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Abstract 
Development of Three-Compartment Breast Imaging for Clinical 

Applications in Dual Energy X-ray Absorptiometry 

by 

Jesus Ismael Avila 

Problem 
Approximately 75% of the breast cancer biopsies performed after 

recommendations from diagnostic mammography are benign, making it clear that 

specificity for diagnostic mammography still needs significant improvements. A novel 

three-compartment breast (3CB) composition technique developed by Laidevant et al. 

seeks to improve the specificity of diagnostic digital mammography, but it is prone to 

estimate incorrect compositional estimates for patient lesions. The focus of this thesis 

was to further develop this three-compartment technique for clinical applications in dual-

energy X-ray imaging modalities.  

Methods 
Three potential sources of error in the 3CB technique were studied: (1) 

attenuation coefficient differences in biological materials—for which 3CB is estimating 

compositional estimates—and their calibration equivalents, (2) nonuniformities in full-

field digital mammography (FFDM) from X-ray source spectra, and (3) initial intensity 𝐼଴ 

differences between biological and calibration images.  Initial developments for 3CB 

applications in digital breast tomosynthesis were also investigated, and these were in 

two areas: (1) dose measurements and estimates were made for high energy 3CB 

digital breast tomosynthesis (DBT) images and (2) derivation of potential variables of 

interest as predictors of breast thickness from raw DBT projections. Lastly, a novel 

technique for measuring body composition from 2D optical images to help monitor and 
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maintain healthy body weight was investigated, which could potentially aid in monitoring 

adipose and muscular tissues to monitor and maintain a lean weight to reduce risk of 

cancer for postmenopausal women in low-resource settings. 

Results 
To reduce error in the attenuation coefficient differences between biological and 

calibration materials, linear mappings were created using bovine and chicken 

phantoms. This linear mapping corrected negative 3CB compositional estimates in a 

population study. To reduce error in nonuniformities in FFDM source spectra, 

polynomial flat-fielding models were created. These reduced nonuniformities to at or 

below imaging noise levels.  To reduce 𝐼଴ differences between biological and calibration 

images, two 𝐼଴ correction models made it possible to obtain similar log-signal values 

between breast and calibration images.  

To make the 3CB applicable to DBT, two areas were investigated.  Firstly, dose 

measurements and estimates were made for HE 3CB DBT images.  It was found that a 

copper filter of 0.4064 mm (16 mils) seems to be optimal in terms of meeting dose 

requirements, availability, and CNR. In addition, imaging at 71 mAs seems to optimize 

CNR while satisfying dose requirements. Secondly, investigations sought to derive 

potential variables of interest as predictors of breast thickness from raw DBT 

projections.  It was found that variables derived from sinograms could be potentially 

useful in estimating breast thickness from raw DBT projections. 

The last topic discussed in this thesis focused on developing a novel body 

composition technique from optical images.  This proof-of-concept study showed that it 
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may be possible to determine fat mass index, fat-free mass index, and percent-fat from 

2D optical images. 

Conclusion 
Two of the three major works in this study advanced the 3CB imaging technique 

to become more clinically practical in dual-energy absorptiometry applications.  The last 

focus of this thesis may make it easier to monitor body composition in low-resource 

settings. 
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Chapter 1 Background 
 

 

Breast Cancer 
 

Worldwide, breast cancer is the second leading cause of cancer deaths, 

accounting for 11.6% of total cancer deaths. An estimated 6.6 million people will die 

from breast cancer in 2018.[1] “There is no treatment,” an ancient Egyptian text dating 

to about 3000 B.C. says about the disease.[2] Details of surgical intervention were first 

documented in the 1st century AD by Leonides of Alexandria.[3] More treatment 

options—such as endocrine surgery[4], radiation, and chemotherapy—became 

available in the 20th century, ushering a better outlook for patients.[5] Today, the overall 

average five-year and ten-year survival rates for breast cancer in the USA are 91% and 

86%, respectively.[6] In the USA, breast cancer mortality has decreased from 32 per 

100,000 to 21 per 100,000 from 1975 to 2010. Along with these advancements, 

however, overdiagnosis has now become a topic of interest in recent years, and many 

challenges remain before the fight against breast cancer is considered finished.  

Breasts have milk-producing lobules that are interconnected through a tubular 

system of ducts. These lobules and ducts are embedded in the breast’s fatty tissue, and 

the ducts terminate at a reservoir just behind the nipple. Approximately 80% of breast 

cancers originate within the ducts and the remaining 20% within the lobules.[7] The 

precursor to breast cancer is thought to be an abnormal growth in either lobular or 

ductal cells, known as atypical hyperplasia. In a study published in 2007 that included 

over 9,000 women and 331 atypical hyperplasia cases, it was found that women who 
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have either atypical lobular hyperplasia or atypical ductal hyperplasia “have a lifetime 

risk of breast cancer that is about four times higher than that of women who don't have 

atypical hyperplasia.”[8] If this abnormal growth progresses, it can become invasive and 

affect normal human physiology, which can ultimately lead to death.  

Breast Cancer Screening with X-ray Mammography 
 

The first randomized prospective trial of breast cancer, and cancer in general, 

was conducted by the Health Insurance Plan of New York in 1963.[9] From this study 

and up until 2011, a total of more than 650,000 women have been part of several 

randomized prospective breast screening trials. Not without controversy, researchers 

have agreed that breast cancer screening reduces mortality for certain age groups 

(“15% for women aged 39-49 years, 14% for women aged 50-59, and 32% for women 

aged 60-69 years, with corresponding numbers needed to invite to screening to prevent 

1 breast cancer death of 1,904, 1,339, and 377, respectively”). These trials were made 

possible with the development of a new mammography technique—since prior 

techniques had yielded poor image quality—introduced by Robert Egan and his 

colleagues in 1960.[10] 

Today, breast cancer screening conducted by health care institutions is 

dependent on radiographic sources such as X-ray, ultrasound, and magnetic 

resonance. Though physical examination is also conducted, typical screening programs 

rely mostly on X-ray sources, because of the combination of its lower relative cost over 

MRI and higher specificity over ultrasound.[11] From 2015 data, over 65% of U.S. 

women aged 40 and over have had a mammogram within the past two years, and 
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approximately 22.6 million patients had a mammographic procedure within the past 

year.[12, 13] It is because of breast cancer’s complexity, as it is in other cancers, that 

fights against it have turned to early detection and diagnosis, hoping to stop before it 

metastasizes. According to the National Cancer Institute’s (NCI) Surveillance, 

Epidemiology, and End Results Program (SEER), the five-year survival rates for 

localized, regional (spread to regional lymph nodes), distant (cancer has metastasized) 

are 98.7%, 85.3%, and 27.0%, respectively. Today, X-ray screening mammography has 

become the standard of care. For women in the US, screening mammography is 

recommended to start at age 40 by the American College of Radiology (2010) and 

American College of Obstetricians and Gynecologists (2011).[14] Other major USA 

organizations recommend starting at either age 45 or 50. In other countries, this age is 

typically 50.[15]  

Limitations of X-ray Mammography 
 

As far as X-ray screening mammography performance, its sensitivity ranges from 

83% to 95%; its specificity ranges from 90% to 98%.[16] For diagnostic X-ray 

mammography, the sensitivity was 85.8% and specificity was 87.7%. Although it has 

high specificity, approximately 75% of women who undergo biopsies after an initial 

finding during diagnostic mammography are benign, making it clear that specificity for 

diagnostic mammography still needs significant improvements.[17] 

During a mammography exam, radiologist search for abnormalities in breast 

texture (e.g., spiculations), objects that resemble tumors, shape differences between 

the two breasts, and change in breast images over time.[18] Calcifications, or 
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microcalcifications, are often the only sign of breast cancer because tumors only have 

mild changes in the X-ray attenuation coefficient.[19] The X-ray attenuation coefficient 

of calcifications is higher, however, than fibroglandular and adipose tissues, so they 

appear bright in X-ray mammography images. Even so, it can be difficult to find 

microcalcifications in dense breast [20-22], reducing the sensitivity of mammography.  

Potential Solutions to Limitations 
 

To address some of the limitations of mammography, other imaging modalities 

and techniques have been used in conjunction with X-ray mammography. These are 

discussed here. 

Contrast-Enhanced Mammography 
 

Some advanced applications in digital X-ray mammography have sought to 

improve contrast between lesions and fibroglandular tissue. One such application is 

contrast-enhanced mammography (CEM). Contrast-enhanced techniques rely on the 

biological principle of tumoral angiogenesis.[23] Malignant vessels are more permeable 

to contrast agents, increasing contrast between tumors and their surrounding 

tissues.[24, 25] Iodine is used intravenously in all CEM techniques.[26] Although CEM 

techniques can have high sensitivity (pooled test sensitivity of 0.98, 95% CI: 0.96-1.00 

for contrast-enhanced spectral mammography), specificity is typically low (0.58, 95% CI: 

0.38 – 0.77). In addition to low specificity, another limitation to CEM techniques is 

adverse reactions to iodine, which can vary from renal impairment to life-threatening 

anaphylactic shock.[26, 27] 
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Magnetic Resonance Imaging and Ultrasound 

Some non-ionizing imaging modalities are used as supplements to digital X-ray 

mammography. Contrast-enhanced magnetic resonance Imaging (MRI) for diagnostic 

imaging has been shown to have 94% sensitivity.[28, 29] Moreover, “…annual 

screening with MRI and mammography using a BI-RADS score of 4 or 5 to define 

positivity is currently the most accurate means of screening women with a strong 

familial or genetic predisposition to breast cancer. Limitations of MRI, however, include 

high cost, low availability, and relatively low specificity.  

Ultrasonography has shown a higher sensitivity than mammography for 

diagnostic imaging, especially in high-density breasts.[30] In one study, diagnostic 

accuracy for digital mammography plus ultrasound was reported as 0.91 (95% CI, 0.84-

0.96), while this figure was 0.78 (95% CI, 0.67-0.87) for digital mammography alone.[31] 

While diagnostic accuracy improved, the number of false positives substantially 

increased as well.  

Breast CT and Tomosynthesis 
 

Computed tomography (CT) is an imaging modality that acquires projections of 

an object to reconstruct its corresponding 3D volume. Individual 2D image “slices” can 

be viewed along any axis of the reconstructed volume. Although CT has been used in 

clinical practice since the 1970s, the first clinical trials for breast CT (BCT) happened in 

the past decade. BCT allows detection of lesions that could otherwise go undetected 

because of masking from dense fibroglandular tissues. A 2017 review of initial clinical 

trials of breast CT in Europe found that non-contrast breast CT and contrast-enhanced 

breast CT “was superior to mammography for the visualization of breast masses, 
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especially in patients with dense breast tissue.[32] The reported dose for breast CT in 

the studies was comparable to X-ray mammography dose, a mean glandular dose 

(MGD) of 9.4 mGy (SD = 3.1 mGy) for breast CT and 16.9 mGy (SD = 6.9 mGy) for 

digital X-ray mammography, though the number of views taken for X-ray mammography 

ranged from 2 to 11 breast.[33] In another study by Seifert et al., the MGD was 10.7 

mGy (SD = 3.0 mGy) for breast CT and 9.7 mGy (SD = 5.3. mGy) for digital X-ray 

mammography. 

Digital breast tomosynthesis (DBT) has also seen increased research efforts in 

the past couple of decades, but it has garnered much more attention over BCT. DBT is 

similar to CT in that it creates a reconstructed volume by capturing X-ray projections 

across a sweep angle, but this sweep angle is typically smaller than 50°. This creates a 

pseudo-3D volume with individual “slices” in the z-direction (the axis perpendicular to 

the detector plane) but with blurred artifacts from objects outside the focal plane Studies 

have similar or improved sensitivity and specificity over digital X-ray mammography 

(see 3CB Tomosynthesis for more details about DBT). 

Dual-Energy X-ray Imaging 

Dual-energy techniques rely on acquiring low energy (LE) and high-energy (HE) 

images to either improve contrast between tissues or for compositional measurements. 

A study with dual-energy contrast-enhanced digital mammography (DE-CEDM) found 

that the sensitivity of digital mammography alone was 0.80 (standard error = 0.04) while 

digital mammography plus DE-CEDM had sensitivity of 0.93 (SE = 0.03). For specificity, 

these were 0.50 (SE = 0.06) for digital mammography alone and 0.56 (SE = 0.06) for 

digital mammography plus DE-CEDM.  
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Three-Compartment Compositional Imaging 

While the above imaging techniques have addressed some limitations of 

screening and diagnostic digital mammography, specificity still needs to be improved to 

reduce the number of unnecessary biopsies. One technique that has been developed 

recently uses a three-compartment model of the breast to determine breast composition 

and lesion characterization.[34] This novel technique resolves dual energy images, 

along with a third measurement of breast thickness, to create water, lipid, and protein 

thickness estimates at every pixel. This method is the focus of much of the rest of this 

dissertation. The long-term goal of this work is to improve the specificity of diagnostic 

digital mammography. While this technique can be easily adapted to diagnostic digital 

mammography scanners, many technical challenges exist. For example, initial 

estimates of lesion compositions sometimes yielded negative thickness estimates for 

the compartments, which is physically unreasonable. The focus of this dissertation is to 

further develop this three-compartment technique by addressing the errors needing to 

be resolved before clinical application of the method can be realized. 
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Chapter 2 Energy dependent considerations: measuring three 
components of tissue for cancer lesion quantification 
 

 

Introduction 

Measuring the mass or volume of a tissue while it is surrounded by similar tissues 

is a difficult problem for X-ray imaging methods. X-ray attenuation alone cannot isolate 

one tissue from another with similar characteristics. Edge detection allows for delineation 

but not the density or composition of the organ. Dual-energy X-ray tissue composition 

imaging techniques can quantify the unique composition of organs using the unique 

energy dependence of materials to enable separation of two masses in digital images. 

