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Abstract

An Inclusive Search for the Decay of Boosted Higgs Bosons in the H → bb

Channel with the ATLAS Detector

by

Jacob Martin Pasner

A search for high-momentum Higgs bosons, produced with an associated jet and decay-

ing to bottom quark pairs, is conducted using an integrated luminosity of 80.5 fb−1 of

proton-proton collisions at
√
s = 13 TeV collected with the ATLAS detector at the Large

Hadron Collider. The search for H → bb̄ is of particular importance, as current mea-

surements of this decay channel contain large uncertainties and have not yet established

evidence for the gluon-gluon fusion and vector boson fusion Higgs boson production

modes. This is the first time this analysis has been performed with
√
s = 13 TeV

at ATLAS and represents an important advancement in the use of boosted jet tech-

niques including implementation of the Variable Radius jet algorithm. Furthermore, a

novel tt̄ control region strategy is implemented to correct the mismodeling of its nor-

malization and is shown to constrain the associated large JES and JMR systematic

uncertainties. For the Standard Model Higgs boson, the observed signal strength is

µH = 5.8± 3.1 (stat.)± 1.9 (syst.)± 1.7 (theo.), which is 1.6 standard deviations higher

than the background-only hypothesis, with an expected sensitivity of 0.28σ.

xvi



xvii



To my loving parents for giving me a beautiful life

To my friends and family for filling my life with joy

And to science for the miracle and mystery of life itself

xviii



Acknowledgments

There is no way I can fully express my gratitude for the people and places that have

made this journey all that it has been. The path to this degree has been winding,

uncertain and full of mistakes. The names below represent a small sample of the rich

bounty this life has offered me for guidance and support. I am eternally grateful to

them all.

Thank you Jason Nielsen for personally calling me and inviting me to work with you

nearly seven years ago. I didn’t know how lucky I was back then, but I can definitively

say now I wouldn’t have it any other way. Your patience, exuberance, curiosity and

kindness have taught me the power of questions and the boundless possibilities of an

inquisitive mind. Thank you for these gifts, and for supporting me in the pursuit of my

dreams.

Thank you to my committee members, Michael Hance and Abraham Seiden, for bearing

with the hectic timeline this dissertation was created on. You supported my less than

traditional writing style and have helped me produce a document my family and I can

be proud of for years to come.

Thank you to my collaborators in ATLAS and all my individual analysis groups. It

has been an incredible honor to work with such a diverse and devoted group of brilliant

scientists. Our incredible success as a field stands as a testament to the ingenuity and

determination that can only come from cooperation. Particle physicists have shown me

xix



what a world without boarders looks like, and I am grateful to count myself amongst

their ranks.

Thank you to the teachers and professors who helped me realize my dream of becoming

a scientist and more: Richard Toothman, John McDaniel (McD), Kelley Molitor, Mani

Tripathi, Manuel Calderón de la Barca Sánchez, Randy Harris, and Joel Primack. You

believed in me and I will never forget the power of that gift.

Thank you to Giordon Stark for seeing my potential and setting me on the path to

policy. You have been a solid shoulder to lean on, a kind ear (eye?) to my worries and

a powerful mind to sharpen my own against. Your friendship and brilliance make this

world more friendly and interesting, everywhere you go. Also your baking is so good it

should come with a warning label.

Thank you to the many post doctoral students at UCSC who have pulled me out of the

academic mud time and time again: Matthew, Andrea, Simone, Hass, Chiara and Ryan.

Navigating the ATLAS collaboration without your guidance and protection seems an

impossible task, we are all in your debt.

Thank you to my physics cohort for all the late night homework sessions and your

continuing friendship and support: Joey, Max, Ross, Dean, Cam, Mike, Dave, Noah,

Peizei, Ahram, Skyler, Christoph, Eudald, Daniel, Philip. You’re all brilliant and I

can’t wait to see where life takes you all.

Thank you to the UCSC graduate students who helped me along the way, sometimes

xx



with words of encouragement, other times with a stiff drink but always with a smile:

Sheena, Peyton, Eric, Jeff, Alexander, Monika, Carey, Doug, Brian, Muiris, Daniel,

Jerah, Katie, Tayler, Daniel, Zippy, Carolyn, Cole, Natasha and many more. Graduate

school is hard in a way very few people can understand, I’m so glad I didn’t have to

travel this path alone, thanks to you.

Thank you to my Santa Cruz housemates through the years: Elizabeth, Tessa, Stas,

Dave, David, Rob, Roy, Zad, Brent, Philip, Graham, Kelly and Catherine. The house

on Laurel Street will always be a special place in my memories and my heart. The music,

food, dance and discussion we shared have taught me what true community looks like.

My love and gratitude to all of you, I couldn’t ask for better or more supportive friends.

Thank you to the Santa Cruz locals for all the shenanigans and memories: Cleve-

land, Gabe, Monica, Travis, Saul, Bob, Larry, Deidre, Brian, Philip, Sean, Lance,

Chappy, Keelin, Angelica, Kage, Mikey (thanks for the laundry), Michael, Micha, Xan-

der, Gabriel, Julian, Brooke, Maya, Rafferty, Allie, Sam, Kate, Carrie, Alex, Cesar,

Nora, Chris and many more. Our time together gave me the moments of rest and

relaxation I needed to keep me sane.

Thank you to my Geneva housemates during my time in Switzerland: Rob, Bijan,

Leigh and Jennifer. Living abroad was scary and hard until you welcomed me into

the Marigold Memory Palace and your hearts. Here’s to the future and our continued

friendship.

xxi



Thank you to everyone who made my time living abroad an exciting and eye opening

experience: Fenton, Paolo, Ivan, Marika, Niko, Oliver, Ranveig, Tristan, Apostolos,

Efi, Irene, Leo, Arizona, Soph, Elsa, Adrian, George, Kelvin, Dayane, Enrica, Sam,

Galen, Kisa, Babette, Viktoria, Adam, Sam, Joel, Amal, Danii, Flavia, Julie, Cameron,

Mor, Swathi, Gabriella (Biscoitinha), Duncan, Eddie, Murdo, Lewis, Stoyan, Sophie,

Sun, Xanthe, the entire LTA, and many more. Together we danced, hiked, boxed, ran,

snowboarded, flew, sailed, biked and rode our way through more adventures than I’d

ever thought possible. My life is so much richer thanks to you.

Thank you to Josh and Emmanuel for putting up with having a crazy particle physicist

as the intern for 10 weeks. You gave me the foot in the door I needed to set off on the

next stage of my life in policy. Next round of coffee is on me.

Thank you to Heidi for being there for me in what has been the most trying period

of my life thus far. You saw me through Giardia, injuries and crippling writing stress.

Whatever life brings us, I am lucky to have had your strength during this time.

Thank you to Vin for seeing me through the lowest lows and the highest highs. You’ve

done more for me than words can describe. I treasure your friendship and will always

love you. Here’s to our next adventure!

Thank you to my sister Yara for being my best friend. I can talk to you about anything,

from group theory to relationships to politics and always appreciate your advice. I can’t

wait to see what you do in this world and am thankful to have you in my life, love you

xxii



moo moo.

Thank you to my parents Mike and Izzy. You gave me life, you fostered my imagination,

and have bent over backwards to support my dreams. All of my accomplishments, all

of my life, I owe in some part to you and your example. My love and gratitude towards

you knows no bounds and will exist as long as I’m living.

Thank you to music for giving me a way to express myself when nothing made sense. In

my times of greatest need I have found strength in your ethereal arms. A special thanks

to the local Irish session, all my Lark friends and Nathaniel Berman and his concert

choir and wind ensemble.

Thank you to science for giving me the tools to answer my never ending questions. You

have given me the lens I needed to make sense of this world, and my what a beautiful

world it is.

And finally, thank you to the Earth for giving us such a beautiful, bountiful and rich

place to call home.

xxiii



Chapter 1

Introduction

As children we are fascinated with the natural world that surrounds us. How was it

made? What is it made of? Where did it come from? When was it made? These

questions follow some of us into adulthood and lead to the study of the fundamental

interactions of the Universe, the pursuit of the building blocks of reality. For the past

century, experiments of increasing size and complexity have probed higher energies

and smaller distances to answer these questions out of the pure desire to know the

unknown. The results of these experiments have been interpreted and used to build

the most predictive and successful model across all of science - the Standard Model

(SM) of particle physics. At the current state-of-the-art facility, the Large Hadron

Collider (LHC), an international team of scientists and engineers continue this legacy of

discovery. There, protons are smashed together at energies rarely seen since the birth

of the Universe some 13.8 billion years ago and the results are analyzed to answer the
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outstanding questions of our time.

In 2012 the discovery of a Higgs-like boson [1, 2, 3, 4, 5] at CERN by the ATLAS and

CMS [6, 7] collaborations answered one of these outstanding questions: What is the

origin of mass for particles in the SM? This was a major triumph for both the theoret-

ical and experimental particle physics communities and resulted in the Nobel Prize in

Physics being awarded to Francois Englert and Peter W. Higgs for their contributions

to the Brout-Englert-Higgs theory. However, the properties of this new particle are still

under scrutiny, and new physics could be lurking in the large uncertainties of current

observations of the SM Higgs boson. In particular, the decay of the Higgs boson to

bottom quarks (H → bb̄) was recently confirmed in 2018, and the resulting measured

coupling strength still has a large uncertainty [8, 9]. Furthermore, the H → bb̄ decay

mode has yet to be observed for the vector boson fusion and gluon-gluon fusion pro-

duction mechanisms. Finally, new physics could be accessible through observation of

highly boosted Higgs bosons produced via gluon-gluon fusion, which is sensitive to pos-

sible anomalous couplings and new particles in the top-quark loop [10, 11, 12]. Thus,

this analysis aims to directly measure the coupling of the Higgs boson to bottom quarks,

focusing on the gluon-gluon fusion and vector boson fusion production modes.

Part I of this dissertation describes the Standard Model of particle physics including

the Higgs mechanism and motivates the search for highly boosted H → bb̄ production

and decay. Part II describes both the LHC and the ATLAS detector located at CERN.

Lastly, Part III presents the analysis and the boosted Higgs boson measurement results.
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Part I

Theoretical Motivations and the

Standard Model
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Chapter 2

The Standard Model and Beyond

The Standard Model (SM) of Particle Physics formalizes the force laws that describe the

observed behavior of all known particles in the universe. Its formulation is a collection of

Quantum Field Theories (QFT) that describe the following interactions of elementary

matter in Nature: the electromagnetic force, the weak nuclear force and the strong

nuclear force. Gravity is noticeably absent as currently there is no viable quantum

theory for observed gravitational effects. The Glashow-Salam-Weinberg (GSW) [13,

14, 15] theory includes Quantum ElectroDynamics (QED) and describes the unification

of the electromagnetic and weak forces, while Quantum ChromoDyanmics (QCD) [16]

describes the strong force. These theories form the following symmetry group of the

Standard Model:

4



SUC(3)︸ ︷︷ ︸
QCD

⊗SUL(2)⊗UY(1)︸ ︷︷ ︸
GSW

. (2.1)

The gauge principle states that the SM Lagrangian and its predictions must be invariant

under local transformations using an operator from any of these constituent groups.

Thus, any theory must only include transformations and terms that maintain the local

invariance of the complete Lagrangian. In particular, this requirement is violated by any

attempt to include an explicit mass term for the gauge bosons of the GSW electroweak

model and for all fermions. Around 1960 a possible solution to this lack of mass was

proposed in the form of the spontaneous breaking of the electroweak symmetry, now

known as the Higgs mechanism. The following sections go into more detail about the

Lagrangian formalism of the Standard Model, QCD, GSW electroweak unification and

this recently verified Higgs mechanism.

2.1 The Standard Model

At the turn of the 20th century, humanity’s understanding of the constituent matter

of the universe was limited to what could be seen with microscopes and implied from

the observations of light and electricity, giving evidence for both the photon and the

electron. In the first half of the century the field of subatomic physics was revealed

with Rutherford’s 1911 gold foil scattering experiment [17] followed by the observation

of the wave-particle duality of nature with Compton’s scattering experiment in 1923
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[18]. These were the first steps towards a particle physics representation of nature. In

the second half of the century experiments delved deeper to discover that the nucleus

contained structure, and thus the SM was developed to include the complex mechanics

of quarks and gluons [19]. With the discovery of the Higgs in 2012, the Standard Model

has become even more firmly established, as can be seen in the high level of agreement

between theory and experiment in Figure 2.1.

The QCD and GSW theories predict two classes of particles - fermions and bosons -

shown in Figure 2.2. These particles represent the quanta of the quantum fields of the

Standard Model and the mediators of the fundamental forces of Nature.

2.1.1 Bosons

The spin-1 particles are known as the vector gauge bosons and are the force carriers

of the SM. The most commonly known is the electromagnetic force’s uncharged and

massless photon (γ) which interacts with all particles charged under U(1)em and is often

referred to as “light.” The weak nuclear force is involved in nuclear interactions such as

beta decays and is carried by 3 bosons, all of which have mass and couple to fermions.

The W± bosons mediate the charged weak interaction and allow for flavor changing

currents, while the Z boson mediates the neutral weak interaction. Finally there are

8 massless gluons which mediate the strong force and only interact with fermions that

have a “color” charge such as the quarks contained inside the nucleons. The only spin-0

boson, the Higgs Boson (H) is the key to generating mass terms in the SM Lagrangian
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∫
L dt

[fb−1]
Reference

WZjj EWK 20.3 PRD 93, 092004 (2016)
36.1 ATLAS-CONF-2018-033

W±W±jj EWK 20.3 PRD 96, 012007 (2017)
36.1 ATLAS-CONF-2018-030

Zγjj EWK 20.3 JHEP 07 (2017) 107
WWγ 20.2 EPJC 77, 646 (2017)
Wγγ 20.3 PRL 115, 031802 (2015)
Zγγ 20.3 PRD 93, 112002 (2016)

Zjj EWK 20.3 JHEP 04, 031 (2014)
3.2 PLB 775 (2017) 206

Wjj EWK 4.7 EPJC 77 (2017) 474
20.2 EPJC 77 (2017) 474

t̄tγ 4.6 PRD 91, 072007 (2015)
20.2 JHEP 11 (2017) 086

t̄tZ 20.3 JHEP 11, 172 (2015)
3.2 EPJC 77 (2017) 40

t̄tW 20.3 JHEP 11, 172 (2015)
3.2 EPJC 77 (2017) 40

tZj 36.1 PLB 780 (2018) 557

WV 4.6 JHEP 01, 049 (2015)
20.2 EPJC 77 (2017) 563 [hep-ex]

Zγ 4.6 PRD 87, 112003 (2013)
20.3 PRD 93, 112002 (2016)

Wγ 4.6 PRD 87, 112003 (2013)
ts−chan 20.3 PLB 756, 228-246 (2016)

ZZ
4.6 JHEP 03, 128 (2013)
20.3 JHEP 01, 099 (2017)
36.1 PRD 97 (2018) 032005

WZ
4.6 EPJC 72, 2173 (2012)
20.3 PRD 93, 092004 (2016)
36.1 ATLAS-CONF-2018-034

Wt
2.0 PLB 716, 142-159 (2012)
20.3 JHEP 01, 064 (2016)
3.2 JHEP 01 (2018) 63

γγ
E γ
T
>25 (22) GeV 4.9 JHEP 01, 086 (2013)

E γ
T
>40 (30) GeV 20.2 PRD 95 (2017) 112005

WW
4.6 PRD 87, 112001 (2013)
20.3 PLB 763, 114 (2016)
3.2 PLB 773 (2017) 354

tt−chan
4.6 PRD 90, 112006 (2014)
20.3 EPJC 77 (2017) 531
3.2 JHEP 04 (2017) 086

t̄t
4.6 EPJC 74: 3109 (2014)
20.2 EPJC 74: 3109 (2014)
3.2 PLB 761 (2016) 136

Z
4.6 JHEP 02 (2017) 117
20.2 JHEP 02 (2017) 117
3.2 JHEP 02 (2017) 117

W
4.6 EPJC 77 (2017) 367
20.2 JHEP 05 (2018) 077

0.081 PLB 759 (2016) 601

γ
pT > 100 GeV 4.6 PRD 89, 052004 (2014)

pT > 25 GeV 20.2 JHEP 06 (2016) 005
pT > 125 GeV 3.2 PLB 2017 04 072

Dijets R=0.4 4.5 JHEP 05, 059 (2014)
3.2 JHEP 09 (2017) 020

Jets R=0.4
4.5 JHEP 02, 153 (2015)
20.2 JHEP 09 (2017) 020
3.2 JHEP 09 (2017) 020

pp
8×10−8 Nucl. Phys. B, 486-548 (2014)
50×10−8 PLB 761 (2016) 158
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σ [pb]
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Status: July 2018

ATLAS Preliminary
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√
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Data
stat
stat ⊕ syst
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√
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Standard Model Production Cross Section Measurements

Figure 2.1: Summary of several Standard Model total and fiducial production cross
section measurements, corrected for leptonic branching fractions, compared to the cor-
responding theoretical expectations [20]. All theoretical expectations were calculated
at NLO or higher. The dark-color error bar represents the statistical uncertainty. The
lighter-color error bar represents the full uncertainty, including systematics and lumi-
nosity uncertainties. The data/theory ratio, luminosity used and reference for each
measurement are also shown. Uncertainties for the theoretical predictions are quoted
from the original ATLAS papers. They were not always evaluated using the same pre-
scriptions for PDFs and scales.
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Figure 2.2: Table of all observed fundamental particles of the Standard Model. [21]
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for the massive gauge bosons and for fermions. This is done through the so-called Higgs

mechanism [22] and is discussed in more detail in Section 2.4.

