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Measuring chirality in NMR in the presence of a time-dependent
electric field
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1Department of Chemistry, University of Miami, Coral Gables, Florida 33124, USA
2Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA

(Received 21 March 2014; accepted 29 May 2014; published online 16 June 2014)

Traditional nuclear magnetic resonance (NMR) experiments are “blind” to chirality since the spectra
for left and right handed enantiomers are identical in an achiral medium. However, theoretical argu-
ments have suggested that the effective Hamiltonian for spin-1/2 nuclei in the presence of electric
and magnetic fields can be different for left and right handed enantiomers, thereby enabling NMR
to be used to spectroscopically detect chirality even in an achiral medium. However, most proposals
to detect the chiral NMR signature require measuring signals that are equivalent to picomolar con-
centrations for 1H nuclei, which are outside current NMR detection limits. In this work, we propose
to use an AC electric field that is resonantly modulated at the Larmor frequency, thereby enhancing
the effect of the chiral term by four to six orders of magnitude. We predict that a steady-state trans-
verse magnetization, whose direction will be opposite for different enantiomers, will build up during
application of an AC electric field. We also propose an experimental setup that uses a solenoid coil
with an AC current to generate the necessary periodic electric fields that can be used to generate
chiral signals which are equivalent to the signal from a 1H submicromolar concentration. © 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4882698]

I. INTRODUCTION

The nuclear magnetic resonance (NMR) spectra for right
and left handed molecules in an achiral medium are identical.
As such, NMR is “blind” to chirality, and the only experimen-
tally demonstrated methods to observe differences between
left and right handed molecules using NMR have been to
create effective diastereomers using, for example, chiral shift
reagents or by recording the spectrum in a chiral medium.1

In 2004, however, Buckingham2 proposed that NMR,
in combination with an electric field, could be used to dis-
tinguish between left and right handed molecules in achi-
ral environments. For a single spin-1/2 particle in the pres-
ence of static magnetic and electric fields, the Hamiltonian
can be written as the normal Zeeman interaction along with a
pseudoscalar contribution that changes sign for right and left
handed molecules:

Ĥ

¯
= −(1 − σ )γ �B · �̂S + σcγ �B × �E · �̂S, (1)

where �̂S are spin-1/2 operators, γ is the nuclear gyromag-
netic ratio, σ is the dimensionless isotropic chemical shield-
ing constant (σ is on the order of 1–10 ppm for 1H), and σ c

(dimensions of m
V

) is the pseudoscalar chemical shielding po-
larizability constant, which is zero for achiral molecules and
has opposite sign for right (R) and left (L) handed molecules,
i.e., (σ c)L = −(σ c)R. A simple derivation of the form of Ĥ in
Eq. (1) based upon symmetry arguments was also provided
by Harris and Jameson.3

a)Author to whom correspondence should be addressed. Electronic mail:
jwalls@miami.edu

In this case, measuring the signal proportional to σ c

provides a signed measurement that can be used to distin-
guish between left and right handed molecules.2, 4–6 Quan-
tum chemical calculations by Buckingham and Fischer4 pre-
dicted that |σc| ≈ 2 × 10−18 m

V
for 1H and |σc| ≈ 2 × 10−17 m

V

for 19F in chlorofluoroacetic acid CHClF(COOH). Recently,
a |σ c| an order of magnitude larger was predicted by Monaco
and Zanasi7 for 8,9-difluoro-P-hexahelicene, where |σc|
≈ 1.5 × 10−16 m

V
for 19F. Note that for molecules with a

permanent electric dipole moment, the magnitude of σ c in
Eq. (1) can be enhanced by two to three orders of magnitude.6

However, measuring the “chiral” signal for such small
values of σ c is outside current NMR detection limits, which
are on the order of μM concentrations8 for 1H, although re-
cent work in nuclear hyperpolarization can potentially lower
this detection limit by a few orders of magnitude.9 To un-
derstand where the difficulty of such measurements arises,
consider the case where the large, static magnetic and elec-
tric fields are applied in the ẑ- and ŷ-directions, respec-
tively, i.e., �B = | �B |̂z and �E = | �E |̂y. The Hamiltonian in
Eq. (1) can then be written as

