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Climate warming is likely to increase the frequency and severity of forest disturbances,
with uncertain consequences for soil microbial communities and their contribution to
ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis
of 139 published soil microbial responses to forest disturbances. These disturbances
included abiotic (fire, harvesting, storm) and biotic (insect, pathogen) disturbances. We
hypothesized that soil microbial biomass would decline following forest disturbances, but
that abiotic disturbances would elicit greater reductions in microbial biomass than biotic
disturbances. In support of this hypothesis, across all published studies, disturbances
reduced soil microbial biomass by an average of 29.4%. However, microbial responses
differed between abiotic and biotic disturbances. Microbial responses were significantly
negative following fires, harvest, and storms (48.7, 19.1, and 41.7% reductions in microbial
biomass, respectively). In contrast, changes in soil microbial biomass following insect
infestation and pathogen-induced tree mortality were non-significant, although biotic
disturbances were poorly represented in the literature. When measured separately,
fungal and bacterial responses to disturbances mirrored the response of the microbial
community as a whole. Changes in microbial abundance following disturbance were
significantly positively correlated with changes in microbial respiration. We propose that
the differential effect of abiotic and biotic disturbances on microbial biomass may be
attributable to differences in soil disruption and organic C removal from forests among
disturbance types. Altogether, these results suggest that abiotic forest disturbances may
significantly decrease soil microbial abundance, with corresponding consequences for
microbial respiration. Further studies are needed on the effect of biotic disturbances on
forest soil microbial communities and soil C dynamics.

Keywords: disturbance, fire, forest, harvest, insect, soil microbial biomass, pathogen, storm

INTRODUCTION
Forest ecosystems are a critical component of the global carbon
(C) cycle. Boreal, temperate, and tropical forests cover ∼30% of
the global land surface and store ∼1600 Pg C, accounting for up
to 45% of global terrestrial carbon (Bonan, 2008). Forests are
subject to frequent stand disturbances that can alter the amount
of C stored in forests. For example, forest fires burn an aver-
age of ∼40,000 km2 in North American forests (Giglio et al.,
2006), and ∼2,000 km2 in European forests each year (Schelhaas
et al., 2003). Likewise, ∼50,000 km2 of North American forests
are harvested annually (Birdsey et al., 2006). Other common for-
est disturbances include storms, insect outbreaks, and pathogen
infection of trees (Goetz et al., 2012). These disturbances can be
grouped into abiotic (fire, harvesting, storm) and biotic (insect,
pathogen) disturbances. Although already common, some forest
disturbances may occur more frequently and severely as a result of
climate warming. For example, modeling studies predict that the
burned area in Alaskan and Canadian boreal forests will increase
3.5–5.5 times by the end of the century (Balshi et al., 2009).
Higher temperatures may also provide more favorable conditions
for insects and pathogens, and make forests more susceptible to
infestation (Dale et al., 2001). Although, insect outbreaks are not

always directly related to climatic conditions (Kardol et al., 2010).
Given the large amount of C stored in forests, it is important to
understand how disturbances alter ecosystem C dynamics.

Soil microbial respiration of CO2, produced as a result of
organic matter decomposition in soil, comprises a large flux of
C from forest ecosystems to the atmosphere. Classic ecosystem
theory predicts that the total amount of CO2 released by soil
microbes increases following forest disturbances (Odum, 1969;
Chapin et al., 2002), owing to post-disturbance increases in soil
temperature and C availability. Direct in situ measurements of
microbial respiration following disturbances are scarce (but see
Czimczik et al., 2006). Indirect evidence for increased micro-
bial respiration following disturbances is derived primarily from
measurements of soil C stocks (Covington, 1981) and from mea-
surements of total soil respiration (Richter et al., 2000). However,
despite the central role of microbes in decomposition and C
release from soils, the response of soil microbial biomass and
community composition to forest disturbances is not accounted
for in this classic ecosystem theory.

Abiotic and biotic disturbances change a variety of soil prop-
erties in forests, which may in turn alter soil microbial biomass
and respiration. For example, abiotic disturbances usually kill
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(fire, storm) or remove (harvest) aboveground vegetation.
Post-disturbance reductions in aboveground vegetation decrease
plant litter inputs and root exudation into soil and thus can
result in long-term declines in soil C (Johnson and Curtis, 2001;
Wang et al., 2012; Zhou et al., 2013) and total soil nitrogen
(Wan et al., 2001). In addition, soil temperatures often increase
following abiotic disturbances (Treseder et al., 2004), and this
may augment microbial respiration. However, microbes living
in post-disturbance soils may also experience greater moisture
stress, as higher soil temperatures following abiotic disturbance
can lead to soil drying. Biotic disturbances may differ from abi-
otic disturbances in their effect on soil properties because they less
frequently kill aboveground vegetation. Tree defoliation caused
by biotic disturbances can result in an influx of dead plant litter
into soils (Hicke et al., 2012). Insect biomass and frass deposi-
tion following insect defoliation can also increase soil nutrient
availability (Lovett et al., 2002). Increases in labile C and nutri-
ent availability following biotic disturbances may stimulate soil
microbial growth and respiration. On the other hand, biotic dis-
turbances that kill aboveground vegetation might cause soil C
availability to decline. The net effect of these altered soil condi-
tions on soil microbial communities is poorly understood.

Soil microbial responses to forest disturbances are likely to
differ as a function of the time since disturbance. Disturbance
effects on soil microbial communities may only persist until
aboveground vegetation re-grows, as the recovery of above-
ground vegetation may reverse changes in soil properties caused
by disturbance (Hart et al., 2005). Soil nutrient availability
may quickly return to pre-disturbance levels if soil microbes
and plants can readily assimilate the pulse of available nutri-
ents. Furthermore, soil microbial communities may have the
capacity to quickly recover from disturbances if nearby undis-
turbed forests or mineral soils serve as a source of microbial
inoculum (Grogan et al., 2000; Barker et al., 2013). However,
we currently have a limited understanding of changes in soil
microbial biomass during forest recovery from a variety of
disturbance types.

