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On simulation of local fluxes in molecular junctions

Gabriel Cabra,1 Anders Jensen,2 and Michael Galperin1, ∗

1Department of Chemistry & Biochemistry,

University of California San Diego, La Jolla, CA 92093, USA

2Department of Chemistry, University of Copenhagen, 1165 København, Denmark

Abstract

We present a pedagogical review of current density simulation in molecular junction models

indicating its advantages and deficiencies in analysis of local junction transport characteristics. In

particular, we argue that current density is a universal tool which provides more information than

traditionally simulated bond currents, especially when discussing inelastic processes. However,

current density simulations are sensitive to choice of basis and electronic structure method. We

note that discussing local current conservation in junctions one has to account for source term

caused by open character of the system and intra-molecular interactions. Our considerations are

illustrated with numerical simulations of a benzenedithiol molecular junction.

∗ migalperin@ucsd.edu
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I. INTRODUCTION

Since its theoretical prediction [1] molecular electronics witnessed fast progress in exper-

imental techniques. In the last decade number of ways to characterize response of open

single molecule junctions and accuracy of measurements increased dramatically. Experi-

mental techniques available today allow to measure elastic and inelastic currents, noise,

optoelectronic, thermo-electric, and magneto-electric responses in junctions. Majority of

these measurements characterize response of a junction as a whole. Recently, local junc-

tion characteristics either by local probe measurement or via assigning local characteristics

to particular degrees of freedom (e.g., vibrationally resolved effective temperature) started

to attract attention [2–9]. Visualization at molecular scale is another window into local

junction properties [10–12].

Theoretical characterization of local junction properties has its own history, and many

studies of local molecular properties were instrumental in understanding overall molecular

response. In particular, significant number of studies utilized bond currents as a tool illus-

trating effects of quantum coherence in molecules [13–19]. Bond currents, although helpful,

suffer from two significant shortcomings. First, exact formulation of bond currents is pos-

sible in non-interacting systems only: any interaction mixes different bond contributions,

only approximate treatment is possible in this case [16, 18]. Second, bond currents are good

indicators of charge (and, possibly, also energy) flow only when the flow is dominated by

through-bonds paths.

A more general description utilizes local currents (current density). Only few works

studied local currents in molecular junctions [20, 21]. Preference of bond currents is due to

direct connection of the latter to current divergency and hence to electron kinetic energy

operator; the latter explicitly enters Green function equation-of-motion, which makes bond

current evaluation an easy task. Here we present a pedagogical review of simulation of local

currents in molecular junctions, and discuss advantages and shortcomings of the concept.

We also indicate misconceptions about current density simulations in junctions.

Structure of the paper is the following. In Section II we introduce a model of molecular

junction and give brief introduction to simulation of local currents. Numerical results and

discussion are presented in Section III. Section IV summarizes our findings and outlines

goals for future research.
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II. MODEL AND METHOD

First, we introduce a model of molecular junction and give a short review of standard

non-equilibrium Green function (NEGF) method. After that, we discuss definition of local

current, its expression in terms of NEGF, and local current conservation conditions.

A. Molecular junction model

We consider junction consisting of a molecule M attached to two contacts L and R (see

Fig. 1). All interactions are assumed to be confined to molecular part; contacts are reservoirs

FIG. 1. Sketch of molecular junction.

3



of free charge carriers each at its own equilibrium. Hamiltonian of the junction is

Ĥ = ĤM +
∑

K=L,R

(
ĤK + V̂KM

)
(1)

ĤM = Ĥ
(0)
M + Ĥ

(1)
M (2)

ĤK =
∑
k∈K

εkĉ
†
kĉk (3)

V̂KM =
∑
k∈K

∑
m∈M

(
Vkmĉ

†
kd̂m +H.c.

)
(4)

Here ĤM and ĤK (K = L,R) are the molecular and contacts Hamiltonians, and V̂MK

is coupling between parts of the system. Ĥ
(0)
M is non-interacting part of the molecular

Hamiltonian and Ĥ
(1)
M contains all the intra-molecular interactions. d̂†m (d̂m) and ĉ†k (ĉk)

create (annihilate) electron in orbital m of the molecule and state k of contacts, respectively.

The Hamiltonian, written in second quantization, utilizes single-electron basis φm(~r); in

quantum chemistry simulations the basis is usually chosen as atomic or molecular orbitals,

or maximally localized Wannier functions. For simplicity, below we assume orthonormal

basis.