2.1.2 Fermions

The spin-1/2 particles can be further broken up into two distinct families of particles, the

leptons and the quarks, both of which contain three “generations” each with an “up”-

and “down”-type particle where “up” and “down” differentiate the two components of

the weak isospin doublet. The “down”-type leptons are the electrically charged electron

(e), muon (µ) and tau (τ) while the “up”-type are their electrically neutral counterparts

νe, νµ, ντ . The “up”-type quarks are the up (u), charm (c), and top (t), each with a

+2/3 electric charge, while the “down”-type quarks are the down (d), strange (s), and

bottom (b), all of which have a −1/3 electric charge. Each quark carries a “color” charge

thus allowing them to couple to gluons and participate in strong force interactions. Due

to the observed color confinement of the strong force these quarks are only observed in

colorless bound states known as “mesons” (1 quark and 1 anti-quark) and “baryons” (3

quarks or anti-quarks). All of the above fermions have an anti-particle partner with the

opposite weak isospin.
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2.2 Electroweak Unification

In the SM the electromagnetic and weak forces are unified by GSW theory into the elec-

troweak interaction which is represented by the SU(2)L×U(1)Y gauge group [Goldstone:1962es,

13, 15]. The L represents the experimental observation that the weak interaction, and

thus the SU(2) transformation, only acts on left-handed particle states. The Y in-

dicates that this is the U(1) symmetry for the weak hypercharge Y instead of the

electromagnetic charge. The particle states for these interactions are solutions to the

Dirac equation and are represented as isospin doublets (ΨL) for the left-handed states,

and as isospin singlets (ΨR) for the right-handed states. Thus a general transformation

from the electroweak gauge group applied to the left-handed doublet is represented as

ΨL → Ψ
′
L = exp

ig′ Y

2
ζ(x)︸ ︷︷ ︸

U(1)Y

+ igWα(x) · T︸ ︷︷ ︸
SU(2)L

ΨL. (2.2)

For the right-handed singlet the SU(2)L transformation does not contribute, so the

transformation is

ΨR → Ψ
′
R = exp

ig′ Y

2
ζ(x)︸ ︷︷ ︸

U(1)Y

ΨR. (2.3)

Here the local gauge transformations have introduced space-time dependent terms α(x)

and ζ(x) into the electroweak Lagrangian. Due to the derivatives contained within
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the kinetic term of this Lagrangian, this new configuration would introduce additional

terms, thus violating the required local gauge invariance. These additional terms can be

removed by replacing the standard derivative (∂µ) with the covariant derivative (Dµ), as

seen in Equation (2.4) for the left-handed states and Equation (2.5) for the right-handed

states.

Dµ = ∂µ − 1

2
ig

′
BµY︸ ︷︷ ︸

U(1)Y

− 1

2
igWWµ · τ︸ ︷︷ ︸
SU(2)L

(2.4)

Dµ = ∂µ − 1

2
ig

′
BµY︸ ︷︷ ︸

U(1)Y

(2.5)

This introduces two new gauge fields: the weak hypercharge field Bµ and the charged

weak fields Wµ as well as the associated coupling constants g′
, gW , the hypercharge

operator Y , and the SU(2) generators τ . The transformation properties of these new

fields are given by

Wµ(x) → W
′
µ(x) = Wµ +

1

gW
∂µα(x) + gWWµ(x)×α(x) (2.6)

Bµ → B
′
µ = Bµ +

1

g′ ∂µζ(x) (2.7)

The form of these fields is chosen such that the final Lagrangian is invariant under
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SU(2)L × U(1)Y transformations, and thus gauge invariance has been restored for the

kinetic term of the electroweak Lagrangian. Inserting these new definitions into the

Lagrangian for the field Ψ that satisfies the free-particle Dirac equation gives

L = iΨ̄Lγ
µ

(
∂µ − 1

2
ig

′
BµY − 1

2
igWWµ · τ

)
ΨL + iΨ̄Rγ

µ

(
∂µ − 1

2
ig

′
BµY

)
ΨR (2.8)

Next the gauge field self-interaction and mass terms are constructed

L = −1

4
FµνF

µν − 1

4
BµνB

µν +
1

2
M2

WWµW
µ +

1

2
M2

BBµB
µ (2.9)

where the field tensors F µν and Bµν are defined to be

F µν = ∂µW ν − ∂νW µ + gWW µ ×W ν (2.10)

Bµν = ∂µBν − ∂νBµ (2.11)

The kinetic terms in Equation (2.9) are invariant under gauge transformations, but

simply substituting Equation (2.6) or Equation (2.7) into the mass terms shows that

these terms violate gauge invariance. This would imply that MW = 0 and MB = 0,

in direct contradiction of the observed masses of the weak gauge bosons. This issue
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arises again for fermion mass terms, as is evident below for the bottom quark field (b)

expanded in its chiral basis.

mbb̄b = mb

(
b†R b†L

)bL
bR

 = mb(b
†
RbL + b†LbR) (2.12)

Remembering that the left- and right-handed components of the electroweak interaction

transform differently shows that this mixture of right- and left- handed fields violates

gauge invariance. This again forces the conclusion that mb = 0, in contradiction to

the observation that the bottom quark does indeed have mass. As mentioned in Sec-

tion 2.1.1 the resolution to these mass mysteries lies in the Higgs mechanism discussed

in Section 2.4.

2.3 Quantum Chromodynamics

Quantum Chromodynamics is the continuation of the mathematical framework estab-

lished by the electroweak formalism in Section 2.2, this time for the strong force de-

scribed by the SU(3)C gauge group, where C represents the “color” charge of QCD [16].

This color charge doesn’t imply actual visible color, but is useful as an analogy to the

visible spectrum where a combination of red, green, and blue generates white. For QCD

the combination of red, green, and blue color charges can result in a colorless object.

As mentioned in Section 2.1.2, the quarks have a color (anti-color) charge defining color
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triplet field which transforms under the general SU(3) transformation as

q =


qr

qg

qb

→ q
′
= exp

(
igs

8∑
k=1

ηk(x)
λk
2

)
q (2.13)

Here the λk are the Gell-Mann generators for SU(3), η(x)k is the space-time dependency

for each generator, and gs is the strong coupling constant. As with the electroweak

Lagrangian, the introduction of these space-time dependent terms adds new terms into

the kinematic portion of the Lagrangian and spoils the gauge invariance. Again, a

covariant derivative is introduced

Dµ = ∂µ − igsG
k
µ

λk
2

(2.14)

to restore gauge invariance. The Gk
µ are the new fields introduced for the 8 gluons.

These new fields transform under SU(3) as

Gk
µ → G

′k
µ = Gk

µ + ∂µηk(x) + gsfklmηl(x)G
m
µ (2.15)

Given these definitions the QCD Lagrangian (LQCD) can be constructed as
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LQCD = q̄(iγµD
µ −mq)q −

1

4
Gµν

k Gkµν (2.16)

where the gluon field tensor Gµν
k is defined as

Gµν
k = ∂µGν

k − ∂νGµ
k + gsfklmG

µ
l G

ν
m. (2.17)

The strong force is peculiar in that experiments observe only colorless objects in the

form of bound states of quarks known as hadrons. Qualitatively, the potential between

quarks in a bound state (meson or baryon) gets stronger with separation, unlike the

other forces. At the point where the system would separate into color-charged objects, it

becomes energetically favorable to produce a quark/anti-quark pair in a process known

as hadronization. In other words, attempting to separate a bound quark state into its

colored constituents simply results in new colorless bound states. This requirement of

colorless objects by the strong force is known as color confinement. For highly energetic

strong interactions at hadron colliders the result is an expanding shower of hadronizing

quarks and gluons and their decay products known as a jet.

2.4 The Higgs Mechanism

The Higgs mechanism is the system by which the gauge bosons and fermions gain mass

through the spontaneous breaking of the electroweak symmetry of the Higgs potential
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[1, 3, 22]. This section will also discuss briefly the couplings of the Higgs boson to

massive particles, as well as its self couplings.

2.4.1 Electroweak Symmetry Breaking

The Higgs field is expressed as a complex doublet, Φ, and thus has four components

defined as

Φ(x) =

φ+
φ0

 =
1√
2

φ1(x) + iφ2(x)

φ3(x) + iφ4(x)

 . (2.18)

The four components of this field each represent a degree of freedom which become

the longitudinal polarizations of the W±, Z gauge bosons and the Higgs boson. The

resulting Lagrangian for the Higgs includes a kinetic term (K) as well as the Higgs

potential (V), all of which are invariant under the electroweak gauge symmetry SU(2)L×

U(1)Y . The definition is

LHiggs = (DµΦ)†DµΦ︸ ︷︷ ︸
K

−(µ2Φ†Φ+ λ(Φ†Φ)2︸ ︷︷ ︸
V

). (2.19)

Here the µ2 < 0 and λ > 0 are constrained such that the potential forms a ring stable

minima. The shape of this potential is shown in Figure 2.3 and is often described as

the “Mexican-hat” or “wine-bottle” potential.
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Figure 2.3: A lower-dimensionality representation of the shape of the Higgs potential.
The central peak represents a rotationally symmetric unstable state, while the trough
represents the infinite number of minima that can be selected upon the spontaneous
breaking of the symmetry.

The normed value of this minima can be calculated by taking the derivative of V with

respect to Φ and setting it equal to 0. This value, also known as the vacuum expectation

value (vev) has been found to be v ≡
√
−µ2/λ = 246 GeV. The arbitrary vev of

the ground state Higgs field is acquired when the symmetry of the Higgs potential is

spontaneously broken. For ease of calculation the coordinate system is oriented such

that

〈Φ(x)〉 = 1√
2

0

v

 (2.20)

Next small perturbations around the minimum of the Higgs potential are parametrized

as:
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〈Φ(x)〉 = 1√
2

 0

v + h(x)

 exp
(
i
τ i

2
θi(x)

)
(2.21)

Here the real scalar field h(x) corresponds to radial perturbations of the minima, and

the three θi(x) are the Nambu-Goldstone fields with values determined by the choice

of gauge. Choosing the unitary gauge of θi(x) = 0 and expanding the kinetic term of

Equation (2.19) around the vev gives

LHiggs,K =
g2v2

8

(
(W−

µ )†W−µ + (W+
µ )†W+µ

)
+

1

2

(
W 3†

µ B†
µ

)
M2

W 3µ

Bµ

+ . . .

(2.22)

Here the first term is the physical mass term for the W± bosons where these charge

eigenstates have been constructed out of the W 1,2 fields as such W± = 1√
2
(W 1 ∓ iW 2).

The second term represents the mixture of the W 3 and B fields through the mass

matrix M . Diagonalizing this matrix (MD) and identifying the mass eigenstates gives

the physical fields of the photon (γ) and the Z boson

M2
D =

0 0

0 v2

4 (g
2
W + g

′2)

 (2.23)

The upper left diagonal element corresponds to the massless photon while the lower right
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diagonal element gives the mass of the massive Z boson. This results in the following

masses for the four electroweak bosons

mW =
1

2
gW v , mZ =

1

2
v
√
g2W + g′2 , mγ = 0 (2.24)

The masses of theW± and Z gauge bosons can be related through the Weinberg mixing

angle defined as

θW = cos−1

 gW√
g2W + g′2

→ mZ =
mW

cos θW
(2.25)

Using this definition one can write out the exact mixture of B and W 3 that make up

the photon and Z boson as

γ = cos(θW )B + sin(θW )W 3 (2.26)

Z = −sin(θW )B + cos(θW )W 3 (2.27)

2.4.2 Fermion Mass Terms

Section 2.2 shows how a simple fermion mass terms violate gauge invariance due to the

mixing of the left and right chiral states. The Higgs mechanism, however, allows for
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a gauge-invariant method of generating mass terms through the Yukawa coupling of

the Higgs field to the fermion fields. An example is the Yukawa coupling term for a

quark doublet (ΨL) and singlet (ΨR) coupling to the Higgs field (Φ) after spontaneous

symmetry breaking, with the form shown in Equation (2.21), when the unitary gauge

Φi(x) = 0 is chosen.

LYukawa = −gb
[
Ψ̄LΦΨR + Ψ̄RΦ

†ΨL

]
(2.28)

= − gb√
2

(t̄ b̄

)
L

 0

v + h

 bR + b̄R

(
0 (v + h)

)t
b


L

 (2.29)

= − gb√
2
v︸ ︷︷ ︸

mb

(
b̄LbR + b̄RbL

)
− gb√

2︸︷︷︸
gb,h

h
(
b̄LbR + b̄RbL

)
(2.30)

In this way mass terms are generated for the fermion field, and the gauge invariance of

the Lagrangian is maintained via the proper combination of covariant derivatives and

fields. This operation also produces the second term which represents the coupling of

the bottom quark to the Higgs itself and thus gives the form of its coupling constant

gb,h. Using this newly found mass of the bottom quark mb, the coupling can be written

as

gb,h =
gb√
2
=
mb

v
. (2.31)

Thus the coupling of the Higgs boson to a fermion is proportional to the mass of the

fermion itself.
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2.4.3 The Higgs Boson

It has been shown that the Higgs mechanism properly mixes the gauge fields to provide

the correct gauge-invariant mass terms, and it also properly combines the left and right

chiral states of fermions to produce their mass terms. During spontaneous symmetry

breaking of the electroweak potential three of the four degrees of freedom in the Higgs

doublet (Equation (2.18)) become Goldstone bosons. Since this theory is gauged these

Goldstone bosons are “eaten” by the 3 gauge bosonsW± and Z to form their longitudinal

components thus give them their mass. However, the final broken degree of freedom is

absorbed by the new massive scalar particle, the Higgs boson [2].

Focusing on the Higgs potential term (V) of Equation (2.19) and substituting in the

definition for Φ given in Equation (2.21) gives

LHiggs,V =
1

2
µ2v2 − µ2h2 + λvh3 +

1

4
λh4 (2.32)

The first term is constant and thus can be ignored. The second term is the mass term

for the Higgs boson, mh =
√
−2µ2 =

√
2λv. Because h = h(x) was used for small

radial perturbations of the Higgs field the Higgs boson can be identified as a radial

excitation of the Higgs field. Finally, the third and fourth terms represent the Higgs

boson self-couplings. With these couplings and mass terms in hand the next step is to

verify this theory experimentally as discussed next in Chapter 3.
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Chapter 3

Boosted Higgs at the LHC

The Higgs mechanism, as described in Section 2.4, solves the problem of generating

gauge boson and fermion mass terms while also maintaining gauge invariance. To un-

derstand the search for the SM Higgs boson requires the discussion of how to produce

and detect it. In order to gather sufficient data to validate the theory a collider is re-

quired that is capable of putting enough energy into a collision to rapidly produce Higgs

bosons for stud. To this end the Large Hadron Collider (LHC) discussed in Chapter 4

was laboriously designed, funded, and constructed by the largest international collab-

oration of collider physicists and engineers on the planet. This chapter will include a

discussion of the relevant Higgs boson production mechanisms available at the LHC

and the various decay modes of the Higgs boson that are used to measure its properties

including the final state that is the focus of this dissertation.
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3.1 Higgs Production Mechanisms

At the LHC the dominant production mechanisms for the Higgs boson in order of

decreasing cross section are: gluon-fluon fusion (ggF), vector boson fusion (VBF), vector

boson associated production or “Higgsstrahlung” (VH), and associated production with

tt̄ (tt̄H) and bb̄ (bb̄H). The cross sections for the signatures of these processes with

associated theoretical uncertainties for each are shown as a function of the center-of-

mass energy
√
s in Figure 3.1, and the leading order (LO) Feynman diagrams can be

seen in Figure 3.2.
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 qqH (NNLO QCD + NLO EW)
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→pp 

 ZH (NNLO QCD + NLO EW)
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 ttH (NLO QCD + NLO EW)

→pp 

 bbH (NNLO QCD in 5FS, NLO QCD in 4FS)

→pp 

 tH (NLO QCD, t-ch + s-ch)

→pp 

Figure 3.1: Cross sections for the production of the SM Higgs boson signatures as a
function of the center of mass energy (

√
s) at the LHC [23]. In order of decreasing cross

section: the ggF process signature is H, the VBF process signature is qqH, the VH
process signature is split into WH and ZH, and the bb̄ / tt̄ signatures are tt̄H / bb̄H.

The LO Feynman diagram contains the least number of vertices, and thus coupling

constants, making it the largest contribution to the cross section calculation. Adding
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an additional vertex, represents a higher order correction to the LO calculation known

as next-to-leading order (NLO) where each additional vertex adds a “next” (NNLO,

N3LO, etc.). For reference, the current best estimates of the production cross sections

for the leading production mechanisms are detailed in Table 3.1.

g

g

H

(a) gluon-gluon fusion

q

q

q′

q′

V

V

H

(b) vector boson fusion

V

H

q̄

q

V ∗

(c) associated production

g

g

t, b

t̄, b̄

H

(d) tt̄ (tt̄H) and bb̄ (bb̄H)

Figure 3.2: Feynman diagrams representing the dominant Higgs production modes at
the LHC.

The dominant Higgs production mechanism at hadron colliders is gluon-gluon fusion.

This may seem strange as gluons are massless and thus do not couple directly to the

Higgs boson. Instead the gluons indirectly couple to the Higgs boson via a quark loop.
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Table 3.1: SM Higgs boson production cross sections in units of pb formH = 125 GeV in
pp collisions for the current LHC center-of-mass energy,

√
s = 13 TeV. The predictions

for the ggF channel include the latest N3LO results, which have reduced theoretical
uncertainties by a factor around 2 compared to the NNLO results [23].