Examples of this technique include contrast-enhanced (CE) digital subtraction 

mammography[35], Dual-energy X-ray absorptiometry (DXA)[36], CE digital breast 

tomosynthesis[37], and dual-energy CT[38], which all operate on different X-ray peak 

energy bands. As Lehmann et al. mention, the physical phenomena that allow two 

materials to be solved using X-ray energies available in medical imaging are the 

photoelectric effect and Compton scattering.[39] Any material can be characterized by its 

photoelectric and Compton coefficients, 𝑎௣ and 𝑎௖. Compositional images can be made 

by calibrating phantoms that have similar or equivalent coefficients and solving for their 

thicknesses. High and low X-ray energy images are acquired to capture these 

phenomena, typically acquired at fixed X-ray tube voltages because the attenuation 

coefficients are energy dependent. However, there are situations where one may want to 

use arbitrary high and low X-ray energies. This introduces complexity and practical 

difficulty in solving for the two biological materials, such as a three compartment breast 
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technique developed by Laidevant et al.[34, 40] Here, we outline the general solutions for 

duel-energy compositional imaging, outline calibration issues for practical devices, and 

outline one solution to the problem of arbitrary X-ray energies. 

 

Monoenergetic Case 

The simplest case for dual energy imaging is the use of a single-energy photon 

sources such as radioactive materials with monoenergetic emission, and gadolinium (Gd) 

has been used in medical imaging applications. Gd is unique in that it outputs two 

monochromatic emissions, X and Y. Using a discriminator, one can acquire monoenergic 

attenuation signals simultaneously. Thus, all X-ray photons used for an image acquisition 

have the same energy. Concerning the composition of humans, water, lipid, and protein 

account for approximately 99% of the mass of many soft tissues.[41] Glycogen is mostly 

found in skeletal muscle and liver, and it accounts for approximately “1% and 2.2% of 

their respective wet weights in the form of glycogen.”[41-43] The remaining component, 

mineral ash, is mostly found in bone. It is often convenient, therefore, for certain X-ray 

compositional imaging techniques to assume that soft tissues are composed of only 

water, lipid, and protein. For a three-component material, the resulting intensity 𝐼 is 

 
𝐼 ൌ 𝐼଴𝑒ିሺఓభሺாబሻ௧భାఓమሺாబሻ௧మା ఓయሺாబሻ௧యሻ  Equation 2-1 

 
where 𝜇௜ 𝑓𝑜𝑟 𝑖 ൌ 1, 2, 3 is the linear attenuation coefficient for a particular material and is 

approximated by the equation 

 
𝜇௜ ൌ ൫𝑎௣௜𝑓௣ ൅ 𝑎௖௜𝑓௖൯𝜌௜,  Equation 2-2 
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where 𝜌௜ is the density of the material. As stated by Lehmann et al., “𝑎௣ and 𝑎௖ are 

characteristic constants of the material and 𝑓௣ and 𝑓௖ are the energy dependencies of 

photoelectric absorption and Compton scattering, respectively.” In the log-signal form, 

 

𝐴ሺ𝐸଴ሻ ൌ  െ ln ൬
𝐼
𝐼଴

൰ ൌ 𝜇ଵሺ𝐸଴ሻ𝑡ଵ ൅ 𝜇ଶሺ𝐸଴ሻ𝑡ଶ ൅ 𝜇ଷሺ𝐸଴ሻ𝑡ଷ Equation 2-3 

 
The total thickness of the material 𝑇 is the sum of the component materials: 

 
𝑇 ൌ 𝑡ଵ ൅ 𝑡ଶ ൅ 𝑡ଷ Equation 2-4 

 
Individual component thicknesses can be solved by acquiring a low energy (mostly 

a photoelectric effect with some Compton scattering) and a high-energy image (captures 

less of the photoelectric effect and more Compton scattering) using a system of linear 

equations. In matrix form we get  

 

𝝁𝒕 ൌ 𝑨, where Equation 2-5 

 
 

𝝁 ൌ ቈ
𝜇ଵ,௅ா 𝜇ଶ,௅ா 𝜇ଷ ,௅ா
𝜇ଵ,ுா 𝜇ଶ,ுா 𝜇ଷ,ுா

1 1 1
቉,  𝒕 ൌ ൥

𝑡ଵ
𝑡ଶ
𝑡ଷ

൩  ,  𝑨 ൌ ൥
𝐴௅ா
𝐴ுா

𝑇
൩ 

 
Solving for 𝒕 we get 

 

𝒕 ൌ 𝝁ି𝟏𝑨. Equation 2-6 

 
 

 
If the attenuation coefficient values are known for the materials and energies, 

then with the measurement of overall tissue thickness 𝑇 and LE and HE log-signals (𝐴௅ா 

and 𝐴ுா), the individual material thicknesses can be solved. However, the exact 

attenuation properties of tissue are often not known, and the attenuation coefficient 
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values need to be solved empirically. This is often using a calibration object with 

materials that represent the tissues of interests. The calibration materials are never the 

exact composition of the body tissues they represent and introduce errors in 

approximating the thickness of the body tissues. These errors, represented as 𝜖௣ and 𝜖௖ 

in the characteristic constants of a material, modify the attenuation coefficients in the 

following way:  

 
𝜇௜

ᇱ ൌ ൫𝜖௣௜𝑎௣௜𝑓௣ ൅ 𝜖௖௜𝑎௖௜𝑓௖൯𝜌௜ Equation 2-7 

 
 

Since 𝜖௣௜ and 𝜖௖௜ are fixed for each calibration material and component pair, 𝜇௜
ᇱ 

will also have a fixed total error 𝜖்௜ such that 𝜇௜
ᇱ is a scaled version of 𝜇௜, i.e.  

 
𝑢௜

ᇱ ൌ 𝜖்௜𝜇௜. Equation 2-8 

 
If the error 𝜖்௜ is known, then the correct thickness estimates for the biological 

materials can be solved using linear coefficients of the calibration materials, so having 

an error creates a linear transformation between the two material spaces (biological and 

calibration). Deriving the correct thicknesses for biological materials in the 

monoenergetic case is straightforward, but in practice, X-ray systems have 

polyenergetic X-ray tubes. X-ray tubes typically have both sharp emissions at particular 

energies such as k-shell edges, but the dominant emission is often from 

Bremsstrahlung radiation—created from electrons losing kinetic energy as they 

decelerate when near the nucleus of an atom—and have, from inception, varying 

energies.[44] In the next section, we expand Equation 2-7 to include polyenergetic X-ray 

sources.  
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Polyenergetic Case 

For the polyenergetic case, the entire spectrum must be considered; thus, our log-

signal function for LE and HE becomes 

 

𝐴௝ሺ𝐸ሻ ൌ െ
𝐼ሺ𝐸ሻ

𝐼଴ሺ𝐸ሻ
ൌ

׬ 𝐼଴ሺ𝐸ሻ𝑒ఓభሺாሻ௧భାఓమሺாሻ௧మା ఓయሺாሻ௧య 𝑑𝐸

׬ 𝐼଴ሺ𝐸ሻ𝑑𝐸
 

Equation 2-9 

 

This cannot be solved analytically, but compartment thickness 𝑡௜ can be modeled by a 

nonlinear function of energy and total thickness.[34, 39, 45]  

𝑡௜  ൌ ∑ 𝑏ఈఉఊ,௜ 𝐴ுா
ఈ 𝑅ఉ𝑇ఊ ఈ,ఉ,ఊ,∈ ே  , where 

 

Equation 2-10 

𝑅 ൌ ஺ಽಶ

஺ಹಶ
 is the ratio of log-signal functions of low and high energies, 

𝑏ఈఉఊ,௜ is a coefficient of each term in the infinite series for each material 𝑖. 
 

For a quadratic solution (degree two), we have the following: 

 
𝑡௜ ൌ 𝑎ଵ,௜ ൅ 𝑎ଶ,௜𝐴ுா ൅ 𝑎ଷ,௜𝑅 ൅ 𝑎ସ,௜𝑇 ൅ 𝑎ହ,௜𝐴ுா

ଶ ൅ 𝑎଺,௜𝑅ଶ ൅ 𝑎଻,௜𝑇ଶ

൅ 𝑎଼,௜𝐴ுா𝑅 ൅ 𝑎ଽ,௜𝐴ுா𝑇 ൅ 𝑎ଵ଴,௜𝑅𝑇 
Equation 2-11 

 
Since the total thickness is known, one need only derive thicknesses—and thus the 

calibration coefficients 𝑏ఈఉఊ,௜—for two materials (and solve for the third algebraically).  

Each term in the polynomial that has 𝐴ுா or 𝑅 will have an error associated with 

material differences between biological and calibration materials, since these terms 

contain the linear attenuation coefficient 𝜇௜. The linear attenuation coefficient for the 

polyenergetic case is as follows: 

𝜇௜ሺ𝐸ሻ ൌ ൫𝑎௣௜𝑓௣ሺ𝐸ሻ ൅ 𝑎௖௜𝑓௖ሺ𝐸ሻ൯𝜌௜ Equation 2-12 

 

And it follows, for calibration materials, that  
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𝜇௜
ᇱሺ𝐸ሻ ൌ ൫𝜖௣௜𝑎௣௜𝑓௣ሺ𝐸ሻ ൅ 𝜖௖௜𝑎௖௜𝑓௖ሺ𝐸ሻ൯𝜌௜ Equation 2-13 

 

It is important to note that although the errors 𝜖௣௜ and 𝜖௖௜ are still energy independent—

since the photoelectric and Compton coefficients 𝑎௣ and 𝑎௖ are energy independent—

the total error total error 𝜖்௜ is not; thus, we have  

𝜇௜
ᇱሺ𝐸ሻ ൌ 𝜖்௜ሺ𝐸ሻ𝜇௜ሺ𝐸ሻ, where Equation 2-14 

 

𝜇௜
ᇱሺ𝐸ሻ ൌ

൫𝜖௣௜𝑎௣௜𝑓௣ሺ𝐸ሻ ൅ 𝜖௖௜𝑎௖௜𝑓௖ሺ𝐸ሻ൯

൫𝑎௣௜𝑓௣ሺ𝐸ሻ ൅ 𝑎௖௜𝑓௖ሺ𝐸ሻ൯
 𝜇௜ሺ𝐸ሻ 

 

 

This error, of course, affects the solution for each material thickness 𝑡௜. A map, 

therefore, is needed to transform incorrect material thickness values 𝑡௜
ᇱ to 𝑡௜, such that 

  
 

𝑡௜ ൌ 𝑇ሾ𝑡௜
ᇱሿ 

 

Though mapping has been performed for breast composition in dual-energy 

mammography for determining calcification thickness and glandular ratio by Kappadath 

and Shaw, only two materials were considered.[46]  

Polyenergetic Case and Varying kVp 
 

This case is similar to the polyenergetic one but with varying LE kVp acquisitions. 

For full-field digital mammography (FFDM) scanners, for example, images are typically 

acquired in the 24-32 kVp range. The map between the two material spaces would need 

to be made for each kVp that is used to minimize the error between material spaces. 

Recently, Laidevant et al. developed a dual energy X-ray imaging method that uses a 

three-compartment breast model (3CB) to characterize tissue composition.[47] The 3CB 
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method represents breast tissue as the equivalent composition of the phantom 

materials—Delrin, Plastic Water®, and machinable wax. The 3CB model is derived by 

acquiring three measurements: a low-energy image, a high-energy image, and the total 

thickness of the breast at each pixel. By generating images of the water, lipid, and protein 

(WLP) content of the breast, it may be possible to get a characteristic signature of 

malignant and benign lesions. Drukker et al. recently used this technique in conjunction 

with breast morphometry features for classifying lesions and found improved classification 

vs. either technique alone.[48] Additionally, Malkov et al. found compositional differences 

in lesion classifications.[49] 

 
Application 

 

The 3CB technique relies on calibration materials for biological equivalents of lipid, 

water, and protein. Though compositional estimates have been made for breasts using 

the 3CB technique, there were negative protein estimates. This could be attributed to 

errors described above, since the relationship between actual breast tissue 

compartments of lipid, water, and protein differ from the phantom. We have modeled in a 

previous study that the major source of error could be attributed to energy-dependent 

differences between the calibration materials and their biological equivalents.[50] In this 

study, we derive a calibration method to correct for thickness errors using a biological 

phantom. We validate this method with lipid and water experiments, and we test its effect 

by applying it to participant data. 
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Methods 

Population 

Participants were part of the “Lesion Composition and Quantitative Imaging 

Analysis on Breast Cancer Diagnosis” investigator-initiated study to characterize the 

composition of invasive breast cancer lesions (R01CA166945, PIs Shepherd/Giger). 