Within the NEGF main object of interest is single-particle Green function defined on the

Keldysh contour as (here and below e = ~ = m = 1)

Gm1m2(τ1, τ2) = −i
〈
Tc d̂m1(τ1) d̂

†
m2

(τ2)
〉

(5)

Here Tc is the contour ordering operator and τ1,2 are contour variables. As usual,

Gm1m2(τ1, τ2) is obtained by solving the Dyson equation(
i∂τ1 I−H

(0)
M

)
G(τ1, τ2) = (6)

δ(τ1, τ2) I +

∫
c

dτ3 Σ(τ1, τ3) G(τ3, τ2)

where H
(0)
M , G, and Σ are matrices in molecular subspace and I is unit matrix. Self-energy Σ

accounts for interactions (H
(1)
M term in the Hamiltonian) and boundary conditions induced

by the contacts (ĤK and V̂MK terms in the Hamiltonian)

Σ(τ1, τ2) = Σint(τ1, τ2) +
∑

K=L,R

ΣK(τ1, τ2) (7)

While form of Σint depends on the nature of interactions and level of theory, explicit form

for the contacts self-energies is known (see Appendix A for details).
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B. Local current

For discussion below we need Green function representation in both orbital, {m}, and

real space, {~r}, basis. Transition between the two is

G(~r1, τ1;~r2, τ2) =
∑
m1,m2

φm1(~r1)Gm1m2(τ1, τ2)φ
∗
m2

(~r2) (8)

Gm1m2(τ1, τ2) = (9)∫
d~r1

∫
d~r2 φ

∗
m1

(~r1)G(~r1, τ1;~r2, τ2)φm2(~r2)

Transferring in (6) to real space basis, taking lesser projection of the expression, and sub-

tracting corresponding right side Dyson equation leads to the continuity equation (see Ap-

pendix B for derivation)
dρ(~r, t)

dt
+ ~∇~j(~r, t) = P (~r, t) (10)

where

ρ(~r, t) = −i G<(~r, t;~r, t) (11)

~j(~r, t) = −1

2

[(
~∇r1 − ~∇r2

)
G<(~r1, t;~r2, t)

]
~r1=~r2≡~r

(12)

P (~r, t) = 2 Re

∫
d~r1

∫
dt1

(
G<(~r, t;~r1, t1) Σa(~r1, t1;~r, t)

+Gr(~r, t;~r1, t1) Σ<(~r1, t1;~r, t)

)
(13)

are respectively electron density, local current, and source term. Here r, <, and a su-

perscripts indicate retarded, lesser, and advanced projections. Note that using electronic

structure DFT simulations in prediction of local currents should be done with caution, be-

cause DFT does not provide energy resolution for self-energy due to interactions (as a result,

its lesser projection is zero). This in turn affects all transport characteristics in (11)-(13) via

lesser projections of Green function and self-energy, and may lead to qualitative failures even

in prediction of total fluxes [22, 23] (total fluxes being integrated quantities are much less

sensitive to details of simulations than current density). Note also that continuity equation

(10) fixes only divergence of local current, i.e. its curl is arbitrary. This leads to question

about uniqueness of definition (12). This question was discussed in the literature [24], where

arguments in favor of uniqueness of definition (12) were given.
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FIG. 2. Local current conservation in molecular junction of Fig. 1. Shown are integrated current

flux through the surface of the slab, left side of Eq. (14), calculated in real space (Eq. (12) -

integration over surface; thin dotted line, black) and orbital (Eq. (16) - integration over volume;

thick dashed line, blue) basis, and integrated source term (right side of Eq. (14) represented in

orbital basis; solid line, red) vs. width of the slab. Inset shows orbital basis results in higher

resolution.