√
s (TeV) ggF VBF WH ZH tt̄H Total (pb)

13 48.6+5%
−5% 3.78+2%

−2% 1.37+2%
−2% 0.88+5%

−5% 0.50+9%
−13% 55.1

As discussed in Section 2.4.2, the coupling of a fermion is proportional to mf , so the

dominant contribution to this quark loop comes from the top quark. It is important to

note that the ggF cross section in Table 3.1 is inclusive in number of final state jets and

thus will include diagrams like the one shown in Figure 3.3. There has been considerable

effort to calculate exclusive H + jet(s) production process at NLO and NNLO [24] for

use in analysis where there is an explicit requirement for an associated jet such as the

one presented in this dissertation in Part III.

g

g

g

H

Figure 3.3: Feynman diagram for ggF Higgs + jet production.

The second-largest cross section for Higgs production at the LHC comes from the VBF

mechanism. In VBF the initial state quarks scatter via the exchange of a W± or

Z boson which subsequently radiates the Higgs boson. Unlike ggF this production

mechanism scatters the initial state quarks which allows them to be observed as part of

the interaction. The presence of these extra quarks makes these interactions easier to
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select during analysis.

The third-largest cross section for Higgs production is in association with a vector boson.

The cross section for this is even smaller than the above two, but remains important due

to the easily selected signature of the decaying vector boson. The largest background at

the LHC is multijet events coming from interactions that produce strong force objects.

Thus the leptons from the boson’s decay act as a discriminator against this multijet

background, greatly reducing its effect on sensitivity. Note that the W/Z can also

decay hadronically giving a final state that looks like H + jet.

The lowest cross section of the four methods discussed is the production of the Higgs

boson in association with either bb̄ or tt̄. This channel is important because it allows

direct measurement of the ttH coupling, unlike the ggF method where the quark in the

loop is never directly observed.

3.2 Parton Distribution Function

The LHC collides protons, however in the Feynman diagrams in Figure 3.2 it is quarks

and gluons (a.k.a partons) that produce these fundamental interactions. This is an

indicator that when the production cross section is calculated for a process at the LHC,

one must not only consider the hard-scatter probability of the specific diagram, but

also consider the composition of the proton itself. Furthermore, the calculation must

consider the fraction of the total momentum of the proton held by each of its constituent
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partons. This concept is described by Parton Distribution Functions (PDFs) which give

the probability that the indicated parton carries momentum fraction x of the proton

when probed at energy scale Q. An example PDF for Q2 = 10 GeV2 and Q2 = 104 GeV2

is shown in Figure 3.4.

Figure 3.4: MMHT2014 NNLO PDFs at Q2 = 10 GeV2 and Q2 = 104 GeV2 with
associated 68% confidence-level uncertainty bands [25]. The colored regions indicate
the probability of finding the labeled parton with a momentum fraction given along the
x axis. As expected the valence quarks contain the largest fraction of the momentum
while the gluons are more likely to carry smaller fractions of the total momentum. Note
that as Q2 increases the contributions from sea quarks increases.

3.3 Branching Ratios

The coupling of the SM Higgs with the gauge bosons and fermions has been shown to

give these particles their mass; however, it also means that the Higgs boson can decay

into all of these particles. In order of most to least likely final states of a Higgs decay is

the decay to a pair of b-quarks (bb̄), a pair of weak vector bosons where one is off-shell

(V V ∗), two gluons (gg), a duo of tau leptons (τ+τ−), or a pair of photons (γγ). Similar
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to the ggF production mechanism discussed in Section 3.1 the decays to massless gauge

bosons (photons and gluons) are facilitated through loops of massive particles. The

exact Feynman diagrams depicting the above processes are shown in Figure 3.5, while

information about their branching ratios is detailed in Table 3.2.

b̄

b

H

(a) H → bb̄

W±

W∓∗

H

(b) H →W±W∓∗

g

g

H

(c) H → gg

τ+

τ−

H

(d) H → τ+τ−

Z

Z∗

H

(e) H → ZZ∗

γ

γ

H

(f) H → γγ

Figure 3.5: Feynman diagrams representing the leading Higgs decay channels.

In Table 3.2 the order is determined by two distinct effects: the proportionality of the

Higgs couplings to the mass of the decay product, and whether or not the rest mass of
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Table 3.2: The branching ratios and the relative uncertainty for a Standard Model Higgs
boson with mH = 125 GeV [23].

Decay Channel Branching Ratio Relative Uncertainty

H → bb̄ 5.84× 10−1 +3.2%
−3.3%

H →W+W− 2.14× 10−1 +4.3%
−4.2%

H → τ+τ− 6.27× 10−2 +5.7%
−5.7%

H → ZZ 2.62× 10−2 +4.3%
−4.1%

H → γγ 2.27× 10−3 +5.0%
−4.9%

H → Zγ 1.53× 10−3 +9.0%
−8.9%

H → µ+µ− 2.18× 10−4 +6.0%
−5.9%

the Higgs boson is sufficient to produce the two final state objects. Figure 3.6 shows

that the cross section for H → WW grows as the mass of the Higgs boson gets closer

to 2mW .
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Figure 3.6: Branching ratios for the decay of the SM Higgs boson near mH = 125GeV
including theoretical uncertainty bands [23]
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3.4 Evidence for the SM Higgs

Using the above information about predicted final states, the CMS and ATLAS col-

laborations analyzed 5 fb−1 of LHC Run 1 data, where
√
s = 7 and 8 TeV, to make

measurements of the SM Higgs production cross sections and branching ratios [26]. The

combined results of these studies can be seen in Figures 3.7 to 3.9. Given the uncertain-

ties on the measurements, these results show good agreement between the predictions

of the Standard Model and experiment, with all best fit values falling within 2σ of the

SM theoretical prediction. Note that there is currently no measurement of the H → bb̄

decay mode for the ggF and VBF production processes.

3.5 Boosted Higgs

The strong agreement between the theoretical predictions for the SM Higgs boson and

the experiment shown in Section 3.4 represents the fulfillment of a generation of incred-

ible technological and theoretical achievement. The next step is to complete the set

of Higgs coupling measurements, like adding ggF H → bb̄, and to push the search for

deviations from the Standard Model that might hint at the new physics of mysteries like

the matter / anti-matter asymmetry of the universe, dark matter, the particle nature

of gravity, and dark energy.

Minimal Supersymmetric Standard Model (MSSM) and Standard Model Effective Field

Theory (SMEFT) arguments for extensions of the SM suggest that precise measure-
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Figure 3.7: Best fit values of σi · Bf for each specific channel i → H → f , as obtained
from the SM Higgs coupling parameterization with 23 parameters for the combination
of the ATLAS and CMS measurements. The error bars indicate the 1σ intervals. The fit
results are normalized to the SM predictions for the various parameters and the shaded
bands indicate the theoretical uncertainties in these predictions. Only 20 parameters
are shown because some are either not measured with a meaningful precision, in the
case of the H → ZZ decay channel for the WH, ZH, and tt̄H production processes,
or not measured at all and therefore fixed to their corresponding SM predictions, in the
case of the H → bb̄ decay mode for the ggF and VBF production processes [26].
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Figure 3.8: Best fit results for the production signal strengths for the combination of
ATLAS and CMS data. Also shown are the results from each experiment. The error
bars indicate the 1σ (thick lines) and 2σ (thin lines) intervals. The measurements of
the combined global signal strength µ are also shown [26].
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Figure 3.9: Best fit results for the decay signal strengths for the combination of ATLAS
and CMS data. Also shown are the results from each experiment. The error bars
indicate the 1σ (thick lines) and 2σ (thin lines) intervals [26].
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ments of the shape of the momentum distribution for highly boosted (high momentum)

Higgs bosons offer the opportunity to see the effects of new physics. For example, in

MSSM the cross section for ggF production of Higgs bosons with pT,H ≥ 500 GeV could

be enhanced or suppressed as a result of new heavy particles participating in the top

quark loop [10]. The effect of these new particles on the observed Higgs boson pT spec-

trum would be limited to the high momentum region where there is enough energy in

the quark loop to allow these heavy particles to contribute significantly. Furthermore,

SMEFT models predict modifications to the high pT spectrum for boosted Higgs bosons

as a result of new physics effects that would modify the top and bottom Yukawa cou-

plings. These new physics effects are parameterized by Wilson coefficients which can

vary the predicted cross section, and thus the predicted pT spectrum, up and down while

maintaining agreement with current experimental results [12]. Both of these examples

would modify the effective ggH interaction and thus give an anomalous result compared

to the SM. The effect on the production cross section for boosted Higgs through ggF

can exceed 50% for pT,H ≥ 500 GeV [10, 11, 12, 27].

Searches for boosted Higgs bosons are also easier because the LHC produces a large

number of soft (low momentum) QCD interactions as seen in Figure 2.1. Because of

this a boosted signal is easier to differentiate from the common QCD interactions which

fall off exponentially as a function of momentum. However, to achieve this boost, the

Higgs must recoil off of a high energy jet or photon [28] produced through initial state

radiation (ISR). This dissertation only considers strongly produced ISR due to the low
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cross section for the H + γ final state. Thus, the analysis presented in Part III searches

for a final state signature of H + jet in the H → bb̄ decay mode. An example leading

order Feynman diagram for this process is shown in Figure 3.10.

b̄

b

g

g

ISR

H

Figure 3.10: Feynman diagram for boosted Higgs decaying to bb̄

As a result of this boost, the decay products of the Higgs boson and the hadronization

products of the ISR become highly collimated as shown in Figure 3.11. The two pronged

structure of the jet that results from the H → bb̄ decay provides a unique signature that

can be used to differentiate the Higgs signal from other QCD processes.

H b̄

b

g

Figure 3.11: Cartoon showing collimated Higgs boson jet and ISR jet as a result of the
large boost due to their mutual recoil [29].

In pursuit of the rich physics potential discussed above, an analysis of a boosted Higgs

decaying to a bb̄ pair with an associated ISR jet was undertaken and is discussed further

in Part III. However, before giving more details about the ATLAS data analysis, it will

be useful to describe the experimental apparatus and reconstruction methods.
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Part II

Experimental Apparatus and

Associated Facilities
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Chapter 4

The Large Hadron Collider

Lying an average of 100 meters under the Swiss / French border, the 26.7 kilometer

circumference Large Hadron Collider (LHC) is the world’s largest piece of scientific

apparatus built to date [30, 31]. This apparatus is used to produce proton and heavy

ion collisions for observation by the four major experiments at the LHC: ATLAS, CMS,

LHCb, and ALICE. The system was designed for a maximum center-of-mass energy of

√
s = 14 TeV and a peak instantaneous luminosity of L = 1034cm−2s−1.

The first LHC workshop was held in 1984 in Lausanne at the European Organization

for Nuclear Research (CERN) [32]. The nearly 30-year-old case for a machine that

would push towards the discovery of the elusive Higgs Boson was presented using the

existing CERN accelerator facilities and the Large Electron Positron (LEP) Collider

tunnel. The proposal became reality on September 10, 2008 when the first proton beams

were circulated, only to have calamity strike 9 days later in the form of a catastrophic
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electrical fault [33]. The repairs and improvements lasted until November 2009 when

the LHC restarted. Since then, this modern marvel has worked wonderfully and, as

hoped, lead to the discovery of the Higgs Boson by the ATLAS and CMS collaborations,

announced on July 4th, 2012 [6, 7, 34].

The following chapter provides a brief introduction to the world’s most powerful accel-

erator starting with the little red bottle of hydrogen, and ending with the interaction

point where protons collide at the highest energies ever produced by humans.

4.1 Particle Injection Chain

We begin with the most common element in the Universe, hydrogen, as the source of

protons. A bottle of hydrogen gas provides 100 microsecond pulses of raw H2 which is

then injected into a Duoplasmatron [36]. There, a strong electric field and free electrons

from a cathode ionize the molecule into bare H+ - a proton! These protons are then

accelerated by a 90 kV electric field, leaving the Duoplasmatron at 1.4% the speed of light

(∼4000 km/s) or, in particle physics units, ∼ 90 keV [37]. The bare protons are then fed

into the accelerating Radio Frequency (RF) cavities of Linear Accelerator 2 (LINAC2).

Inside, conductors charged by a powerful oscillating electromagnetic field accelerate the

protons to an energy of 50 MeV. Along the way, small quadrupole magnets shape

the proton bunch to ensure they remain in a tight beam. This pattern of acceleration

with RF cavities and shaping/tuning with magnets is then repeated with CERN’s first
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Figure 4.1: Sketch of the CERN accelerator complex [35].

38



synchrotron, the Proton Synchrotron (PS), rendering a 1.4 GeV proton beam. The

final step before the LHC comes with the Super Proton Synchrotron where the same

technologies are implemented to produce 450 GeV protons, ready for injection into the

LHC. A diagrammatic representation of this chain can be seen in Figure 4.1.

In order to produce proton-proton collisions, the LHC uses two beams circulating in

opposite directions. The beams are not continuous, but instead consist of bunches of

around 120 billion protons with a spacing of 25 ns. The LHC circumference allows

for 3564 bunches, however only 2808 are filled per beam due to safety requirements

and injection limitations. Each beam takes 4 minutes and 20 seconds to fill and then

20 additional minutes for the protons to reach their maximum energy of 7 TeV, or

99.99999991% the speed of light! Under normal operating conditions these beams can

be used for 8 to 10 hours.

4.2 LHC Layout and Design

While often depicted as a perfect circle the LHC is in reality an octagon with rounded

edges, called arcs, as can be seen in Figure 4.2. The counter-circulating beams of

protons are depicted in red and blue. These beams are focused and collided at the 4

dedicated interaction points at rates of up to 40 MHz. Two of these points are occupied

by the ATLAS and CMS experiments, both of which are high luminosity, multi-purpose

experiments.
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Figure 4.2: Labeled diagram of all the experiments at the LHC indicating the counter-
circulating beams and the relative location of each major experiment along the circum-
ference of the accelerator [38].
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The exact design of the LHC tunnel is due to the experimental constraints of the origi-

nal machine for which it was built, the Large Electron Positron (LEP) Collider. For the

∼ 2, 000 times lighter electron the maximum energy was limited by synchrotron radia-

tion, proportional to 1
m4 , requiring long straight sections of accelerating RF cavities to

recuperate the lost energy. Because this effect is O(1013) times smaller for the proton,

the LHC is instead limited by the ability to design and construct magnets strong enough

to bend the beam given the already determined curvature of the 8 arcs.

Figure 4.3: Depiction of a LHC dipole magnet 2-in-1 design labeling the major compo-
nents [39].

The oppositely circulating beams must each have their own ring and magnetic field
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which led to the creation of a twin-bore (i.e. “two-in-one”) magnet design, a cross sec-

tion of which can be seen in Figure 4.3. These magnets are constructed using NbTi

superconductors which are cooled to 2 K using superfluid helium. These magnets are

design to provide the needed 8.33 T magnetic field required to bend the proton tra-

jectories at the designed beam energy of 7 TeV. In total 1231 of these 15 m bending

dipole magnets are used, in association with 392 5-7 m quadrupole magnets which are

responsible for keeping the proton bunches in a tight beam by squeezing them both

horizontally and vertically.

4.3 Performance

Since the begining of its stable running in 2010 the LHC has performed well, exceeding

expectations. While the LHC operation itself is incredibly complex, the performance of

the machine, for the purposes of analysis, can be reduced to three numbers; the familiar

center of mass energy of the beams, the integrated luminosity and the instantaneous

luminosity.

For particle physics the integrated luminosity is proportional to the total number of

collisions recorded during a specified time period, while the instantaneous luminosity is

a function of the number of protons per bunch, the bunch crossing rate and the cross

section of a proton-proton interaction and represents the particle flux. Knowing this one

can see that the integrated luminosity, Lint is simply the integral of the instantaneous
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luminosity Linst. for a chosen data period as seen in Equation (4.1).

Lint =

∫
Linst.dt (4.1)

For a standard Gaussian beam, Linst. can be written as

Linst. =
N2

b nbfrevγr
4πεnβ∗

F (4.2)

where Nb is the number of particles per bunch, nb the number of bunches per beam,

frev the revolution frequency, γr the relativistic gamma factor, εn the normalized trans-

verse beam emittance, β∗ the beta function at the collision point, and F the geometric

luminosity reduction factor due to the crossing angle at the interaction point given by

F =

(
1 +

(θcσz
2σ∗

)2)−1/2

(4.3)

where θc is the full crossing angle at the interaction point, σz is the RMS bunch length,

and σ∗ is the transverse RMS beam size at the interaction point [31]. Nominal values

for the above quantities are shown in Table 4.1 which also demonstrates the incredible

success of the LHC operators and accelerator teams during the LHC Run II data taking

period.

The ATLAS experiment integrated luminosity for each year can be seen in Figure 4.4a
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Table 4.1: Nominal design values of LHC operations parameters at ATLAS for 25 ns
bunch crossing spacing [31, 40]. Design and ATLAS recorded values of the machine
luminosity are also given for LHC Run II operations [41].