Participants were recruited from women undergoing breast biopsy (BIRADS 4 or 5) to 

have additional diagnostic imaging. Images of the participant were acquired before their 

biopsy procedure. The following exclusion criteria were used: prior breast cancer, prior 

breast interventions (e.g., previous breast biopsy), breast alterations, and 

mammographically occult findings. Study radiologists delineated the breast lesions on the 

LE craniocaudal and mediolateral oblique views. From these delineations, compositional 

measures were derived using the area inside the delineation and the immediate 

periphery.[51] This study was approved by UCSF’s Institutional Review Board. 

 

Oil & Water Validation Experiment 

The purpose of this experiment is to show if the 3CB technique is energy 

independent; if so, 3CB thickness estimates of a sample should be the same regardless 

of the kVp of the LE image. A blue wax step phantom was placed inside a container and 

filled with canola oil until the total thickness of the oil reached 30 mm. A similar procedure 

was done for Plastic Water® and distilled water. These containers represented the lipid 

and water compartments, respectively. Images were acquired at 27 kVp and 30 kVp for 

both containers. The 3CB method was applied to different ROIs in the images, which 
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represented 0, 33, 50, and 67 % calibration material and 100, 67, 50, and 33 % canola 

oil or distilled water.[52] 

 

3CB Images and Bovine Calibration 

Hologic (Hologic, Inc., Bedford, MA) full-field digital mammography scanners were 

used to acquire the LE and HE images. A thickness map of the breast was then derived 

using the single X-ray absorptiometry (SXA) phantom. The 3CB technique was then 

applied to derive the three compositional thickness images—lipid, water, and protein 

(Figure 2.1). A bovine-derived affine transformation was then applied to these thickness 

images to correct for calibration material differences. The transformation is applied as 

follows: 

 
ሾ𝑊ᇱ 𝐿ᇱ 𝑃ᇱሿ ൌ ሾ𝑊 𝐿 𝑃ሿ𝐵ሺ𝑘𝑉𝑃ሻ, where Equation 2-15 

 

 𝐵 ൌ  ൥
bଵଵ bଵଶ bଵଷ
bଶଵ bଶଶ bଶଷ
bଷଵ bଷଶ bଷଷ

൩,  

and 𝑊, 𝐿, and 𝑃 are initial water, lipid, and protein estimates from a 51-point calibration 

phantom. The elements 𝑏௜௝ of the affine transformation were derived using the least-

squares fit between ሾ𝑊ᇱ𝐿ᇱ𝑃ᇱሿ and ሾ𝑊 𝐿 𝑃ሿ from a bovine phantom of known composition.  
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Figure 2.1 The mammogram, water, lipid, and protein images of a breast sample are shown. These are derived 
using the 3CB method described above. The annotation outlined by a radiologist is also shown in each figure, 
along with three concentric regions spaced 2 mm apart. 

 

Phantoms 

SXA Phantom 

The SXA phantom was used to estimate the thickness of the breasts under 

compression, regardless of paddle tilt.[53] The phantom was placed near one of the 

corners of the field of view such that it would not interfere with the breast area in the 

image. A least-squares technique was used to locate the phantom and estimate paddle 

tilt, and from these a thickness map was generated for breasts at each pixel. 

 

51-Point Calibration Phantom 

This phantom contains the three calibration materials for lipid, water, and protein—

blue wax, Plastic Water®, and Delrin (Figure 2.2). This is the main 3CB calibration 

phantom, and it contains 51 unique WLP regions of interests (ROIs). This phantom is 

used to derive the calibration coefficients 𝑎ఈఉఊ,௜, and corresponding images are taken of 

the phantom for each breast that is imaged. The same imaging parameters as the breast 
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were used for the phantom LE and HE images. Most of the phantom was manufactured 

with fabrication tools in-lab, and a portion of it was fabricated by a local machine shop. 

 
Figure 2.2 The 51-point calibration phantom is shown on the left, and an X-ray projection of it is shown on 
the right. An X-ray projection of the SXA phantom is also shown on the right. 

Bovine and Chicken Phantoms 

The bovine and chicken phantoms had 15 ROIs. Bovine lean muscle and suet 

were combined into volumetric fractions of 0.0/1.0, 0.25/0.75, 0.5/0.5, 0.75/0.25, and 

1.0/0.0 for different ROIs. The total thickness for each “step” of the phantom was 2, 4, 

and 6 cm. As for the chicken phantom, LE images were acquired at varying kVp (25 – 32 

kVp) to match the energy levels of breast images. Samples were sent to Anresco 

Laboratories (San Francisco, CA) for chemical composition analyses.  
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Figure 2.3 The bovine phantom is shown on the left and its corresponding X-ray projection is shown on the right. 
This phantom was used to create a linear map between the 51-point CP and biological materials. 

 

 

Figure 2.4 The chicken phantom is shown on the left and its corresponding X-ray projection is shown on the right. 

Results 

Population Description 

The bovine correction was also applied to a set of participants. Demographics of 

these participants are shown in Table 2.1. One of the participants was removed since 
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no estimate could be created, so a total of 80/81 patients had compositional estimates 

created.  

Table 2.1 Demographics of study participants.  

   N  % 

Number of Women Imaged at each kVp     
  kVp = 25  4  4.94 

  kVp = 26  2  2.47 

  kVp = 27  5  6.17 

  kVp = 28  15  18.52 

  kVp = 29  7  8.64 

  kVp = 30  13  16.05 

  kVp = 31  8  9.88 

  kVp = 32  27  33.33 

  Total   81  100 

    
Breast Density     
  A=Almost entirely fatty  5  6.17 

  B=Scattered fibroglandular densities  29  35.8 

  C=Heterogeneously dense  39  48.15 

  D=Extremely dense  39  9.88 

  Total   81  100 

    
Age  53.91 ± 9.92 

    
Height  64.65 ± 2.74 

    
Weight  150.46 ± 31.6 

    
BMI  25.3 ± 5.13 

 

Corrections with Biological Phantoms 

The composition results of the bovine phantom samples are shown in Table 2.2 

and Table 2.3. Composition results for the chicken phantom are in Table 2.4 and Table 

2.5.  
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Table 2.2 Composition of Bovine Phantom tissue samples by % weight and volume 

Component 

Density 
used for 

Conversio
n (g/cm^3) 

Bovine 
Compositio

n by % 
Weight 

Bovine 
Compositio

n by % 
Volume 

Suet 
Compositio

n by % 
Weight 

Suet 
Compositio

n by % 
Volume 

Water 1 70.03 75.04 11.90 11.11 

Lipid 0.92 4.44 5.17 86.52 87.83 

Protein 1.35 24.50 19.45 1.50 1.04 

Mineral Ash 3.2 1.03 0.34 0.08 0.02 
 
Table 2.3 Bovine Phantom regions of interest compositions with estimated water, lipid, protein, and mineral ash components 
from laboratory analysis.  

Region 
of 
Interest 

Total ROI 
Thickness 
(mm) 

Percent 
Density (%)* 

Water 
thickness 
(mm) 

Lipid 
Thickness 
(mm) 

Protein 
Thickness 
(mm) 

Mineral Ash 
Thickness 
(mm) 

1  60.50  0.00  6.72  53.13  0.63  0.01 

2  40.20  0.00  4.47  35.31  0.42  0.01 

3  20.20  0.00  2.24  17.74  0.21  0.00 

4  60.50  21.49  15.03  42.39  3.02  0.06 

5  40.30  36.72  13.94  23.16  3.14  0.06 

6  20.20  34.65  6.72  11.95  1.50  0.03 

7  60.50  51.24  26.54  27.51  6.33  0.11 

8  40.20  53.23  18.15  17.62  4.36  0.08 

9  20.20  48.02  8.45  9.72  2.00  0.04 

10  60.50  100.00  45.40  3.13  11.76  0.21 

11  40.20  100.00  30.17  2.08  7.82  0.14 

12  20.20  100.00  15.16  1.04  3.93  0.07 

13  60.40  60.93  30.24  22.63  7.40  0.13 

14  40.20  64.68  21.09  13.82  5.20  0.09 

15  20.10  66.17  10.74  6.66  2.66  0.05 

  *Density is defined as the meat thickness/total thickness*100     
 

Table 2.4 Composition of Chicken Phantom tissue samples by % weight and volume 

Component 

Density 
used for 

Conversion 
(g/cm^3) 

Gallus 
Composition 
by % Weight 

Gallus 
Composition 

by % 
Volume 

Tallow 
Composition 
by % Weight 

Tallow 
Composition 

by % 
Volume 

Water  1  75.04  80.88  0  0 

Lipid  0.92*  0.06  0.07  100  100 

Protein  1.35  23.09  18.44  0  0 

Mineral Ash  3.2  1.81**  0.61  0  0 

*Although Tallow density = 0.87, this does not affect Tallow conversion since it is 100% lipid 
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**Mineral Ash content includes 0.63 % total carbohydrates    

 

Table 2.5 Chicken Phantom regions of interest compositions with estimated water, lipid, protein, and mineral ash components from 
laboratory analysis. 

Region of 
Interest 

Total ROI 
Thickness 

(mm) 

Percent 
Density 

(%)* 

Water 
thickness 

(mm) 

Lipid 
Thickness 

(mm) 

Protein 
Thickness 

(mm) 

Mineral 
Ash 

Thickness 
(mm) 

1 69.14 0.00 0.00 69.14 0.00 0.00 

2 48.77 0.00 0.00 48.77 0.00 0.00 

3 29.41 0.00 0.00 29.41 0.00 0.00 

4 69.14 75.20 42.05 17.18 9.59 0.32 

5 48.77 77.97 30.76 10.77 7.01 0.23 

6 29.41 67.27 16.00 9.64 3.65 0.12 

7 69.14 61.54 34.41 26.62 7.84 0.26 

8 48.77 51.30 20.24 23.77 4.61 0.15 

9 29.41 50.78 12.08 14.49 2.75 0.09 

10 69.14 100.00 55.92 0.05 12.75 0.42 

11 48.77 100.00 39.45 0.03 8.99 0.30 

12 29.41 100.00 23.79 0.02 5.42 0.18 

13 69.14 29.90 16.72 48.48 3.81 0.13 

14 48.77 29.17 11.50 34.55 2.62 0.09 

15 29.41 24.01 5.71 22.36 1.30 0.04 

 *Density is defined as the meat thickness/total thickness*100  

 

Figure 2.5 shows how different element values of the affine transformation 𝐵 vary 

as a function of kVp. By going through the matrix multiplication, we can observe how 𝐵 

maps the WLP vectors between the calibration material and bovine spaces. For 𝑊, the 

water vector, the corresponding elements that affect its transformation are b11, b21, 

and b31, yielding the new vector 𝑊ᇱ ൌ 𝑏ଵଵ𝑊 ൅ 𝑏ଶଵ𝐿 ൅ 𝑏ଷଵ𝑃. Figure 2.6 shows similar 

plots but for the chicken phantom. For the chicken phantom, it appears that most of the 

energy-dependent variation of the elements occur at the lower energy levels. 
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Figure 2.5 This shows the different elements of the transfer function, a 3x3 matrix 𝑩, from calibration material 
space to bovine space as a function of kVp. Most of the elements are constant, but elements 𝒃𝟑𝟏, 𝒃𝟑𝟐, and 𝒃𝟑𝟑–
which scale the protein vector 𝑷 in the matrix multiplication—vary as a function of kVp.  
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Figure 2.6 The chicken phantom transfer function components. This shows the different elements of the transfer 
function, a 3x3 matrix 𝑩, from calibration material space to chicken space as a function of kVp.  

 

Table 2.6 shows the equation form of the matrix multiplication. For the bovine 

phantom: for 𝑊′, the water contribution 𝑊 is reduced, 𝐿 doesn’t contribute, and protein 

contributes but to a lesser extent (since protein is about factor lower than 𝑊 and the 

range for 𝑏ଷଵis approximately 1.05 – 1.21). For 𝐿′, 𝑊 plays a contribution and is 

approximately constant, 𝐿 is almost the unit value, and 𝑃 is multiplied by a negative 

number (range of 𝑏ଷଶ is approximately -0.55 – -0.33). For 𝑃′, 𝑊is scaled at a similar 

value as the water contribution for 𝐿′ (~0.16), 𝐿 slightly contributes, and 𝑃 is also varies 

over the kVp range (range of 𝑏ଷଷ is approximately 0.28 – 0.33). In all three equations, 

protein seems to be the most energy dependent while the other components can be 
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replaced by constants. For the chicken phantom, the protein component 𝑃′ seems to be 

a constant equation for all kVps, while 𝑊ᇱ and 𝐿′ vary as a function of kVp. 

 

Table 2.6 The matrix multiplication for each input vector is shown.  