At steady state, junction characteristics (11)-(13) do not depend on time, so that integrat-

ing both sides of continuity equation (10) over a slab along the junction transport direction

(see Fig. 1) and applying the Ostrogradsky-Gauss theorem leads to current conservation in

the form ∮
S

d~S~j(~r) =

∫
V

d~r P (~r) (14)

Here V is volume of integration and S is its surface, left side is total current balance (dif-
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FIG. 3. Local transport characteristics of para-benzenedithiol (PBDT) molecular junction

(sketched in Fig. 1) at z = 1.5 Å above molecular plane. Shown are (a) local current vector

field (molecular structure is added as a guide to the eye); (b) map of flux along the junction (jx)

vs. position in xy plane; and maps of source terms due to electron-electron interaction (c) and

contacts (d) vs. position in the xy plane.

ference between currents through right and left surfaces of the slab) while right side yields

electron density production in the slab. That is, local currents within the junction are not

conserved because of electron density production induced by the source term (13). It is easy

to show, that extending integration in (14) to all the space results in is the usual form of

current conservation IL − IR = 0, because integral over all the space of the source term is

identically zero. Note however that question of current conservation due to contacts to some

extent depends on representation: taking parts of contacts into account explicitly (i.e. es-

tablishing partition between system and bath farther form the molecule) will decrease effect

of corresponding self-energy in the molecular subspace. The issue was discussed in Ref. [25].
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FIG. 4. Local transport characteristics of meta-benzenedithiol (MBDT) molecular junction at

z = 1.32 Å above molecular plane. Shown are (a) local current vector field (molecular structure is

added as a guide to the eye); (b) map of flux along the junction (jx) vs. position in xy plane; and

maps of source terms due to electron-electron interaction (c) and contacts (d) vs. position in the

xy plane.

We note that idea of imposing local current conservation (as was suggested, e.g., in

Refs. [26, 27]) is questionable. Indeed, one faces a problem of representing right side of

Eq. (14) as divergence of a local flux. Because there is no strict way to define vector (local

current) from scalar (source term), one has to rely on arbitrary approximations. In partic-

ular, Refs. [26, 27] assume local current being proportional to electric field which in turn is

related to the source term via the Gauss law. This assumption of constant proportionality

coefficient between current and field is problematic taking into account anisotropic molec-

ular structure. Note possibility of curl in electron flux (and hence effective magnetic field)

solely due to molecular anisotropy was discussed in the literature [21, 28, 29].
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Besides legitimate physical reason (14) for non-conserving character of local currents,

there are technical problems related to basis choice. In particular, form the two basis require-

ments, orthonormality
∫
d~r φ∗m1

(~r)φm2(~r) = δm1,m2 and completeness
∑

m φm(~r1)φ
∗
m(~r2) =

δ
(
~r1 − ~r2

)
, only the first one is satisfied in usual basis choices of quantum chemistry. As

a result, transformation from orbital to real space basis, Eq. (8), does not hold. Thus,

divergence of local current in real space (this expression leads to definition (12))

~∇~jr(~r, t) =
[(
H

(0)
M (~r1)−H(0)

M (~r2)
)
G<(~r1, t;~r2, t)

]
~r1=~r2≡~r

, (15)

differs from the divergence expressed in orbital basis

~∇~jorb(~r, t) =
∑
m1,m2

φm1(~r)
[
H

(0)
M ; G<(t, t)

]
m1m2

φ∗m2
(~r) (16)

Because source term is usually calculated from orbital representation of the Dyson equation,

expression (14) will be violated simply due to incompleteness of the orbital basis. Note that

convergence of the basis to completeness was discussed in Refs. [25, 30, 31].

III. RESULTS AND DISCUSSION

We now illustrate advantages and deficiencies of local current simulations in molecu-

lar junctions. Electronic structure calculations were performed using Gaussian [32] with

electron-electron interaction simulated at the Hartree-Fock level of theory utilizing STO-3g

basis. Retarded (equal to advanced) is the only non-zero projection of the corresponding

self-energy ΣintHF (τ1, τ2). The projection was calculated as difference between Fock matrix

and part of the Hamiltonian representing electronic kinetic energy plus its potential in nu-

clear frame. Fermi energy EF was chosen 1 eV above HOMO, and bias Vsd was applied

symmetrically: µL,R = EF ±|e|Vsd. Unless stated otherwise, simulations were performed for

Vsd = 3 V. For simplicity, contacts were represented as continuum coupled to sulphur atoms

and treated within the wide band approximation. Escape rate for each orbital of sulphur

atoms was taken to be the same: ΓK = 0.1 eV (K = L,R). We note that our results are for

illustration purposes only; first principles analysis should employ better basis and include

ab initio simulations of self-energies due to coupling to contacts.

