory caching that can quickly cause
execution kernels to become memory bound. Reads from global memory can be accelerated if all threads
within a block access data in a contiguous and regularized fashion. Under specific conditions, reads and
writes to global memory from a block can be coalesced as a single memory operation with a significant
improvement in throughput. This mechanism is exploited where possible.

The parallel block tridiagonal algorithms described earlier were implemented in CUDA following the work
of Zhang et al.11 In their work, each matrix system is solved by a single thread block. CR uses n/2 threads
per thread block while PCR uses n threads per thread block. This same thread strategy is used for the new
block tridiagonal algorithms. The CR and PCR block tridiagonal matrix algorithms use a generalized rank-
m LU decomposition method to invert the sub-matrix elements. The sub-matrix and sub-vector operations
are done in-place within shared memory as much as possible. This is done to reduce register pressure and
increase the possible occupancy rate. The scalar CR and PCR implementations employ traditional scalar
division and multiplication.

As mentioned above each block has access to a fast on-chip shared memory segment. Before solving the
tridiagonal systems, the matrix and vector bands are first read from the device global memory into shared
memory by each block. The available shared memory, currently 48 kB per SM, limits the maximum supported
matrix size. The largest possible rank-5 block tridiagonal matrix is 128 with CR when using single-precision.
However, 128 is likely sufficient for many CFD applications. Davidson et al.12 recently presented a method for
solving arbitrarily large scalar tridiagonal systems on the GPU. In their work, PCR is recursively applied to
a large scalar tridiagonal system effectively creating many smaller, independent tridiagonal systems. Future
studies will examine their method as it applies to large block tridiagonal systems.

Before any calculations can occur on the GPU, the data must be transferred from the CPU host to
the GPU device. This can commonly cause significant overhead that limits the realized performance. The
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impact of the transfer latency and bandwidth can be reduced by executing multiple kernels within streams
that enables overlapped communication and computation.

IV. Results

The performance characteristics of the new block tridiagonal solvers and the finite-volume kernel toolkit
are presented in this section. CPU performance is also presented for direct comparison.

IV.A. Block-tridiagonal performance

A series of benchmarks were conducted using the parallel tridiagonal algorithms discussed earlier. The
tridiagonal matrix solvers are used to solve a finite-difference approximation for the 1-d Poisson equation.

d2u

dx2
= ex x = [0, 1], u(0) = 0, u(1) = 1 (9)

This type of problem was chosen since it has an analytical solution that can be used for error analysis and
validation. A finite-difference approximation of Eqn. 9 is

ui−1 − 2ui + ui+1 = h2f(xi) (10)

where h = 1/(n + 1) is the mesh spacing and n is the number of solution points. The resulting matrix
system can be cast as a scalar or block tridiagonal matrix. The symmetric structure of the upper and lower
diagonals is ignored as is the sparsity of the sub-matrix blocks.

The benchmarks were run on an AMD Opteron dual-processor system (Opteron 250, 2.4 GHz) with a
single NVIDIA C2050 (Fermi) GPU. The host and device are linked via a PCI Express x16 graphics bus.
OpenMP is used to parallelize the baseline TA results on the host. Each OpenMP thread solves a separate
tridiagonal matrix system concurrently using TA.

Rank-1 (scalar) and rank-4 (block) matrix systems were investigated. For each test, the system length is
varied from 16 to 1024 for rank-1 and 16 to 128 for rank-4. Again, the block matrix system size was restricted
by the available shared memory. 512 copies of the test problem are solved concurrently for each test run and
the benchmark results are averaged over 100 separate tests. All computations are done in single-precision
(32-bit) arithmetic.

16 64 256 1024
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T
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e 
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Thomas (OpenMP CPU)
CR-CUDA (Corrected)
PCR-CUDA (Corrected)

(a) rank-1
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Figure 1. Benchmark results for rank-1 and rank-4 tridiagonal matrix systems using TA, CR and PCR algorithms.
Vertical axis is total time (milliseconds) to solve 512 systems averaged over 100 samples. Open symbol denotes host-
device communication time incurred during CR and PCR CUDA solvers. Stars denote CUDA solver times without
communication overhead (i.e., corrected).