Ĥ

¯
= −(1 − σ )ωZŜZ − σc| �E|ωZŜX, (2)

where ωZ = γ | �B|
¯

is the Larmor frequency. In this case, Ĥ

in Eq. (2) is equivalent to a spin-1/2 interacting with a

static magnetic field, �Beff, given by γ �Beff

¯
= −(1 − σ )ωZẑ

− σc| �E|ωZx̂, where −(1 − σ )ωZẑ represents the large static
Zeeman field, and −σc| �E|ωZx̂ represents the effective trans-
verse magnetic field due to the chiral contribution to Ĥ in
Eq. (2). For a large static electric field of | �E| = 106 V

m
, the
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effective strength of the transverse component of �Beff is ap-
proximately |σc

�E| = 2 × 10−12 smaller than the longitudinal
component of �Beff for 1H. In this case, the equilibrium mag-
netization is tilted away from the ẑ-direction5 by an angle

θ such that | sin(θ )| ≈ |θ | ≈ |σc
�EωZ |√

(σc| �E|ωZ)2+(ωZ)2
≈ |σc

�E| ≈ 2

× 10−12 for 1H. Different handed molecules will tilt the mag-
netization in opposite directions [(θ )L = −(θ )R], and hence
measuring the direction of the small tilting of the magne-
tization provides a method that discriminates left and right
handed enantiomers using NMR.2, 4, 5 However, assuming that
the concentration of the molecules are on the order of 1 M,
the chiral signal that is generated under crossed magnetic and
electric fields in Eq. (2) is equivalent to the signal from a pi-
comolar solution, which, as stated above, is outside current
NMR detection limits.

The chiral contribution to Ĥ in Eq. (2), σc| �E|ωZ , acts
like a static, transverse magnetic field along the x̂-direction
that is approximately 10−12 times smaller than the static Zee-
man field, which results in minimal tilting of the magneti-
zation along the ẑ-direction as described above. In NMR,
however, small, radiofrequency (RF) magnetic fields, with
strengths ranging from Hz to tens of kHz, are routinely used
in liquid-state NMR to generate highly nonlinear excitations
(θ � π

3 ) by modulating the RF fields at the Larmor frequency,

ωZ = γ | �B|
¯

. This suggests that the effects of the chiral con-
tribution to Ĥ in Eq. (2) can be enhanced by using a time-
dependent electric field that is periodically modulated at ωZ.
In this work, we examine the spin dynamics under a period-
ically driven electric field, �E(t) = Eamp sin(ωrt) in Eq. (2),
and predict that the chiral signal can be enhanced by four to
six orders of magnitude for 1H, thereby placing the obser-
vation of the chiral signal within the NMR detection limits.
We also propose an experimental setup to generate the nec-
essary periodic electric fields while minimizing the effects of
the displacement magnetic field10 that are a consequence of a
time-dependent electric field. Finally, simple numerical sim-
ulations are provided that support our proposal.

II. SPIN DYNAMICS UNDER A TIME-DEPENDENT
ELECTRIC FIELD

For simplicity, we take the electric field to be time-
dependent and given by �E(t) = Eamp sin(ωrt )̂y (the actual
form will depend upon the experimental setup). In this case,
the Hamiltonian in Eq. (2) will simply depend parametrically
on �E and can be written as

Ĥ (t)

¯
= −(1 − σ )ωZŜZ − σcEamp sin(ωrt)ωZŜX. (3)

Two assumptions were made in writing Eq. (3). First, it was
assumed that the time-dependent electric field does not af-
fect σ c, and that modulating the electric field simply modu-
lates Ĥ (t) parametrically. This assumption can be justified12

as long as ωr is modulated at frequencies much smaller than
any electronic and/or vibrational transition frequency between
electronic and vibrational states that determine σ c, which
is satisfied for currently available 1H Larmor frequencies
examined in this work, ωZ

2π
∈ (0.5, 1 GHz). The second and

1H

E

τsteady-state acquisition

Iocos(ωr t)

FIG. 1. (a) Schematic for the experimental setup to observe the effects of the
pseudoscalar chemical shielding polarizability constant, σ c in Eq. (1), using
crossed electric and magnetic fields. The experiment is performed in a large
static magnetic field, �B = | �B |̂z. A long (infinite), tightly wound solenoid (ra-
dius a with n windings/m) with a time-dependent current, I(t) = I0cos (ωrt),
will generate an oscillating electric field outside the solenoid in the xy-plane
along with an oscillating magnetic field along the ẑ-direction.11 Taking the
central axes for the NMR tube and solenoid to lie within the xz-plane, the
sample in the NMR tube will experience a periodic electric field along the
ŷ-direction. An RF receiver coil is used to detect the steady-state transverse
magnetization that is generated by the time-dependent electric field. (b) Pro-
posed experiment to detect σ c. A time-dependent electric field is applied for
a time τsteady-state such that a steady-state magnetization is reached, which is
given in Eq. (7). After a time τsteady-state, the electric field is turned off, and
the steady-state transverse magnetization is detected. The sign of the signal
will be opposite for left and right-handed molecules.