In a previous meta-analysis we summarized soil microbial
biomass responses to fire (Dooley and Treseder, 2012). This work
demonstrated that fires reduce soil microbial biomass in forest
ecosystems. However, our previous work did not examine other
types of forest disturbances besides fire. It is important to con-
sider microbial responses to a variety of disturbances because
of their prevalence in forests worldwide and the likelihood that
disturbances may occur more frequently as a result of climate
warming. Determining the relative impact of different distur-
bance types will allow us to better predict how climate-linked
increases in disturbance frequency will affect soil microbial com-
munities and soil C dynamics. Many studies have documented
soil microbial responses to forest disturbances, but the results
among these studies are inconsistent. Some studies find increases
in microbial abundance following disturbances (Holmes and Zak,
1999; Bogorodskaya et al., 2009), while others report negative
microbial responses to disturbance (Arunachalam et al., 1996;
Bárcenas-Moreno et al., 2011) and we lack a quantitative synthesis
across disturbance types. Here, we build on our previous work by
asking how does soil microbial biomass and respiration respond

to disturbance events in forests and how does this response dif-
fer across disturbance types? We also highlight forest disturbance
types that require further study. We hypothesized that forest
disturbances would reduce soil microbial biomass. Second, we
expected that abiotic disturbances would lead to greater reduc-
tions in microbial biomass than biotic disturbances. Third, we
predicted that post-disturbance changes in microbial biomass
would diminish over time as forests recover from disturbance.
Fourth, we expected that changes in soil microbial biomass would
be associated with changes in microbial respiration. We tested
these hypotheses separately for studies that measured total soil
microbial biomass, and for studies that measured fungal and bac-
terial abundances separately since these major classes of microbes
may have different responses to disturbance. Given previous work
suggesting that fungi may be more sensitive to fires than bacte-
ria (Pietikäinen and Fritze, 1995; Dooley and Treseder, 2012), we
expected that fungi would have larger responses to disturbance
than bacteria.

MATERIALS AND METHODS
LITERATURE SURVEY AND CRITERIA FOR INCLUSION
We searched the published literature for studies that reported
microbial abundance measurements in disturbed and undis-
turbed forest soils. Searches were conducted using the ISI Web
of Science database and Google Scholar. We performed our lit-
erature searches separately by each type of forest disturbance.
Key words for each disturbance type included: burn, forest
fire, prescribed fire, wildfire (fire); harvest, logging (forest har-
vest); insect, insect defoliation, insect outbreak (insect out-
breaks); pathogen (pathogen-caused tree mortality); and storm,
windthrow (storms). To narrow our search results to studies that
focused on soil microbes, we also used the search terms microb∗,
bacteri∗, and fung∗ in combination with the key words listed
above for each disturbance type. Published studies were collected
for analysis until 15 January 2013.

Meta-analyses were preformed on a subset of studies that met
our search criteria (Table A1) following Dooley and Treseder
(2012). Importantly, we only included multiple data sets from
a single study if the data sets could reasonably be considered
independent (e.g., different geographic locations, dominant
vegetation).

DATA ACQUISITION
For each study, we recorded the mean, standard deviation
(SD), and sample size (n) of microbial biomass, fungal abun-
dance, or bacterial abundance in the disturbed area and the
undisturbed control. In addition to changes in microbial abun-
dances, we recorded the type of disturbance, the disturbance
agent, the time elapsed since disturbance, and the biome in
which the study took place. We included studies from boreal
forests, temperature forests, tropical forests, and woodlands.
Studies in woodlands were primarily from Mediterranean ecosys-
tems and had decreased tree biomass and higher amounts
of shrub biomass. We also recorded the method used for
measuring microbial abundances in soil. When means and
errors were presented in graph form, we digitized the data
using PlotDigitizer 2.6.2 (http://plotdigitizer.sourceforge.net). If
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standard errors (SEs) were presented instead of SDs, they were
converted using the formula: SD = SE (n1/2). Any unidentified
errors bars in graphs were assumed to represent SEs. There were
a total of two studies in which error bars were not identified
(Chang et al., 1995; Pietikäinen and Fritze, 1995).

INDICES OF MICROBIAL ABUNDANCE
Authors employed a variety of techniques to measure micro-
bial abundances in soil. Microbial biomass in soil was mea-
sured through chloroform fumigation and extraction (Brooks
et al., 1985), substrate-induced respiration (Anderson and
Domsch, 1978), total amounts of phospholipid fatty acids
(PLFAs) in soil (Frostegard and Bååth, 1996), total amounts
of ATP extracted from soil (Eiland, 1983), and microwave
irradiation of soil (Islam and Weil, 1998). Fungal abundance
in soil was most commonly determined using fungal specific
PLFAs. Additional methods for characterizing fungal abun-
dance included total amounts of ergosterol in soil (Djajakirana
et al., 1996), microscopy, plating soil and counting colony for-
mation, and quantitative PCR with universal fungal primers
(Borneman and Hartin, 2000). Bacterial abundances were
determined through bacteria specific PLFAs, dilution plating,
and microscopy.

SPECIFIC MICROBIAL GROUPS
A subset of the studies generated from our literature search also
reported changes in the abundance of specific groups of bacte-
ria in response to disturbance. We found studies that reported
the response of gram-negative bacteria, gram-positive bacteria,
and actinomycetes to forest disturbances. The abundance of these
bacterial groups was measured using PLFAs or dilution plating.

BASAL RESPIRATION
Where possible, we also recorded changes in soil basal respira-
tion following disturbances. We defined basal respiration as the
amount of CO2 produced during laboratory incubations of soil
in the absence of carbon or nutrient additions.

STATISTICS
Meta-analyses were used to determine the significance of micro-
bial abundance responses to disturbance. For each study and
group of microorganisms (microbes, fungi, bacteria, gram-
negative, gram-positive, actinomycetes), the effect size was calcu-
lated at the natural log of the response ratio (“R”). R is calculated
as the mean of the disturbed treatment divided by the mean of
the control group. Thus, an R of 1 indicates that disturbance had
no effect on microbial abundance. Variance within each study
(νlnR) is computed using the means, n, and SD of the control and
disturbed groups (Hedges et al., 1999).

To determine if disturbances had a significant effect on micro-
bial abundance, we employed a random effects models using
MetaWin software (Rosenberg et al., 2000). Bias-corrected boot-
strap 95% confidence intervals (CIs) were calculated for each
mean R. If the 95% CIs of R do not overlap with 1, then responses
were significant at P < 0.05. Random effects models allow for
comparisons between groups in a framework that is similar to
analysis of variance. We applied random effects meta-analyses to

test for differences in R between abiotic and biotic disturbances
and disturbance types (fire, harvest, storm, insect, pathogen).
Within each disturbance type, we further tested for differences
among disturbance agents (e.g., wildfire vs. prescribed fire),
biomes, and the method of measurement used to estimate micro-
bial abundances. In addition, we used continuous randomized
effects meta-analyses to test for relationships between R and the
time since disturbance. Tests for the relationship between R and
the time since disturbance were performed separately for each
disturbance type and biome. Statistical results reported include:
R, 95% CIs for R, and total heterogeneity in R among studies
(QT ). For comparisons among groups, total heterogeneity (QT )
can be partitioned into the amount of heterogeneity explained by
groups (QM ) and the amount of heterogeneity left unexplained
(QE). The significance of QT and QM is tested by comparison to
the chi-squared distribution. A significant QT value means that
the variance among studies is greater than expected due to sam-
pling error. A significant QM values indicates that a significant
portion of the total heterogeneity among studies can be explained
by subdividing the studies into the group of interest (Rosenberg
et al., 2000, 2004; Koricheva et al., 2013). We used a Pearson’s cor-
relation to analyze the relationship between the R of microbial
biomass and the R of basal respiration for studies in which both
were reported.