7 of 15

American Institute of Aeronautics and Astronautics



The timing results are shown in Fig. 1. The average total execution time is given as a function of
the system size (n) for both the rank-1 and rank-4 problems using TA, CR and PCR. The total incurred
overhead for the CUDA benchmarks is also shown. The overhead includes host-to-device and device-to-host
data transfers and device memory allocation/deallocation. The corrected time shown for the parallel CUDA
solvers is the solution run-time with the data transfer overhead removed.

As can be seen in Fig. 1, the CUDA CR and PCR algorithms do not result in performance improvements
compared to the OpenMP TA algorithm using either rank-1 and rank-4 elements. In fact, the rank-4
performance is significantly slower than the OpenMP version.

Before computations are possible on the CUDA device, the block matrix data must be transferred from
the CPU host to CUDA device through the PCI-Express bus. This transfer overhead is shown as a solid
circle in Fig. 1 and is the same for both CR and PCR. For the scalar (rank-1) matrix systems, the overhead
accounts for 70% of the total execution time and is approximately equal to the TA cost. The transfer
overhead is less substantial for the block matrix (rank-4) case due to the higher computational intensity. For
n = 128, the overhead consumes 48% of the execution time in CR. When the communication overhead is
subtracted out, the scalar performance is significantly better than the OpenMP TA. The difference is less
pronounced for the rank-4 block tridiagonal systems lowering the execution time roughly equal to the TA
baseline results.

There is little difference between the CR and PCR algorithms for the scalar systems while CR outperforms
PCR for rank-4. However, an interesting feature is observed for the rank-4 problem. As n is increased toward
the 128 shared memory limit, the cost using CR is seen to increase at a greater rate than PCR. Two possible
explanations are the decrease in parallelism and shared memory bank conflicts. As detailed earlier, CR’s
parallelism decreases with each reduction step. The low parallelism during the final few reduction steps
could impact the realized performance. Memory bank conflicts can limit the shared memory bandwidth
significantly impacting throughput.

The effect of shared memory bandwidth and bank conflicts can be examined by reordering the ma-
trix/vector storage scheme. The tridiagonal sub-matrix and sub-vector elements can be written generically
as aijk and fjk where i and j denote the sub-element components and k denotes the tridiagonal matrix row.
The elements can be stored in the structure-of-arrays (SOA) or array-of-structures (AOS) formats. In SOA,
the individual components (e.g., a11 k) are stored contiguously for all rows k. AOS reverses this by storing
all components for a single row k in order. AOS is the more natural format for an object-oriented method
and is well-suited for cache-based or pipelined processors. However, SOA is more suited for vector processing
(e.g., SSE and CUDA SIMT). The SOA format is expected to be more efficient for CUDA due to coalesced
global memory access and reduced (or removed) shared memory bank conflicts.

The CUDA results in Fig. 1 employed SOA while the OpenMP TA results used AOS. The CUDA CR and
PCR times using AOS are shown in Fig. 2. The SOA results from Fig. 1 are repeated for easy comparison.
Note, only the rank-4 results are shown as the formats are equivalent for scalar systems. The performance
impact of SOA compared to AOS is quite significant. The difference for n = 128 is approximately 2x for CR
and 2.6x for PCR.

The benchmarks presented above show that the parallel solvers can provide performance gains compared
to an optimized OpenMP Thomas Algorithm solver if the host-to-device transfer costs can be removed or
significantly reduced. A 3–4x performance gain was realized using the PCR algorithm when the transfer
cost is removed. We also show a strong dependence upon the data storage format on the CUDA device.
Storing data in a structure-of-array (SOA) format resulted in a 2x performance gain compared to the array-
of-structures (AOS) format.