more restrictive assumption is that we can neglect the mag-
netic field generated from the time-dependent electric field in
Eq. (3), i.e., the magnetic field resulting from the displace-
ment current10 can be neglected. In order to justify this as-
sumption, the time-dependent displacement magnetic field
must be along the ẑ-axis, with any transverse component
to the displacement magnetic field being much less than
| σcEampωZ

2 |. This constraint places strict limitations on any
proposed experimental setup to generate the time-dependent
electric fields in Eq. (3). One proposed experimental setup to
measure σ c is shown in Fig. 1(a), where the time-dependent
electric field is generated by a solenoid coil. Details of this
experimental setup are given in Sec. III.

With the above assumptions, Ĥ (t) in Eq. (3) can be trans-
formed into the rotating frame defined by V̂INT (t) = eiωr tŜZ .
In this interaction frame, the effective Hamiltonian, H̃INT (t),
is given by

H̃INT (t)

¯
= − i

¯
V̂

†
INT (t)

dV̂INT (t)

dt
+ V̂

†
INT (t)

Ĥ (t)

¯
V̂INT (t)

= (ωr − (1 − σ )ωZ)ŜZ − σcEampωZ

2
ŜY

+σcEampωZ

2
(cos(2ωrt)ŜY − sin(2ωrt)ŜX). (4)

By transforming into the rotating frame, the Hamiltonian
in Eq. (4) is similar to the Hamiltonian for a spin in

the presence of a static field, γ �BINT

¯
= (ωr − (1 − σ )ωZ )̂z

− σcEampωZ

2 ŷ, along with a time-dependent transverse field ro-
tating counterclockwise with a frequency 2ωr. If ωr ≈ ωZ,
then the time-dependent rotating transverse field in Eq. (4)
can be safely neglected since |σcEamp| � 1, and the spin
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dynamics is governed by an effective time-independent
Hamiltonian in the rotating frame given by

H̃INT

¯
≈ �ωŜZ − σcEampωZ

2
ŜY , (5)

where �ω = ωr − (1 − σ )ωZ. By taking ωr ≈ (1 − σ )ωZ,
�ω � ωZ, and the magnitude of the longitudinal component
of the effective field in Eq. (5), �ω, can be experimentally re-
duced down to at least the order of one-half the intrinsic spin
width, |�ω| ≤ 1

T2
, where T2 is the spin system’s transverse re-

laxation time constant. Since typical transverse (T2) and lon-
gitudinal (T1) relaxation times are on the order of seconds
in liquid-state samples, the transverse magnetic field gener-
ated by the chiral term in Eq. (5) is still too small to gen-
erate any significant nutation of the initial ẑ-magnetization,
and the effects of relaxation during evolution under H̃INT in
Eq. (5) have to be included. This can be accomplished by solv-
ing the dynamics of the magnetization in the rotating frame

defined by V̂INT (t), �̃M(t) = M̃X(t )̂x + M̃Y (t )̂y + M̃Z(t )̂z, by
using the Bloch equations with relaxation:

dM̃X(t)

dt
= σcEampωZ

2
M̃Z(t) + �ωM̃Y (t) − M̃X(t)

T2
,

dM̃Y (t)

dt
= −�ωM̃X(t) − M̃Y (t)

T2
, (6)

dM̃Z(t)

dt
= −σcEampωZ

2
M̃X(t) − M̃Z(t) − Meq

T1
,

where Meq is the magnitude of the equilibrium magnetization
in the presence of the Zeeman field.

A steady-state will be reached on time τsteady-state ≈ 5T1T2
T1+T2

,

such that dM̃X(t)
dt

= dM̃Y (t)
dt

= dM̃Z (t)
dt

= 0 in Eq. (6). The steady-
state solutions to Eq. (6) are given by13

M̃X,ss = Meq

2σcEampωZT2

4 + 4(T2�ω)2 + (σcEampωZ)2T1T2
,

M̃Y,ss = −Meq

2�ωσcEampωZ(T2)2

4 + 4(T2�ω)2 + (σcEampωZ)2T1T2
, (7)

M̃Z,ss = Meq

4 + 4(�ωT2)2

4 + 4(T2�ω)2 + (σcEampωZ)2T1T2
.