We employed a number of complementary approaches to test
for the presence of publication bias in our data. We performed
a Kendall’s tau rank correlation test and a Spearman rank cor-
relation test (Sokal and Rohlf, 1995) to test for the relationship
between replicate number of each study and the standardized
effect size. Such a relationship would be indicative of a publica-
tion bias in which larger effects of disturbance were more likely
to be published than smaller effects. We visually inspected funnel
plots of standard error or replicate number versus standardized
effect size for the presence of asymmetry (Egger et al., 1997; Sterne
and Egger, 2001). Funnel plot asymmetry was formally tested
using Egger’s regression (Sterne and Egger, 2005). Publication
bias was assessed in all data for a given group of microorganisms
(microbes, fungi, bacteria) and also for abiotic and biotic data sets
within each group of microorganisms.

RESULTS
In this study we focused on five of the most prevalent distur-
bances in forest ecosystems. Specifically, we focused on three
abiotic disturbances (fire, harvest, and storms) and two biotic
disturbances (insect infestation and pathogen infection). Each
disturbance type was further separated into its causative distur-
bance agent. Fires were grouped into wildfires, prescribed fires,
or slash burns. Harvesting was grouped into clear cutting or par-
tial harvesting (e.g., thinning, selective harvesting). Storms were
subdivided into hurricanes, typhoons, and windthrow. We found
studies reporting insect infestation by the gypsy moth, hemlock
wooly adelgid, pine beetle, and pine lappet. Pathogen infection
studies reported the effects of pine wilt disease and Phellinus
weirii infection. Our literature search produced 88 observations
of changes in soil microbial biomass following forest distur-
bances, collected from a total of 61 published papers. We found
35 reports of fungal abundance responses to disturbance from 24
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published studies. Finally, we found 16 observations of changes
in bacteria abundance following disturbance from 12 published
papers.

TOTAL MICROBIAL BIOMASS
Soil microbial biomass significantly decreased following distur-
bances, by an average of 29.4% across all studies (Table 1).
However, disturbance responses were not consistent across stud-
ies, as indicated by a significant QT value (QT = 110.95, P =
0.043). Microbial biomass responses to disturbance differed sig-
nificantly between abiotic and biotic disturbances (QM = 14.68,
QE = 99.45, P = 0.038, Figure 1A). Fires, harvesting, and storms
resulted in significant reductions in microbial biomass (by 48.7,
19.1, and 41.7%, respectively). In contrast, changes in soil micro-
bial biomass following insect attack and pathogen-induced mor-
tality were non-significant (Figure 1A).

Fire, harvest, and insect infestation had high enough replica-
tion in the literature to further test for differences among groups
within each disturbance type. Within fires, microbial biomass
response ratios were not significantly different among fire types,
biomes, or measurement methods (Table 1). Fires in boreal and
temperate forests significant reduced microbial biomass, but
woodland fires had non-significant effects.

Following forest harvest, the response of microbial biomass
was not significantly different between harvest types, biomes, or
measurement methods (Table 1). Forest clear cutting elicited a
significant negative response from soil microbes. In contrast, par-
tial harvesting did not significantly alter soil microbial biomass.
Within insect studies, infestation by pine beetles resulted in a
significant reduction in soil microbial biomass, while defoliation
by the gypsy moth significant increased soil microbial biomass
(Table 1). Studies following storms (n = 3) and pathogen infec-
tion (n = 2) were scarce in the literature and thus we could not
perform further comparisons within these disturbance types.

We performed tests for publication bias separately for each
group of microorganisms (microbes, fungi, bacteria). Within
each group, we also performed tests separately for abiotic and
biotic studies. Across all microbe studies, we did not detect signif-
icant publication bias with any of the three tests used (Table A2).
However, when abiotic and biotic disturbances were examined
separately, Egger’s regression test was significant for biotic distur-
bance studies (Table A2). This indicates a potential bias toward
publishing significant results.

FUNGI
Across all studies, disturbances resulted in a 34.0% reduction in
fungal abundance (Table 1). Abiotic and biotic disturbances had
significantly different effects on fungal biomass (QM = 16.45,
QE = 30.93, P = 0.008, Figure 1B). Fire and harvest resulted in
55.2 and 26.6% declines in soil fungi, respectively. Responses of
fungi to insect infestation were significantly positive (Figure 1B).
However, it is important to note that insect infestations were only
represented by two observations in the literature.

Within fire studies, fungal responses were significantly neg-
ative, regardless of fire type, biome, or measurement method
(Table 1). Within harvest studies, fungal responses were signifi-
cantly different across biomes. Harvesting in tropical forests led

to greater reductions in fungal biomass than harvesting in either
boreal forests or temperate forests. Harvest responses did not
differ by harvest type or measurement method. Similar to total
soil microbial biomass, clear cutting significantly reduced fungal
biomass, but partial harvesting had non-significant effects.

The Kendall’s Tau and Spearman rank correlation tests for
publication bias were significant for all fungal studies and for
fungal studies of abiotic disturbances. However, Egger’s regres-
sion test detected no significant publication bias for these same
studies (Table A2). Our data set contained only two observations
of changes in fungal abundance in response to biotic distur-
bances. Thus, we could not test for publication bias within biotic
disturbances for fungi using correlation or regression methods.

BACTERIA
Bacterial abundance declined by an average of 15.3% in response
to disturbances (Table 1). Bacterial responses to disturbance
differed significantly between abiotic and biotic disturbances
(QM = 29.53, QE = 66.45, P = 0.037, Figure 1C). Fire and har-
vest reduced bacteria by 33.3% and 13.9%, respectively. In con-
trast, bacteria increased following insect infestation (Figure 1C).
Harvesting was the only disturbance type with sufficient repli-
cation to further test for differences within harvest studies.
Bacteria harvesting responses were significantly different across
biomes (Table 1). Harvesting in tropical forests significantly
reduced bacterial biomass, but responses in temperate forests
were non-significant. There were no significant differences in bac-
terial responses among harvest types and measurement methods.
Clear-cutting significantly lowered soil bacterial abundance, but
there was no significant effect of partial forest harvest.

A small subset of the studies included in this meta-analysis
reported the response of specific groups of bacteria to disturbance
(Table A1). Across all of these studies, we found that distur-
bances significantly reduced the abundance of gram-positive (n =
5, 95% CI of R = 0.50 − 0.99) and gram-negative soil bacteria
(n = 5, 95% CI of R = 0.58 − 0.99). Within the gram-positive
bacteria, actinomycete abundance did not change following dis-
turbances (n = 14, 95% CI of R = 0.73 − 1.09; data not shown).