Parameter Symbol LHC Run II Value

LHC circumference 26, 659 m
LHC design beam energy 7 TeV
LHC beam energy in Run II 6.5 TeV
Number of protons per bunch Nb 1.15× 1011

Number of proton bunches per beam nb 2, 808
Revolution frequency frev 11.245 kHz
Lorentz factor (design) γr 7462.69
Lorentz factor at

√
s = 13 TeV 6929.64

Normalized transverse beam emittance εn 3.75 µm
Collision point beta function β∗ 0.55 m
Full crossing angle θc 285 µrad
RMS bunch length σz 7.55× 10−2 m
Transverse RMS beam size σ∗ 16.6 µm

Peak design machine luminosity at 13 TeV Linst. 9 nb−1s−1

Peak ATLAS recorded machine luminosity 21 nb−1s−1

along with an example of the instantaneous luminosity for 2017 in Figure 4.4b which is

used in the presented analysis.
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Figure 4.4: Luminosity is monitored as both a running total known as the integrated
luminosity as depicted in (a) and as an instantaneous quantity as shown in (b) [42].
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4.4 Pile-up at the LHC

To maximize the probability of having a hard scatter proton-proton interaction the

bunches are filled with a large number of protons and squeezed into a small area before

being collided. This results in multiple inelastic proton-proton interactions per bunch

crossing, known as “pile-up,” which make it more difficult to identify the vertex of the

primary hard scatter interaction of interest. The average number of proton collisions per

bunch crossing is known as µ. The time-averaged µ for a given time period is reported

as 〈µ〉. For the data taking periods used for this dissertation, 2015-2017, the 〈µ〉 = 31.9

[42].
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Figure 4.5: Pileup for data taking periods 2015 - 2018 [42].
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The pile-up profile for past years can be seen in Figure 4.5. The width of this distribution

is due to a combination of Poisson statistics, the decrease in number of protons per

bunch over the lifetime of a single run, and optimization tweaks to the beam’s profile

during the LHC’s operation. Understanding and eliminating the unwanted contributions

from these pile-up events is crucial to reconstructing physics variables that describe the

primary interaction being observed.
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Chapter 5

The ATLAS Detector

The immense energies available at the LHC and the veritable zoo of particles require

a general-purpose experiment in order to fully exploit the full range of physics oppor-

tunities. Two international collaborations rose to this challenge, the CMS (Compact

Muon Solenoid) and ATLAS (A Toroidal LHC ApparatuS) experiments. While both

have similar physics goals and each of them strengths and weaknesses, this dissertation

will focus on the ATLAS experiment and the intricacies of its three sub-detectors and

two massive magnet systems depicted in Figure 5.1.

Originally proposed in 1994, the ATLAS detector saw its first events in 2008 [44, 45].

On July 4th, 2012 in a joint announcement the ATLAS and CMS experiments presented

the discovery of the long predicted Higgs Boson [6, 7, 34]. The ATLAS collaboration

now boasts over 3000 physicists from 175 institutions spread across 38 countries and

continues to probe the limits of the Standard Model in pursuit of answers to some of
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Figure 5.1: A cut-away side view of the ATLAS detector with the major components
labeled [43]. Within each of these labeled components there may exist multiple different
detector technologies. For scale two people in red are shown standing between the disk
muon chambers on the left side of the figure.
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humanity’s deepest questions.

Located approximately 100 meters underground in a vast excavated chamber, the AT-

LAS detector rests its 7000 metric tons on a bed of steel-reinforced concrete. Out of it

flow the signals from 100 million electronic channels through a zip-tied mass of 3000+

kilometers of cabling. At its very center is one of the four interaction points of the LHC,

Point 1, where the two counter-circulating proton beams are shaped by a series of mag-

nets. The energetic particles resulting from this collision then fly out in all directions

into the bulk of the ATLAS detector.

The first sub-system they meet is the Inner Detector (ID) and its many layers of strip

and pixel silicon detectors, along with a transition radiation gaseous wire detector,

all bathed in the 2 T magnetic field from the surrounding superconducting solenoidal

magnet. This system exploits the ionization signal of charged particles to track their

curved trajectory through the magnetic field. This curvature gives charge information, a

momentum measurement, and precisely-located 3D vertices crucial to the identification

of the secondary vertices of a b-hadron decay.

Outside of the solenoid the particles encounter the electromagnetic and then the hadronic

sampling calorimeters. Here, layers of scintillator and high-radiation-length materials

are interleaved to measure the energy of electrons, photons, and hadrons. As the goal is

to completely absorb the energy of all outgoing particles, the calorimeter has a nearly

4π solid angle coverage.
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The outermost subsystem, the muon spectrometer, surrounds the calorimeter and is

equipped with its own toroidal magnet system. Here the charged muons bend in the

magnetic field while leaving a trail of ionization in the Muon Spectrometer (MS) before

exiting the detector completely. Neutrinos are the only other Standard Model particle

that leave the detector; however, they do so without detection. A depiction of the various

particle interactions with the different detector sub-systems can be seen in Figure 5.2.

5.1 ATLAS Coordinate System

Choosing the nominal interaction point as the origin, ATLAS defines a right-handed

coordinate system where the positive x-axis points towards the center of the LHC ring,

the positive y-axis points upwards, and the positive z-axis is defined by the counter-

clockwise circulating beam direction as viewed from above, as shown in Figure 5.3 [43].

Using these coordinates the physical momentum of the objects measured is defined as

~p = (pT, pz) with pT being the momentum of the object in the transverse plane and pz

the momentum along the beam axis. Considering the cylindrical symmetry of ATLAS

it is desirable to define the polar angle θ from the beam axis with the r-φ plane being

perpendicular to that axis. The radial distance is defined as r =
√
x2 + y2 and the

azimuthal angle is defined with φ = 0 corresponding to the x-axis.

The initial state of a collision is inevitably boosted in the z-axis, but it is difficult to

accurately measure this boost. Instead it is preferable to use geometric quantities which
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Figure 5.2: This slice of the ATLAS detector depicts how different particles interact
with each component of the detector they cross. A dashed line indicates no interaction
while a solid line indicates interaction. Electrons (yellow) and charged hadrons (red)
interact with the tracker and curve in the solenoid’s magnetic field. Electron and photon
showers (yellow/green) are absorbed by the electromagnetic calorimeter. All hadrons
(red/yellow) are absorbed by the hadronic calorimeter. The muons (orange) curve in
both the solenoid and toroid magnetic fields before exiting the detector. Finally, the
neutrinos (white) pass through the entire detector without interacting [46].
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Figure 5.3: The standard Cartesian coordinate system is shown with its origin at the
ATLAS interaction point, the positive x-axis towards the center of the LHC, the positive
y-axis pointing upwards, and the positive z-axis pointing along the beamline [29].

are invariant under these boosts. In the high energy regime, the pseudorapidity

η = − ln tan

(
θ

2

)
(5.1)

is a good approximation of the rapidity (y) of a particle — a measurement of the velocity

of a particle parallel to the beam axis (z-axis)

y =
1

2
ln

(
E + pz
E − pz

)
(5.2)

where E is the energy of the particle and pz is defined above. Differences in rapidity

(∆y) are Lorentz invariant under boosts along the z-axis. However, pseudorapidity

is preferred as it is an entirely geometric quantity independent of particle energy. Fig-
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ure 5.4 gives a sense of the distribution of η in the y-z plane. Since φ is defined in the x-y

plane, differences in the azimuthal angle (∆φ) are also invariant under Lorentz boosts

along the z-axis. This allows for the definition of the functionally Lorentz invariant

angular separation

∆R =
√

(∆η)2 + (∆φ)2 (5.3)

between objects in the detector.

!z

!y

η = 0.5

η = 1

η = 3

η = -0.5

Figure 5.4: Modified from [47] this cartoon represents a selection of pseudorapidity (η)
values overlaid with some Cartesian coordinates (dashed black lines). The red lines are
drawn for η = ±0.5, 1.0 and 3.0.

5.2 Tracking with the Inner Detector

The Inner Detector (ID), shown in Figure 5.5, is responsible for providing precise mo-

mentum resolution and identification of both primary and secondary vertex measure-
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ments of charged particle tracks [48, 49]. The ID’s innermost subsystem, the Insertable

B-Layer (IBL), is only 3.3 cm from the interaction point [50] and thus must be able to

perform its crucial duties while enduring the high fluence of radiation from the colliding

beams.

Figure 5.5: Diagram of Inner Detector [50].

The ID is designed to be very compact to reduce the probability of a particle decaying

inside and to give precision measurements of the particles’ curvature in the 2 T solenoidal

magnetic field. This leads to excellent momentum resolution above the nominal pT

threshold of 0.5 GeV and within the pseudorapidity range of |η| < 2.5 as shown in

Figure 5.6.
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Figure 5.6: Schematic of the Inner Detector including η lines. Each component shown
is cylindrically symmetric leading to a multi-layered detector [51].

The ID is composed of three different detector technologies for particle trajectory recon-

struction: Pixel Detector (including the IBL), Semiconductor Tracker (SCT) and the

Transition Radiation Tracker (TRT). These will be discussed in the following sections.

5.2.1 Pixel Detector

The ATLAS Pixel Detector [43], the innermost subdetector of the ID, is designed to

give the best resolution possible as close as possible to the interaction point. This is

accomplished using the 4 barrel layers and 3 disks per end-cap as indicated in Figure 5.6.

The innermost barrel layer, the IBL, has pixel dimensions of 50 µm(φ̂) × 250 µm(ẑ) ×

200 µm(r̂). For the other layers the dimensions are 50 µm(φ̂) × 400 µm(ẑ) for about
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90% of the pixels and 50 µm(φ̂) × 600 µm(ẑ) for the others, all with a thickness of

250 µm(r̂). This gives a total active area of 1.88 m2 collected through 92.4 million

readout channels, more than half of the total number of channels for ATLAS. This

detailed charged particle information very close to the interaction point is crucial not

only for pattern recognition and track reconstruction, but also for the reconstruction of

the primary and secondary vertices intrinsic to the decay of b-hadrons, a critical element

of the analysis presented in this thesis.

5.2.2 Semiconductor Tracker

Surrounding the Pixel Detector, the Semiconductor Tracker (SCT) [43] is composed of

4088 double-sided silicon microstrip modules. Each side of a module is constructed out

of two silicon strip sensors that are daisy-chained together. The result is 768 composite

strips each 12.6 cm long with an inter-strip pitch of 80 µm. In the barrel the strips are

aligned with the ẑ direction, while in the end-caps they are aligned with the r̂ direction.

In both cases the separation of the strips is constant in φ̂. The two sides are rotated

with respect to each other by 40 mrad to allow for position measurement along the

length of the strip. These modules are then used to tile the 4 barrel layers and 9 disks

per end-cap (18 disks in total) as seen in Figure 5.6. This design is chosen to ensure

that each charged track interacts with 8 strip layers (equivalent to four space points).

This information is used to further measure the momentum and impact parameter and

to identify the vertices of charged particles.
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5.2.3 Transition Radiation Tracker

The Transition Radiation Tracker (TRT) [43], the outermost subdetector of the ID,

provides tracking information by detecting the ionization of gas caused by charged

particles in η < 2.0 as they pass through the drift tube channels also known as straws.

The 4 mm diameter straws are filled with a 70% Xe, 27% CO2, and 3% O2 gas mixture 1

and a 31 µm diameter gold-plated tungsten wire anode at the center for the collection

of the ionization signal. In the barrel, 73 azimuthally symmetric layers of 144 cm straws

are oriented parallel to the beam pipe with an electrical division in the center of each

allowing the two sides to be read out separately. For each end-cap the straws are radially

oriented in 160 symmetric planes each containing 768 37 cm-long drift tubes shown in

Figure 5.6. There are typically 36 TRT ionization hits per charged particle track.

The TRT also provides electron identification functionality through the detection of

transition radiation. In both the barrel and the end-caps, polypropylene fibers (barrel)

or foils (end-caps) function as the transition radiation material which causes the rela-

tivistic charged particles to radiate and thus ionize the gas in the straw. The amount

of transition radiation produced is proportional to the Lorentz factor meaning that for

particles with equal energy, lighter particles (e.g. electrons) will produce more radia-

tion. Thus, by defining a high and low charge threshold, tracks belonging to electrons

can be identified by requiring a larger fraction of the TRT hits along the track to pass
1During Run 2 straws belonging to modules with large gas leaks were filled with a mixture of 70%

Ar, 27% CO2, and 3% O2. Ar is less efficient at absorbing transition radiation but maintains similar
tracking capabilities as Xe [52].
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the high threshold.

5.3 Calorimetry

Figure 5.7: A cutaway diagram of ATLAS sampling calorimeters [43].

Once the proton-proton collision remnants have passed through the ID and its surround-

ing solenoid they enter into the ATLAS calorimeters depicted in Figure 5.7. Sampling

calorimeter technologies were chosen for their compact geometry and lower cost point.

These are constructed by alternating layers of absorber, a dense material which reduces

the incident particle’s energy, and active material which produces a detectable signal

when a particle passes through. This means that the detected signal is only a frac-

tion of the total energy of the particle and thus must be calibrated in a study of the

calorimeter [53]. The first system, the Electromagnetic Calorimeter (EMC), is designed
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to measure the energy of electrons and photons which primarily lose their energy via

bremsstrahlung and pair production electromagnetic interactions. Outside of the EMC

is the hadronic calorimeter which is designed to measure the energy of jets of hadrons

through their electromagnetic and strong interactions. These detectors cover the en-

tire |η| < 4.9 range 2 and provide complete containment of both electromagnetic and

hadronic showers with higher granularity in the EMC for |η| < 2.5, the region matched

to the ID, for precision measurements of electrons and photons.

5.3.1 Electromagnetic Calorimeter

The innermost calorimeter, the Liquid Argon (LAr) Electromagnetic Calorimeter (EMC)

[43], uses lead as the absorber and liquid argon as the active material in an “accordion

geometry” as seen in Figure 5.8. This geometry was chosen for uniform coverage in

φ̂ due to its lack of un-instrumented cracks in the radial direction. The barrel region

covers |η| < 1.475 and an end cap on each side covers 1.375 < |η| < 3.2. The barrel and

end-cap calorimeters are each housed in their own cryostat. The barrel is composed of

two half barrels with a 4 mm gap at z = 0 and both end caps are divided into an inner

wheel covering 2.5 < |η| < 3.2 and an outer wheel covering 1.375 < |η| < 2.5.

In the |η| < 2.5 region the EMC has 3 radial layers for precision physics measure-

ments. Layer 1 consists of strip cells which are finely segmented with ∆η = 0.0031

and ∆φ = 0.0245 allowing for precision position resolution which gives discrimination
2EMC performance is degraded in the region 1.37 ≤ |η| ≤ 1.52 due to the transition between the

barrel and the end-cap calorimeters.
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Figure 5.8: Sketch of LAr EMC barrel module where the lead and liquid argon layers
are visible in an accordion like geometry. Looking from the foreground to the back there
are 3 different layers of readout cells visible [43].
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power between a single γ deposit and the π0 characteristic γγ deposit. Layer 2, which

collects the largest fraction of energy from electromagnetic shower, is segmented with

∆η = 0.025 and ∆φ = 0.0245. Layer 3 collects the tail of the electromagnetic shower

using a coarser segmentation of ∆η = 0.05 and ∆φ = 0.0245. Additionally, in the region

|η| < 1.8 a thin pre-sampler, which contains no lead absorber, was placed in front of

Layer 1 to allow for energy corrections due to losses upstream of the EMC. Combined

the EMC is > 22 radiation lengths (X0) in the barrel and > 24 X0 in the end-caps,

where a radiation length is the average distance an electron travels in a given material

before losing 1/e of its original energy E0 via bremsstrahlung radiation.

5.3.2 Hadronic Calorimeter

Directly outside the EMC envelope is the hadronic calorimeter system [43] which consists

of three sampling calorimeter technologies: the Tile Calorimeter, the LAr Hadronic

End-cap Calorimeter (HEC) and the LAr Forward Calorimeter (FCal). Combined,

these three subsystems give measurements of hadronic jet energies in the 0 < |η| < 4.9

range. The Tile Calorimeter uses steel as the absorber layer and scintillating tiles as

the active material and covers the region |η| < 1.7 with a barrel section flanked by

two barrel extensions each divided azimuthally into 64 modules. These scintillator tiles

are read out on two sides by wavelength-shifting fibers connected to photomultiplier

tubes as seen in Figure 5.9. At η = 0 the total Tile Calorimeter thickness is 9.7

nuclear interaction lengths (λ), where λ is the average distance a hadron travels before
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interacting inelastically with a nucleus.

Photomultiplier

Wavelength-shifting fibre

Scintillator Steel

Source

tubes

Figure 5.9: Schematic of a Tile Calorimeter module including a depiction of the connec-
tion between the scintillator tile to the photomultiplier via a wavelength-shifting fiber
[43].

The high η region receives a larger radiation dose that would damage scintillator tiles.

Thus, technologies that are more radiation hard were chosen for the HEC [54]. The

HEC is composed of two independent wheels per end-cap located just past the EMC

62



end-cap but sharing the same cryostat. This system uses copper as an absorber and

liquid argon for the active material and covers the 1.5 < |η| < 3.2 range using 32

wedge-shaped modules per wheel. Finally, the FCal shares the same cryostat as the

EMC and HEC end-caps and acts to extend the coverage of the combined calorimeter

system to include the 3.1 < |η| < 4.9 range. Each end-cap contains 3 modules, the first

an electromagnetic module (copper/liquid-argon) which is followed by two hadronic

modules (tungsten/liquid-argon).