Input 
Vector 

3x3 Matrix  
Multiplications 

Bovine Multiplications 
(simplified form) 

Chicken Multiplications 
(simplified form) 

𝑊 𝑊ᇱ ൌ  𝑏ଵଵሺ𝑘𝑉𝑝ሻ𝑊 ൅ 𝑏ଶଵሺ𝑘𝑉𝑝ሻ𝐿 ൅ 𝑏ଷଵሺ𝑘𝑉𝑝ሻ𝑃 𝑊ᇱ ൎ 0.63𝑊 ൅ 0.0𝐿 ൅ 𝑏ଷଵሺ𝑘𝑉𝑝ሻ𝑃 𝑊ᇱ ൌ  𝑏ଵଵሺ𝑘𝑉𝑝ሻ𝑊 ൅ 𝑏ଶଵሺ𝑘𝑉𝑝ሻ𝐿 ൅ 𝑏ଷଵሺ𝑘𝑉𝑝ሻ𝑃 

𝐿 𝐿ᇱ ൌ  𝑏ଵଶሺ𝑘𝑉𝑝ሻ𝑊 ൅ 𝑏ଶଶሺ𝑘𝑉𝑝ሻ𝐿 ൅ 𝑏ଷଶሺ𝑘𝑉𝑝ሻ𝑃 𝐿ᇱ ൎ 0.24𝑊 ൅ 1.02𝐿 ൅ 𝑏ଷଶሺ𝑘𝑉𝑝ሻ𝑃 𝐿ᇱ ൌ  𝑏ଵଶሺ𝑘𝑉𝑝ሻ𝑊 ൅ 𝑏ଶଶሺ𝑘𝑉𝑝ሻ𝐿 ൅ 𝑏ଷଶሺ𝑘𝑉𝑝ሻ𝑃 

𝑃 𝑃ᇱ ൌ 𝑏ଵଷሺ𝑘𝑉𝑝ሻ𝑊 ൅ 𝑏ଶଷሺ𝑘𝑉𝑝ሻ𝐿 ൅ 𝑏ଷଷሺ𝑘𝑉𝑝ሻ𝑃 𝑃ᇱ ൎ 0.16𝑊 െ 0.02𝐿 ൅ 𝑏ଷଷሺ𝑘𝑉𝑝ሻ𝑃 𝑃ᇱ ൎ 0.15 ൅ 0.0𝐿 ൅ 0.29𝑃 
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Figure 2.7 Bovine phantom ROI water thickness estimates vs. actual for each kVp. The top shows the estimates 
using only the calibration phantom, and the bottom plot shows estimates after a linear correction (3x3 matrix) was 
applied using data from the top plot. 
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Figure 2.8 Bovine phantom ROI lipid thickness estimates vs. actual for each kVp. The top shows the estimates using 
only the calibration phantom, and the bottom plot shows estimates after a linear correction (3x3 matrix) was applied 
using data from the top plot. 
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Figure 2.9 Bovine phantom ROI protein thickness estimates vs. actual for each kVp. The top shows the estimates 
using only the calibration phantom, and the bottom plot shows estimates after a linear correction (3x3 matrix) was 
applied using data from the top plot. 
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Figure 2.10 Chicken phantom ROI water thickness estimates vs. actual for each kVp. The top shows the estimates 
using only the calibration phantom, and the bottom plot shows estimates after a linear correction (3x3 matrix) was 
applied using data from the top plot. 
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Figure 2.11 Chicken phantom ROI water thickness estimates vs. actual for each kVp. The top shows the estimates 
using only the calibration phantom, and the bottom plot shows estimates after a linear correction (3x3 matrix) was 
applied using data from the top plot. 
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Figure 2.12 Chicken phantom ROI water thickness estimates vs. actual for each kVp. The top shows the estimates 
using only the calibration phantom, and the bottom plot shows estimates after a linear correction (3x3 matrix) was 
applied using data from the top plot. 
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Figure 2.13, Figure 2.14, and Figure 2.15 show the percent errors of the 15 

regions of interest (ROIs) of the bovine phantom before and after applying the transfer 

function. The top plot shows the percent error before the bovine correction/transfer 

function was applied, and the bottom shows the estimates after the bovine correction 

was applied.  

 

% 𝐸𝑟𝑟𝑜𝑟 ൌ 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ሺ𝑅𝑃𝐷ሻ ൌ  2 ∗
ሺ3𝐶𝐵 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 െ 𝐿𝑎𝑏 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒ሻ

|3𝐶𝐵 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒| ൅ |𝐿𝑎𝑏 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒|
∗ 100, 𝑤ℎ𝑒𝑟𝑒 

𝑅𝑃𝐷 ൌ 0 𝑤ℎ𝑒𝑛 3𝐶𝐵 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ൌ 𝐿𝑎𝑏 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ൌ 0 

 

The RPD was used over percent difference to avoid dividing by zero. The 𝐿𝑎𝑏 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 

is the computed estimate based on laboratory results of tissue samples. 

 

Figure 2.13 The 3CB water thickness estimate for the fifteen ROIs of the bovine phantom are shown before 
and after linear correction was applied. 



33 
 

 

Figure 2.14 The 3CB lipid thickness estimate for the fifteen ROIs of the bovine phantom are shown before and 
after linear correction was applied. 

 

Figure 2.15 The 3CB protein thickness estimate for the fifteen ROIs of the bovine phantom are shown before 
and after linear correction was applied. 



34 
 

Oil Experiments 

The results for the oil experiment are shown in Figure 2.16. The affine 

transformation seemed to correct the thickness estimate error between the two energy 

levels, though it did not correctly estimate the measured 30 mm thickness. For each 

boxplot, “the central mark is the median, the edges of the box are the 25th and 75th 

percentiles, the whiskers extend to the most extreme datapoints the algorithm considers 

to be not outliers, and the outliers are plotted individually” (MATLAB, 2016b). The top 

plot shows the estimated lipid thicknesses pre-bovine correction. Regions of interest on 

the oil images are compared between two different LE levels, 27 and 30 kVp. There are 

significant differences (p < 0.001 for all comparisons) in the estimated lipid thickness 

between the two energy levels for all ROIs. After the bovine correction is applied 

(bottom plot), there still seem to be significant differences between the two energy 

levels. Moreover, there is still an approximately 16% error between the actual and 

estimated lipid thickness (30 mm vs. 25 mm, respectively). A similar figure can be seen 

for the water experiment, but the error is larger between actual and estimated (~40 %). 
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Figure 2.16 The estimated lipid thicknesses for different regions of interest (ROIs), pre- and post-bovine 
correction.  
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Population Corrections 
 

Figure 2.17 shows patient data thickness estimates before and after models were 

applied. The top figure shows these distributions for pre- and post-bovine correction 

estimate, and the bottom for the chicken model. The mean, standard deviation, 

minimum thickness, and maximum thickness for pre- and post-model corrections are 

shown for all distributions. For both models, the lipid compartment distribution seemed 

to shift toward the right, indicating that the 3CB calibration phantom was 

underestimating lipid thicknesses. For water distributions in both models, the post-

model correction narrowed and shifted the distribution to the left, which indicates that 

the 3CB calibration phantom was overestimating the water compartment. This 

overestimation seems to have caused negative protein estimates in the distributions of 

both models; these have narrowed in ranged and shifted toward the right after the 

model corrections.  
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Figure 2.17 Estimated water, lipid, and protein thickness distributions of sampled population. The top figure shows 
distributions before and after bovine model corrections, and the bottom figure shows these for the chicken model 
corrections. 
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Discussion 

The above experiments seemed to show that mass attenuation differences 

between biological and their calibration equivalent can become problematic for 

estimating compositional estimates, particularly when estimating three compositions 

and/or at varying kVp settings. A promising correction for such estimates seems to be 

deriving a linear map between the biological and calibration materials. Indeed, the oil 

and water experiments show that energy-dependent estimates of materials seem to be 

corrected using a map between the WLP calibration materials and bovine. The transfer 

function 𝐵 was used as the linear map, and closer inspection of this function provides 

some intuition about how this correction works. For all three transformations of (𝑊 →

𝑊ᇱ, 𝐿 → 𝐿ᇱ, 𝑃 → 𝑃′), the lipid vector in the transfer function does not seem to have any 

effect when each material is linearly mapped from the calibration material space to 

bovine. When the transfer function is applied to the lipid component, the scalar value for 

the lipid vector (b22) is 1. When the transfer function is applied to the water and lipid 

components, the scalar value for the lipid vector is approximately 0 (b21 and b23). 

Concomitantly, the water and protein vectors are scaled for every mapping. These two 

effects indicate that water and protein are the components that are being incorrectly 

estimated; thus, it is difficult to decouple these two components when we are in the 

calibration material space. When we applied this correction to participant estimates, this 

is what seems to occur. Water and protein compartments are scaled while the lipid 

compartment stays approximately the same (Figure 2.17). This transformation arrives at 

composition estimates that seem to be more realistic values, removing most of the 

negative protein errors.  
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In a related study by Ding et al., they analyzed the chemical composition of lean 

and adipose bovine and chicken samples and compared it to estimates based on the 

three-compartment breast technique but for computed tomography.[40] The WLP 

content was approximately 0.80/0.02/0.17 for their lean bovine sample and 

0.11/0.85/0.02 for the bovine adipose sample, respectively. As mentioned previously, 

the volumetric fractions of W/L/P for our samples were 0.81/0.012/0.178 for the lean 

muscle and 0.13/0.855/0.015 for the suet. These findings are consistent with each 

other. In previous work, compared the pre- and post-bovine WLP estimates of cadaver 

breast to estimates from a chemical composition analysis.[51] The combined RMSE for 

WLP estimates was 29.8% for pre-bovine estimates and 15.9% for post-bovine 

estimates. For Ding et al., their combined RMSE was 2.7%. It is important to note that 

Ding et al. seem to achieve more accurate results because (1) they used two more 

biologically equivalent materials for their calibration phantom (water and vegetable oil) 

and (2) the difference in energy between their LE and HE images is much higher for CT 

than FFDM. They acquired their images at 100 kVp, 20 keV was the cutoff for their 

lowest energy, and 40 keV was selected as the splitting energy between their LE and 

HE bins. This would yield less correlation between LE and HE images since there would 

be greater separation between Compton and photoelectric events.  

The results of this study should be considered when using dual energy X-ray 

techniques that involve calibration materials at varying kVp energy levels. This would 

involve applying the 3CB technique for other imaging modalities, such as breast 

tomosynthesis. Although the bovine correction seemed to have corrected for unrealistic 
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estimates, a combined RMSE of 15.9% is still not optimal. Higher energy separation 

between the LE and HE images should help ameliorate this error.  

One limitation of this study is that the bovine correction may not cover the entire 

range of WLP variations found in breasts, and is perhaps the reason why we still see 

negative protein estimates for some lesion samples. As an example, although the 

bovine correction removed the estimate differences between the two energy levels, it 

still did not accurately estimate it for either both water and oil (and intended target of 30 

mm). We believe that this is because the bovine phantom did not contain a 100% lipid 

compartment or 100 % water compartment. It is, therefore, imperative not to over fit 

when creating a map between the two material spaces. Another limitation is that the 

bovine and chicken maps were derived using a specific X-ray machine, and differences 

between X-ray sources among machines may create large enough errors in estimates 

that a bovine calibration may be needed for each X-ray machine that is used for clinical 

studies. It is also particularly important to test whether the bovine map is stable over 

time, especially for longitudinal studies. Lastly, there may be limitations in the bovine 

and chicken maps because of inherent differences between animal and human tissues. 

Experiments comparing the chemical composition of cadaver breasts and thickness 

estimates using the bovine map show similar estimates, however.[51] 

In conclusion, energy-dependent differences between biological materials and 

their calibration equivalents may be corrected using a linear map between the two 

material spaces. This map, although itself still energy-dependent, could be used to 

correct erroneous compositional estimates for dual-energy mammography techniques. 
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Chapter 3 Studies on Other Error Sources 
 

After acquiring the LE image, HE image, and total breast thickness estimate at 

every pixel (i.e., the breast thickness map) for 3CB, the next part is estimating the 

water, lipid, and protein compartment images. A calibration phantom is used to derive 

this 3CB composition based on a linear mapping of LE, HE, and total breast thickness 

measurements. There exists, however, sources of error that can influence LE and HE 

measurements and, thus, 3CB composition estimates. Two of these error sources are 

discussed in this chapter, and a third was covered more in-depth in Chapter 2.  

Flat-Fielding 
 

Full field digital mammography (FFDM) scanners typically acquire polychromatic 

X-ray projection images using cone-beam source geometry. The intensity that is 

measured at a detector’s pixel location—even when no object is present—varies 

because of numerous factors, and nonuniformity due to cone-beam geometry becomes 

important when performing compositional measurements. Linear and non-linear 

corrections have been developed by Seibert et al. and Kwan et al.[54, 55] Here we 

develop an empirical polynomial model, similar to Kwan et al.’s, to apply flat-fielding 

(gain) corrections to X-ray projections.  

 

Methods 

Hologic Selenia full-field digital mammography system (Hologic, Inc.) was used 

to acquire all images. CIRS (Computer Imaging Reference Systems, Inc.) phantom 

slabs with 50% fibroglandular and 50% adipose breast tissue equivalent materials were 
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used for all images. Three phantoms of thickness 4, 2, and 1 cm were stacked in 

different combinations to obtain scans of 1 – 8 cm thicknesses at 1 cm intervals. The 

imaging parameters for the images are shown in Table 3.1.  