The CR parallel block tridiagonal solver was also implemented within OVERFLOW-2 and benchmarked
using the same hardware environment as before. OVERFLOW-2 uses the Beam and Warming3 scheme to
solve the compressible RANS equations on overset structured grids. OVERFLOW-2 applies the AF scheme
(i.e., Eqn. 8) along coordinate planes to enable host-side vectorization. This algorithmic design will be
exploited to allow asynchronous and concurrent execution of the parallel block-tridiagonal solvers. That is,
multiple coordinate planes can be concurrently solved allowing an overlap of host-device data transfer and
device kernel execution. The Intel Fortran compiler was used to compile the OVERFLOW-2 code using
full optimization. Further, the cache-optimized version of the source-code was used to best fit the host’s
hardware.

For this benchmark, only the ξ-direction sub-step of the AF scheme was solved using the CUDA CR
algorithm for simplicity. The remaining two sub-steps were solved using the internal cache-optimized
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Figure 2. CUDA CR and PCR benchmark results comparing AOS and SOA data formats. Vertical axis is total time
(milliseconds) to solve 512 systems averaged over 100 samples.

OVERFLOW-2 block tridiagonal solver. Note, all flux Jacobian matrices and residual vectors were computed
on the CPU host; only the block tridiagonal matrix inversion was computed on the GPU. Therefore, the
three 5x5 LHS sub-matrices and the 5x1 RHS sub-vector were transferred to the GPU before the matrix
inversion began. The solution vector is copied from the GPU back to the host once the systems were solved.

A flat-plate boundary-layer simulation was used as a benchmark. A single grid was used for the current
tests (i.e., no overset grid capabilities were required). As the prototype CR algorithm is restricted to
tridiagonal systems of size 2k, the tested grid sizes were 34, 66 and 130 points in all directions. (Two points
were added in each direction to account for the specified boundary points.) Nη x Nζ tridiagonal systems
were solved during each ξ-direction sweep of the AF Beam-Warming scheme. This corresponds to 1024,
4096, and 16384 matrix systems of size 32, 64 and 128, respectively.

The cache-optimized ξ-direction routine in OVERFLOW-2 operates on a single computational coordinate
line at a time. This is highly efficient for the host CPU hardware and uses the AOS storage format. As
shown earlier, the SOA format is most efficient for the CUDA CR parallel algorithm. Therefore, the LHS
sub-matrices and sub-vectors are copied and reformatted in temporary host memory before copying to the
GPU device and vice-versa; this copy cost is not negligible. Only the most efficient formats for each platform
are reported when comparing CPU and GPU performance results. That is, AOS is reported for the CPU
and SOA is reported for the GPU. Note, a vector-optimized version is available in OVERFLOW-2 as well.
While the resulting sub-matrix and sub-vector structure is more compatible with the CUDA CR algorithm,
the time required to construct the matrix coefficients is significantly slower and is, therefore, not used.

Three different CUDA implementations were tested: (i) a single data transfer with a single kernel invoca-
tion; (ii) multiple asynchronous transfers with a single kernel; and (iii) multiple asynchronous transfers with
multiple asynchronous kernels. In (i), all sub-matrix and sub-vector coefficients are computed at every grid
point, converted to the SOA format and then transferred to the GPU in synchronized steps. Then, all the
block tridiagonal systems are solved within a single CUDA kernel. The solution is finally transferred back
to the host in a single transfer operation and the solution converted back to the native AOS format. Note,
the host (CPU) storage requirement is a significantly higher for the CUDA implementations compared to
the cache-based CPU version. In all three CUDA methods, storage for the coefficient matrices at each point
on the grid is required whereas only a single ξ line of coefficients is stored at a one time in the cache-based
CPU algorithm.