We found no evidence for publication bias among bacterial
studies (Table A2). Similar to fungi, we could not use correla-
tion or regression methods to test for publication bias in bacterial
studies following biotic disturbance because there were only two
observations.

RECOVERY OF MICROBIAL BIOMASS FOLLOWING DISTURBANCES
There was a significant positive relationship between the time
since disturbance and the microbial biomass R following boreal
forest fires (Figure 2A) and boreal forest harvesting (Figure 2B).
Response ratios significantly increased as the time since fire
increased in boreal forests (n = 21, r2 = 0.793, P < 0.0001).
Similarly, microbial response ratios increased with the time since
harvest in boreal forests (n = 32, r2 = 0.201, P = 0.010), and the
relationship was linear.

We did not detect a significant relationship between microbial
biomass response ratios and the time since disturbance for any
other disturbance type and biome (data not shown). In addition,
fungal and bacteria response ratios were not significantly related
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Table 1 | Results of statistical comparisons among and within groups.

Organism Group Sub-group R 95% CI Number of QM QE P-value

studies groupsa

Microbes All microbe studies* 0.71 0.63–0.80 88
Abiotic All abiotic studies* 0.68 0.61–0.76 80
Fire All fire studies* 0.51 0.38–0.66 28

Fire Type Prescribed fire* 0.65 0.47–0.87 13 2.79 29.86 0.160
Wildfire* 0.41 0.23–0.60 15

Biome Boreal forest* 0.46 0.35–0.60 7 6.14 26.26 0.110
Temperate forest* 0.35 0.19–0.57 11
Woodland/shrubland 0.79 0.53–1.09 10

Measurement Chloroform fumigation* 0.46 0.31–0.64 21 3.44 27.17 0.303
PLFA* 0.72 0.65–0.84 3
SIR* 1.17 1.06–1.29 2

Harvest All harvest studies* 0.81 0.72–0.88 49
Harvest type Clear cut* 0.78 0.67–0.86 34 1.23 42.01 0.315

Partial harvest 0.89 0.78–1.02 13
Biome Boreal forest* 0.87 0.81–0.94 20 1.76 46.37 0.434

Temperate forest* 0.77 0.63–0.90 24
Tropical forest* 0.75 0.51–0.97 5

Measurement Chloroform fumigation* 0.79 0.58–0.93 21 2.12 47.85 0.511
PLFA* 0.90 0.81–0.98 11
SIR* 0.79 0.70–0.90 13

Storm All storm studies* 0.58 0.25–0.85 3
Biotic All biotic studies 0.90 0.74–1.30 8
Insect All insect studies 0.87 0.59–1.21 6

Insect type Gypsy moth* 1.46 1.42–1.51 2 28.23 2.51 0.102
Pine beetle* 0.59 0.37–0.65 3

Biome Boreal forest* 1.46 1.42–1.51 2 7.07 4.08 0.061
Temperate forest* 0.68 0.44–0.92 4

Measurement Chloroform fumigation* 0.68 0.44–0.92 4 7.07 4.08 0.061
SIR* 1.46 1.42–1.51 2

Pathogen All pathogen studies 0.93 0.54–1.55 2

Fungi All fungi studies* 0.66 0.57–0.76 35
Abiotic All abiotic studies* 0.64 0.56–0.73 33
Fire All fire studies* 0.45 0.36–0.57 13

Fire Type Prescribed fire* 0.41 0.35–0.51 7 0.02 11.89 0.864
Wildfire* 0.43 0.31–0.56 5

Biome Boreal forest* 0.37 0.31–0.41 4 2.53 10.00 0.241
Temperate forest* 0.55 0.35–0.78 5
Woodland/shrubland* 0.50 0.35–0.61 4

Measurement Dilution plate count* 0.53 0.03–0.63 3 16.04 8.54 0.066
Ergosterol* 0.36 0.30–0.42 2
Microscopy* 0.74 0.60–0.89 3
PLFA* 0.37 0.34–0.46 4

Harvest All harvest studies* 0.73 0.62–0.84 20
Harvest type Clear cut* 0.70 0.60–0.80 15 1.44 17.20 0.249

Partial harvest 0.86 0.60–1.14 5
Biome Boreal forest* 0.84 0.75–0.91 11 22.46 34.39 0.015

Temperate forest* 0.71 0.52–0.95 7
Tropical forest* 0.45 0.45–0.45 2

Measurement Dilution plate count 0.68 0.45–1.01 4 1.18 14.64 0.562
Microscopy* 0.62 0.47–0.75 3
PLFA* 0.79 0.65–0.94 12

Biotic All biotic studies* 1.13 1.07–1.19 2
Insect All insect studies* 1.13 1.07–1.19 2

(Continued)
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Table 1 | Continued

Organism Group Sub-group R 95% CI Number of QM QE P-value

studies groupsa

Bacteria All bacteria studies* 0.85 0.73–0.95 16

Abiotic All abiotic studies* 0.81 0.70–0.92 14

Fire All fire studies* 0.67 0.47–0.82 4

Harvest All harvest studies* 0.86 0.71–0.97 10

Harvest type Clear cut* 0.89 0.70–0.98 8 4.25 58.96 0.369

Partial harvest 0.74 0.63–1.52 2

Biome Temperate forest 0.99 0.96–1.01 7 132.14 18.96 0.020

Tropical forest* 0.60 0.57–0.63 2

Measurement Dilution plate count 0.74 0.57–1.00 3 15.69 32.89 0.278

Microscopy 0.99 0.98–1.01 3

PLFA 0.88 0.70–1.52 3

Biotic All biotic studies* 1.12 1.11–1.13 2

Insect All insect studies* 1.12 1.11–1.13 2

PLFA, phospholipid fatty acid; SIR, substrate induced respiration.

*Significant effect of disturbance on group (P < 0.05).
aOnly groups represented by two or more studies were included in comparisons.

to the time since disturbance for any disturbance type and biome
(data not shown).

BASAL RESPIRATION
A subset of the studies included in this meta-analysis reported
changes in soil basal respiration following disturbance in addi-
tion to changes in microbial biomass measurements (n = 38).
Across all studies that reported both, there was a significant pos-
itive correlation between the R of soil basal respiration and the R
of microbial biomass (r = 0.702, P < 0.0001, Figure 3).