In this case, the steady-state, transverse magnetization is pro-
portional to σ c, which will be opposite for left and right-
handed enantiomers, thus providing a signed measurement
of handedness using NMR. To get an estimate of the size
of the signal, take ωZ

2π
= 600 MHz, Eamp = 102 V

m
, T1 = T2

= 1 s, |�ω| ≈ 1
T2

, and |σc| = 2 × 10−18 m
V

for 1H. In this

case, |M̃Y,ss | ≈ |M̃X,ss | ≈ 2 × 10−7Meq , which is within the
realm of detection using liquid-state NMR. For 19F NMR, the
steady-state transverse magnetization in Eq. (7) can be ap-
proximately one to two orders of magnitude greater than the
steady-state signal for 1H.

III. PROPOSED EXPERIMENTAL SETUP
TO DETECT σ c

In writing the steady-state magnetization in Eq. (7), the
only transverse magnetic field that was assumed to be present

was that generated by the chiral contribution in Eq. (5),
− σcEampωZ

2 ŷ. As a result, the sign of the steady-state trans-
verse magnetization in Eq. (7) could be used to distinguish
between right and left-handed enantiomers. As mentioned
above, a time-dependent electric field will, as a consequence
of Maxwell’s equations,10 generate a time-dependent mag-
netic field. In this case, the magnitude of the transverse com-
ponent to the displacement magnetic field generated by the
time-dependent electric field must be less than | σcEamp¯ωZ

2γ
|.

For 1H, Eamp = 102 V
m

, and ωZ

2π
= 600 MHz, this requires

that the transverse component of the displacement field must
be less than 1.4 × 10−15 T over the detected sample vol-
ume. This imposes a strict constraint on the experimental
setup used to generate the time-dependent electric field in
Eq. (3). For example, if the time-dependent electric field along
the ŷ-direction was generated using circular plate capacitors,
�E(t) = EampJ0(ωrr

c
) sin(ωrt )̂y, the magnetic field generated

inside the capacitor would be in the xz plane with a magnitude
given by | �Bdisp(t)| = |ωrr

2c2 J0(ωrr
c

)Eamp cos(ωrt)|, where r is the
radius from the center of the circular capacitor plates in the xz
plane, c is the speed of light, and Jn(x) is an nth-order Bessel
function of the first-kind. For the transverse component of the
displacement magnetic field to be less than the effective field
generated by the chiral term in Eq. (5), the sample must be re-
stricted in the xz plane to an area l2 such that l � σcc

2

γ
, which

for 1H gives the condition that l � 4.2 nm. Such a volume re-
striction renders circular capacitor plates impractical for ob-
serving σ c using a time-dependent electric field.

We propose the experimental setup shown in Fig. 1(a). In
this case, a long (infinite) solenoid with an oscillating current,
I(t) = I0cos (ωrt), generates a time-dependent electric field
circulating in the xy-plane along with a time-dependent mag-
netic field pointing only along the ẑ-direction (a consequence
of using an infinite solenoid). For a tightly wound solenoid
with n turns/m and radius of a, the magnetic and electric fields
are given in cylindrical coordinates by11

�Bdisp(�r, t) = πωraμ0nI0J1
(

ωra
c

)
2c

(
J0

(ωrr

c

)
sin(ωrt)

−N0

(ωrr

c

)
cos(ωrt)

)̂
z,

(8)

�E(�r, t) = −πωraμ0nI0J1
(

ωra
c

)
2

(
N1

(ωrr

c

)
sin(ωrt)

+ J1

(ωrr

c

)
cos(ωrt)

)
(cos(φ)̂y − sin(φ )̂x) ,

where r is the radial distance from the center of the solenoid,
φ is the angular direction with respect to the solenoid axis,
Jn(x) and Nn(x) are the nth-order Bessel functions of the
first and second-kind, respectively, and μ0 = 4π × 10−7 V ·s

m·A
is the vacuum permeability constant. For a = 5 mm, n = 500
turns/m, I0 = 200 mA, φ = 0, ωr