In (ii), the matrix coefficients are constructed by coordinate planes (i.e., ξ-η planes). After each ξ-η plane
is populated and reformatted, the data is asynchronously transferred to the GPU. Asynchronous transfers
are non-blocking and allow the CPU host thread to continue processing. In this case, the next ξ-η plane can
be assembled while data is being transferred over the PCI bus. This is facilitated by CUDA streams, CUDA’s
asynchronous facility. After all ξ-η planes have been transferred, a single CUDA CR kernel is launched and
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bound to the transferring stream. The stream forces the kernel to block till all data transfers to the device
have completed. As before, a single (blocking) device-to-host transfer copies the solution back to the host.

Finally, algorithm (iii) operates fully asynchronously. After each ξ-η plane is assembled by the OVER-
FLOW host code, the plane’s data is asynchronously transferred to the device within a unique stream. A
CUDA CR kernel and asynchronous device-to-host transfer is then bound to the unique stream. Each kernel
waits till the host-to-device transfer is complete. Similarly, each device-to-host transfer waits till the stream’s
kernel completes execution. All of the asynchronous commands are non-blocking on the host allowing the
CPU to proceed with the next ξ-η plane. This mechanism can reduce the overhead incurred by data transfers
by overlapping host-device and device-host transfers with CPU calculations. However, some CPU resources
are still consumed by the CUDA driver to facilitate the data transfer and kernel execution.

Performance measurements are shown in Table 2 for the three synchronization methods. Both single
and double-precision results are given for each grid size. The CUDA block tridiagonal solvers were slower
than the cache-optimized CPU solver. This is similar to the Poisson equation tests presented earlier. The
synchronous method was slower by a factor of 2x for single-precision and 3x for double-precision. The data
transfer accounted for approximately 29.6% of the total CUDA solver time for the single-precision fully-
synchronized method. A significant improvement was observed when using the fully asynchronous method;
however, it is still slower than the CPU method.

The current OVERFLOW-2 CUDA implementation was limited to solving only the block tridiagonal
matrix systems. These results show no performance improvement, quite the opposite in fact, due to the
overhead of data transfer and, to a lesser extent, reformatting. On a grid of size n3, 240n3 words must be
transferred from the host to GPU when solving the block tridiagonal matrices. Also, 15n3 words must be
transferred back to the host, 5n3 for each of the three stages in the AF-BW scheme. However, solving the
entire AF-BW scheme on the GPU requires the transfer of only 10n3 words to the device and 5n3 from
the device; a factor of 17x difference in total. The amount of data transfer required is reduced since only
the RHS residual flux vector and the conservative variables (i.e, the U in Eqn. 8), need to be copied to
the device each time-step. The sub-matrix coefficients can be constructed directly on the GPU from the
conservative variables. Computing these block sub-matrices accounts for approximately 46% of the floating
point operations in the OVERFLOW-2 BW implementation. Building the sub-matrix elements on the GPU
would double the amount of work offloaded from the CPU. The combination of reduced data transfer and
increased work offload should provide a significant performance improvement for OVERFLOW-2.

Table 2. Wall-clock times (ms) measured for CPU cache-based Thomas algorithm (TA) compared to CUDA Cyclic
Reduction (CR) using (i) synchronous data transfers, (ii) asynchronous transfers and (ii) asynchronous transfers and
kernels for difference grid sizes and data types. (Grid size of 128 with double-precision exceeds the CUDA shared
memory limits.) Times are averaged over 200 iterations.

Grid size Datatype CPU TA (ms) (i)Sync CR (ms) (ii)Async xfer (ms) (iii)Async kernel (ms)

32 single 32 74 56

32 double 36 115 68

64 single 245 432 543 431

64 double 310 880 864 550

128 single 2020 5460 3610

IV.B. Finite-volume kernel benchmarks

This section presents benchmark results for two kernels commonly used in explicit CFD algorithms. These
kernels solve (i) the local and global time-step (δt) (i.e., the maximum stable δt allowed) and (ii) the inviscid
flux vector difference. These kernels were implemented within MBFLO3 and compared for accuracy and
performance against their equivalent CPU implementations.