Figure 2 illustrates conservation of local current, Eq. (14), vs. width L of a slab (see

Fig. 1). As expected, with the slab approaching area of contacts (area where source term is
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FIG. 5. Inelastic local transport in meta-benzenedithiol (MBDT) molecular junction at z = 1.32 Å

above molecular plane. Shown are local current vector fields at (a) Vsd = 0.5 eV and (b) Vsd = 3 eV

(molecular structure is added as a guide to the eye); and maps of flux along the junction (jx) vs.

position in xy plane - (c) and (d) panels, respectively.

significant - see Fig. 3 below) integrated flux through left side of the slab differs from that

through right slab side. The difference is due to electronic density production in the slab

(compare thick dashed and thin solid lines in the inset). In addition to this physical picture,

as discussed above, there is technical issue related to incompleteness of the basis (compare

dashed and dotted lines in Fig. 2).

Figure 3 presents local transport characteristics of para-benzenedithiol (PBDT) molecular

junction sketched in Fig. 1. A slice of the local current vector field at 1.5 Å above molecular

plane is shown in panel (a). One sees that while mostly flux follows the bond structure, non-

negligible contribution comes also from wide distribution around bonds and flow through

center of the molecular ring. This is particularly clear from the jx (projection along the
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FIG. 6. Map of source term due to electron-vibration interaction in meta-benzenedithiol (MBDT)

molecular junction at z = 1.5 Å above molecular plane. Shown are (a) electron population redis-

tribution, Eq. (C1); (b) heating/cooling map, Eq. (C8); and electron population redistribution due

to interaction with vibrational modes (c) ω1 = 893 cm−1 and (d) ω2 = 1091 cm−1.

tunneling direction) distribution map in panel (b). Maps of contributions to source term

(13) from electron-electron interactions (calculation is preformed at the Hartree-Fock level

of theory) and contacts are presented in panels (c) and (d), respectively. Confinement of

electron-electron interaction to sulphur atoms can be explained as consequence of relatively

weak sulphur-carbon bond, so that injection (elimination) of electrons on the left (right)

leads to high localized concentration of electrons (holes), which in turn results in stronger

local interactions. Note depletion (accumulation) of electronic density on left (right) carbon

atom adjacent to corresponding sulphur (see panel (c) of the figure). It is also quite natural

that source term due to contacts is localized in the area of molecule-contacts coupling (see

panel d).
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Formation of circular currents in meta configuration of benzenedithiol junction was dis-

cussed in the literature [29] employing analysis of bond currents in the molecule. We illus-

trate curl (vortex) formation in local current vector field of meta-benzenedithiol (MBDT)

junction in Fig. 4. Here current density yields clear intuitive picture of circular current for-

mation. Due to proximity of contacts source term due to interactions has more complicated

structure than in PBDT case (see Fig. 4c). Note that detailed discussion of vortex forma-

tion for elastic transport in non-interacting junctions treated within Landauer scattering

approach was presented in Refs. [21, 25, 30, 31]. Note also that attempt to utilize source

term in calculation of electrostatic field and (proportional to it) current [26, 27] would miss

vortex structure.

We now turn to discuss role of molecular vibrations in local current formation. To do this

we simulate normal modes of the MBDT junction (after geometry relaxation sulfur atoms

are fixed) and evaluate electron-vibration coupling Mα
m1m2

for each normal mode α following

Ref. [33]. We then employ self-consistent Born approximation [34]

Σint vib
m1m2

(τ1, τ2) = i
∑
α

∑
m3,m4

Dα(τ1, τ2) (17)

×Mα
m1m3

Gm3m4(τ1, τ2)M
α
m4m2

+ i δ(τ1, τ2)
∑
α

∑
n1,n2

Mα
m1m2

Mα
n2n1

×
∫
c

dτ3D
α(τ1, τ3)Gn1n2(τ3, τ3+)

to account for the interaction. Here Dα(τ1, τ2) is free phonon Green function [35], and deriv-

ing (17) we neglected vibrational modes coupling via electronic subsystem of the molecule

(see Appendix A for details). The simulation starts by constructing Green function from

Gaussian output disregarding electron-vibration interaction. For simplicity we work in

molecular orbitals basis. The non-interacting Green function together with phonon prop-

agator, Eqs. (A8) and (A9), is used in Eq. (17) to account for contribution of molecular

vibrations. Employing vibrational contribution to total self-energy in the Dyson equation,

Eq.(6), updates Green function. The latter is used to update the vibrational self-energy, and

the procedure continues in a self-consistent manner. Convergence is assumed when change

in population of molecular orbitals in consecutive steps is less than 10−6.