2π
= 600 MHz, and with the

sample placed a distance r = 4 cm from the central axis of
the solenoid, the magnitude of the longitudinal magnetic field
is | �Bdisp| ≈ 4 × 10−7 T, which for 1H corresponds to a peri-

odic ẑ-field of γ | �Bdisp|
h

≈ 15 Hz. Since the small longitudinal



234201-4 J. D. Walls and R. A. Harris J. Chem. Phys. 140, 234201 (2014)

magnetic field in Eq. (8) averages to zero on a time scale

of 2π
ωr

= 2 ns and γ | �Bdisp|
¯ωr

� 1, the longitudinal magnetic field
generated by the solenoid can be safely neglected in the Bloch
equations and consequently has no effect on the steady-state
magnetization in Eq. (7) [this conclusion has also been sup-
ported from exact integrations of the Bloch equations with an
oscillating longitudinal field (data not shown)].

As an example, consider the case of a 1H sample in a
600 MHz magnetic field (σc = 2 × 10−18 m

V
, T1 = T2 = 1 s)

with dimensions 5 mm × 5 mm × 1 cm located a distance
of r = 4 cm away from the center of the solenoid with a
= 5 mm, n = 500 turns/m, I0 = 200 mA, and ωr

2π
= 600

MHz and centered in the xz plane. Using the electric field
in Eq. (8), �E(t) ≈ (171V

m
− 3640 V

m2 (x − 0.04 m)) sin(ωrt )̂y
+ 28.4V

m
sin(φ) cos(ωrt )̂x, which is predominantly along the

ŷ direction. For this configuration, the Hamiltonian in the ro-
tating frame defined by V̂INT (t) is given by

H̃INT (r, φ)

¯
= �ωŜZ + ησcωZ

2

(
N1

(ωrr

c

)
cos(φ)

+ J1

(ωrr

c

)
sin(φ)

)
ŜY

+ ησcωZ

2

(
J1

(ωrr

c

)
cos(φ)

−N1

(ωrr

c

)
sin(φ)

)
ŜX, (9)

where η = πωraμ0nI0J1( ωr a
c

)
2 . Using H̃INT (r, φ) in Eq. (9), the

Bloch equations can be solved by considering the spin dy-
namics within the sample, and the steady-state magnetiza-
tion will represent an average over the sample volume along
with an additional average over the distribution of �ω that
may be present due to magnetic field inhomogeneity. Simula-
tion of the steady-state transverse magnetization in Figure 2,
(right) 〈MY,ss〉 and (left) 〈MX,ss〉, were performed for the sam-
ple described above by dividing the sample volume into 1210
small rectangular boxes and by solving the Bloch equations
using the effective magnetic field inside each box, H̃INT (r, φ)
in Eq. (9). In addition, the results were also averaged over
eleven different, equally spaced offsets between �ω = ± 1

T2
.

In this case, the simulation in Fig. 2 demonstrates that a
steady-state is reached in a time τsteady-state ≈ 5T1T2

T1+T2
, where

the sign of the steady-state transverse magnetization depends
upon the sign of σ c. For the simulations, σc = 2 × 10−18 m

V

(green) gave a positive signal, whereas σc = −2 × 10−18 m
V

(blue) gave a negative signal. Note that both 〈MY,ss〉 and
〈MX,ss〉 were nonzero in Fig. 2; this was a consequence of
the electric field in Eq. (8) having both x̂ and ŷ components.
From Fig. 2, |〈MY,ss〉| ≈ 8.1 × 10−8Meq and |〈MX, ss〉| ≈ 4.88
× 10−7Meq, which is the value predicted from Eq. (7) when
averaged over �ω, |〈MX,ss〉| = 6.45 × 10−7Meq〈 1

1+(�ωT2)2 〉
= 4.88 × 10−7Meq .

While the above discussion and the simulation results
shown in Fig. 2 suggest that an infinite solenoid can be used to
generate a chiral signal that is just within the detection limits
of liquid-state NMR, an actual experimental implementation
of the setup shown in Fig. 1(a) would necessitate using a fi-
nite solenoid. In this case, a radial magnetic field would be

0 2 4 6 8 10

−4

−2

0

2

4

6

time (s)

<MX(t)>
Meq

0 2 4 6 8 10

−4

−2

0

2

4

6

time (s)

Meq

x 10-7

σC

- σC

x 10-7

σC

- σC

<MY(t)>

FIG. 2. Simulations of the Bloch equations for the proposed experimen-
tal setup in Fig. 1(a): a 1H sample [T1 = T2 = 1 s, ωZ