DISCUSSION
In this study, we conducted a meta-analysis of changes in soil
microbial biomass in response to forest disturbances. We ini-
tially hypothesized that forest disturbances would reduce soil
microbial biomass. In support of this hypothesis, we found
that microbial biomass declined by an average of 29.4% after
disturbance events (Table 1). The responses of soil fungi and
bacteria to disturbance largely mirrored the response of the
microbial community as a whole, and provide further sup-
port for the hypothesis that forest disturbances reduce soil
microbial abundance. Although bacterial and fungal responses
were less frequently studied than the response of the micro-
bial community as a whole, these data imply that soil bac-
teria and fungi are affected by forest disturbances in a
similar manner. Our data do not suggest that soil fungi are
more sensitive to disturbance events than bacteria. We further
hypothesized that abiotic disturbances would lead to greater
reductions in microbial biomass than biotic disturbances. In
support of this hypothesis, soil microbial responses signifi-
cantly differed between abiotic and biotic disturbances. Fires,
harvesting, and storms caused significant reductions in soil
microbial biomass, while changes in microbial biomass follow-
ing insect infestation and pathogen-induced tree mortality were
non-significant (Figure 1A). Furthermore, bacterial and fungal

abundances significantly increased following insect infestation
(Figures 1B,C).

We propose two possible explanations for the differential effect
of abiotic and biotic disturbances on soil microbial communities.
First, abiotic disturbances typically involve higher levels of soil
disruption during the disturbance event than biotic disturbances.
For example, harvesting practices involve the use of logging
equipment that can result in heavy soil compaction. Soil com-
paction alters soil pore space, potentially leading to impaired gas
exchange, decreased soil drainage, and inhibition of soil micro-
bial growth (Kabzems and Haeussler, 2005; Mariani et al., 2006).
Forest fires cause soil disruption in the form of soil combustion
and heating of the soil surface. Soil surface temperatures during
forest fires can reach up to 600◦C (Busse et al., 2005), which is well
above the upper thermal limit of most microbial taxa (Debano
et al., 1998). Storms cause soil disruption by uprooting trees,
which can cause soil mixing and changes in soil microtopogra-
phy (Ruel, 1995). These direct effects of abiotic disturbances on
soil properties may in part explain the observed post-disturbance
reductions in microbial biomass. In contrast, biotic disturbances
do not typically involve immediate soil physical changes and are
likely to have mostly indirect effects on soil properties (Hicke
et al., 2012). Lower levels of soil physical disruption during biotic
disturbances may in part explain the non-significant effect of
these disturbances on soil microbial biomass.

In addition, abiotic and biotic disturbances differ in the
amount and type of organic C remaining in ecosystems follow-
ing the disturbance event and this may have consequences for soil
microbial communities. Fires remove large amounts of organic
C from ecosystems via the combustion of aboveground vegeta-
tion and soil organic matter (Amiro et al., 2001; Van Der Werf
et al., 2010). The more labile components of soil organic matter
may be preferentially volatized during fires (González-Pérez et al.,
2004; Neff et al., 2005), leaving behind organic C that is more dif-
ficult for microbes to decompose. Harvesting also removes large
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FIGURE 1 | Responses of microbial biomass (A), fungal abundance (B),

and bacterial abundance (C) to forest disturbances. Response ratios are
grouped by abiotic and biotic disturbances (unshaded) and by disturbance

type (shaded). Symbols are means ± 95% confidence intervals. A response
ratio < 1 indicates that microbial abundances declined following disturbance,
a response ratio > 1 indicates an increase in microbial biomass.
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FIGURE 2 | The response ratio of microbial biomass as a function of

the time since disturbance following boreal forest fires (A) and boreal

forest harvesting (B). Response ratios significantly increased with time
after boreal forest fires [R = 0.51 × (time since disturbance) ∧ 0.26, n = 21,
r2 = 0.793, P < 0.0001] and boreal forest harvest (R = 0.01 × time since
disturbance + 0.81, n = 32, r2 = 0.201, P = 0.010).

amounts of organic C from forests, but can deposit fine woody
debris on the soil surface. On the other hand, biotic disturbances
are associated with smaller amounts of organic C removal from
forests. Although insect or pathogen outbreaks may kill trees,
they can also result in an influx of dead plant litter, insect feces,
and dead insect biomass to forest soils (Lovett et al., 2002; Yang,
2004; Hicke et al., 2012). Higher amounts of organic C removal
from forests during abiotic disturbances may cause C limitation
of soil microbial growth, and thus reductions in soil microbial
biomass. With our meta-analysis approach, we were unable to
evaluate whether differences in soil physical disruption, organic
C removal, or a combination of both factors, were responsible
for the differential effect of abiotic and biotic disturbances on
soil microbial communities. Future studies that are mechanistic
rather than observational will make it possible to disentangle the
factors that govern microbial responses to disturbance events.

While the mechanisms described above may explain the
contrasting effects of abiotic and biotic disturbances that we
observed, it is also important to consider that we found evidence

FIGURE 3 | The relationship between the response ratio of soil basal

respiration and the response ratio of microbial biomass. Each symbol
designates one study. Line is the best-fit regression (basal respiration
R = 0.84 × microbial biomass R + 0.24, n = 38, r2 = 0.492, P < 0.0001).
The response of soil basal respiration is significantly related to the response
of microbial biomass following disturbances.

for publication bias in studies of microbial biomass following
biotic disturbances and in all fungal studies. The presence of
publication bias suggests that the effects of disturbance that are
reported in the literature may not be representative of all micro-
bial responses. Moreover, microbial (n = 8), fungal (n = 2), and
bacterial (n = 2) biomass responses to biotic disturbances were
poorly represented in the literature. Therefore, the differences that
we observed between abiotic and biotic disturbances may also be
attributable to the scarcity of data on biotic disturbances.

In some cases, contrasts between disturbance agents revealed
interesting differences in soil microbial responses. For exam-
ple, clear cutting consistently reduced microbial abundance, but
partial forest harvesting did not result in significant changes in
total microbial biomass, fungal abundance, or bacterial abun-
dance (Table 1). In comparison to clear cutting, partial harvesting
is associated with lower levels of soil compaction and vegeta-
tion removal (Barg and Edmonds, 1999). Together these factors
may explain the reduced impact of partial harvesting on below-
ground communities (Lindo and Visser, 2003). In addition, we
found that gypsy moths and pine beetles had contrasting effects
on soil microbial communities (Table 1). Pine beetle infesta-
tion reduced microbial biomass (95% CI of R = 0.367 − 0.646),
while microbial biomass increased following gypsy moth defo-
liation (95% CI of R = 1.419 − 1.505). The differential effect
of these insects on soil microbial biomass may be explained
by their ecology. Gypsy moths are leaf-feeders that defoliate
trees and reduce tree growth. However, gypsy moth feeding
does not always kill trees. In contrast, pine beetles do not con-
sume tree needles, but instead feed within the phloem and
typically result in tree death (Hicke et al., 2012). Although rep-
resented by a limited number of studies, our results suggest
that tree defoliating and tree killing insects may have contrast-
ing effects of soil microbial communities and potentially forest
C dynamics.
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In addition to changing microbial biomass, disturbances
may also alter the composition of soil microbial communities.
Denaturing gradient gel electrophoresis and phospholipid fatty
acid profiles have been used to detect broad changes in micro-
bial community structure following harvesting and forest fires
(Siira-Pietikainen et al., 2001; Waldrop and Harden, 2008). Next
generation sequencing of environmental samples has made it
possible to examine compositional changes in microbial com-
munities following disturbances in greater detail. For example,
Hartmann et al. (2012) found that harvesting significantly altered
the composition of soil bacterial and fungal communities, with
ectomycorrhizal taxa and actinobacteria being most sensitive to
harvesting disturbance. Ectomycorrhizal fungi were also sensitive
to forest fires in boreal forests, while ascomycete fungi increased
in abundance following fire (Holden et al., 2013). These changes
in microbial community structure following disturbance suggest
that microbial species are differentially affected by disturbance.
The functional consequences of compositional changes in soil
microbial communities in response to disturbances require fur-
ther testing. For instance, if plant symbiotic microbes are sensitive
to disturbance, the ability of plants to re-establish following dis-
turbances may be hindered. Changes in the composition of soil
microbial communities following biotic disturbances have rarely
been studied, but would greatly contribute to our knowledge of
soil microbial responses to disturbances.