Figure 5 shows effect of decoherence caused by inelastic processes on local current forma-

tion in MBDT junction model. While at relatively low bias, Vsd = 0.5 V, inelastic processes
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lead to only slight modifications of the local current flow (compare Figs. 4a and 5a), higher

bias, Vsd = 3 V, effectively destroys vortex structure in the junction (see Figs. 5b and 5d).

Note that vortex formation was explained as result of ‘topological defects’ (lines on which

electron wave function is zero and its phase is not defined) in Ref. [28]. We see that vortices

disappear when electron coupling to molecular vibrations is taken into account. Note also

that analysis of inelastic circular flux using bond currents [16] should be done with caution:

while separation of total bond flux into directed and circular components is not unique

(additional constraints should be imposed to make the separation unique [29]), similar con-

sideration in the presence of interactions (e.g., electron-vibration coupling) is questionable.

Indeed, it is not obvious that dissipation due to interactions remains the same before and af-

ter such separation. Thus, in presence of inelastic effects simulating local fluxes is preferable

way to study circular currents in junctions.

Finally, we discuss what information one can get from studying source terms. Similar

to distinguishing different contributions to the total self-energy, Eq. (7), one can identify

separate contributions to the source term (13). Each contribution characterizes electron

population exchange with a bath (contact) and/or redistribution in energy due to corre-

sponding interaction. For example, source term due to electron-vibration interaction, P vib,

is obtained by substituting self-energy (17) in place of the total self-energy in (13) (see

Eq. (C1) in Appendix C). This term yields information on electronic population redistribu-

tion on the molecule due to inelastic processes. Figure 6a shows such map for the MBDT

junction. We see that for z = 1.5 Å population accumulates near source and that majority

of inelastic processes happen at the left side of the junction. The latter is in agreement with

position of maximum of local electron flux (see Fig. 5d). We note in passing that Integral

of P vib(~r) over all the space is zero, because inelastic processes conserve total charge on the

molecule.

Another piece of information can be obtained from a modified source term characterizing

energy (rather than particle) exchange. Again, taking electron-vibration interaction as an

example, one can show that multiplying terms under integral in (A6)-(A7) by frequency ω

leads to the modified version of the term, P vibE(~r, t), which characterizes energy exchange

between electronic and vibrational subsystems (see Eq. (C8) and corresponding discussion

in Appendix C). Figure 6b shows spatial map of the term. This map characterizes local

heating/cooling of the molecule due to inelastic effects. We see that in agreement with
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population accumulation heating takes place also mostly near source.

One can also explore mode resolved maps; they are obtained by choosing particular

α in (A6)-(A7) for particle redistribution (or (C6)-(C7) for heating/cooling). Figures 6c

and 6d show two examples for population redistribution due to interaction with vibrational

modes ω1 = 893 cm−1 and ω2 = 1091 cm−1. One sees that while mode ω1 has significant

influence on electron transport, mode ω2 practically does not contribute. The reason is

longitudinal motion (motion along direction of current) caused by mode ω1 and mostly

perpendicular atomic displacements caused by mode ω2. Thus the former couples strongly

to tunneling electron, while the latter is almost decoupled. The effect is due to the former

mode causing longitudinal motion . It is interesting to note, that contrary to the total

population redistribution, mode ω1 leads to depletion of population near source.

Similarly, expressions for source term due to coupling to contacts would describe particle

and/or energy flux between electronic baths and molecule. In an extended model, this may

be used to describe molecular interactions with plasmonic and/or electron-hole excitations

in the contacts. We postpone these studies for future research.

IV. CONCLUSION

We present pedagogical review of current density (local current) simulation in molecular

junctions. Local transport characteristics in junctions are most often studied with bond

currents. Contrary to the latter, local currents are capable to provide much richer local

transport information. At the same time, simulation of local currents should be done and

analyzed with care: such simulations are sensitive to choice of the basis and electronic struc-

ture method. In particular, density functional theory is not always applicable in local current

simulations because DFT does not provide energy resolution fro self-energy due to interac-

tions, which may lead to qualitative failures even in prediction of total fluxes (quantities

much less sensitive to details of simulation than current density). Incompleteness of basis

in quantum chemistry calculations is another complication to be taken into account. We

note that conservation of local current within the molecule should account for source terms

due to open character of the junction and due to intra-molecular interactions. We illustrate

our discussions by simulating elastic and inelastic local currents in benzenedithiol junction.