5.4 Muon Spectrometer

The ATLAS Muon Spectrometer (MS) [43], see Figure 5.10, accomplishes tracking of

muons in the |η| < 2.7 region for momentum reconstruction while also triggering on

charged particles in the |η| < 2.4 region. The magnetic field necessary for momentum

reconstruction is provided by 3 air-core toroid systems, one barrel toroid covering |η| <

1.4 and two end-cap toroid systems which are inserted into the inner radius of the

barrel toroid to cover the 1.6 < |η| < 2.7. The so-called transition region 1.4 < |η| < 1.6

between these two magnet systems is covered by a combination of the barrel and end-

cap toroid magnets. Similar to the ID the resolution in the MS is inversely proportional

to the particle’s incident momentum. Any muon with pT lower than ∼ 3 GeV will never

make it to the MS due to energy loss in the calorimeters [43].

Precision tracking measurements for momentum reconstruction is accomplished using
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Figure 5.10: A cut-away diagram of the ATLAS muon system and its many sub-detectors
[43].
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the Monitored Drift Tube chambers (MDTs) for |η| < 2.0. The MDT system consists of

1163 drift tube chambers arranged in three to eight layers for varying η. The Cathode-

Strip Chambers (CSCs) span the range 2.0 < |η| < 2.7 and are designed to withstand

the higher rate at high η and retain good time resolution using multiwire proportional

chambers with orthogonal segmented cathode planes.

The MS also gives nanosecond tracking information for triggering on muon tracks. This

is accomplished using Resistive Plate Chambers (RPC) in the barrel region |η| < 1.05

and Thin Gap Chambers (TGC) in the end-cap 1.05 < |η| < 2.4 region. Both chamber

systems deliver a triggerable signal with a spread of 15−25 ns, thus providing the ability

to tag individual beam-crossings.

5.5 Trigger

The 25 ns spacing of proton bunches at the LHC results in a crossing rate of proton

bunches of 40 MHz with an average of 31.9 pp interaction events per crossing as seen

in Figure 4.5. Given that each event takes up 1.6 MB of storage this would result in a

data rate of 64 TB/s. Because of the limits of technology and budget, this rate of data

is far beyond what could be read out, much less stored for analysis. The solution is the

ATLAS trigger system which decides in real time whether or not to record the current

event, or dump all sensor output and prepare for the next bunch crossing.

ATLAS uses a two-level trigger system to reduce the event rate while making sure to
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not skip any event of interest. The Level-One (L1) trigger is hardware based and uses

coarse granularity inputs from the muon spectrometer and calorimetery systems to make

a decision within 2.5 µs of the bunch crossing for the event in question. This results

in an event rate reduction from 40 MHz to 100 kHz. The second level of the system,

the High Level Trigger (HLT), is software based and uses the full detector output to

make its decision within a 200 ms window. This final triggering step reduces the event

rate down to a more manageable 1 kHz which is then written to disk at a rate of over

a gigabyte per second.
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Part III

Search for Boosted H → bb̄
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Chapter 6

Data and Monte Carlo Simulation

This analysis focuses on the data collected by the ATLAS detector from pp collisions

produced by the LHC at the center-of-mass energy of 13 TeV. In particular the anal-

ysis uses datasets collected in 2015, 2016, and 2017 which correspond to an integrated

luminosity of 80.5 fb−1 after beam, detector and data-quality requirements are taken

into account.

In order to compare our findings with theory, the predictions of the SM are used to

produce Monte Carlo (MC) simulated events to model the signal and background pro-

cesses. These MC samples go through a full simulation of the ATLAS detector and are

reconstructed using the same algorithms as used on data, so the MC and data have the

same format at analysis level. This allows the MC and data to be analyzed using the

same framework thus giving a direct comparison between theory and measurement as

the final product.
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The following sections describe the systems for selecting the data used in the analysis

and the software packages, developed in collaboration with theorists, used to simulate

the signal and background processes relevant to the analysis.

6.1 ATLAS Data Analyzed

As mentioned earlier, the data are checked to make sure they are of high quality, meaning

that the beam, detector and data collection systems were all fully operational for the

given bunch crossing event. These data quality requirements are enforced by choosing

only events from each respective year’s Good Runs List (GRL), an XML file produced

by the ATLAS data quality monitoring team that lists all luminosity blocks that have

met the data quality criteria. This analysis uses three such GRLs - one for each year

of data taking (2015, 2016, 2017) - corresponding to annual integrated luminosities of

3.2 fb−1, 33 fb−1, and 44.3 fb−1.

6.2 Higgs Boson Signal Monte Carlo Samples

In order to simulate Higgs boson events, the three leading production mechanisms at

the LHC were considered, shown in Figure 3.2: gluon-gluon fusion, vector boson fusion

and Higgsstrahlung. These three production modes represent approximately 88%, 7%

and 4% of the total Higgs signal, respectively, before analysis cuts are applied. In all

samples the simulated Higgs boson is forced to decay to the bb̄ final state.
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The ggF H + jet events were generated using the HJ+MiNLO [55] prescription, assum-

ing a finite top quark mass, with the Powheg-Box 2 generator [56] and the NNPDF30

NNLO parton distribution functions [57]. After generation the events were showered

using Pythia 8.212 [58] with the AZNLO tune and the CTEQ6L1 parton distribution

functions [59]. Any b-hadrons produced during this process were decayed using Evt-

Gen [60]. During generation a parton level filter of kT > 200 GeV was used to select

high momentum events. This filtering is reflected in the cross section in Table 6.1.

The VBF H + jet events were also generated using the Powheg-Box generator [61]

with the NNPDF30 NLO parton distribution functions [57]. Again the showering was

performed with Pythia 8.212 [58] using the AZNLO tune and the CTEQ6L1 par-

ton distribution functions [59]. The decay of b-hadrons was again performed using

EvtGen [60]. During generation the produced Higgs boson was required to have a

pT > 250 GeV. This filtering is reflected in the filtering efficiency in Table 6.1.

Higgsstrahlung events were generated using the Pythia 8.212 generator [58], the AZNLO

tune and the CTEQ6L1 parton distribution functions [59]. Again the decay of b-hadrons

is handled by EvtGen [60]. Unfortunately the Pythia ZH process does not include

the gg → ZH contribution. To account for this the cross section is corrected to the LHC

Higgs cross section working group’s (LHCHXSWG) recommended σggZH
NLO+NLL with NLO

+ Next to Leading Log (NLL) accuracy [62]. During generation a filter of pT > 350 GeV

was used to select for high momentum events. This filtering is reflected in the filtering

efficiency in Table 6.1.
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6.3 Background Monte Carlo

Modeling the expected contributions of backgrounds to the analysis is done with a mix of

data driven methods and Monte Carlo simulated samples as discussed in Chapter 9. The

MC samples were used for the development of the modeling of the non-resonant QCD

multijet backgrounds and for the estimation of the major resonant backgrounds from

V+jet, tt̄, and single-top production. For the multijet background the final estimation

is data driven, but the MC was used to develop the background model.

The QCD dijet events were simulated by the Pythia 8.186 generator [64] with the

A14 tune and the NNPDF23 LO PDF [65] using EvtGen to decay the resulting b-

hadrons [60]. To maintain a constant statistical precision over a large momentum range,

the weighted events were generated with a flat pT spectrum. The QCD samples used to

develop the background model are summarized in Table 6.2.

Hadronically decaying W and Z events were produced with a maximum of four addi-

tional partons at leading order (LO). This was accomplished with the Sherpa 2.1.1

generator [66] and the CT10 parton distribution functions [67]. For leptonically decay-

ing W and Z events samples were produced with a maximum of two additional partons

at LO and a maximum of two at next-to-leading order (NLO). Next the LO hadronicW

and Z cross sections were corrected by applying multiplicative “k-factors” derived from

the corresponding NLO leptonic W and Z samples. These corrections were 1.28 for the

W+jets and 1.37 for the Z+jets [28]. An alternate sample of hadronically decaying W
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and Z events was produced for cross checks using the Herwig++2.7.1 generator [68] with

the UEEE4 tune [69] and the CTEQ6L1 [59]. Unlike the Sherpa samples these Her-

wig samples only contained one additional parton in the matrix element. The hadronic

W+jets and Z+jets samples used in this analysis 1 are summarized in Table 6.3.

Our tt̄ samples were generated using Powheg-Box 2 [56] and the NNPDF30 NLO par-

ton distribution functions [70]. After generation the events were showered using Pythia

8.230 [58] using the A14 tune and the NNPDF23 LO parton distribution functions [65]

with all b-hadron decays performed by EvtGen [60]. The samples were then broken up

according to the decay mode of the two top quarks into three categories; all-hadronic,

semi-leptonic, all-leptonic. Additional tt̄ events were generated with the Sherpa 2.2.1

generator [66] using the NNPDF30 NNLO parton distribution functions [70]. This sec-

ond sample was used as a cross check of the main samples generated with Powheg-Box

2 + Pythia 8. The tt̄ samples used in this analysis are summarized in Table 6.4.

Single-top samples, containing a single top/anti-top quark and a W−/W+, were gener-

ated with Powheg-Box 2 [56] with the NNPDF30 parton distribution functions [67].

This process was showered using Pythia 8.230 [58] configured with the A14 tune and

the NNPDF23 parton distribution functions [65] with all resulting b-hadrons decayed via

EvtGen [60]. The single-top samples used in this analysis are summarized in Table 6.5.

1Note that the leptonically decaying W and Z samples were only used to derive correction factors
and thus are not presented.
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Chapter 7

Physics Object Definitions

In order to analyze the data one must first reconstruct the detector-level output into

representations of real physical particles (physics objects). This process begins once an

event is accepted by the ATLAS trigger system and recorded to disk, as discussed in

Section 5.5. This raw detector output, such as energy deposits in the calorimeters or

hits in the inner detector, is then fed into a system of algorithms which build objects of

interest such as jets and muons. These complex objects can then be used as represen-

tations of the true SM particles in the analysis. Since these representations are only as

good as the measurement and reconstruction algorithms, they are then calibrated and

given an uncertainty as discussed in Chapter 10. This chapter gives an overview of the

methodology used to reconstruct the objects required for the boosted H → bb̄ analysis.
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7.1 Jets

The particles that carry QCD color charge do not exist by themselves in isolation,

but instead combine with other colored particles to form colorless composite hadrons

making it impossible to observe individual quarks or gluons in ATLAS. This process of

hadronization, discussed in Section 2.3, creates a shower of charged and neutral particles

that leave tracks in the inner detector and energy deposits in the calorimeters. Each pp

collision event at the LHC tends to produce a lot of these hadronic showers which are

then clustered into objects known as “jets.” These clustered jet objects thus represent

the reconstructed signature of a gluon or quark after it hadronizes.

Jets can be formed from tracks using the hits of charged particles in the ID, from

energy deposits left by both neutral and charged particles in the calorimeters, or from

the truth particles produced via MC. Since there is no unique procedure for clustering

these signatures, several different approaches have been developed. The most common

clustering options are the kt, Cambridge-Aachen, and anti-kt algorithms [71]. These

algorithms work by iteratively applying the following rules to the chosen collection of

objects:

1. Define the distance diB between the object i and the beamline B in terms of the

transverse momentum pT and P which determines the effect of the energy in the

clustering algorithm:

diB = p2PTi
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2. Compute the pairwise distance dij between objects i and j:

dij = min
(
p2PTi , p

2P
Tj

) ∆R2
ij

R2

where ∆R2
ij = (ηi − ηj)

2+(φi − φj)
2 is the geometric term dependent on rapidity

η and the azimuthal angle φ. R is a parameter which controls the size of the jet.

3. Choose the smallest distance dmin out of the list of distances:

dmin ∈ {{dij} , {diB}}

4. If dmin is the distance between an object, i, and the beamline:

dmin ∈ {diB}

label this object a jet and remove it from the list

5. If dmin is the distance between some objects i and j:

dmin ∈ {dij}

merge objects i and j into a new object k, add k to the object collection and

remove objects i and j.

6. Repeat until all objects have been clustered into jets and the object collection is
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empty.

In the above iterative process the choice of parameter P corresponds to three choices of

jet clustering algorithm:

P = 1 This defines the kt algorithm [72]. Here the algorithm prioritizes the clustering

of soft objects first and then gradually moves on to harder objects. This has the

effect of creating irregular shaped jets that evolve from the “outside-in” as seen in

Figure 7.1a.

P = 0 This defines the Cambridge-Aachen algorithm [73]. In this case the effect of the

energy of the jet is ignored, and instead the jets are clustered based on their

geometric distance only. Again this results in irregular shaped jets as seen in

Figure 7.1b.

P = −1 This defines the anti-kt algorithm which was used in this analysis [71]. This

algorithm prioritizes the clustering of hard objects first and then clusters the

surrounding softer objects. This results in mostly cone-like jets which center on

the hardest object(s) as seen in Figure 7.1c.

7.1.1 Large-R Jets

This dissertation focuses on measuring the boosted signature of the Higgs boson as

it decays to bb̄. As discussed in Section 3.5, the resulting decay products are highly
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(a) kt (b) Cambridge-Aachen (c) anti-kt

Figure 7.1: Example clustering of a parton-level MC simulation event showing clustered
jet shapes for R = 1.0 and (a) P = 1, (b) P = 0, and (c) P = −1 [71].

collimated and thus can be reconstructed using a single large radius (“large-R”) jet.

These large-R jets are reconstructed from topological calorimeter clusters using the

anti-kt algorithm with a radius parameter of R = 1.0 resulting in jets similar to the one

shown in Figure 7.2 [74, 75]. After clustering the large-R jets are ”trimmed” to improve

mass resolution and reduce dependence on pile-up. Trimming is done by first using the

kt algorithm to recluster the constituents into subjets with R = 0.2. Then any subjet

with pT less than 5% of the parent large-R jet’s energy is removed [76].

7.1.2 Variable Radius Track Jets

After capturing the decay of the Higgs in a large-R jet the next step is to identify the

two sub-jets that represent the b and b̄ children of the Higgs. In this dissertation the

Variable Radius (VR) jet was chosen [78, 79], defined by a radius parameter Reff which

decreases as a function of the jet pT:
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Figure 7.2: Simulation of calorimeter clusters for decay of a boosted Z ′ → tt̄ clustered
in a large-R jet [77].

Reff(pT) =
ρ

pT
.

The constant ρ determines how quickly the effective size of the VR jet decreases with

respect to the transverse momentum contained inside the jet. In this definition the

choice of ρ should be proportional to the mass of the resonance you are attempting

to reconstruct and should correctly reproduce the size of jets as long as ρ . 2pT. In

addition to ρ the VR jet algorithm requires two parameters, Rmin and Rmax, to impose

lower and upper cut-offs on the jet size, respectively. These parameters are scanned to

optimize the reconstruction of track jets from H → bb̄. Using these bounds the Reff

becomes
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Reff (pT) = max
[
min

(
ρ

pT
, Rmax

)
, Rmin

]
.

In reconstructing the Higgs boson with mH = 125 GeV, the variable radius track jet

parameters were chosen to be ρ = 30 GeV, Rmin = 0.02, and Rmax = 0.4, in order to

maximize the truth subjet double b-tagging efficiency [79], as seen in Figure 7.3. In

Figure 7.4 the VR Track Jets properly describe the truth ∆R distribution for b-hadrons

while the R = 0.2 fixed track jets deviate for higher Higgs jet pT. This deviation is

caused by the subjets being so collimated that they begin to overlap. Furthermore,

in Figure 7.5 and Figure 7.6 the VR track jets do an equally good or better job of

identifying the subjets associated with b-hadrons when compared to the R = 0.2 fixed

radius track jets. This ability to give a flat efficiency across the entire Higgs pT spectrum

while accurately describing the topology makes these VR track jets the perfect choice

for this analysis.

7.2 Flavor Tagged Jets

In general reconstruction algorithms for jets are agnostic to the “flavor” label - light,

charm (c), or bottom (b) - of the hadrons produced in the shower. However, flavor

tagging is a powerful tool for discriminating the bb̄ decay products of the Higgs from

the large, predominantly light-flavor, multijet background [80]. These b-quark initiated
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ρ = 30 GeV and Rmin = 0.0.02

Figure 7.3: Labeling efficiency of subjet double b-tagging using truth information from
Higgs decay as a function of Higgs jet pT. The efficiency for R = 0.2 fixed radius track
jests is included for comparison. Uncertainty bars include statistical uncertainties only
[79].
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Figure 7.4: The average ∆R between either the two leading truth b-hadrons or the two
leading subjets associated to a Higgs jet as a function of Higgs pT [79].

(a) 250 GeV < Higgs pT < 400 GeV (b) 800 GeV < Higgs pT < 1000 GeV

Figure 7.5: Distributions of ∆R between a truth matched b-hadron and the recon-
structed leading subjet [79]. The uncertainties given reflect only statistical uncertanties.
All algorithms are normalized to an area corresponding to the fraction of signal jets
which contain a leading subjet.
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(a) 250 GeV < Higgs pT < 400 GeV (b) 800 GeV < Higgs pT < 1000 GeV

Figure 7.6: Distributions of ∆R between a truth matched b-hadron and the recon-
structed subleading subjet [79]. The uncertainties given reflect only statistical uncer-
tainties. All algorithms are normalized to an area corresponding to the fraction of signal
jets which contain a subleading subjet.

jets are identified using the MV2c10 [81] Boosted Decision Tree (BDT) 1, trained with a

machine learning algorithm that uses the weighted score from a series of decision trees

to give a discriminant for how similar any given jet is to a b-jet. The BDT uses inputs

from the kinematics of the jet (pT and |η|) and the outputs of tracking algorithms,

discussed below, to look for signatures consistent with a b-hadron decay as shown in

Figure 7.7. Tracking information is crucial to flavor tagging, and thus the flavor tagging

can only be applied within the tracking volume (|η| < 2.5).