MBFLO35 is a finite-volume compressible CFD algorithm capable of solving the Navier-Stokes and RANS
equations on generalized 3D, multi-block, structured-grids. MBFLO3 employs the Lax-Wendroff time march-
ing algorithm with Ni’s distribution formulas. The algorithm is suitable for time-accurate unsteady and
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steady-state simulations. An implicit dual-time method is available for convergence acceleration. The multi-
block algorithm can handle an arbitrary number of block interfaces. Distributed parallel computing is
supported with MPI. This CFD algorithm has been used for previous GPGPU acceleration in 2D viscous
flow simulations.6,17

The benchmarks were conducted on a dual-socket Intel X5677 (quad-core) Xeon server with 12GB DDR3
ECC memory and 4 NVIDIA C2050 GPUs. While the test hardware had multiple GPUs, only single-GPU
results are presented.

The first kernel benchmark measures the performance of computing the local and global time-step limit
for an inviscid flow over a bump. The geometric configuration and block distribution is shown in Fig. 3. The
simplified test configuration allows the grid size to be easily varied for scaling studies.

Figure 3. Inviscid bump test configuration for finite-volume kernel benchmarks in MBFLO3.

The local cell-centered time-step calculation within MBFLO3 first requires the interpolation of conserved
quantities (i.e., ρ, ρu, ρe0) from the grid nodes to the cell centers. This is done by assuming equal weights
for all nodal values within each hexagonal element. The velocity (u) and local speed of sound (c) can readily
be found from the conservative variables and equation-of-state. For this study, γ was assumed constant
allowing a simplified equation-of-state to be used, i.e., ρe = p/(γ − 1). The stable time-step at a cell ijk is
approximated using the following formula:

δt = Vol/min(|u · Sξ|+ c|Sξ|, |u · Sη|+ c|Sη|, |u · Sζ |+ c|Sζ |) (11)

where Vol is the cell’s volume and Sξ, Sη, Sζ are the face surface area vectors in the ξ, η and ζ grid directions.
The surface area vectors in the three coordinate directions are averaged to give a cell-centered value.

The current CUDA implementation is straightforward for this kernel. The 3-d computational grid (or
patch) is partitioned by cell coordinates into uniform 2-d slices with 32x6x1 cells. These 2-d slices define the
thread blocks, i.e., on thread per cell. The thread blocks are mapped onto a larger 2-d grid of blocks for
actual kernel execution. Within each kernel, the cell-centered local time-step value is computed in parallel.
Once all threads have finished the calculation, a modified binary reduction algorithm, following Harris et
al.,18 is used to compute the thread block’s minimum time-step. The reduction kernel is modified to allow
thread block sizes that are not powers-of-2. However, the thread block size is limited to the hardware warp
size to maintain parallel efficiency.a Each thread block’s minimum δt is then stored in global memory. After
all thread blocks have completed, a second minimum reduction kernel is launched to find the patch’s global
minimum. This single value is returned to the user along with a cell-centered array of local δt values.

Only global memory is used for array access. That is, no shared memory is explicitly used to cache
variable access. However, the NVIDIA Fermi devices (i.e., CUDA v. 2.0+) provide some automatic data
caching that has not been available for previous hardware versions. Future research will investigate the
merits of explicit shared memory usage as well as combinations of shared, texture and global memory for
optimal performance.

Local time-step performance measurements on multiple grid sizes are shown in Fig. 4. The optimized
CPU results are presented alongside the baseline GPU results and GPU results using a lumped transfer

aThreads within a thread block are partitioned into warps in the CUDA SIMT architecture. Each instruction is issued
collectively to and executed by the threads in the warp. Currently, a warp is 32 threads.
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method. Two different host-to-device transfer methods were implemented: variable-by-variable and lumped-
variable approach. The variable-by-variable method issues transfer requests sequentially while the lumped
approach transfers groups of variables within a single transfer request. Combining multiple transfers together
may reduce latency costs. The results are averaged over 800 iterations. Note, all benchmark results shown
used double-precision exclusively.