We found a significant positive relationship between the time
since disturbance and microbial biomass responses following fire
and harvesting in boreal forests (Figure 2). These results are con-
sistent with our third hypothesis that post-disturbance changes
in microbial biomass would weaken over time. Following both
harvesting and fires in boreal forests, microbial responses were
typically negative for the first 15 years following disturbance.
This finding suggests that forest disturbances can have long-term
consequences for belowground communities. Eddy covariance
studies and ground-based vegetation surveys have found that pri-
mary productivity requires up to 10 years to recover following
harvest and fires in boreal forests (Mack et al., 2008; Amiro et al.,
2010; Goulden et al., 2011). In addition, post-fire reductions in
soil C and soil organic matter can persist for at least 10 years
following boreal forest fires (Johnson and Curtis, 2001; Treseder
et al., 2004). Thus, the recovery of soil microbial biomass follow-
ing harvesting and forest fires may be controlled by the recovery
of forest primary productivity and soil organic matter accumula-
tion. We found no evidence for a significant relationship between
the time since disturbance and microbial abundance responses for
any other disturbance type or biome. Although, the majority of
the studies used in this meta-analysis assessed microbial responses
to disturbance within 1 year of the disturbance event (Table A1).
The paucity of long-term data may have limited our ability
to detect significant relationships between microbial biomass
responses and the time since disturbance. Additional long-term
studies, especially following insect outbreaks and pathogen infec-
tion, are necessary to evaluate the belowground consequences of
forest disturbances.

Classic ecosystem theory posits that soil microbial respiration
increases following disturbance (Chapin et al., 2002; Harmon
et al., 2011). Microbial respiration has long been assumed to

increase following forest disturbance events because soil tem-
peratures usually increase after disturbances and because distur-
bances can result in the deposition of plant litter and/or woody
debris on the soil surface. Instead, we hypothesized that post-
disturbance changes in microbial biomass would be associated
with concurrent changes in microbial respiration. In support
of our hypothesis, we found a significant positive correlation
between the response of microbial biomass to disturbance and the
response of soil basal respiration (Figure 3). Therefore, decreases
in soil microbial biomass following abiotic disturbances may be
accompanied by reductions in microbial respiration. This finding
is in agreement with ecosystem-level studies that have measured
microbial respiration following disturbance events and found
post-disturbance decreases in microbial respiration (Amiro et al.,
2003; Czimczik et al., 2006). Although, the microbial respiration
data reported here were measured in the laboratory under stan-
dardized conditions. It is therefore possible that differences in soil
conditions between disturbed and undisturbed forests may cause
differences in microbial respiration in the field. However, any
post-disturbance increases in microbial respiration would likely
result from increases in mass-specific rates of respiration, since
microbial abundance declined by an average of 29.4% following
disturbances. Our understanding of changes in microbial respira-
tion following disturbance would benefit from additional studies
that combine in situ measurements of microbial respiration with
detailed microbial community analyses.

In summary, we found that forests disturbances significantly
reduced soil microbial biomass, but that responses differed by
disturbance type. Microbial biomass responses were consistently
negative following abiotic disturbances, but our data suggest that
forest disturbances caused by biotic agents may have a neutral
or positive effect on microbial abundance in soil. This contrast
is potentially attributable to differences in soil physical disrup-
tion and organic C removal from forests between abiotic and
biotic disturbances. Evidence for publication bias in biotic stud-
ies, and the overall paucity of data on soil microbial responses
to biotic disturbances, may have also contributed to the pat-
terns we observed. Further studies following biotic disturbances
will help clarify their impact on soil microbial communities. We
found that changes in soil microbial biomass following distur-
bances were significantly related to changes in microbial res-
piration. Disturbances are common in forest ecosystems and
one indirect impact of climate warming in terrestrial ecosystems
may be an increase in the frequency and severity of distur-
bance events in forests. Our results imply that these disturbance
events can alter soil microbial biomass in forests, with corre-
sponding consequences for microbial respiration and ecosystem
C balance.
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APPENDIX

Table A1 | A list of the studies used in meta-analyses.