We show that local flux does not necessarily follow molecular bonds with significant part of
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the flux going ‘through space’. In meta-connected benzenedithiol we illustrate formation of

vortex structure (circular local current). We also show how molecular vibrations introduc-

ing decoherence effectively eliminate vortex formation in the local current map. Finally, we

discuss information one can get from studying source terms. We defer further investigation

of inelastic effects on local junction properties (inelastic current and local heating, polaron

formation and charge localization, current induced chemistry) in realistic systems to future

research.
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Appendix A: Electron self-energies

Here we give explicit expressions for self-energies utilized in the simulations. The con-

tribution to total self-energy (7) due to coupling to contacts (K = L,R) can be evaluated

exactly

ΣK
m1m2

(τ1, τ2) =
∑
k∈K

Vm1k gk(τ1, τ2)Vkm2 (A1)

Here gk(τ1, τ2) = −i〈Tc ĉk(τ1) ĉ†k(τ2)〉 is free electron Green function in state k of contact K.

At steady-state, Fourier transforms of its lesser and retarded projections are

ΣK<
m1m2

(E) = iΓKm1m2
fK(E) (A2)

ΣK r
m1m2

(E) = ΛK
m1m2

(E)− i

2
ΓKm1m2

(E) (A3)

Here fK(E) = [exp(E−µK
kBT

) + 1]−1 is the Fermi-Dirac thermal distribution, and

ΛK
m1m2

(E) = PP

∫
dE ′

2π

ΓKm1m2
(E ′)

E − E ′
(A4)

ΓKm1m2
(E) = 2π

∑
k∈K

Vm1k Vkm2 δ(E − εk) (A5)

are the Lamb shift and dissipation of molecular electronic states due to coupling to contact

K. In our calculations we employ the wide band approximation [35] for which ΛK = 0 and

ΓK does not depend on energy.
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At steady state, retarded and lesser projections of electronic self-energy due to coupling

to molecular vibrations {α}, Eq. (17), are [36, 37]

Σint vib<
m1m2

(E) = i
∑
α

∑
n1,n2

∫
dω

2π
D<
α (ω) (A6)

×Mα
m1n1

G<
n1n2

(E − ω)Mα
n2m2

Σint vib r
m1m2

(E) = i
∑
α

∑
n1,n2

∫
dω

2π
Mα

m1n1
Mα

n2m2
(A7)

×
(
D<
α (ω)Gr

n1n2
(E − ω) +Dr

α(ω)G<
n1n2

(E − ω)

+Dr
α(ω)Gr

n1n2
(E − ω)

)
− i
∑
α

Mα
m1m2

Dr
α(ω = 0)

∑
n1,n2

Mα
n2n1

∫
dE ′

2π
G<
n1n2

(E ′)

In the simulations we disregarded reorganization of molecular levels due to electron-vibration

interaction. Note, it can be easily included, but for relatively weak coupling does not play

an important role. Vibrational modes where assumed to be free harmonic oscillators in

equilibrium

D<
α (ω) = −2πi

(
N(ω)δ(ω − ωα) + [1 +N(ω)]δ(ω + ωα)

)
(A8)

Dr
α(ω) =

1

ω − ωα + iδ
− 1

ω + ωα + iδ
(A9)

Here N(ω) = [exp ~ω
kBT
− 1]−1 is the Bose-Einstein thermal distribution and δ → 0+.

Finally, as discussed in the text, self-energy due to electron-electron interactions, ΣintHF ,

was obtained numerically from the Gaussian [32] output.