For this specific benchmark, all variables used by the time-step kernel are transferred from host to device
at each iteration including those that are unchanged (e.g., surface area vectors and cell volume). Therefore,
the performance presented here can be considered a worst-case scenario.
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Figure 4. Local stable time-step calculation using finite-volume GPU algorithm compared to CPU baseline for various
grid sizes. CPU baseline is shown in black squares; GPU results using variable-by-variable transfers in red triangles;
GPU results using lumped transfers in blue triangles; and GPU transfers times in purple triangles. Timings are reported
in wall-clock seconds and averaged over 800 samples.

The time-step kernel performance results in Fig. 4 show speed-up factors ranging from 3.2–3.9x over
the range of grid sizes compared to the baseline CPU tests. The total data transfer time is also shown in
Fig. 4. There was only minimal difference observed between the lumped and variable-by-variable transfer
approaches so only the lumped transfer times are shown. The transfer time consistently accounted for 63%
of the total GPU runtime.

Though the performance improvement realized in the time-step calculation is modest, the results are
promising. Reducing the data transfer cost would greatly improve the potential speed-up. For static grids,
the cell volumes and face surface area vectors need only be copied to the device once per simulation reducing
the transfer overhead by 72%. This could give potential speed-ups approaching 11x on the largest grid.
Outright elimination of the transfer overhead could give speed-ups closer to 21x on the largest grid. This
scenario could be realized if all calculations were ported to the GPU and any necessary data transfers were
overlapped with asynchronous kernel execution via streams. Aside from the data transfer overhead, efficient
use of shared and texture memories is expected to further improve the code throughput.

The inviscid fluxes were computed following a strategy similar to the time-step kernel. The face-centered
flux vectors were computed by first linearly interpolating the conservative variables from the four surrounding
nodal points on each quadrilateral face. The flux differences in each of the three computational directions
were executed sequentially with one thread assigned per cell. The flux differences were separated to reduce
register pressure and thereby increase the potential occupancy factor.

The inviscid flux benchmark results are shown in Fig. 5. Since no appreciable difference was observed
previously, only the lumped GPU transfer approach is shown. Speed-up factors range from 3.5x on the
smallest grid up to 4.3x for the two largest grids. The overall computational work required in the flux
calculation is approximately twice that of the time-step calculation and this is observed in both the CPU
and GPU benchmarks. The higher computational intensity also effectively lowers the data transfer overhead
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Figure 5. Inviscid flux calculation using finite-volume GPU algorithm compared to CPU baseline for various grid sizes.
CPU baseline is shown in black squares; GPU results in red triangles; and GPU transfer times blue triangles. Timings
are reported in wall-clock seconds and averaged over 800 samples.

by roughly 2x compared to the time-step kernel. The transfer cost was 32% on the smallest grid and to
dropped to 26% on the largest grid size measured. This lower relative cost lessens the potential speed-up that
could be realized with reduction or elimination of the memory copies. Total elimination of data transfers
on the largest grid could increase the speed-up from 4.3x only to 5.8x. However, the impact of shared and
texture memory on the inviscid flux calculation is projected to be greater compared to its impact on the
time-step kernel. This is due to the flux kernel requiring 3x as many data loads and interpolations. Repeated
loads for this type of compact structured stencil could benefit greatly from explicit caching in shared memory
and/or by exploiting automatic texture memory cache functionality.

V. Conclusions

A family of parallel block tridiagonal matrix solvers were implemented in CUDA for GPU acceleration.
The block Cyclic Reduction (CR) and Parallel Cyclic Reduction (PCR) algorithms were designed to support
a variety of sub-matrix formats and data structures to assess the optimal CUDA implementation.