The relatively long lifetime of b-hadrons (≈ 1.5 ps) gives them a characteristic length

scale of cτ ∼ .45 mm. This means the b-hadron travels the non-negligible distance

of ∼ 5 mm from the primary interaction vertex before decaying, assuming γ = 10.

This macroscopic flight distance is large enough that this decay can be identified as a
1The name MV2c10 means that this multivariate algorithm had a training sample with roughly ∼ 10%

c-jets and ∼ 90% light jets in order to define a good balance of c-jet and light jet rejection.
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Figure 7.7: Cartoon of a b-jet decay containing a b-hadron decay vertex (blue ) dis-
placed from the primary pp vertex (red ), and a c-hadron decay vertex (orange )
further displaced and often close to the b-hadron flight axis [82]. The secondary (blue)
and tertiary (orange) vertices have large impact parameters (green) with respect to the
primary pp vertex.
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secondary vertex (SV) displaced from the original primary vertex (PV). Furthermore,

roughly 90% of b-jets will contain a c-jet which will create a tertiary vertex when it

decays (TV) [82]. The secondary vertex finding algorithm (SV1), and Kalman filter

algorithm (JetFitter) look for events matching this characteristic b-hadron decay chain.

Using tracking information the two-dimensional and three-dimensional impact param-

eter algorithms, IP2D and IP3D, determine the transverse and longitudinal impact-

parameters - d0 and z0 - respectively. Looking at Figure 7.8 the impact parameters

of the b-flavor jets tend to be positive, while those of c-jets and light jets tend to be

distributed more symmetrically around 0.

(a) Transverse Impact Parameter d0 (b) Longitudinal Impact Parameter z0

Figure 7.8: Data-Monte Carlo comparisons of the transverse (d0) and longitudinal (z0)
impact parameter significance values for IP3D selected charged tracks in the leading jet
of a Z → µµ+ jets dominated sample [82].

In 2017 two new tools were incorporated into the tagger [83]; a Recurrent Neural Net-

work (RNN) impact parameter tagger (RNNIP) and a Soft Muon Tagger (SMT). The
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RNNIP [84] exploits the fact that b-jets tend to have many tracks with highly signifi-

cant impact parameters, while light jets do not, as seen in Figure 7.9. The SMT [85]

searches for muons coming from the semi-leptonic decays of b-hadrons and c-hadrons

to discriminate against light jets which have much softer muons or none at all. The

separation power of the SMT is shown in Figure 7.10.

(a) b-jets (b) light jets

Figure 7.9: The distribution of the transverse impact parameter significance Sd0 for the
leading d0 significance track and subleading d0 significance track for b-jets (left) and
light jets (right) [82].

All of the above algorithms’ outputs, along with jet kinematic information, are used

as input to the MV2c10 algorithm as seen in Figure 7.11. The output is a discriminant

score which indicates how b-jet-like or how un-b-jet-like the jet in question is, compared

to the training sample used, as shown in Figure 7.12. The performance is calibrated in

data using jets containing a muon, indicating the semileptonic decay of the b-hadron,

and a correction is derived for the simulated events [86].
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Figure 7.10: Normalized BDT response in simulated tt̄ events of the SMT for recon-
structed muons associated to b-jets (blue), c-jets, (green) and light-flavour jets (red)
[82].

Figure 7.11: Flowchart of inputs to the MV2c10 b-tagging algorithm [29].
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(a) MV2c10 discriminant for b-jets compared to
c-jets and light jets in simulated tt̄ events.

(b) light jet and c-jet rejection factors as
a function of b-jet tagging efficiency of the
MV2c10 BDT.

Figure 7.12: Performance of the MV2c10 BDT for the 2016 optimization in simulated tt̄
events. The performance was evaluated on tt̄ events simulated using Powheg interfaced
to Pythia6 [86].

7.3 Muons

As muons traverse the entire detector they leave a track of charge deposits in the Inner

Detector (ID), Calorimeter and Muon Spectrometer (MS) which is then reconstructed to

represent the path of the muon [87]. This results in four different muon types, dependent

upon which subdetectors were used in the reconstruction:

1. Combined (CB) muons: First the charged track is reconstructed independently

in the ID and MS. Then a global refit combines the hits from both subdetectors.

This global fit may add or subtract MS hits from the track to achieve the best fit

quality.
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2. Segment-tagged (ST) muons: A track is developed in the ID and then extrapolated

to the MS. If this extrapolation finds at least one local track segment in the MDT

or CSC it is labeled a muon. This is generally used for low pT muons which may

only traverse one layer of the MS.

3. Calorimeter-tagged (CT) muons: A track formed in the ID is labeled a muon if it

can be associated with a calorimeter deposit consistent with a minimum-ionizing

particle. This is the least pure muon type, but it allows for reconstruction of

muons that pass through the partially instrumented region of the MS.

4. Extrapolated (ME) muons: These muons are reconstructed using only MS track

information and the loose requirement that the hits are compatible with a trajec-

tory originating from the interaction point. This type is useful for extending the

muon acceptance into the region not covered by the ID.

After the muon type is determined the quality of the muon is categorized by requiring a

specific number of hits in each subcomponent. These quality requirements are provided

to address the specific needs of different physics analysis. The four muon quality levels

are defined:

loose The lowest quality is designed to maximize the reconstruction efficiency for muons

by allowing all muon types to be used. This is primarily useful for analyses of

multi-leptonic final states such as H → 4`.

medium The medium quality is designed to minimize the systematic uncertainties associ-
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ated with muon reconstruction and calibration. Only CB and ME tracks are used,

with at least 3 CB track hits and at least 3 ME layers. This is the default quality

selection in ATLAS and the one used for muons in this analysis.

tight This selection maximizes the purity of muons but reduces the reconstruction ef-

ficiency. Only CB muons with at least 2 layers of the MS that also satisfy the

medium selection requirements are allowed.

high-pT Designed to optimize the momentum resolution for tracks with pT > 100 GeV.

This selection only includes CB muons with hits in at least two layers of the MS

that also satisfy the medium selection requirements. This quality level is mostly

used for high-mass W ′ and Z ′ analyses.

The final step for muon reconstruction is to check that the muon is well isolated, in order

to suppress muons resulting from meson and heavy-flavor decays. This is done using

both the track-based (pvarcone30
T ) and the calorimeter-based (Etopocone20

T ) isolation-based

variables which represent the scalar sum of pT inside a ∆R < 0.3 cone and the scalar

sum of ET inside a ∆R < 0.2 cone. Taking the ratio of these variables to the total pT of

the candidate muon gives a sense of how much radiation is surrounding the core of the

muon in question. Many different isolation working points are established by cutting on

these ratio distributions. For this analysis the loose working point was chosen which

gives a 99% muon reconstruction efficiency constant in η and pT as measured in both a

simulated Z → µµ sample and data [87].
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After reconstruction, these muons are calibrated to data using the well understood decay

J/Ψ → µ+µ− to cover the low pT spectrum and Z → µ+µ− for the high pT spectrum,

as shown in Figure 7.13.

Figure 7.13: Total uncertainty in the efficiency scale factor for Medium muons as a
function of pT as measured in Z → µµ (solid lines) and J/Ψ → µµ (dashed lines) decays.
The combined uncertainty is the sum in quadrature of the individual contributions [87].
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Chapter 8

Boosted H → bb̄ Event Selection

Having discussed the methods used to reconstruct the physics objects needed to ac-

curately capture the boosted H → bb̄ final state, the next consideration is the actual

requirements made on these reconstructed objects. These selections and quality crite-

ria are applied to define the set of baseline and candidate physics objects that will be

used as part of the analysis. This includes the definition of multiple orthogonal control

regions (CR) used during the statistical fitting procedure for the characterization of

backgrounds, as well as the signal region (SR) where the actual Higgs search is realized.

8.1 Selected Triggers

This analysis uses exclusively large-R jet triggers in order to maximally capture the

boosted decay products of the Higgs boson. However, pile-up increased over the course
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of LHC Run 2 as shown in Figure 4.5. This increase in pile-up corresponds to an increase

in the underlying event energy that can be clustered into jets and thus an increase in the

rate of the large-R jet trigger. As a result the High Level Trigger (HLT) pT requirement

was increased over the years in order to maintain a low trigger rate for data recording.

This results in a different triggering algorithm for the 2015, 2016, and 2017 data taking

years. While all the triggers require a large-R jet to be reconstructed in the HLT, the

2015 and 2016 triggers used an ungroomed (a10) large-R jet algorithm while in 2017 a

trimmed (a10t) version was used. In 2015 the large-R trigger looked for an ungroomed

large-R jet with pT > 360 GeV. In 2016 the pT threshold was raised to 420 GeV. In 2017

the requirement changed to look for a trimmed large-R jet with pT > 480 GeV. This

information is summarized in Table 8.1, which also details the integrated luminosity for

the various triggers as well as the offline pT threshold. In all cases the offline threshold

differs from the HLT threshold. This is due to the fact that the trigger must make

a quick calculation of the jet energy in order to keep data rates low. However, this

online calculation sacrifices accuracy, so some jets that should have passed are instead

ignored. This results in a turn-on curve in the pT distribution near the online threshold

where the trigger is not yet fully efficient. Thus, a higher offline threshold is chosen

corresponding to when the trigger is fully efficient. All triggers used in this analysis are

fully efficient for an offline threshold of pT > 480 GeV. In order make sure the triggers

are fully efficient in the offline selection, all events are required to contain a trimmed

large-R jet with pT > 480 GeV.
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Table 8.1: Summary of the large-R jet triggers used for the data taking periods of 2015,
2016, and 2017 and the offline pT thresholds at which they become fully efficient. The
recorded integrated luminosity for each trigger is also included [63].

Year Trigger Name Offline pT Threshold (GeV) Luminosity
(
fb−1

)
2015 HLT_j360_a10_lcw_sub_L1J100 410 3.2
2016 HLT_j420_a10_lcw_L1J100 450 33.0
2017 HLT_j460_a10t_lcw_jes_L1J100 480 44.3

8.2 Event Selection

Starting from the events passing the large-R jet trigger discussed in Section 8.1, further

selections are made to maximize signal sensitivity, reject background, and construct

regions where the backgrounds can be characterized.

First, all events are preselected to make sure they contain at least two large-R jets with

pT > 250 GeV 1 that fall entirely within the ID instrumented region |η| < 2.0. This

ensures that charged tracks can be reconstructed for flavor tagging purposes. Events are

further preselected by requiring the leading pT large-R jet to have pT > 480 GeV and

the sub-leading pT large-R jet to have pT > 250 GeV. The leading jet pT cut ensures

that all events pass the offline pT threshold for all three triggers. The sub-leading jet

pT cut is an explicit requirement for the presence of the ISR jet.

Next, the signal candidate large-R jet, assumed to contain the decay products of the

Higgs boson, is selected from the list of large-R jets passing the following requirements.

The signal candidate must have pT > 480 GeV and be sufficiently boosted such that
1The 250 GeV cut off is due to the pT requirements in the EXOT8 derivations used in this analysis.
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pT,J > 2mJ . It must contain at least 2 VR track-jets with pT > 10 GeV, as required for

b-tagging. Furthermore, the distance between the two leading VR track-jets (∆RV R)

must be greater than the radius of the smaller of the two VR track-jets (minRV R). This

requirement helps avoid b-tagging anomalies and prevent signal contamination from

gluon splitting. The highest-pT jet that passes all of the above requirements is labeled

the signal candidate, and the next highest-pT large-R jet in the list is taken to be the

ISR jet. Any events containing a muon with pT > 40 GeV opposite the signal candidate

large-R jet, ∆φ > 2π/3, are removed to ensure no overlap with the tt̄ control region

(CRtt̄) discussed in Section 9.2 and to reduce tt̄ contribution in the SR. The event

selection process is illustrated in Figure 8.1.

Trigger
1 large-R jet
pT > 480 GeV

Pre-selection
≥ 2 large-R jets

pT > 250 GeV, |η| < 2

Signal Candidate
Boosted

≥ 2 VR track jets
∆RV R/minRV R > 1
Surviving leading
pT large-R jet
pT > 480 GeV

ISR
Leading pT large-R
jet remaining in
candidate list

large-R jet labeling

Figure 8.1: Diagram of the event selection process and the labeling scheme of the large-R
jets in the signal candidate events [29].

The signal candidate events are classified based on how many of the two leading VR
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trackjets pass b-tagging criteria. Two b-tagging criteria were used: the “loose” working

point with 85% efficiency and the “tight” working point with 77% efficiency 2. Events

with exactly 0 “loose” b-tagged track-jets form the control region used to estimate the

non-resonant QCD background (CRQCD) discussed in chapter Section 9.3. Events with

exactly 2 “tight” b-tagged track-jets form the signal region (SR) where the final fit

is performed. The 77% working point used to define the SR was chosen to optimize

signal significance. For reference, the simulated flavor composition of the SR is shown

in Figure 8.2a. The cutflow for the CRQCD and SR are shown for the Higgs boson signal

in Table 8.2 and for data and backgrounds in Table 8.3.
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Figure 8.2: (a) Predicted flavor composition of the dijet background in the SR based
on the truth-matched hadron content of the two leading-pT track-jets associated to the
signal candidate large-R jet, with the B/C labels indicating the presence of a b/c-quark
and L indicating the presence of a light quark or a gluon. (b) The expected shape of
the dijet background in the SR and CR normalized to the same event count between
70 GeV < mJ < 230 GeV [88].

The QCD estimate is only valid for regions where the SR and CRQCD have a similar

dijet mass shape. This results in a lower bound cut on the signal candidate mass of
2These working points are determined by applying the b-tagging algorithm to a Monte Carlo sample

of tt̄ events and then checking the output against truth information to determine efficiencies.
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Cut ggF VBF WH ZH Total
Preselection Trigger 2749 1063 665 408 4884

Jet Cleaning 2748 1062 665 408 4882
Lead large-R jet pT > 480 GeV 593 258 219 132 1201
Sublead large-R jet pT > 250 GeV 546 229 185 115 1076
At least one signal candidate 530 222 181 112 1045
No opposite muon (CRtt̄ veto) 530 222 179 111 1042
signal candidate pT > 480 GeV 470 189 166 102 927
signal candidate mass> 40 GeV 401 153 154 94 802

CRQCD 0 b-tagged VR subjets (85% WP) 140 41 71 40 292
SR 2 b-tagged VR subjets (77% WP) 115 53 26 21 216

Table 8.2: Cutflow showing the effect in simulation of selection criteria for each of the
Higgs boson production mechanisms [63]. The numbers here can be compared to the
number of events generated as shown in Table 6.1.

Cut QCD W+jets Z+jets tt̄ Total Data
Preselection Trigger 385385408 1419912 629320 1624282 389193728 159567488

Jet Cleaning 385195264 1418308 628717 1623173 389000192 159354608
Lead large-R jet pT > 480 GeV 77069624 427349 182546 427728 78151368 77183760
Sublead large-R jet pT > 250 GeV 69628144 403870 172806 354653 70596512 71117008
At least one signal candidate 61771844 385898 165464 340425 62699272 64152952
No opposite muon (CRtt̄ veto) 61770952 385864 165439 321558 62677836 64110376
signal candidate pT > 480 GeV 52034768 348965 148796 288012 52851096 53996920
signal candidate mass> 40 GeV 38050452 295753 124293 258416 38756440 39555696

CRQCD 0 b-tagged VR subjets (85% WP) 29435344 219353 84389 110905 29863870 29883336
SR 2 b-tagged VR subjets (77% WP) 400020 1506 6173 10553 419087 484551

Table 8.3: Cutflow showing the effect of selection criteria on simulated background
samples as well as data. The simulated QCD contribution is scaled by 0.74 which was
derived from a fit to data in the CRQCD [63]. The background simulation numbers here
can be compared to the number of events generated as shown in Tables 6.2 to 6.4.
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mJ > 70 GeV due to the higher turn-on curve of the SR shown in Figure 8.2b. This low

mass turn on is due to the b-tagging algorithm not being able to resolve the b-jets as

they begin to overlap. Furthermore, for mJ > 230 GeV the boost from a pT of 480 GeV

is no longer sufficient to merge two hadrons into a single large-R jet. Thus the SR signal

candidate masses considered in the analysis range from 70 GeV to 230 GeV.

Given the above criteria, the efficiencies and yields in the SR and CRQCD for the resonant

backgrounds and the Higgs boson signal are shown in Table 8.4. The composition of

the vector boson, tt̄ and H → bb̄ resonant components of the SR and CRQCD are given

in Table 8.5. For the vector boson background, the W + jets contribution dominates in

the CRQCD due to its larger cross section. However, the Z+ jets contribution dominates

in the SR, as the Z boson can decay to two b-quarks. The tt̄ contribution is roughly

the same in the SR and CRQCD with ∼ 60% of events decaying entirely to hadrons (all

hadronic), ∼ 40% of events with oneW boson decaying leptonically (semi-leptonic), and

a small percentage of events with both W bosons decaying leptonically (dileptonic). In

the SR the dominant H → bb̄ production mechanism is ggF, contributing 53% of the

signal, followed by VBF production with 25% and Higgstrahlung at 22%.
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Table 8.4: The efficiencies and yields in the 0-tag control region (CRQCD) and signal
region (SR) for the non-QCD background, the Higgs boson signal and data. The yields
in the CRQCD are scaled to the luminosity used for the background estimate of the non-
resonant dijet process discussed in Section 9.3. The efficiencies are calculated relative
to the leading large-R jet pT > 480 GeV requirement [63].