2π
= 600 MHz,

and σc = 2 × 10−18 m
V

(green) or σc = −2 × 10−18 m
V

(blue)] of dimensions
5 mm × 5 mm × 1 cm is placed a distance of r = 4 cm away from the
center of solenoid (n = 500 turns/m, a = 5 mm) with a time-dependent cur-
rent of I (t) = 0.2A cos(ωr t) where ωr ≈ ωZ such that �ω ∈ (− 1

T2
, 1

T2
). The

sample was divided up into 1210 smaller volumes, and the effective Hamil-
tonian in the rotating frame, H̃INT (r, φ) in Eq. (9), was used to integrate the
Bloch equations in the various sample regions. The magnetization trajecto-
ries were then averaged over the sample volume and over the offset range
�ω ∈ (− 1

T2
, 1

T2
). In the simulations, a steady-state was reached in a time

τsteady-state ≈ 5T1T2
T1+T2

, with 〈MY, ss〉 ≈ ±8.1 × 10−8Meq and 〈MX, ss〉 ≈ ±4.9

× 10−7Meq for σc = ±2 × 10−18 m
V

.

present. In order to still use the results from Eq. (7) where the
sign of the steady-state transverse magnetization is opposite
for different enantiomers, the radial magnetic field generated

by the solenoid would need to be less than | σc
�E(r)¯ωZ

2γ
| over the

sample volume. This would require further optimization of
the setup in Fig. 1(a) in order to satisfy this constraint in an ac-
tual experiment. One possible change to the proposed setup in
Fig. 1(a) when using finite solenoids would be to place sample
directly between two, identical solenoids with opposite AC
currents. To lowest order, the electric fields generated from
the two solenoids would add within the sample whereas the
radial magnetic fields generated by the two solenoids would
cancel at locations equidistant between the two solenoids.

The proposed experimental setup in Fig. 1(a) is also as-
sumed to be placed within the bore of a superconducting mag-
net. Typical bore sizes are 5.2 cm and 8.9 cm for standard
bore and wide bore superconducting magnets, respectively.
To readily fit the solenoid and NMR sample within the bore of
the magnet may require using either smaller solenoids and/or
simply moving the NMR sample closer to the solenoid in
Fig. 1(a). Additionally, placing the solenoid inside the bore of
magnet could provide an additional source of magnetic field
inhomogeneity (�ω) which could slightly affect the magni-
tude of the steady-state magnetization in Eq. (7) and poten-
tially lead to broader spectra during acquisition. However, the
additional magnetic field inhomogeneity generated by plac-
ing the solenoid coil within the magnet could likely be com-
pensated for by gradient14 and/or passive shimming. Alter-
natively, the solenoid in Fig. 1(a) could be placed above and
away from the detection coil. In this case, the NMR sample
would be initially placed next to the solenoid coil to generate
a steady-state magnetization in Eq. (7), after which the sam-
ple would be pneumatically or mechanically shuttled quickly
down into a detection coil where the field inhomogeneity
would be unaffected by the solenoid coil. These are again
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issues that would have to be addressed for any experimental
implementation of the proposal presented in this work.

IV. CONCLUSIONS

In conclusion, we have proposed using a time-dependent
electric field that is periodically modulated at the Larmor fre-
quency in order to detect the pseudoscalar chemical shielding
polarizability constant, σ c, using NMR. This enables NMR
to be used to distinguish enantiomers even in achiral envi-
ronments, since (σ c)L = −(σ c)R. By resonantly modulating
the electric field, the chiral term in the NMR Hamiltonian in
Eq. (1) appears secular with respect to the dominant Zeeman
interaction, thereby enhancing the chiral signal by four to six
orders of magnitude over the chiral signal generated using a
static electric field. Application of a time-dependent electric
field for a time τsteady-state ≈ 5T1T2

T1+T2
, where T1 and T2 are the

longitudinal and transverse spin relaxation times, will gener-
ate a steady-state transverse magnetization whose sign is op-
posite for left and right handed enantiomers. Theoretical cal-
culations and numerical simulations using a periodic electric
field generated from an infinite solenoid coil with AC current
suggest that the chiral signal would be equivalent to the sig-
nal from submicromolar concentration of 1H nuclei, which is
just within the detection limits of liquid-state NMR. For an
actual experimental realization of the proposed experiment,
the transverse component of magnetic fields must be less than

| σ �E¯ωZ

2γ
| over the sample volume in order that the chiral contri-

bution dominates and determines the sign of the steady-state
magnetization.
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