A performance analysis of the parallel block tridiagonal solvers was conducted using a canonical test prob-
lem. The CUDA performance was found to depend significantly upon the sub-matrix element storage method:
structure-of-arrays (SOA) versus array-of-structures (AOS). AOS performs optimally on cache-based CPUs
while SOA was better suited for vector-based CPUs and CUDA’s SIMT architecture. Measurements showed
that SOA was 2x faster for CR and 2.6x faster for PCR on CUDA compared to the AOS version when
host-device data transfers were ignored. When host-device data transfer was included, even the optimal
SOA formulation was nearly 2x slower than the OpenMP implementation of the Thomas Algorithm (TA)
due to the overhead cost of transmitting the block matrices.

The parallel CR CUDA solver was then implemented within the OVERFLOW-2 CFD code, validated for
correctness and extensively benchmarked using various data transfer methods. The CR CUDA matrix solver
was used to invert the block tridiagonal systems generated by the Approximate Factorization Beam-Warming
(AF-BW) scheme in the ξ-direction. The left-hand-side (LHS) sub-matrices and right-hand-side (RHS) sub-
vectors were all constructed on the CPU. Multiple implementations were tested using synchronous and
asynchronous data transfers and kernels with the aid of CUDA streams. The time for the CR CUDA method
to solve the matrices using double-precision on a 643 grid was 2.8x greater than that of the cache-optimized
OVERFLOW-2 matrix solver using straightforward synchronized data transfers. An asynchronous method
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was tested whereby planes of LHS block-matrices and RHS sub-vectors were constructed, transmitted and
solved using CUDA streams. This strategy improved the overall performance but was still slower than the
CPU version by a factor 1.7x.

These results show that the data transfer overhead will be a limiting factor in solving many CFD-relevant
problems on the GPU. This was particularly evident for the block tridiagonal matrix solver within the
OVERFLOW-2 code. However, if the transfer cost could be removed, the CUDA-based parallel tridiagonal
matrix solvers were faster than the CPU version. In this regard, the next logical stage in the development
sequence is to offload the entire AF Beam-Warming algorithm used in OVERFLOW-2 to the GPU. The
block tridiagonal matrix solvers presented here would act as an enabling technology by providing an efficient
and highly parallel component required by the larger CFD algorithm.

Estimates showed that offloading the entire AF Beam-Warming algorithm to the GPU could be expected
to give considerable improvements due to both data transfer reduction and an increase in the floating-point
operations done on the GPU. The data transfer was shown to be reduced by over a factor of 17x and the
total amount of floating-point operations offloaded from the CPU increased by 2x. Beyond the AF Beam-
Warming scheme development, the right-hand-side (RHS) central difference scheme could also be offloaded
to the GPU creating a powerful GPU version of the OVERFLOW-2 flow solver.

A second component of this research evaluated CUDA GPU versions of common calculations for com-
pressible flow simulations on structured grids. Kernels for finding the maximum local/global time-step size
and computing the inviscid fluxes were implemented in CUDA and tested within the MBFLO3 finite-volume
CFD code. Performance improvements, compared to the CPU equivalents, were approximately 4x for both
the time-step and flux kernels when including the cost of host-device memory transfers. The host-device
data transfer overhead accounted for 72% of the cost in the time-step kernel and approximately 30% for
the flux kernel. Reducing or eliminating this overhead, through further GPU kernel porting in conjunction
with asynchronous transfers, could lead to speed-ups approaching 21x for the time-step and 6x for the flux
kernels.

The finite-volume CFD kernels presented here relied largely upon global memory reads and writes; only
the per-block reduction operation exploited the available shared memory hardware. Future research is
needed to assess the merits of using shared memory and/or texture memory to increase the throughput.
Both the time-step and flux kernels repeatedly accessed common nodal data over the computational cells.
The performance could be increased by explicitly caching the surrounding nodal data in shared memory.
However, shared memory is a limited resource and must be used judiciously. Texture memory may also be
used to increase the performance. GPU texture memory has a separate, dedicated cache that could improve
the read-only performance of structured-grid data. The optimal memory management strategy is expected
to be a combination of both shared and texture memories. This approach needs to be investigated in future
research.
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