Process CRQCD Eff. (%) CRQCD Yield in 1.4 fb−1 SR Eff. (%) SR Yield in 80.5 fb−1

W → qq̄ + jets 51.3 3810 0.4 1500
Z → qq̄ + jets 46.2 1470 3.4 6200
tt̄ 25.9 1929 2.5 10550
H → bb̄ 24.3 5 17.9 216

ggF 23.6 2 19.4 115
VBF 15.8 1 20.7 53
WH 32.4 1 12.0 26
ZH 30.5 1 15.8 21

Data 38.7 519710 0.6 484600

Table 8.5: The fractional composition of the different resonant contributions in the 0-
tag control region (CRQCD) and the signal region (SR). The fraction is evaluated using
the given contribution type as the total [63].

Process CRQCD Fraction SR Fraction

V + jets
Z + jets 0.28 0.80
W + jets 0.72 0.20

tt̄
hadronic 0.58 0.63
semi-leptonic 0.38 0.34
dileptonic 0.04 0.03

H → bb̄
ggF 0.50 0.53
VBF 0.17 0.25
WH 0.21 0.12
ZH 0.12 0.10
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Chapter 9

Background Estimation

The estimated contribution of the resonant and non-resonant backgrounds is critical to

the final statistical interpretation discussed in Chapter 11 . The resonant V + jets and

tt̄ processes are estimated using the MC samples discussed in Section 6.3, whereas a

data-driven technique is used to estimate the non-resonant QCD background. The final

fit is done in the invariant mass spectrum of the signal candidate in the SR over the

range 70 GeV < mJ < 230 GeV. As shown in Figure 9.1, the Higgs boson signal is

small, and it is on the tails of the comparably larger resonant backgrounds. This means

that any statistical fluctuation in the MC templates could hide the signal. To avoid

this, smooth parametric shapes are fitted to the resonant MC histograms and then used

as the inputs to the fit. This chapter covers the creation of the V + jets template; the

tt̄ template, including the derivation of a correction to its normalization using a fit in

the CRtt̄; and the data-driven modeling of the QCD background in the CRQCD.
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(b) Simulation of resonant V+jets and tt̄ back-
grounds in the signal region. The Higgs simu-
lation is included for comparison.

Figure 9.1: Simulations of the non-resonant and resonant background contributions to
the signal region for an integrated luminosity of 80.5 fb−1

9.1 Hadronic Vector Boson Background

The V + jets template is constructed by fitting the generated MC histogram with the

sum of three Gaussians plus a constant term. The systematic variations, discussed in

Chapter 10, of this template are re-fit using the same functional choices. This results

in smooth histograms to be used as input to the fit discussed in Chapter 11.

9.2 Top Quark Pair Background

The substantial contribution to the SR by boosted tt̄ production shown in Table 8.4

makes its modeling a top priority 1. Unfortunately, current MC generators are not able

to predict the tt̄ cross section well in this boosted regime as seen in Figure 9.2. This

long-standing issue is likely due to missing higher-order diagrams rather than due to
1Pun!
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suboptimal generator setup [89]. To compensate for this mismodeling the tt̄ yield in

the SR is corrected with a normalization scale factor. The scale factor, or k-factor,

is derived by fitting the tt̄ normalization in the tt̄ enriched control region (CRtt̄). In

the final fit the SR tt̄ MC sample is fit by a double-sided Crystal Ball function [90] to

smooth out statistical fluctuations, and then its normalization is constrained with the

derived flat k-factor using its uncertainty.

Figure 9.2: Comparison in pT of the top quark for different generator setups used to as-
sess the NLO+PS matching as well as the parton shower and hadronization uncertainty
after optimization, compared to data at

√
s = 13 TeV [89].

9.2.1 Constructing the CRtt̄ Control Region

The tt̄-enriched control region uses the same pT selections as the signal candidate large-R

jet in addition to the following criteria to select tt̄ events like the one shown in Figure 9.3.

Three regions are defined by requiring zero (CRtt̄0), one (CRtt̄) or two (CRtt̄2) tight
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quality b-tags in the two leading VR track jets of the signal candidate. The configuration

with exactly one b-tag, CRtt̄, was chosen to exploit the single b-quark that results

from the dominant decay mode of the top quark t → bW . This one b-tag region has

contributions from tt̄, single-top, Z and H when one b-tag is lost, and multijet when

the b-tag is faked. The other two regions are used to validate the extrapolation of the

k-factor into the CRQCD and SR.
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Figure 9.3: (a) Feynman diagram of semi-leptonic tt̄ decay. (b) Cartoon depicting
semi-leptonic tt̄ decay to b-quarks in center of mass frame.

To reduce multijet contamination in the sample the second top quark in the opposite

hemisphere of the signal candidate is required to decay leptonically in the muon channel.

Figure 9.4a compares the ∆φ between the leading muon in the event and the signal

candidate jet for the multijet and tt̄ MC samples. This distribution shows the expected

back-to-back topology of the tt̄ system depicted in Figure 9.3b versus the multijet sample

where the muons come from the signal candidate due to hadron decays in flight. Thus, a
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cut of ∆φ(muon− signal) > 2π
3 was chosen2 to reduce the QCD contribution by several

orders of magnitude while only reducing the tt̄ contribution by roughly a factor of five.

The QCD contribution is further suppressed by requiring the muon pT > 40 GeV.

Figure 9.4b compares the pT spectra for tt̄ and QCD before the ∆φ cut selection. The

larger mass of the W boson leads to higher pT muons than the softer x muons from

heavy flavor jets.
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Figure 9.4: Comparison of the two variables, ∆φ(leading muon− signal) (a) and muon
pT (b), between Pythia8 multijet and Powheg tt̄ simulated events used to create the
tt̄ control region. The selection requires exactly one b-tagged track jet in the signal
candidate large-R jet. The magenta line shows the expected s/

√
b significance with

80.5 fb−1 [63].

Finally, at least one tight b-tagged track-jet is required to be within ∆R < 1.5 of the

chosen muon. This requirement exploits the collimation of the decay products of the

boosted top quark t→ bµνµ. This reduces the contamination from V (ll)+jets and V V

events. The above CRtt̄ selections are summarized visually in Figure 9.5.
2Note that while the dotted magenta line in Figure 9.4a technically indicates an optimal ∆φ(muon−

signal) cut of 1.09956, practically a cut of 2π
3

was chosen to reject as much multijet background as
possible.
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Figure 9.5: Diagram of the CRtt̄ selection criteria.

9.2.2 k-factor Estimation

Finally the tt̄ MC template is fit to the data in the CRtt̄ over the mass range 100 GeV

to 200 GeV. Single top (Wt) and W → lν templates were included in the fit with

their normalizations kept constant. The full statistical and systematic uncertainty is

determined by running the Bayesian Analysis Toolkit (BAT) [91], discussed in Chap-

ter 11, with the large-R jet energy scale (JES), jet mass resolution (JMR), luminosity,

tt̄ modeling and flavor tagging systematic uncertainties discussed in Chapter 10.

The pre- and post-fit distributions for the CRtt̄ are shown in Figure 9.6 with the pull

distributions shown in Figure 9.7. The JES and JMR systematics are constrained by

information about the peak in tt̄ which was not available in the dataset used to derive the

recommendations3. A systematic uncertainty dominated k-factor of 0.84±0.11 is found

for CRtt̄, showing that the MC overestimates the tt̄ yield as expected (see Figure 9.2).

This value is used to constrain the tt̄ contribution in the final fit to the SR. The results

for all three tt̄ control regions are given in Table 9.1. All three regions are consistent

with each other and the results presented in reference [92].
3Note that the CRtt̄ and final fit are not simultaneous so these JES and JMR constraints do not

affect the final fit.
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Table 9.1: The tt̄ scale factors and their uncertainties from the three tt̄ control regions.
The value for CRtt̄ is used in the Signal Region. NOTE: CRtt̄2 fit failed due to low
statistics but is almostly completely dominated by ttbar in this region. The value here
is the simple ratio of number of events in ttbar vs. data, and the uncertainty is the tt̄
statistical uncertainty.

Region scale factor uncertainty

CRtt̄0 0.87 0.12
CRtt̄ 0.84 0.11
CRtt̄2 0.96 0.21
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Figure 9.6: The pre-fit (left) and post-fit (right) data vs MC comparison for fitting the
CRtt̄ region.
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Figure 9.7: The pull distributions for the different nuisance parameters used in the CRtt̄

fit. Parameters with a error less than 1 indicate that the prior uncertainty has been
constrained by the fit.

9.3 Multijet QCD estimation

The dominant background contribution to the SR comes from the non-resonant multijet

QCD process. Unfortunately the estimation of this process through MC is not reliable

due to the statistical precision of available samples and the underlying inaccuracies of

the event generation. Thus, a data-driven estimate was employed by fitting the large-R

jet mass distribution, mJ , in the SR with a parametric function after validation of the

procedure in the CRQCD. This approach is further motivated by the good agreement

in shape of the CRQCD and SR over the mass range of the fit, 70 GeV to 230 GeV, as

seen in Figure 8.2b. A brief summary of this process is presented below, with in-depth

details available in Reference [29].
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It was found that the number of events in a ∼ 1 fb−1 dataset from the CRQCD is

comparable to the number of events in the full 80.5 fb−1 SR dataset. Thus, the CRQCD

was broken into 60 slices constructed using adjacent data runs resulting in an average

of 1.2 fb−1 of data per slice.

Two families of parametric functions were used for this modeling. The polynomial

exponential function was chosen to be the nominal model

fn

(
x
∣∣∣ ~θ) = θ0 exp

(
n∑

i=1

θi x
i

)
, x =

mJ − 150 GeV
80 GeV

, (9.1)

and the alternative model, the formal Laurent series,

fn

(
x
∣∣∣ ~θ) = a

n∑
i=0

θi
xi+1

, a = 105, x =
mJ + 90 GeV

160 GeV
. (9.2)

The θ coefficients are determined by the fit, a is empirically chosen to keep the scale

of parameters at O(1), and the independent variable x parameterizes the fit range

mJ ∈ [70, 230] GeV to x ∈ [−1, 1] for Equation (9.1) and x ∈ [1, 2] for Equation (9.2).

This reparameterization was empirically seen to provide improved numerical stability

in the fit.

Both functions are tested on a random CRQCD slice to determine the minimum number

of model parameters needed to describe the shape of the distribution. The Z + jets,

W + jets, and k-factor corrected tt̄ contributions are all scaled by their cross sections
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times the luminosity and then subtracted from the slice to remove bias from the fit. The

results of a likelihood ratio test with Wilks’ theorem [93] and the F -test [94] were both

used to determine the minimum number of model parameters for both function choices.

The two statistical tests were performed for all CRQCD data slices and the relative

frequencies of the observed p-values were iteratively summed as shown in Figure 9.8

for both function choices. The Wilks test preferred a five-parameter model for both

while the F -test preferred a four-parameter model for both. To be conservative in the

final estimate, the five-parameter model was chosen for both the polynomial exponential

function and the formal Laurent series.

In order to determine the robustness of these fit functions, they were validated using all

of the CRQCD slices. For these validation studies the fit included properly scaled Z +

jets, W + jets, tt̄ and single top contributions in addition to the CRQCD slice. Within

the statistical precision given by the different data slices, the χ2/ndf from the individual

fits is found to follow the expected distribution of a good fit.
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Figure 9.8: Empirical cumulative distribution function (CDF) for the test p-values for
the two statistical tests applied to both function choices where the a priori threshold α
is shown as a vertical black line. In both tests p-values below α = 0.1 show preference
for the model with more parameters, while p-values above α = 0.1 indicate a preference
for the model with fewer parameters [63].
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Chapter 10

Systematic Uncertainties

This chapter presents the sources of systematic uncertainty in the analysis that could

result in biases to the final fit. These sources of uncertainty can come from experimental

calibrations or procedures and from the MC modeling of signal and background. They

can contribute to uncertainties in the overall yield (“normalization”) and to the differ-

ential shape of the signal candidate mass observable used in the statistical procedure

for the final fit. The sources of uncertainty on the derivation of the QCD multijet back-

ground are separated from the uncertainties on the resonant backgrounds as the former

is estimated using data while the later are estimated using MC simulation. Each of the

relevant sources of uncertainty are briefly discussed and a summary is presented.
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10.1 Uncertainties on Data-Driven QCD Modeling

The QCD background estimate discussed in Section 9.3 is based on a direct fit to data.

The choice of function used to fit the QCD background is empirically based so it is

important to consider the uncertainty introduced by this choice. The uncertainty is

modeled by considering the differences between the nominal polynomial exponential

function in Equation (9.1) and the alternate formal Laurent series Equation (9.2) in a

series of pseudoexperiments. Samples are produced via Poisson sampling of the QCD

component of the fit to the SR which contains all components of the full model (QCD,

Z + jets, W + jets, tt̄, and the Higgs boson signal) but no nuisance parameters. These

samples are then fit with the nominal and alternative function choices. The uncertainty

bands from these two sets of fits provide a measure of the statistical uncertainty on the

multijet parameterization derived from the spread of fit parameters, and a systematic

uncertainty on the choice of fitting function derived from the difference between the two

fitted shapes.

10.2 Uncertainties on Resonant Backgrounds and Signal

All MC templates in this analysis contain uncertainties derived from the large-R jet

energy and mass calibrations [74] and the calibration of the MV2c10 b-tagging algorithm

[86] which affects b, c, and l jet flavors differently. The jet energy and jet mass calibration

uncertainties affect both normalization and shape of the templates. This means their
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impact on the analysis must be determined by varying the jet energy and jet mass up

and down within their uncertainties and propagating the varied templates through the

entire analysis procedure. The effect of the jet energy resolution uncertainty was also

tested but found to be negligible. The impacts of uncertainties on the calibration of

the MV2c10 algorithm have been found to be independent of the large-R jet mass for all

MC templates and thus only affect the signal normalization.

To account for the modeling uncertainties associated with the choice of MC generator,

additional shape uncertainties are applied to the V + jets and tt̄ templates1. The

systematic uncertainty is determined by taking the difference between the large-R jet

mass shapes from two different MC generators. For V + jets the nominal shape was

generated using Sherpa 2.1.1 and then compared to the alternate shape generated

with Herwig++ 2.7. For tt̄ the nominal shape was generated with Powheg-Box 2

and compared with the alternate shape generated with Sherpa 2.1.1.

The tt̄ normalization in the SR is constrained by the k-factor derived from a fit to data

in the CRtt̄ as discussed in Section 9.2. The uncertainty on the measurement was found

to be 13% and is treated as a systematic uncertainty on the tt̄ normalization.

In order to have an accurate simulation the normalization of all MC templates must be

scaled by the integrated luminosity of the dataset in question. The systematic uncer-

tainty on the integrated luminosity measurement is derived following the methodology

presented in Ref. [95]. For this analysis it was found to be 2.1%.
1Note that no dedicated uncertainty for Higgs shape was generated because the theory uncertainty

is so large
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Theoretical systematic uncertainties on the normalization of the V + jets and Higgs

components are added to the fit in the SR. Theory uncertainties on the V + jets pro-

cesses result from the impact of higher order electroweak and QCD corrections to their

differential cross sections [96]. For Higgs boson production the dominant theoretical un-

certainty is from ggF production which is taken to be 30%. This is consistent with the

cross section uncertainty calculated with the MiNLO procedure and includes the effects

of the non-zero top-mass for Higgs bosons with pT > 400 GeV [97]. If the finite top

mass is implemented correctly the resulting uncertainty does not depend on pHT . This

same uncertainty is then applied for the other production mechanisms for Higgs’ with

pT > 400 GeV. The result is a total theory uncertainty on the Higgs boson production

cross section of 30%.

10.3 Summary of Systematics

The signal strength (µs) is defined as the scale factor which multiplies the cross section

times branching fraction that is predicted by the signal hypothesis being considered.

Thus, the final fit, discussed in Chapter 11, of the theory-based MC to the SR data

provides a direct measurement of this signal strength and therefore a direct measure-

ment of the model’s prediction given the data. However, to understand the significance

and error on this result the statistical and systematic uncertainties must be taken into

account during the fitting procedure.
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To get a sense of the individual impact of each systematic on the total uncertainty for the

measurement of µs, the following ad hoc comparison is made. First, the total uncertainty

on µs (σtot) is determined by running the fit with all sources of error (systematic and

statistical) allowed to float within their defined constraints. By definition:

σ2tot =

n∑
i

σ2i︸ ︷︷ ︸
Contributions from

nsystematics

+ σ2stat.︸ ︷︷ ︸
Contribution from

statistics

(10.1)

Next, the fit is re-run with all systematics fixed to their pre-fit values except for the

systematic being investigated for its impact. This gives σi, the uncertainty on µs when

only considering the effect of the ith nuisance parameter. Note that the statistical

uncertainty (σstat) is still included as it is inherent to the fitting procedure.

Finally, the difference in quadrature between σtot and σi is found and divided by the

measured µs value found in the final fit which includes all sources of uncertainty.

√
∆σ2i

µs
=

√
σ2tot − σ2i

µs
(10.2)

This ad hoc comparison represents the impact of the ith nuisance parameter on the total

uncertainty of the measurement of µs. A summary of the impact of each systematic for

the two considered signal models (Higgs + jets and V + jets) is presented in Table 10.1.
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Table 10.1: Summary of the impact (
√

∆σ2i /µs) of the main systematic uncertainties
on the total uncertainty, σtot, of the measured signal strength, µs, for the V + jets and
Higgs boson + jets signals [88].