Study Disturbance Disturbance Biome Time since Biomass R lnR

type agent disturbance (Y ) method

MICROBES

Bååth et al., 1995 Fire PF BF 2.50 PLFA 0.65 −0.43

Bárcenas-Moreno et al., 2011 Fire WF TF 2.67 CF 0.38 −0.96

D’Ascoli et al., 2005 Fire PF WS 0.02 SIR 1.29 0.26

Dannenmann et al., 2011 Fire WF WS 0.50 CF 0.75 −0.29

Dangi et al., 2010 Fire PF WS 3.00 PLFA 0.69 −0.38

De Marco et al., 2005 Fire PF WS 40 CF 1.43 0.26

Dumontet et al., 1996 Fire WF TF 0.08 CF 0.75 −0.29

Fioretto et al., 2005 Fire PF WS 0.02 ATP 0.25 −1.39

Fenn et al., 1993 Fire WF WS 0.01 SIR 1.06 0.06

Fonturbel et al., 2012 Fire PF WS 0.01 SF 0.66 −0.42

Fritze et al., 1993 Fire PF BF 0.01 CF 0.78 −0.24

Fritze et al., 1994 Fire PF BF 2.00 CF 0.39 −0.93

Gömöryová et al., 2008 Fire PF WS 0.01 CF 1.08 0.08

Goberna et al., 2012 Fire WF TF 0.96 Micro 0.59 −0.52

Grady and Hart, 2006 Fire WF TF 7.00 CF 0.38 −0.98

Hamman et al., 2007 Fire WF TF 1.00 PFLA 0.84 −0.18

Kara and Bolat, 2009 Fire WF TF 0.17 CF 0.98 −0.02

Leduc and Rothstein, 2007 Fire WF TF 4.50 CF 0.61 −0.49

Litton et al., 2003 Fire WF TF 13.00 CF 0.44 −0.83

Mabuhay et al., 2006 Fire WF TF 0.01 CF 0.04 −3.12

Palese et al., 2004 Fire PF WS 1.00 CF 0.37 −1.00

Pietikäinen and Fritze, 1995 Fire PF BF 1.00 CF 0.31 −1.18

Prieto-Fernández et al., 1998 Fire WF TF 0.01 CF 0.04 −3.14

Rutigliano et al., 2007 Fire PF WS 0.02 CF 1.50 0.41

Smith et al., 2008 Fire WF BF 0.50 CF 0.25 −1.37

Swallow et al., 2009 Fire PF BF 1.83 CF 0.51 −0.67

Waldrop and Harden, 2008 Fire WF BF 5.00 CF 0.43 −0.83

Arunachalam et al., 1996 Harvest CC TF 1.08 CF 0.19 −1.66

Bååth et al., 1995 Harvest CC BF 3.17 PLFA 0.72 −0.33

Barbhuiya et al., 2004 Harvest CC TrF 7.00 CF 0.37 −1.00

Barbhuiya et al., 2004 Harvest PH TrF 8.00 CF 0.58 −0.54

Barg and Edmonds, 1999 Harvest CC TF 3.50 CF 1.07 0.06

Barg and Edmonds, 1999 Harvest PH TF 3.50 CF 1.13 0.13

Bradley et al., 2001 Harvest CC TF 4.00 SIR 0.67 −0.40

Bradley et al., 2001 Harvest PH TF 4.00 SIR 0.70 −0.35

Busse et al., 2006 Harvest CC TF 6.00 SIR 0.47 −0.76

Chang et al., 1995 Harvest CC TF 3.00 CF 0.63 −0.46

Chatterjee et al., 2008 Harvest CC TF 15.00 PLFA 0.83 −0.19

Edmonds et al., 2000 Harvest CC TF 3.50 CF 1.19 0.18

Entry et al., 1986 Harvest CC TF 2.00 CF 1.02 0.02

Forge and Simard, 2000 Harvest CC TF 2.00 CF 0.51 −0.67

Grady and Hart, 2006 Harvest PH TF 8.00 CF 0.64 −0.44

Hannam et al., 2006 Harvest CC BF 4.50 PLFA 0.88 −0.12

Hannam et al., 2006 Harvest PH BF 4.50 PLFA 0.89 −0.11

Hassett and Zak, 2005 Harvest CC BF 10.00 PLFA 0.77 −0.26

(Continued)
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Table A1 | Continued

Study Disturbance Disturbance Biome Time since Biomass R lnR

type agent disturbance (Y ) method

Hazlett et al., 2007 Harvest CC BF 2.00 CF 0.82 −0.20

Holmes and Zak, 1999 Harvest CC BF 1.00 CF 1.31 0.27

Houston et al., 1998 Harvest CC BF 8.00 SIR 0.71 −0.35

Lapointe et al., 2005 Harvest CC BF 1.50 SIR 0.94 −0.06

Leduc and Rothstein, 2007 Harvest CC TF 4.50 CF 0.69 −0.37

Lindo and Visser, 2003 Harvest CC BF 2.50 SIR 0.73 −0.31

Maassen et al., 2006 Harvest PH TF 5.00 SIR 1.56 0.45

Moore-Kucera and Dick, 2008 Harvest CC TF 8.00 PLFA 0.66 −0.42

Pérez-Batallón et al., 2001 Harvest CC TF 1.00 CF 0.99 −0.01

Pietikäinen and Fritze, 1995 Harvest CC BF 3.00 CF 0.73 −0.32

Saynes et al., 2012 Harvest PH TrF 1.00 CF 0.63 −0.47

Siira-Pietikäinen et al., 2001 Harvest CC BF 0.17 SIR 0.97 −0.03

Siira-Pietikäinen et al., 2001 Harvest PH BF 0.17 SIR 0.80 −0.22

Smith et al., 2008 Harvest CC BF 0.50 CF 0.82 −0.20

Tan et al., 2008 Harvest PH BF 24 CF 1.21 0.19

Taylor et al., 1999 Harvest CC TF 3.21 Count 0.88 −0.13

Wright and Coleman, 2002 Harvest CC TF 0.25 CF 0.97 −0.03

Zhao et al., 2011 Harvest CC TrF 0.33 PLFA 1.12 0.11

Zu et al., 2009 Harvest CC TF 8.00 CF 1.10 0.09

Gömöryová et al., 2008 Storm WT TF 0.96 Micro 0.54 −0.61

Tsai et al., 2007 Storm TY TrF 0.01 CF 0.24 −1.41

Wright and Coleman, 2002 Storm HU TF 0.25 CF 1.04 0.04

Bogorodskaya et al., 2009 Insect GM BF 0.13 SIR 1.41 0.35

Le Mellec and Michalzik, 2008 Insect PL TF 0.08 CF 1.03 0.03

Xiong et al., 2011 Insect PB TF 2.00 CF 0.60 −0.52

Xiong et al., 2011 Insect PB TF 4.00 CF 0.67 −0.41

Cromack et al., 1991 Pathogen PW TF 2.00 CF 0.54 −0.61

Mabuhay and Nakagoshi, 2012 Pathogen PWD TF 2.00 CF 1.55 0.44

FUNGI

Bååth et al., 1995 Fire PF BF 2.50 PLFA 0.37 −0.99

Bárcenas-Moreno et al., 2011 Fire WF TF 2.67 PLFA 0.33 −1.10

Capogna et al., 2009 Fire PF WS 0.23 Count 0.42 −0.87

D’Ascoli et al., 2005 Fire PF WS 0.02 Microsc 0.60 −0.51

Dangi et al., 2010 Fire PF WS 3.00 PLFA 0.34 −1.08

Esquilín et al., 2007 Fire SB TF 0.02 Microsc 0.89 −0.12

Fritze et al., 1994 Fire PF BF 2.00 Ergosterol 0.42 −0.87

Hamman et al., 2007 Fire WF TF 1.00 PLFA 0.53 −0.64

Kara and Bolat, 2009 Fire WF TF 0.17 Count 0.62 −0.47

Mabuhay et al., 2006 Fire WF TF 0.01 Count 0.03 −3.47

Pietikäinen and Fritze, 1995 Fire PF BF 1.00 Ergosterol 0.30 −1.21

Rutigliano et al., 2007 Fire PF WS 0.02 Microsc 0.61 −0.50

Waldrop and Harden, 2008 Fire WF BF 5.00 qPCR 0.40 −0.93

Bååth et al., 1995 Harvest CC BF 3.17 PLFA 0.41 −0.89

Barbhuiya et al., 2004 Harvest CC TrF 7.00 Count 0.45 −0.79

Barbhuiya et al., 2004 Harvest PH TrF 8.00 Count 0.45 −0.79

Carter et al., 2002 Harvest CC TF 0.50 Count 1.00 0.00

Chatterjee et al., 2008 Harvest CC TF 15.00 PLFA 0.47 −0.76

Forge and Simard, 2000 Harvest CC TF 2.00 Microsc 0.47 −0.76

Hannam et al., 2006 Harvest CC BF 4.50 PLFA 0.88 −0.13

Hannam et al., 2006 Harvest PH BF 4.50 PLFA 1.00 0.00

Hassett and Zak, 2005 Harvest CC BF 10.00 PLFA 0.85 −0.16

Hernesmaa et al., 2008 Harvest CC BF 0.75 Count 1.02 0.02

(Continued)
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Table A1 | Continued