Table 3.1 Scanner settings for BR50/50 CIRS phantoms for flat-fielding model  

kVp 

Anode-
filter(s) 

Combination mAs 

25-31 Mo/Mo 100 
32 Mo/Rh 100 
39 Mo/Rh-Al 100 

 

MATLAB (Natick, Massachusetts, USA) software was used to create empirical 

flat-fielding models. First, the 2D slab images were turned into 3D surface images, 

where the x and y axes corresponded to pixel locations and the z-direction to image 

intensity. Next, a 10x10 moving window median filter was applied to the surface image 

to remove stochastic noise. The surface image 𝑆௜௡ was then normalized in two steps. 

First, the scanner’s DC component (𝐼஽஼, taken from the DICOM image header) was by 

removed and a pre-normalization was applied with the initial intensity derived from the 

𝐼଴ model (see Empirical 𝐼଴ Model found later in this chapter) using the following equation 

𝑆ே଴ ൌ ሺ𝑆௜௡ െ 𝐼஽஼ሻ/ሺ𝐼଴ െ 𝐼஽஼ሻ Equation 3‐1 

Secondly, this was normalized by the intensity value of 𝑆ே଴ located at ሺ𝑥଴, 𝑦଴ሻ, which is a 

small region of interest surrounding the point where the incident X-ray beam is 

perpendicular to the detector plane. This made it so that the flat-fielding model would be 

independent of exposure (mAs) settings, so  

𝑆ே ൌ 𝑆ே଴/𝑆ே଴ሺ𝑥଴, 𝑦଴ሻ Equation 3‐2 



43 
 

After normalization, 𝑆ே was downscaled by a factor 𝑐 ൎ 0.15 such that the smallest 

positional dimension (either x or y dimension) of the image (in this case, the x-axis) was 

size 250, so  

𝑆ௌ ൌ 𝑆ேሺ𝑐 ∗ 𝑥௦௜௭௘, 𝑐 ∗ 𝑦௦௜௭௘ሻ Equation 3‐3 

Following this, a third-degree polynomial in x and y was made using the MATLAB 

function fit. Polynomial fits were made for all thicknesses (𝑇) and kVps, so the flat-

fielding model function is the function 𝑆ிிெሺ𝑥, 𝑦, 𝑘𝑉𝑝, 𝑇ሻ. After the flat-fielding correction 

is applied to 𝑆ௌ, we get 𝑆ிி ൌ ௌೄ

ௌಷಷಾ
. To validate fitting, the normalized RMSE 𝑅𝑀𝑆𝐸ே ൌ

100 ∗ ோெௌா

ఙ೘೐ೌ೙
 ሺ%ሻ between the surface fit and 𝑆ௌ was compared to the normalized 

standard deviation 𝜎ௌ஽ே of the median-filtered image noise, where  

𝜎ௌ஽ே ൌ
100 ∗ 𝜎ௌ஽

𝜎௠௘௔௡
ሺ%ሻ 

Equation 3‐4 

𝜎ௌ஽: 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆ௌሺ𝑥଴,𝑦଴ሻ  

𝜎௠௘௔௡: 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑆ௌሺ𝑥଴, 𝑦଴ሻ  

Note that 𝜎ௌ஽ே is smaller than the actual image noise since it is the residue noise left 

over after a median filter was applied to the original image. 

Results 

Figure 3.1, Figure 3.2, Figure 3.3 depict how well a polynomial surface fit the 

input for the three different filter conditions of the slab images. In each figure, the 1 cm 

(top) and 8 cm (bottom) cases are shown. For each thickness case, the top-left surface 

plot is the median-filtered, normalized, and downscaled input image 𝑆ௌ, which varied up 

to approximately 15% in normalized intensity. The top-right surface plot is the third-
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degree polynomial fit in 𝑥 and 𝑦 of 𝑆ௌ. The bottom plot is 𝑆ிி, the resulting surface plot 

after the flat-fielding correction is applied to 𝑆ௌ. In almost all surface fit cases, the 

polynomial surface fit performed better than the normalized median-filtered image noise 

of the input image (i.e., 𝑅𝑀𝑆𝐸ே ൏ 𝜎ௌ஽ே for almost all cases). Figure 3.4 shows plots of 

𝑅𝑀𝑆𝐸ே and 𝜎ௌ஽ே as a function of kVp. These were used to verify a good fit for the 

polynomial model. Plots similar to this were made for all thicknesses. Only the surface 

plots for ሺ𝑇 ൌ 6 𝑐𝑚, 𝑘𝑉𝑝 ൌ 31ሻ and ሺ𝑇 ൌ 4 𝑐𝑚, 𝑘𝑉𝑝 ൌ 26ሻ had 𝑅𝑀𝑆𝐸ே ൐ 𝜎ௌ஽ே, but these 

were within rounding error.  
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Figure 3.1 Flat-fielding surface fits for kVp = 29 (Mo/Mo anode/filter combinations), 1 cm (top plots) and 8 cm (bottom 
plots). For 1 cm plots, 𝝈𝑺𝑫𝑵 ൌ 𝟎. 𝟓𝟗 %, 𝑹𝑴𝑺𝑬𝑵 ൌ 𝟎. 𝟑𝟔%. For 8 cm plots, 𝝈𝑺𝑫𝑵 ൌ 𝟎. 𝟖𝟑 %, 𝑹𝑴𝑺𝑬𝑵 ൌ 𝟎. 𝟔𝟖%. 
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Figure 3.2 Flat-fielding surface fits for kVp = 32 (Mo/Rh anode/filter combinations), 1 cm (top plots) and 8 cm (bottom 
plots). For 1 cm plots, 𝝈𝑺𝑫𝑵 ൌ 𝟎. 𝟕𝟗 %, 𝑹𝑴𝑺𝑬𝑵 ൌ 𝟎. 𝟒𝟑%. For 8 cm plots, 𝝈𝑺𝑫𝑵 ൌ 𝟏. 𝟎𝟔%, 𝑹𝑴𝑺𝑬𝑵 ൌ 𝟎. 𝟕𝟔%. 
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Figure 3.3 Flat-fielding surface fits for kVp = 39 (Mo/Rh-Al anode/filters combinations), 1 cm (top plots) and 8 cm 
(bottom plots). For 1 cm plots, 𝝈𝑺𝑫𝑵 ൌ 𝟏. 𝟓𝟑%, 𝑹𝑴𝑺𝑬𝑵 ൌ 𝟎. 𝟒𝟒%. For 8 cm plots, 𝝈𝑺𝑫𝑵 ൌ 𝟐. 𝟐𝟐%, 𝑹𝑴𝑺𝑬𝑵 ൌ 𝟏. 𝟑𝟐%. 
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Figure 3.4 Flat‐fielding plots of 𝝈𝑺𝑫𝑵 and 𝑹𝑴𝑺𝑬𝑵 for 1 cm (top) and 8 cm (bottom) surface fits as a function of kVp.  
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Figure 3.5 shows the coefficients of a typical fit model created for 𝑘𝑉𝑝 ൌ 29. The 

𝑥 axis for each plot is the thickness 𝑇 in 𝑐𝑚, and the 𝑦 axis is the intensity value of a 

coefficient 𝑝௜,௝, 𝑤ℎ𝑒𝑟𝑒 𝑖 ൌ 0, … , 3 𝑎𝑛𝑑 𝑗 ൌ 0, … , 3. Using the values for measured 

thicknesses 1, 2, …, 8 cm, linear interpolation was used to estimate coefficient values 

for all thicknesses in the range ሾ1, 8ሿ 𝑐𝑚. This makes it so that the flat-fielding model 

function 𝑆ிிெሺ𝑥, 𝑦, 𝑘𝑉𝑝, 𝑇ሻ is continuous in the range 𝑇 ൌ ሾ1, 8ሿ 𝑐𝑚.  

 

Figure 3.5 Flat‐fielding model coefficients for 29 kVp. Linear interpolation was used to create flat‐fielding values for all 
thicknesses between 1 and 8 cm, so the “Fit Curve” directly overlays over the plot of the surface fit coefficient values.  

 

Discussion 

The goal of the above was to create a method to correct for flat-fielding errors 

found when acquiring X-ray projection images. This correction is important for 
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estimating 3CB water, lipid, and protein compositions, since the method uses a 

calibration phantom to perform a linear mapping of LE and HE measurements. From the 

experiments, it was shown that there can be nonuniformity of up to a 15% due to the 

geometry of cone-beam X-ray projections used in mammography. To minimize this error 

and get an accurate linear mapping between the calibration phantom and breast 

measurements, LE and HE values should be position-independent. A third-degree 

polynomial flat-fielding model 𝑆ிிெሺ𝑥, 𝑦, 𝑘𝑉𝑝, 𝑇ሻ seemed to correct geometric-based 

errors. The resulting flat-fielded image 𝑆ிி had non-uniformity errors reduced to 

approximately 2%. This method can be applied to LE and HE phantom and breast 

images before the 3CB composition is estimated. A thickness map would be needed to 

apply this flat-fielding correction to projection images. In addition, flat-fielding models 

would have to be made for each scanner that is used to acquire 3CB images by 

scanning uniform thickness breast composition phantoms, since these empirical models 

can vary between scanners. 

 

 

  



51 
 

Initial Intensity (𝐼଴) Correction 
 

In 3CB imaging, WLP thicknesses are estimated by using LE and HE log-signal 

functions 𝐴௜:  

𝐴௜ ൌ ln ቀ ூ

ூబ
ቁ, Equation 3‐5 

where 𝐼 is the measured attenuation photon intensity, 𝐼଴ is the nonattenuated photon 

intensity, and 𝑖 is either 𝐿𝐸 or 𝐻𝐸. It is, therefore, important to accurately estimate 𝐼଴ for 

both calibration phantom and breast images. Here we discuss the two methods that 

were used for estimating 𝐼଴ in 3CB images. This first method is based on an empirical 

model made from measuring nonattenuated images at varying exposures. The second 

one estimates 𝐼଴ from the single X-ray absorptiometry (SXA) step phantom that is used 

when acquiring 3CB images.  

Methods 

 

Empirical 𝐼଴ Model 
 

An empirical 𝐼଴ model was created from nonattenuated X-ray images scanned 

with a Hologic Selenia FFDM system. Scans were taken at 20, 50, and 100 mAs and 

25-32 and 39 kVp. A small ROI (75x150 pixels) was sampled from each image at the 

same location—where the X-ray source was perpendicular to the detector plane. A 

linear model, which uses mAs and kVp as dependent variables, was created using the 

20 and 50 mAs samples, since the detector saturated at 100 mAs for higher kVps. To 

validate the empirical 𝐼଴ model, a two-compartment model was tested first. The 51-point 
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calibration point was sampled at ROIs that contained only water and protein, which shall 

be known as the two-compartment calibration phantom (2CCP). A two-compartment 

intermediate phantom (2CIP) was made by adding 1 cm of water to the 2CCP. The 

2CCP was used for calibrating linear mapping equations, while the 2CIP was used to 

test accuracy. The percent 𝑅𝑀𝑆𝐸, 𝑅𝑀𝑆𝐸௉ ൌ 100 ∗ ோெௌா

୫ୟ୶ሺ஺௖௧௨௔௟ሻ
, was used for this accuracy 

test.  

 

𝐼଴ from SXA Phantom 
 

The SXA phantom, which is a step phantom that is normally used to estimated 

breast thickness at every pixel, was used to derive the negative log-signal values (െ𝐴௜ ) 

of a uniform material as a function of thickness.[53] This phantom was already included 

in 3CB FFDM images, since it is part of the routine procedure. A flat-fielding correction 

(see Flat-Fielding section from earlier in this chapter) was applied to the SXA phantom 

based on its known region-of-interest thicknesses. The ROIs of the SXA phantom were 

then located in the image by isolating the SXA phantom lead beads and then mapping 

ROI coordinates from these lead bead locations. Next MATLAB software function polyfit 

was used to create a first-degree polynomial fit. A first-degree polynomial was chosen 

since െ𝐴௜ is a linear function of material thickness 𝑇. Lastly, 𝐼଴ was estimated using this 

fitting function for 𝑇 ൌ 0 𝑚𝑚.  

Results 
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Figure 3.6 The ROI sample location for the empirical 𝑰𝟎 model 

Table 3.2 lists the compositions of the two-compartment phantoms. Figure 3.7 

shows R (LE/HE) vs. HE attenuation values for the 2CCP and 2CIP phantoms before 

the empirical 𝐼଴ model was applied. Curves were fit to the varying compositions of the 

2CCP. Some of these compositional curves converge, which implies that the 2CCP 

linear mapping will poorly predict compositional estimates.  

Table 3.2 Compositions of the two-compartment phantoms for testing the empirical 𝑰𝟎 model 

ROI No. 

2CCP 
Water 

Thickness 
(cm) 

2CCP 
Protein 

Thickness 
(cm) 

2CIP Water 
Thickness 

(cm) 

2CIP 
Protein 

Thickness 
(cm) 

1 6 0.89 7 0.89 
2 6 1.34 7 1.34 
3 4 0.59 5 0.59 
4 4 0.89 5 0.89 
5 2 0.3 3 0.3 
6 2 0.44 3 0.44 
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7 6 0 7 0 
8 6 0.44 7 0.44 
9 4 0 5 0 
10 4 0.3 5 0.3 
11 2 0 3 0 
12 2 0.15 3 0.15 

 

.  

 

Figure 3.7 R vs. HE Plots of two-compartment phantoms before the empirical 𝑰𝟎 model was applied. 