Appendix B: Derivation of Eq. (10)

Here we derive continuity equation (10) starting from the left-side Dyson equation (6)

and its right-side analog

G(τ1, τ2)

(
− i

←
∂ τ2 I−H

(0)
M

)
= (B1)

δ(τ1, τ2) I +

∫
c

dτ3 G(τ1, τ3) Σ(τ3, τ2)
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Their lesser projections are [36](
i ∂t1 I−H

(0)
M

)
G<(t1, t2) = (B2)∫ +∞

−∞
dt3

(
Σ<(t1, t3) Ga(t3, t2) + Σr(t1, t3) G<(t3, t2)

)
G<(t1, t2)

(
− i

←
∂ t2 I−H

(0)
M

)
= (B3)∫ +∞

−∞
dt3

(
G<(t1, t3) Σa(t3, t2) + Gr(t1, t3) Σ<(t3, t2)

)
Subtracting (B2) from (B3) and taking t1 = t2 ≡ t leads to

− i dt G<(t, t) +

[
H

(0)
M ; G<(t, t)

]
= (B4)

2 Re

∫ +∞

−∞
dt3

(
G<(t, t3) Σa(t3, t) + Gr(t, t3) Σ<(t3, t)

)
Assuming real space basis in (B4), utilizing

H
(0)
M (~r1, ~r2) = δ(~r1 − ~r2)

(
− 1

2
∆r1 + V (~r1)

)
, (B5)

and taking ~r1 = ~r2 ≡ ~r leads to (10).

Appendix C: Local heating and cooling

Here we discuss connection of the electron-vibration source term

P vib(~r, t) =2 Re

∫
d~r1

∫
dt1 (C1)(

G<(~r, t;~r1, t1) Σint vib a(~r1, t1;~r, t)

+Gr(~r, t;~r1, t1) Σint vib<(~r1, t1;~r, t)

)
to particle flux and local heating/cooling in the molecule. Utilizing relations between Green

function projections (similar relations hold for self-energy projections)

Gr(~r1, t1;~r2, t2) = (C2)

θ(t1 − t2)
(
G>(~r1, t1;~r2, t2)−G<(~r1, t1;~r2, t2)

)
Ga(~r1, t1;~r2, t2) = (C3)

θ(t2 − t1)
(
G<(~r1, t1;~r2, t2)−G>(~r1, t1;~r2, t2)

)
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one identifies (C1) as space-resolved contribution to vertical flux [38]

Ivib(t) =

∫
d~r Ivib(~r, t) (C4)

Ivib(~r, t) = 2 Re

∫
d~r1

∫ t

−∞
dt1 (C5)(

Σint vib<(~r, t;~r1, t1)G
>(~r1, t1;~r, t)

− Σint vib>(~r, t;~r1, t1)G
<(~r1, t1;~r, t)

)

Total vertical flux Ivib(t) is zero because interaction with vibrations conserves charge of the

molecule. At the same time, its spatial distribution P vib(~r, t) ≡ Ivib(~r, t) yields information

on electron population reshuffling on the molecule due to inelastic effects.

It is clear, that electronic population redistribution is accompanied by cre-

ation/destruction of vibrational quanta. Note in passing that for total flux one can for-

mally show equivalence of vertical flux into electronic subsystem and phonon flux out of

molecular vibrations; this is direct consequence of common source (the Luttinger-Ward

functional [39, 40]) for electron self-energy due to coupling to vibrations and vibrational

self-energy due to coupling to electrons. Creation (destruction) of vibrational quanta results

also in energy exchange between electron and vibrational degrees of freedom. To account for

energy exchange one has to modify self-energy eexpressions (A6)-(A7) to account for energy

(rather than particle) exchange. This is done including ω under integral over frequency

ΣvibE <
m1m2

(E) = i
∑
α

∑
n1,n2

∫
dω

2π
ωD<

α (ω) (C6)

×Mα
m1n1

G<
n1n2

(E − ω)Mα
n2m2

ΣvibE r
m1m2

(E) = i
∑
α

∑
n1,n2

∫
dω

2π
ωMα

m1n1
Mα

n2m2
(C7)

×
(
D<
α (ω)Gr

n1n2
(E − ω) +Dr

α(ω)G<
n1n2

(E − ω)

+Dr
α(ω)Gr

n1n2
(E − ω)

)
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Using these expressions in (C1) yields modified version of the source term

P vibE(~r, t) =2 Re

∫
d~r1

∫
dt1 (C8)(

G<(~r, t;~r1, t1) ΣvibE a(~r1, t1;~r, t)

+Gr(~r, t;~r1, t1) ΣvibE <(~r1, t1;~r, t)

)
which characterizes spatially resolved heating/cooling of the molecule due to inelastic pro-

cesses.
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