Study Disturbance Disturbance Biome Time since Biomass R lnR

type agent disturbance (Y ) method

Maassen et al., 2006 Harvest PH TF 5.00 PLFA 1.6 0.47

Moore-Kucera and Dick, 2008 Harvest CC TF 8.00 PLFA 0.49 −0.70

Pietikäinen and Fritze, 1995 Harvest CC BF 3.00 Ergosterol 0.68 −0.39

Stadler et al., 2006 Insect HWA TF 0.08 Count 1.19 0.17

BACTERIA

Bååth et al., 1995 Fire PF BF 2.50 PLFA 0.73 −0.31

Bárcenas-Moreno et al., 2011 Fire WF TF 2.67 PLFA 0.43 −0.85

Esquilín et al., 2007 Fire SB TF 0.02 Microsc 0.77 −0.26

Hamman et al., 2007 Fire WF TF 1.00 PLFA 0.94 −0.06

Kara and Bolat, 2009 Fire WF TF 0.17 Count 5.73 1.75

Bååth et al., 1995 Harvest CC BF 3.17 PLFA 0.76 −0.28

Barbhuiya et al., 2004 Harvest CC TrF 7.00 Count 0.57 −0.57

Barbhuiya et al., 2004 Harvest PH TrF 8.00 Count 0.63 −0.46

Carter et al., 2002 Harvest CC TF 0.50 Count 1.00 0.00

Chatterjee et al., 2008 Harvest CC TF 15.00 PLFA 0.84 −0.17

Forge and Simard, 2000 Harvest CC TF 2.00 Microsc 0.98 −0.02

Maassen et al., 2006 Harvest PH TF 5.00 PLFA 1.52 0.42

Moore-Kucera and Dick, 2008 Harvest CC TF 8.00 PLFA 0.66 −0.42

Stadler et al., 2006 Insect HWA TF 0.08 Count 1.10 0.10

GRAM-NEGATIVE BACTERIA

Dangi et al., 2010 Fire PF WS 3.00 PLFA 0.69 −0.37

Chatterjee et al., 2008 Harvest CC TF 15.00 PLFA 0.96 −0.04

Hassett and Zak, 2005 Harvest CC BF 10.00 PLFA 1.01 0.01

Moore-Kucera and Dick, 2008 Harvest CC TF 8.00 PLFA 0.99 0.00

Mabuhay and Nakagoshi, 2012 Pathogen PWD TF 2.00 Count 0.46 −0.77

GRAM-POSITIVE BACTERIA

Dangi et al., 2010 Fire PF WS 3.00 PLFA 0.86 −0.15

Chatterjee et al., 2008 Harvest CC TF 15.00 PLFA 0.62 −0.47

Hassett and Zak, 2005 Harvest CC BF 10.00 PLFA 1.00 0.00

Moore-Kucera and Dick, 2008 Harvest CC TF 8.00 PLFA 1.10 0.10

Mabuhay and Nakagoshi, 2012 Pathogen PWD TF 2.00 Count 0.35 −1.04

ACTINOMYCETES

Bárcenas-Moreno et al., 2011 Fire WF TF 2.67 PLFA 2.84 1.04

Dangi et al., 2010 Fire PF WS 3.00 PLFA 0.66 −0.42

Carter et al., 2002 Harvest CC TF 0.50 Count 1.00 0.00

Chatterjee et al., 2008 Harvest CC TF 15.00 PLFA 0.88 −0.13

Hannam et al., 2006 Harvest CC BF 4.50 PLFA 1.06 0.06

Hannam et al., 2006 Harvest PH BF 4.50 PLFA 1.00 0.00

Hassett and Zak, 2005 Harvest CC BF 10.00 PLFA 0.98 −0.03

Maassen et al., 2006 Harvest PH TF 5.00 PLFA 1.17 0.15

Moore-Kucera and Dick, 2008 Harvest CC TF 8.00 PLFA 1.11 0.11

Mabuhay and Nakagoshi, 2012 Pathogen PWD TF 2.00 Count 0.29 −1.23

PF, prescribed fire; SB, slash burn; WF, wildfire; CC, clear cut; PH, partial harvest; HU, hurricane; WT, wind throw; TY, typhoon; GM, gypsy moth; HWA, hemlock

wooly adelgid; PB, pine beetle; PL, pine lappet; PW, Phellinus weirii infection; PWD, pine wilt disease; BF, boreal forest; TF, temperate forest; TrF, tropical forest;

WS, woodland/shrubland, CF, chloroform fumigation; Count, dilution plate count; Micro, microwave irradiation; Microsc, microscopy; PLFA, phospholipid fatty acid;

qPCR, quantitative PCR; SIR, substrate-induced respiration.
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Table A2 | Outcomes of test for publication bias.

Organism Group Kendall’s tau rank

correlation

Spearman rank

correlation

Egger’s

regression

Microbes All microbe studies τ: −0.084
P: 0.249

ρ: −0.099
P: 0.360

Intercept: −5.62
P: 0.136

All abiotic τ: −0.038
P: 0.618

ρ: −0.037
P: 0.746

Intercept: −5.99
P: 0.124

All biotic τ: −0.512
P: 0.076

ρ: −0.655
P: 0.078

Intercept: −5.71
P: 0.029

Fungi All fungi studies τ: −0.314
P: 0.008

ρ: −0.416
P: 0.013

Intercept: −7.23
P: 0.377

All abiotic τ: −0.425
P: 0.001

ρ: −0.560
P: 0.001

Intercept: −5.61
P: 0.230

All biotic n.a. n.a n.a.

Bacteria All bacteria studies τ: 0.033
P: 0.855

ρ: 0.062
P: 0.812

Intercept: −2.67
P: 0.537

All abiotic τ: 0.082
P: 0.669

ρ: 0.144
P: 0.608

Intercept: −4.00
P: 0.446

All biotic n.a. n.a. n.a.

Tests could not be performed on biotic studies within fungi and bacteria because not enough studies were present. Boldface type indicates significance at P < 0.05.
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