Figure 3.8 shows the R vs. LE plots of the two-compartment phantoms after the 

empirical 𝐼଴ model was applied. In this plot, only two of the 2CCP curves converge. After 

investigation, however, the composition of 2CCP point 12 had the incorrect composition 

(8.96 %); it is also the ROI most susceptible to error, since it is the region with the 

thinnest amount of protein content. The 𝑅𝑀𝑆𝐸௉ for the 2CCP using the linear mapping 
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created from the 2CCP itself was 1.39% for water and 6.39% for protein. For validation, 

the 𝑅𝑀𝑆𝐸௉ for the 2CIP was 5.37% for water and 25.55% for protein.  

 

Figure 3.8 R vs. HE Plots of two-compartment phantoms before the empirical 𝑰𝟎 model was applied. 

 

Figure 3.9 shows the nine ROIs of the SXA phantom that were used to estimate 

the SXA phantom-derived 𝐼଴. The lead beads can be seen, and their estimated locations 

are shown by a red crosshair. A sample fit for 𝐼଴ derived from the SXA phantom for a 

breast scanned at 28 kVp is shown in Figure 3.10 and Figure 3.11. The 𝐼଴ for the LE CP 

and breast images was 6892.68 and 3701.56, respectively; the 𝐼଴ for the HE CP and 

breast images was 2597.44 and 1641.72, respectively.  
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Figure 3.9 Located SXA ROIs phantom for estimating 𝑰𝟎 from the SXA phantom log-signal values.  
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Figure 3.10 LE calibration phantom and breast 𝑰𝟎 derived from SXA phantom 
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Figure 3.11 HE calibration phantom and breast 𝑰𝟎 derived from SXA phantom 
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Discussion 

The goal of the above was to create and test methods for estimating 

nonattenuated photon intensity, 𝐼଴. The experiments for the empirical 𝐼଴ model seemed 

to produce better R v. LE curves for linear mapping estimates. Still, validation with the 

2CIP had over 20% 𝑅𝑀𝑆𝐸௉ for the protein estimates. This could probably be attributed 

to the linear mapping performing poorly for estimates outside of its calibrated 

thicknesses, since the total thickness for some of the predictions were 7 cm. When 

deriving 𝐼଴ from the SXA phantom, some of the attenuations at higher thicknesses were 

not aligned with the rest of the data. This is most likely because the ROIs for these 

sampled outside the thickness region. It is, therefore, important to ensure that mapped 

ROIs are accurate for future fittings, though these did not seem to affect the actual fit 

since most of the lower thicknesses followed a linear trend. It is recommended to use 

the 𝐼଴ derived from the SXA phantom to estimate 𝐼଴, since it is a measured prediction 

from the same image as being predicted. If the SXA phantom is not available, however, 

a robust empirical 𝐼଴ model using more sample points at varying mAs and taken at 

different days should be made for every scanner. Even then, a mechanism to calibrate 

and validate the empirical model would most likely be necessary due to quantum 

fluctuations in X-ray scanners. 
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Chapter 4 3CB Tomosynthesis  
 

Introduction 
 

Tomosynthesis is an X-ray imaging modality that is similar to computed 

tomography (CT). Fundamental work for tomosynthesis was done in the 1930s, but 

tomosynthesis did not become clinically relevant until the late 1990s, “when flat-panel 

radiographic detectors were introduced.”[56] One of the main differences between CT 

and tomosynthesis is the sweep angle; CT sweeps at 180° to fully reconstruct a 3D 

volume from 2D projections, whereas tomosynthesis sweeps anywhere in the 15° – 50° 

range to reconstruct a pseudo-3D volume. This pseudo-3D volume creates focal plane 

“slices” of the imaged object. Since only a limited angle range is scanned, 

tomosynthesis has anisotropic spatial resolution. The in-plane (x-y direction) spatial 

resolution can outperform CT, but the z-direction spatial resolution can vary between 1 

mm (full-width half maximum of the point spread function) for a 30° sweep angle 

tomosynthesis scanner and 4 mm for 10° sweep angle scanners.[57] Over the past two 

of decades, research efforts have focused on making tomosynthesis clinically 

applicable, and there have been numerous studies on evaluating its applicability to 

breast cancer detection and diagnosis. 

One of the largest retrospective reading studies of 7060 patients that compared 

digital breast tomosynthesis (DBT) to FFDM found that the sensitivity of DBT was 89% 

and 87% for FFDM, which showed “borderline significant improvement (p = 0.07).”[58, 

59] As noted by Gilbert et al. in their review, several other studies show similar or 

improved sensitivity over FFDM. As for specificity, most studies included in Gilbert et 
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al.’s review showed a significant increase: 74% for DBT and 51% for FFDM in one 

study.[60] 

As DBT becomes more clinically prevalent, the 3CB technique should also be 

able to function with DBT. This chapter covers early investigations into making 3CB 

applicable for DBT. First, DBT imaging parameters—including filter type and 

thickness—for 3CB HE images are investigated. The second part of this chapter 

investigates potential methods for determining breast thickness, which is an essential 

part of the 3CB technique, from DBT projections. 

 

Part I: Optimizing filter and imaging parameters for high-energy projections 
 

The goal of this experiment was to find the optimal filter and imaging parameters 

to use for acquiring HE DBT projections. For commercial tomosynthesis scanners, such 

as GE SenoClaire, the peak energy available for scanning is higher than FFDM (49 kVp 

vs. 39 kVp). This allows for more energy separation between the LE and HE images, 

creating greater orthogonality/uncorrelation between measurements and, thus, 

solutions. Using higher peak energies, however, can also increase patient dose. One 

3CB constraint is that the dose of the HE image should be approximately 10% of a 

regular diagnostic exam dose (i.e., 3CB LE image dose) while optimizing image 

contrast-to-noise ratio (CNR). Here we investigate this and recommend a filter for 

acquiring HE DBT projections.  
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Methods 

All images for the measurements below were acquired using GE Healthcare 

(Chicago, IL) SenoClaire DBT. This scanner acquires nine projections over a 25° sweep 

angle. At first, both aluminum and copper filters were considered. After cursory 

simulations, however, it was determined that an aluminum filter would have to be 

approximately 12 cm thick, which is clinically impractical. Copper filters were considered 

as the choice material since they attenuate X-ray intensity at a higher rate than 

aluminum, are readily available, and are cost effective.  

Average Glandular Dose  

The average glandular dose (AGD) is defined as 𝐷௚ ൌ 𝐷௚ே ∗ 𝑘 where 𝑘 (mGy) is 

the incident air kerma at the entrance surface of the breast and 𝐷௚ே (mGy/mGy) is the 

normalized glandular dose coefficient.[61] Tables of 𝐷௚ே values were computed by GE 

Healthcare for Rhodium-Rhodium anode-filter combinations, 49 kVp, 2-9 cm breast 

thicknesses, and 0, 50, and 10 % breast glandularity. Extrapolations were computed 

from these tables to obtain values for all relevant copper thicknesses. Along with AGD, 

corresponding half value layer (HVL) values for Cu filter thicknesses were also 

measured. In our experiments, 𝐻𝑉𝐿 ൌ ୪୬ ଶ

ఓ
 was computed by measuring the air kerma of 

aluminum, plotting this value as a function of aluminum thickness, and obtaining the 

attenuation coefficient 𝜇 by fitting an exponential function to corresponding plots. All air 

kerma values were measured using Radical Corporation (Monrovia, CA, USA) model 

1515 ion chamber. Two measurements were performed for estimating the AGD of 3CB 

HE images. The goal for the first measurements was to determine optimal mAs for a 4 

cm breast with 50% glandularity. The goal for the second measurements was to 
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compute the dose for additional breast thicknesses using the optimal mAs obtained 

from the first measurement. 

CNR 

A GEN3 phantom—which is a step phantom made of Plastic Water® and 

machinable wax to mimic the water and lipid compartments—was used to acquire CNR 

measurements. Ideally, these represent the two bounds for contrast found in 3CB 

images, so the aim was to maximize this contrast. A BR3D phantom, which mimics 

adipose and fibroglandular tissues, was used to obtain imaging settings (kVp, mAs, and 

target-filter combinations) for the GEN3 phantom images. Tomographic images of the 

BR3D phantom were first acquired, and then single 2D projections of the GEN3 

phantom were taken using these imaging parameters. The mAs parameter was reduced 

9-fold for the 2D projections since each DBT sweep acquires nine projections. CNR was 

estimated by sampling the 2, 4, and 6 cm regions of the GEN3 phantom that contained 

either pure Plastic Water® or machinable wax (see Figure 4.1). The background of the 

GEN3 images were sampled for noise estimates (i.e., denominator) using the equation 

𝐶𝑁𝑅 ൌ
ሺ𝑅௅ െ 𝑅ௐሻ

𝜎஻௄ீ
 

where 𝑅௅ is the lipid compartment (machinable wax) intensity ratio of the LE and HE 

GEN3 phantom images, 𝑅ௐ is the water compartment (Plastic Water®) intensity ratio of 

the LE and HE GEN3 phantom images, and 𝜎஻௄ீ is the standard deviation of the noise 

in the image. The intensity ratio between LE and HE images was used since 3CB 

images are computed using both LE and HE images. Normalized CNR was also 

computed using the equation 
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𝐶𝑁𝑅𝑁 ൌ
𝐶𝑁𝑅

√ሺ𝐴𝐺𝐷ሻ
 

 

 

Figure 4.1 A projection of the GEN3 phantom showing sampled regions of interest.  

 

Results 

Figure 4.2 and Figure 4.3 show the AGD estimates and HVL plots for the first set 

of AGD measurements. For the AGD estimates, the lowest available mAs for tomo (36 

mAs total) was used. An additional mAs (71 mAs) was also measured for Cu thickness 

= 0.4064 mm. For the HVL estimates, all exponential fits had 𝑅ଶ ൐ 0.99, indicating little 

error in air karma measurements. Unfortunately, time constraints (a limited window was 
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given to perform air kerma measurements during patient hours) did not allow HVL 

estimates for all copper filter thicknesses. The 71 mAs setting was chosen as optimal 

since it optimizes for CNR and falls within the 10% of LE AGD constraint. 

 

Figure 4.2 LE and HE AGD estimates for a 4 cm thick, 50 % glandularity breast for the first set of AGD 
measurements. 
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Figure 4.3 HVL estimation plots (air kerma vs. aluminum thickness) for first set of AGD measurements.  

 

Figure 4.4 and Figure 4.5 show the results for the second set of AGD 

measurements. For the AGD estimates, all power fit curves had 𝑅ଶ ൐ 0.99. Copper filter 

thickness selection seems to be constrained by the 6 cm dose value since optimizing for 

one based on the 10% of LE AGD target dose from this measurement would satisfy the 

LE AGD target for smaller breast thicknesses. For the HVL estimates, all exponential fit 

curves had 𝑅ଶ ൐ 0.98.  
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Figure 4.4 LE and HE AGD estimates for 2, 4, and 6 cm thick, 50 % glandularity breasts for the second set of AGD 
measurements. 
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Figure 4.5 HVL estimation plots (air kerma vs. aluminum thickness) for second set of AGD measurements 

Table 4.1 shows the imaging parameters for the acquired CNR images.  

Table 4.1 Imaging Parameters for CNR Images 

Breast 
Thickness kVp 

Cu 
Thickness  
(mm)  mAs   Anode Filter 

2  26  0  5.1 Mo  Mo 

4  29  0  5.9 Rh  Rh 

6  31  0  9.5 Rh  Rh 

2/4/6*  49  0  8 Rh  Rh 

49  0.127  8 Rh  Rh 

49  0.254  8 Rh  Rh 
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49  0.381  8 Rh  Rh 

*kVp is set to 49 for the HE images, so breast thickness does not affect HE 
kVp 

 

Figure 4.6 shows plots of the CNR and CNRN estimates for 2, 4, and 6 cm breast 

thicknesses. In all thicknesses, CNR and CNRN estimates are within 15% of each other 

for all measured values (0.127, 0.254, and 0.381 mm). The fourth point shown (Cu 

thickness = 0.4064 mm) in the CNRN plots is an extrapolated value from the fit equation 

derived from the plotted measurements.  
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Figure 4.6 The CNR and Normalized CNR for varying breast thicknesses.  

Discussion 

In the above experiments, the main goal was to optimize imaging parameters 

and a filter for HE 3CB images. A Cu filter of 0.4064 mm (16 mils) seems to be optimal 

in terms of meeting dose requirements, availability, and CNR. Imaging at 71 mAs 

optimizes CNR while satisfying dose requirements. One limitation of this study is that 

breast thicknesses higher than 6 cm, which can be found in clinical practice, were not 

considered. It would be valuable to see if dose requirements are met using a 0.4064 

mm filter at 71 mAs exposure time for thicker breasts. Lastly, it is extremely important to 

note that when acquiring HE 3CB images, technicians must ensure that the Cu filter is 

installed. If the Cu is not installed, the given dose to patients would be approximately 10 

times the LE image dose. 
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Part II: Methodology for determining 3D breast thickness from raw 
tomosynthesis projections 
 

One important aspect of the 3CB technique is breast thickness estimation. For 

FFDM 3CB, an SXA phantom is used to estimate breast thickness using known 

geometric positioning of the phantom and then determining the paddle tilt angle and 

.[Check Supplement submission to see what I wrote in there about this]. Since DBT 

acquires multiple projections during its sweep, however, it may be possible to estimate 

breast thickness from these raw projections. The main goal of the following experiments 

was to identify possible variables for accurately estimating breast thickness from DBT 

raw projections.  