Source Type V + jets Higgs + jets

Jet energy and mass scale Norm. & Shape 15% 14%
Jet mass resolution Norm. & Shape 20% 17%
V + jets modeling Shape 9% 4%
tt̄ modeling Shape < 1% 1%
b-tagging (b) Normalization 11% 12%
b-tagging (c) Normalization 3% 1%
b-tagging (l) Normalization 4% 1%
tt̄ k-factor Normalization 2% 3%
Luminosity Normalization 2% 2%
Alternate QCD function Norm. & Shape 4% 4%
W/Z and QCD (Theory) Normalization 14%
Higgs (Theory) Normalization 30%
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Chapter 11

Statistical Fit

The final significance of V + jets and Higgs + jets production are quantified through a

Bayesian implementation of a likelihood function. This procedure uses the information

known about the systematic uncertanties and normalization of the signal before the fit,

called priors, along with the template histograms representing the impact of each prior

on the distribution of interest mJ . These priors are then iteratively updated by the

data, contained in a likelihood function, using a Markov Chain Monte Carlo procedure.

This results in a marginalized probability density function (p.d.f) which represents the

probability of there being a number of signal events present in the data. This p.d.f

is then used to determine the signal strength µs and its uncertainty as well as a 95%

credibility level (CL). The following chapter will discuss the theory and implementation

of these ideas in the context of the systematics presented in Chapter 10 using the

Bayesian Analysis Toolkit (BAT) [91].

121



11.1 Bayes’ Theorem and Limit Setting

In the Bayesian approach, the data are considered to be fixed, and a probability is

assigned to the parameters representing the predictions of the theory. Thus, given the

data, a probability is assigned to the number of signal events which could be present

in the data. In other words, Bayes’ theorem enables the calculation of the conditional

probability of event A, theory predictions, occurring given that event B, the data, has

occurred. This is given by

P (A|B) =
P (B|A)P (A)

P (B)
, (11.1)

where P (B|A) is the conditional probability of event B occurring, given that event A

has occurred, P (A) is the probability of event A occurring, and P (B) is the probability

of event B occurring. For events where the outcome is continuous rather than discrete,

the probabilities (P ) are replaced by probability density functions (p or p.d.f).

In this analysis the parameters of the theory are the normalization of the signal template

ν, which is equivalent to the number of signal events, and the nuisance parameters θ,

which are the systematics discussed in Chapter 10. Utilizing the continuous form of

Bayes’ theorem given in Equation (11.1), the p.d.f can be calculated for the theory

parameters (ν,θ), given the data. This particular p.d.f is referred to as the posterior, as

it reflects the knowledge about the theory parameters after the data has been analyzed;
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its formula is given in Equation (11.2).

p(ν,θ|data) = L(ν,θ|data)π(ν,θ)
p(data)

(11.2)

Here the likelihood of the theory parameters, given the data, is denoted L(ν,θ|data)

and is equivalent to p(data|ν,θ). The exact form of the likelihood is a choice of the

analyzer and is discussed further in Section 11.3. The information known about the

theory parameters before the data is analyzed is contained in the prior probability

density π(ν,θ). This can be re-written as π(ν,θ) = π(ν)
∏

i π(θi) since the parameter

of interest ν and each of the nuisance parameters θi are independent from each other.

The form of the priors for the signal and each systematic is chosen by the analyzer and

is discussed in Section 11.2. Note that the denominator of Equation (11.2), p(data), is

simply an overall normalization factor and therefore can be dropped during the limit

setting procedure.

The ultimate goal is to obtain the p.d.f for a single parameter, the number of signal

events ν, given the data. This is known as the marginalized posterior p(ν|data). This

is done by integrating out the dependence of Equation (11.2) on θ, as shown in Equa-

tion (11.3).

p(ν|data) =
∫
p(ν,θ|data)dθ (11.3)
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This multi-dimensional integral over the nuisance parameters θ is known as marginal-

ization. Note that the space of nuisance parameters may be very large, making this

integral extremely computationally expensive to calculate. To expedite this process

a Markov Chain Monte Carlo procedure is implemented as discussed in Section 11.3.

By substituting the definition of the posterior (Equation (11.2)) into the marginalized

posterior (Equation (11.3)), utilizing the expanded prior probability density π(ν,θ) =

π(ν)
∏

i π(θi) and dropping the p(data) normalization factor gives the following defini-

tion of Bayes’ equation:

p(ν|data) ∝
∫

L(ν,θ|data)π(ν)
∏
i

π(θi)dθ (11.4)

This form of Bayes’ equation can be interpreted as follows: the prior knowledge of the

analyzer encoded into π(ν) and π(θi) is updated by the outcome of the experiment

contained in the likelihood L(ν,θ|data) by marginalizing the posterior with respect to θ

in order to obtain the p.d.f of the parameter of interest given the data, p(ν|data). This

is shown diagrammatically for the simplified case (neglecting nuisance parameters) for

a small data sample in Figure 11.1a and a large data sample in Figure 11.1b, both with

a flat signal prior. The flat prior in these figures represents an uninformative prior that

reflects ignorance about the value of the parameter, so that it has minimal influence on

the obtained posterior. This choice is consistent with the prior used in a similar dijet

analysis [98] and simplifies the comparison of results.
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(a) (b)

Figure 11.1: Cartoon representing the relationship between the signal normalization
prior π(ν) (red), likelihood L(ν|data) (blue), and posterior p(ν|data) (black) for the
cases of (a) a small data sample and (b) a larger data sample. This simplified example
contains no nuisance parameters.

By integrating the marginalized posterior p(ν|data) across a range of ν values, the

probability that the true value of ν lies in the chosen region can be determined. A

common choice in particle physics is to define the upper limit νupper as the value below

which 95% of the marginalized posterior lies, referred to as the 95% credibility level

(CL) as shown in Equation (11.5) below.

0.95 =

∫ νupper

−∞
p(ν|data)dν (11.5)

Here p(ν|data) is given by Equation (11.4). This means there is a 95% probability that

the number of signal events in the data is less than or equal to νupper. This definition

is used in the final fit to define the 95% CL.
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11.2 Implementation of Priors

As discussed in Section 11.1 the priors representing the nuisance parameters and the

signal normalization are chosen to represent the analyzer’s knowledge before the data

is considered. Generally speaking, the shape of the prior distribution for systematic

uncertainties is chosen to give decreased probability as the fit tries to pull the value

away from their nominal value, while for the signal parameter the choice is made to

have as little influence on the marginalized posterior as possible.

For the tt̄ signal strength a Gaussian prior is used with the mean and width determined

by the fit to data in the CRtt̄. The Gaussian prior is then normalized to unity and

defined over the range [−ν5·tt̄, ν5·tt̄], where ν5·tt̄ is five times the expected value for tt̄,

and is set to zero elsewhere.

The remaining nuisance parameters are included using a Gaussian prior for each source.

The Gaussian for the QCD fit function choice uncertainty is defined in the range [0σ, 1σ],

where 0σ corresponds to the nominal fit function and 1σ corresponds to the alternate

fit function. All other sources of systematic uncertainty are defined using a Gaussian

over the large range [−3σ, 3σ] to allow ample room for fluctuations.

The two signal models, V + jets and Higgs + jets, are each included in the combined

fit by utilizing a uniform prior to represent the parameter corresponding to the number

of events. This is done to remove analyzer bias, thus allowing the final result to more

accurately reflect the data. Furthermore, both priors are normalized to unity over their
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respective ranges for reasons discussed in Section 11.3. The V + jets uniform prior is

defined to be 1/(2 ·ν5·V ) over the range [−ν5·V , ν5·V ] and zero everywhere else. Here ν5·V

is defined to be five times the expected value for V + jets. The Higgs + jets uniform

prior is defined to be 1/νHmax over the range [0, νHmax] and zero elsewhere. This νHmax

is the number of Higgs + jets events corresponding to the point where the likelihood is

a factor of 105 times smaller than its maximum value. In both cases the ranges were

chosen to be very large so as to not influence the result.

11.3 Bayesian Analysis Toolkit

The Bayesian Analysis Toolkit (BAT) [91, 98] is used to obtain the marginalized poste-

rior distribution in Equation (11.4) discussed in Section 11.1. It takes as input the data,

the parameters ν and θ along with their corresponding prior distributions discussed in

Section 11.2, and the chosen likelihood function L(ν,θ|data). Here the likelihood func-

tion is given by the product of the Poisson probability in each bin:

L(ν,θ|data) =
N∏
i=1

(si(ν,θ) + bi(ν,θ))
ni

ni!
e−(si(ν,θ)+bi(ν,θ)) (11.6)

In the above the product runs over all N bins in the histogram being fit, si and bi are the

expected number of signal and background events expected in bin i dependent upon ν

and θ, and ni is the number of data events in bin i. Note that in Section 11.2 the signal

parameter priors are normalized to unity such that ν corresponds to the number of signal
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events. Now Equation (11.6) can be used to calculate the probability of a given set of

parameter values ν and θ given the data. Plugging this definition into Equation (11.4)

gives the final form of Bayes’ equation used to calculate the marginalized posterior

p(ν|data) given below.

p(ν|data) ∝ π(ν)

∫ N∏
i=1

(si(ν,θ) + bi(ν,θ))
ni

ni!
e−(si(ν,θ)+bi(ν,θ))

∏
j

π(θj)dθ (11.7)

The final step is to calculate the integral in Equation (11.7) across the multi-dimensional

space of (ν,θ). However, calculating the integral for such a large space is not computa-

tionally feasible, so BAT instead employs a Markov Chain Monte Carlo (MCMC) [99,

98] in order to sample the space efficiently.

The basic idea of a MCMC is to perform a random walk in the parameter space (ν,θ)

making sure to spend more time sampling regions of high probability, i.e sampling

proportional to the posterior. The sequence of parameter values on the walk depends

only on the previous set making the resulting sequence of parameter values a Markov

Chain [100]. The Metropolis-Hastings algorithm [101, 98] is used to generate the Markov

Chains used in BAT. This procedure is detailed below and an illustration of the process

for only two parameters θ1 and θ2 is shown in Figure 11.2.

1. The chain begins at position x1 in the parameter space to be sampled.

2. The next position, x2, is proposed by selecting each new parameter from a Breit-

Wigner distribution centered on the value of the corresponding parameter for the
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current position x1.

3. A random number r between 0 and 1 is selected from a uniform distribution.

4. The value of the posterior p(ν,θ|data), given in Equation (11.2), is calculated for

both x1 and x2 resulting in p(ν,θ|data)1 and p(ν,θ|data)2.

5. If r < p(ν,θ|data)2
p(ν,θ|data)1 , the algorithm transitions to the new position x2 and it is added

to the chain. Otherwise the algorithm remains at x1 and is added to the chain.

6. This process is then repeated starting from the chosen position defined as position

x1.

This random walk in parameter space generates a chain which preferentially transitions

to positions corresponding to high probability regions of the posterior, effectively sam-

pling the important regions of the posterior distribution. By plotting the frequency

of occurrence for each parameter along the chain, and then normalizing the distribu-

tion to unity, the desired marginalized posterior for the signal parameter p(ν|data) is

found. The mode of this marginalized posterior, known as the maximum a posteriori

probability (MAP), is used as the measured number of signal events (ν) and the stan-

dard deviation (σ) is used as the uncertainty on the measurement. Dividing ν ± σ by

(LD × σH × ΓH→bb̄ ×As)
1 the signal strength µs ± σs is found.

1LD is the luminosity of the dataset. σH is the cross section for the boosted Higgs boson production
production mechanism. ΓH→bb̄ is the branching fraction of the Higgs boson to bb̄. As is the signal
acceptance of event selection.
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Figure 11.2: This figure illustrates a random walk in parameter space (θ1, θ2). The
numbers indicate the number of iterations the chain remained at this point in parameter
space, the blue arrows indicate accepted transitions, and the red arrows indicate rejected
transitions. The marginalized posterior distributions obtained for the two parameters
p(θ1|data) and p(θ2|data) are also shown, and the yellow bands correspond to the central
68% of the distributions [98].
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Chapter 12

Results

This chapter summarizes the results and interpretation of the boosted H → bb̄ search

described in this dissertation and published in Reference [88]. To arrive at this point;

the theory was presented (Chapters 2 and 3), the data were collected (Chapters 4 and 5),

a simulation of the data from theory was constructed (Chapter 6), physics objects were

built in data and MC (Chapter 7), events were then selected for analysis (Chapter 8), the

backgrounds were modelled (Chapter 9), sources of error were discussed (Chapter 10),

and finally all of these considerations were combined in statistical fit (Chapter 11). This

procedure gives an estimate of the observed signal significance and signal strength (µs)

for the boosted V → bb̄ which is used as a standard candle to validate the analysis, and

the boosted H → bb̄ which is the main signal of interest. The following sections briefly

outline the extraction of the results and present the measured quantities.
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12.1 Measurement Procedure

To measure the Standard Model signal of interest a model comprised of V + jets, H → bb̄

and tt̄ templates along with a QCD multijet model function is fit to the data. The tt̄

template is constructed from a MC sample with its normalization corrected with a k-

factor derived from a dedicated tt̄ Control Region. This fit simultaneously extracts the

signal strengths of the V + jets and H → bb̄ process (µV and µH respectively) which are

parameterized with a flat prior. The comparison of data to the maximum a posteriori

probability (post-fit) model is seen in Figure 12.1 where the nuisance parameters were

constrained as shown in Figure 12.2.

12.2 Observation of Boosted V → bb̄

The observed signal strength for the V + jets process is

µV = 1.5± 0.22 (stat.)+0.29
−0.25 (syst.)± 0.18 (theo.) ,

corresponding to an observed significance of 5σ with an expected significance of 4.8σ

[102]. This measurement represents the first direct observation of boosted vector bosons

decaying to bottom quark pairs in ATLAS for
√
s = 13 TeV.
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Figure 12.1: The top panel shows the post-fit comparison of the signal candidate large-R
jet mass distribution for the combined SM Higgs boson, V + jets, tt̄ and QCD model
to the observed data [88]. The middle panel gives the ratio of the post-fit model and
the data with the QCD and tt̄ components subtracted, highlighting the large resonance
from V + jets. The bottom panel gives the ratio of the post-fit model and the data
with the QCD, V + jets, and tt̄ components subtracted, highlighting a slight excess of
events near mJ = 125 GeV.
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Figure 12.2: Pulls of nuisance parameters in the final combined fit [63].

12.3 Measurement of Boosted H → bb̄

For the H → bb̄ process, the observed signal strength is:

µH = 5.8± 3.1 (stat.)± 1.9 (syst.)± 1.7 (theo.) .

Using the generator level cross sections (σgenerated) from Table 6.1 and the efficiency (ε)

times acceptance (A) from Table 8.2, a restricted cross section (σrestricted) for the phase

space represented by the presented analysis selections can be calculated for H → bb̄

inclusive of ggF, VBF and VH production mechanisms. Using the values from Table 12.1

and multiplying by the observed µH gives the observed Higgs boson cross section:

σH = 15± 8.2 (stat.)± 5.0 (syst.)± 4.5 (theo.) fb .
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σgenerated(fb) NSR ε×A σrestricted(fb)

ggF 476.3 115 0.002997 1.428
VBF 100.24 53 0.006319 0.6334
WH 8.2914 26 0.03895 0.3230
ZH 4.5178 21 0.05774 0.2609
Total 589.3 215 2.645

Table 12.1: Summary of pertinent boosted Higgs boson cross section and selection values
in simulation. NSR is the number of simulated Higgs bosons that pass into the SR.

Given the uncertainties, this result is consistent with the background-only hypothesis

at 1.6σ with an expected sensitivity of 0.28σ [102]. This constitutes a measurement of

the boosted Higgs decaying to a bottom quark pair but not a direct observation which,

would require 5σ significance. The result of the combined fit of V + jets and H → bb̄

agrees with the Standard Model prediction of µH = µV = 1, as seen in Figure 12.3.
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Figure 12.3: Combined marginalized posterior distributions of µH and µV in the Signal
Region [88]. It is seen that the best-fit values for the signal processes lie within the 68%
Credibility Level (2σ) of the Standard Model prediction.
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Chapter 13

Conclusion

A search for boosted H → bb̄ was performed using an integrated luminosity of 80.5fb−1

of LHC proton-proton collision data recorded at the ATLAS experiment with a center-

of-mass energy of
√
s = 13 TeV. The analysis of this data measured a signal strength of

µH = 5.8 ± 3.1 (stat.) ± 1.9 (syst.) ± 1.7 (theo.), which is 1.6 standard deviations

higher than the background-only hypothesis with an expected sensitivity of 0.28σ.

The CMS collaboration performed a similar analysis in 2017 with an integrated lu-

minosity of 39.5 fb−1 and found a signal strength for boosted H → bb̄ of µH =

2.3 ± 1.5 (stat.)+1.0
−0.4 (syst.) which is consistent with this analysis’ measurement within

2 standard deviations [103].

This is the first time this search has been performed in ATLAS and thus it represents

important advancements in the use of boosted jet techniques and the implementation

of new techniques such as the variable radius jets. Future work in this novel channel
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will be necessary to optimize these new techniques and to reduce the major systematic

uncertainties described in Chapter 10. The ATLAS calorimeter design gives an excellent

energy resolution, making software improvements to jet technologies an important av-

enue of research for future versions of this analysis. Within ATLAS there is active work

to include a particle flow algorithm into the large-R jet reconstruction. This algorithm

combines calorimeter measurements of neutral-particle energies with information from

charged hadron tracks in the ID to give better jet resolution. Furthermore, studies of

new substructure-based triggers offer future improvements to the signal event selection.

In conclusion, this dissertation provides a measurement in the Higgs sector representing

a new contribution to the field, serves as a validation of the predictions of the Standard

Model, and presents new techniques for the analysis of boosted signatures in the ATLAS

detector.
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