 

Methods 

 

The ASTRA Toolbox (Vision Lab, University of Antwerp, Belgium and Centrum 

Wiskunde & Informatica (CWI) in Amsterdam, The Netherlands) was used to create 

simulations in MATLAB (Natick, Massachusetts, USA) software. It is “a software 

platform to address the need for a flexible, efficient, and easy to use development 

platform for tomographic algorithms.”[62, 63] The geometry for the simulations was 

meant to replicate a typical DBT imaging modality and is shown in Figure 4.7. 

Sinograms were created from the simulated tomosynthesis projections of a breast-like 

object. Examples of sinograms for CT and DBT scans are shown in Figure 4.8.  
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Figure 4.7 ASTRA toolbox experiment imaging geometry and parameters.  
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Figure 4.8 Example sinograms of a simple breast phantom for CT and DBT simulations. (a), (b), and (c) show the 
top, side, and front views of the geometry of the object. (d) shows a sinogram made from a simulated CT scan with 
59 projections over a sweep angle 𝜽 ൌ 𝟏𝟖𝟎° (𝒅𝜽 ൌ 𝟑. 𝟏𝟐𝟓°). (e) shows a sinogram made from a simulated DBT scan 
with 9 projections over a sweep angle 𝜽 ൌ 𝟐𝟓° (𝒅𝜽 ൌ 𝟑. 𝟏𝟐𝟓°).  

 

Sinograms were selected for investigation because they contain z-direction (the axis 

perpendicular to the detector plane) geometric information about an imaged object. It 

was hypothesized that by varying breast thickness, intensity (i.e., breast density), and 

diameter of simulated DBT projections, sinograms would contain information that 

correlated with breast thickness. Initial investigations sought to see if these parameters 

could be minimized with an error function. Next, ten random breast sinograms were 

generated by varying breast thickness, intensity, and diameter from simulations to see if 

it was possible to solve for these parameters. An iterative method solved for these by 

minimizing RMSE between a randomly generated sinogram and a library of generated 
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sinograms. To aid in finding the global minimum instead of an erroneous local minimum, 

only sinograms with breast parameters that were within 2 mm, 5mm, and 10 of the 

breast thickness, diameter, and intensity were searched. In real-world applications, 

these initial parameters would be the breast thickness information from the DICOM 

image header (e.g., the variable BodyPartThickness), the breast diameter derived by 

measuring breast thickness from the perpendicular tomo projection (𝜃 ൌ 0°), and breast 

intensity from the average intensity of the breast. 

Results 

Figure 4.9 shows the cross-sectional view and sinogram of simple a breast object 

of varying thickness that was generated using the ASTRA Toolbox. The parameters for 

the top figures are 20 mm, 100 mm, and 200 for breast thickness, diameter, and 

intensity, respectively. The bottom figure varied only in breast thickness (60 mm). Note 

the difference in the edges between the two sinograms. The 60 mm breast thickness 

sinogram seems to have a smaller difference between the starting (left) edge value of 

the first projection (x-axis value = 68) and the ninth (x-axis value = 59). This difference 

approximately doubles for the 20 mm breast (x-axis value = 68 for the first projection 

and x-axis value = 49 for the ninth).  
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Figure 4.9 Cross-sectional view and sinogram of simple a breast object of varying thickness (top thickness = 20 mm, 
bottom thickness = 60 mm). 

Figure 4.10 summarizes the feasibility of a using an error function to minimize the 

simulated breast parameters. For each plot, one parameter varied while the other two 

were held constant. Minima are found for the three parameters for a simulated breast 

sinogram. After these initial findings, the RMSE was computed between a sinogram of 

randomly generated breast parameters and a library of sinograms. The iterative method 

varied all three parameters in each iteration and is shown in Figure 4.11. The estimated 

minima are found for each iteration (top, middle, and bottom plots). The target values for 

breast thickness, diameter, and intensity were 53 mm, 77 mm, and 200, respectively. 
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Figure 4.10 RMSE of a pre-selected breast sinogram and generated sinograms of varying breast parameters.  
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Figure 4.11 The RMSE between a sinogram of random breast parameters and a library of sinograms for an iterative 
method.  

  

Figure 4.12 top plot shows the parameters for the ten breast sinograms that were 

generated, and the bottom plot shows the error between actual and iteratively-found 

estimates. In all cases, the iterative method had the most error in the intensity 

parameter. Estimated breast thicknesses and diameters were within their search range, 

±2 mm and ± 5mm, respectively.  
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Figure 4.12 (Top) Breast sinograms of randomly generated thickness, diameter, and intensity parameters and 
(Bottom) the error between actual and iteratively-found estimates.  

 

 

Discussion 

 

The above investigations sought to derive potential variables of interest as 

predictors of breast thickness from raw DBT projections using the ASTRA Toolbox. 

Thickness estimates derived through an iterative search method seem promising, 

though the search method found it difficult to accurately estimate the breast intensity 

parameter. Since intensity had a larger search range (±10), it is probably more likely to 

find a local minimum instead of the global one. From Figure 4.9, however, sinogram 

edges could potentially be used as a predictors of breast thickness estimates from raw 

DBT projections. 
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Chapter 5 Accurate body composition estimates from whole-body 
silhouettes 
 

Dual-energy X-ray Absorptiometry (DXA) has been widely used to study body 

composition, and obesity has been linked as a major risk factor for cancer.[64] More 

specifically, large epidemiological studies have “…found that overweight or obese 

women are at increased risk of developing postmenopausal breast cancer.”[65] In 

addition, current trends show that endocrine-based mechanisms may act as mediators 

in the link between obesity and breast cancer for postmenopausal women.[66-68] 

Moreover, monitoring and maintaining a lean body may offer “…a way in which 

[postmenopausal-]women can modestly to significantly reduce their relative breast 

cancer risk.”[66] Although unrelated to three-compartment breast imaging, here a 

method is described that could potentially help monitor lean mass from 2D optical 

images, which was developed by Avila et al during his graduate studies.[69] 

Introduction 
 

With the globalization of high-caloric foods, the rate of obesity in children of 

developing regions such as Southeast Asia and China has increased from 2 to 10% 

over the last 20 years.[70] In many developing countries, there is a dual burden of 

malnutrition, where under- and over-nutrition occur simultaneously.[71] Body mass 

index (BMI) is often used as a measure of under- and over-nutrition since it describes 

the body weight relative to height and it can be measured with little or no cost. Studies 

have shown that increased BMI is associated with increased risk for diabetes[72] and 

metabolic syndrome;[73] however, because BMI is only a measure of overall insufficient 



81 
 

or excess weight, it does not discern the relative amounts of fat and lean mass .[74-76] 

For example, there can be a two-fold variation in fat mass for a given BMI in 

children.[77, 78] Furthermore, the distribution of fat changes in children and adolescents 

throughout their development, and BMI cannot directly monitor these changes.[78] The 

relationship of BMI to percent body fat changes as a function of age and sex.[79] Must 

and Anderson have suggested using BMI Z-scores (BMIZ) instead of BMI to represent 

what is normal for BMI as a function of age and sex trends[80], and BMIZ is commonly 

reported instead of BMI in pediatric studies.  

Unlike BMI and BMIZ, the fat mass index (FMI, kg/m2) and fat-free mass index 

(FFMI, kg/m2) describe body mass in terms of fat and lean masses independently. FMI 

is a significant determinant of diabetes type and overcomes the limitation of BMI and 

BMIZ not directly measuring fat and lean masses.[81] FFMI is associated with strength 

and muscle mass and is used in sarcopenia prediction models.[82] 

To measure FMI and FFMI, total body mass must be subdivided into fat and fat-

free masses. Previous approaches to measuring FMI and FFMI include bioelectrical 

impedance analysis (BIA),[83, 84] underwater weighing,[85] air-displacement 

plethysmography,[86] deuterium dilution,[87, 88] and dual-energy X-ray absorptiometry 

(DXA).[89-91] Of these, DXA is considered a reference method because few 

assumptions are made in its determination of fat and lean mass. DXA is not widely used 

to characterize body composition in large populations or in a clinical setting because the 

technique is typically more costly than other body composition methods and it uses 

ionizing radiation.[85] However, all of the techniques listed require measurement 
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devices that range from thousands to tens of thousands of dollars, making FMI and 

FFMI impractical in low-resource environments.  

An alternative approach is to quantify fat and lean masses using 

anthropomorphic body shape measures of either skinfold thicknesses or body 

circumferences. Body shape measures including waist, hip, and thigh circumferences, 

as well as sagittal abdominal diameter, are already used in epidemiological studies for 

their high association with diabetes[92] and metabolic syndrome.[93-96] In adult models 

of metabolic syndrome, BMI loses its predictive power when waist circumference is 

added to the model.[97] Skinfold thicknesses provide an estimate of subcutaneous fat 

thickness by measuring the thickness of pinched (doubled over) skin, but models of 

whole body percent body fat derived from skin fold thickness are not accurate compared 

to more direct methods like DXA.[98]  

In this study, we propose that the silhouette of a person is a reasonable 

representation of overall body shape, and that shape can be used to estimate fat and 

lean body masses. Silhouettes, or shadow images that represent the outline of objects, 

have the advantage of being easily created with minimal processing using low-

resolution cameras, which are now ubiquitous. For a proof-of-concept, we created 

silhouettes from an existing DXA whole-body dataset of a large cohort of children. This 

approach allows for testing the silhouette imaging concept and it accuracy to DXA 

before recruiting a large population of children to have new DXA and optical scans. 

Here we present a method to derive fat and fat-free indices from silhouettes and show 

their agreement with the true indices acquired using whole-body DXA scans.  
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Methods 
This study is an in-vivo, cross-sectional, comparative study using a convenience 

sample; the sample population of children varies in age, BMIZ, and sex. 

Participants 
 The participants were recruited as part of the Bone Mineral Density in Children 

Study (BMDCS). BMDCS was a prospective cohort study of 1554 children of mixed 

ethnicity ranging in age from 5 to 16 years. Begun in 2002 and sponsored by the 

National Institute for Children’s Health and Diseases (NICHD), BMDCS was designed to 

study the bone health of healthy children as they aged over a 6-year period. The scans 

used in the present study were the baseline scans from 5 different locations in the 

United States from July 2002 to November 2003.[89] The selection criteria for the 

children were defined by the BMDCS through telephone questionnaires and physical 

examination. A complete description of recruitment and the study has been 

published.[89] Two hundred children (100 male) were selected to represent a wide 

range of body shapes and demographic descriptors. Weights were measured on digital 

scales, and heights were measured using stadiometers. All measures including DXA 

were acquired while the participants were dressed in examination gowns without shoes. 

BMIZ for each participant was calculated using growth charts from the Centers for 

Disease Control and Prevention.[99] Our selection criteria was to choose the extremes 

(low and high values) for age, height and weight from both sexes, then use a random 

selection criteria for the remaining individuals. 

DXA acquisition 
Our selected children were scanned on one of four Hologic Discovery/A systems 

(Hologic, Inc., Bedford, MA). A fifth BMDCS study site was not used in our pilot because 

the children were scanned on a Hologic Discovery/W. The DXA scans created using the 
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Discovery/W have a slightly different projection of the body due to differences in the fan-

beam geometry compared to the Discovery/A. All scans were centrally analyzed at the 

University of California, San Francisco using Hologic Apex 3.0 software. FMI and FFMI 

were derived from the total body fat and lean masses as follows: FMI = fat mass/height2 

and FFMI = (lean soft tissue mass + BMC)/height2. Note that BMI = FMI + FFMI using 

this definition. Participants were centered on the scanner table with their arms out to the 

side and feet pointed downwards, which followed the manufacturer’s standard scan and 

positioning protocols.[100] Further details of the acquisition and analysis procedures are 

described elsewhere.[89]  

 

   

Figure 5.1. (left) Image of the high-energy attenuation portion of the DXA 
scan. Bone and the density of soft tissue can clearly be distinguished as 
shades of grey. (right) Silhouette representation of the same DXA image. 

 



85 
 

Silhouette images 
In-house algorithms written in MATLAB (MathWorks Inc.) were used to extract 

high-energy X-ray attenuation images from raw DXA image files.[101] All pixels above a 

threshold value defined the silhouette and set to “1”. All pixels with values below the 

threshold were set to “0” (see Figure 5.1). Linear spatial transformations (translation and 

rotation) were then used to align all images to each other. Images were then cropped 

above the head to remove unused pixels and at the ankles to remove the variance of 

the position of the feet. Due to the standardized geometry of DXA device, pixel 

dimensions were identical across all patients. Quality control was performed on the 

silhouettes by manually reviewing each and checking for abnormalities in the body 

positioning that was markedly different from the standard DXA positioning. 

Active Shape Modeling 
 

 

Figure 5.2. Delineation of 50 
points of interest on 
silhouettes for active shape 
modeling.   
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We built a 50-point Active Shape Model (ASM) to describe body shape.[102] See 

Figure 5.2. The selection criteria for the 50 points were as follows: a) points were placed 

on vertices along the body outline (inseam, underarms, elbows, etc), b) additional 3-

point sets were used to capture major body contours (thighs, shoulders, neck etc.) 

defining the start, apex, and end of the contour, and c) point locations were picked that 

were easily visualized such that their placement was accurate and precise across the 

sample. The 50 points chosen were considered to be the minimum number of points 

that satisfied these criteria, but an alternative number of points was not tested at this 

time. The ASM of the silhouettes was built using the active shape modeling toolkit 

(Visual Automation Limited, Manchester, U.K.), a software program that generates 

image parameters based on principal component analysis of fiducial markers on 

images, the details of which can be found in Gregory et al.[103] and Cootes et al.[102] 

In brief, the 50 points were manually placed on the first few images. Then, the software 

used these initial placements to build a limited ASM. With this limited ASM, the software 

predicted the placement of the points in subsequent images. All points were manually 

reviewed and adjusted as necessary. This process was repeated, i.e. initial placement 

by the limited ASM, manual inspection, then the rebuilding of the ASM, for every 10 

images analyzed until all of the images were added to the model. 

From the dataset formed from the point positions of all 50 points on all images, 

modes of variation were generated using principal component analysis. The result was 

a model that described the unique modes of variation in the form of a set of 

eigenvectors (i.e. modes of variation) where each successive eigenvector explains less 

of the variation than the previous. By combining the average point placements with the 
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linear combinations of the eigenvector basis, the location of the fiducial markers for any 

particular image can be generated. The coefficients that are used in the linear 

combination (i.e., how much each eigenvector is scaled) are the output parameters of 

each image. These output parameters were used for statistical analysis. It is convenient 

to visualize principal components in this context by generating series of shape images 

in which a single principal component is varied while all others are held fixed at their 

average value. Such images are shown in Figure 5.3. In each row, the middle image is 

the overall “average shape” generated from the test data set. Extreme images are 

generated by varying the principal component of interest to its +3 and -3 standard 

deviation values and combining with the average image. These extreme images are 

shown on the left and right of the average image. For example, it is readily apparent that 

PCA Mode 1 (pc1) captures shape information related to body width and height.  
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Figure 5.3. Silhouette representations of the first 10 (i.e. 0 to 9) modes used to model FFMI in both boys and girls. The 
average silhouette is shown in the middle and the silhouettes representing -3SD (left) and +3SD (right) are also shown.  
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Statistics 

All statistics were performed in SAS version 9.3 (SAS Institute, Cary, NC). The 

BMDCS study population was separated into two groups by sex. FFMI was defined as 

௅௘௔௡ ௦௢௙௧ ௧௜௦௦௨௘ ௠௔௦௦ା஻ெ஼

௛௘௜௚௛௧మ  𝑘𝑔/𝑚ଶ where BMC = bone mineral content, FMI was defined as 

ி௔௧ ௠௔௦௦

௛௘௜௚௛௧మ  𝑘𝑔/𝑚ଶ, and percent fat was defined as 
ி௔௧ ௠௔௦௦

௧௢௧௔௟ ௠௔௦௦
∗ 100 . Note that BMI = FMI + 

FFMI using these definitions. The ASM parameters of each silhouette (i.e., the 

coefficients of the eigenvector basis) were placed in a matrix, with each column 

corresponding to the principal component number and each row the silhouette number 

corresponding to each of the children.  

Limiting our analysis to the components needed to describe 95% of the image variation, 

step-wise linear regression with n-fold (leave-one-out) cross-validation (GLMSELECT 

procedure in SAS) was used to generate a predictive model for FFMI, FMI, and percent 

body fat. Separate model equations were made from both PCA components and 

demographic variables. A cross-validation stop criterion was defined on the Schwarz 

Bayesian criterion (SBC). Statistical significance was defined as the p < 0.05 threshold. 

The final models for FFMI, FMI, and percent body fat were generated using three 

different approaches. As a reference point, we first derive prediction equations using 

demographic variables only (age, sex, height, weight, BMIZ). We compared these to 

equations derived using principal components only. Finally, we combined principal 

components and demographic variables.  
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Results 
 

In a total of 200 participants, 11 were excluded during quality control for reasons 

including movement and poor positioning. Of the remaining 189 participants, 93 were 

male. The children were mainly white (112) but also include Asian (8), Hispanic (24), 

and Black (45). Summary statistics about the selected test population are provided in 

Table 5.1. Twenty-six principal components were required to explain 95% of the variance 

in silhouette shapes. All subsequent analysis was limited to these 26 components.  

Table 5.2 shows the correlations between the principal components, 

demographic, and adiposity measures. Several of the components (e.g., pc0, pc1 and 

pc5) showed significant correlation with multiple demographic and adiposity variables. 

Additionally, a few components (e.g. pc9 ) were not found to be significantly correlated 

with any demographic or adiposity variables. It can be seen in Figure 5.3 that pc9 

appears to capture a variance in positioning of the left shoulder, a “tilt” along the 

longitudinal-axis, irrelevant to our analyses. Other patient positioning artifacts such as 

arm and leg abduction/adduction can be observed in several of the other principal 

components. 

Table 5.1. Summary statistics of the test population separated by sex. 

Demographic  
Variable 

Girls (n = 96)     Boys (n = 93) 

Mean  Std. Dev.  Min  Max     Mean (SD)  Std. Dev.  Min  Max 

Age (years)  10.3  3  6  16     10.5  3.2  6  16 

Height (cm)  141.2  15.5  108  173     144.6  19.3  111  185 

Weight (kg)  38.9  14.9  17.2  81.8     40.9  17.7  18.1  87.4 

BMI (kg/m2)  18.8  3.8  13.3  30.1     18.6  3.5  13.7  28.8 

BMIZ  0.4  0.9  ‐1.8  1.9     0.3  1  ‐2  1.9 

FMI (kg/m2)  5  2.1  2.1  10.4     3.9  1.7  1.7  10 

FFMI (kg/m2)  13.3  2.1  10.4  20.3     14.2  2.6  10.5  21.6 

Percent Body 
Fat 

25.5  6.1  14.3  39.3     20.4  6  9.7  38.1 
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The body composition prediction equations for boys and girls are shown in Table 

5.3 and Table 5.4, respectively. In general, the demographic information only had a 

modest ability to predict percent body fat in boys and girls (R2 = 0.457 and 0.61 

respectively.) Using only principal components to predict % Fat was also modestly 

correlated (0.73 and 0.59 respectively.) For % Fat, a combination of demographics and 

principal components created the best models (0.75 and 0.69 respectively). For the 

boys, the equation (omitted) for %fat (PCA+demo) included two additional PC terms 

(PC3 and 13) but no demographic variables. These coefficients remained due to the 

progression of the stepwise selection algorithm and were interpreted as artifacts. 

 For all measures of FFMI, FMI, and percent body fat, the combination of 

principal components with demographics performed equally or better than either 

principal components alone or demographics alone. No conclusion can be drawn 

whether the principal components alone fare better or worse than the demographics 

alone. They performed about equally well for % Fat and FMI in girls (Table 5.4) but the 

principal component alone model performed better for % Fat and FMI in boys (Table 

5.3), while the demographics-only model had a slight advantage in FFMI prediction. 
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Regression plots of the best models versus the actual measures are shown in Figure 

5.4.  

Table 5.2. Correlation of the most significant principal components with demographic and adiposity variables (R2). 

Principal 
Comp. # 

Age  Height  Weight  BMI z‐score  %Fat  FFMI  FMI 

Boys  Girls  Boys  Girls  Boys  Girls  Boys  Girls  Boys  Girls  Boys  Girls  Boys  Girls 

pc0  0.659‡  0.479‡  0.688‡  0.469‡  0.784‡  0.700‡  0.615‡  0.698‡  0.364‡  0.647‡  0.716‡  0.695‡  0.622‡  0.780‡ 

pc1  0.534‡  0.454‡  0.544‡  0.510‡  0.339‡  0.243*  ‐0.284†  ‐0.374‡  ‐0.173  ‐0.286†  0.137  0.105  ‐0.100  ‐0.180 

pc2  0.183  0.094  0.210*  0.147  0.170  0.090  0.105  0.000  ‐0.083  0.051  0.175  0.035  0.023  0.055 

pc3  0.069  ‐0.098  0.081  ‐0.082  0.116  0.034  0.117  0.316†  0.033  0.266†  0.124  0.065  0.070  0.224* 

pc4  ‐0.261*  ‐0.189  ‐0.244*  ‐0.196  ‐0.179  ‐0.055  0.218*  0.249  0.456‡  0.166  ‐0.234*  0.020  0.337†  0.154 

pc5  ‐0.028  0.352‡  0.014  0.307†  0.079  0.388‡  0.228*  0.204*  0.217*  0.193  0.083  0.350†  0.265*  0.300† 

pc6  ‐0.165  0.0003  ‐0.224*  ‐0.064  ‐0.103  0.108  0.195  0.186  0.278†  0.112  ‐0.059  0.173  0.258*  0.169 

pc7  ‐0.118  ‐0.176  ‐0.097  ‐0.149  ‐0.183  ‐0.108  ‐0.099  0.029  ‐0.004  0.031  ‐0.219*  ‐0.101  ‐0.085  ‐0.024 

pc8  ‐0.019  ‐0.170  ‐0.039  ‐0.230*  0.009  ‐0.174  0.020  0.008  ‐0.022  ‐0.011  0.035  ‐0.132  ‐0.016  ‐0.061 

pc9  ‐0.091  0.080  ‐0.119  ‐0.042  ‐0.086  ‐0.013  ‐0.009  ‐0.037  0.106  0.051  ‐0.073  ‐0.023  0.078  0.024 

pc10  0.152  0.178  0.165  0.219*  0.268†  0.133  0.376‡  ‐0.016  0.319†  0.127  0.260*  0.000  0.413‡  0.110 

pc11  0.131  0.074  0.107  0.096  0.084  0.062  ‐0.048  0.054  ‐0.028  0.046  0.043  0.030  ‐0.021  0.016 

pc12  0.121  ‐0.165  0.141  ‐0.258*  0.154  ‐0.170  0.082  ‐0.078  ‐0.134  ‐0.169  0.184  ‐0.057  ‐0.059  ‐0.148 

pc13  ‐0.120  ‐0.111  ‐0.056  ‐0.114  ‐0.060  ‐0.151  ‐0.001  ‐0.124  0.273†  ‐0.107  ‐0.161  ‐0.140  0.206*  ‐0.148 

pc14  0.058  0.137  0.051  0.111  ‐0.006  0.130  ‐0.216*  0.021  ‐0.080  0.051  ‐0.071  0.109  ‐0.104  0.096 

pc15  0.046 
0.294† 

‐0.015 
0.204* 

0.009 
0.195 

0.070 
‐0.039 

‐0.060 
‐0.117 

0.071 
0.224* 

‐0.041 
‐0.011 

pc16  0.319† 
0.164 

0.335† 
0.157 

0.335† 
0.111 

0.0488 
‐0.039 

‐0.288† 
‐0.158 

0.375† 
0.141 

‐0.130 
‐0.069 

pc17 
‐0.130  0.035  ‐0.142  0.119  ‐0.217*  0.133  ‐0.278†  0.095  ‐0.043  ‐0.047  ‐0.250*  0.171  ‐0.096  0.046 

pc18 
‐0.044  ‐0.015  ‐0.050  0.072  ‐0.077  0.004  ‐0.058  0.039  0.005  0.022  ‐0.078  ‐0.034  ‐0.044  ‐0.015 

pc19 
0.215*  ‐0.154  0.142  ‐0.169  0.155  ‐0.116  0.090  ‐0.074  ‐0.205*  ‐0.111  0.265*  ‐0.053  ‐0.065  ‐0.075 

pc20 
‐0.059  0.086  ‐0.078  0.093  ‐0.053  0.142  ‐0.180  0.017  ‐0.018  0.098  ‐0.097  0.112  ‐0.017  0.160 

pc21 
‐0.029  0.007  ‐0.055  0.086  ‐0.067  0.056  ‐0.077  0.082  0.090  ‐0.027  ‐0.110  0.055  0.040  ‐0.015 

pc22 
0.104  0.036  0.032  0.057  0.025  0.023  ‐0.024  0.012  0.094  0.043  ‐0.020  ‐0.007  0.113  0.008 

pc23 
‐0.123  0.232*  ‐0.153  0.163  ‐0.111  0.183  0.095  0.130  ‐0.067  0.019  ‐0.011  0.256*  ‐0.067  0.086 

pc24 
‐0.129  ‐0.076  ‐0.135  ‐0.079  ‐0.188  ‐0.043  ‐0.176  0.096  ‐0.230*  0.110  ‐0.139  ‐0.045  ‐0.275†  0.070 

pc25 
‐0.073  ‐0.120  ‐0.067  ‐0.092  ‐0.078  ‐0.177  0.015  ‐0.146  0.056  ‐0.170  ‐0.080  ‐0.176  0.025  ‐0.191 

pc26 
‐0.069  0.136  ‐0.059  0.169  ‐0.009  0.062  0.099  ‐0.147  0.052  ‐0.093  0.024  ‐0.031  0.069  ‐0.075 

* indicates p<0.05, † indicates p<0.01, ‡ indicates p<0.001 
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Table 5.3 Prediction equations, R2 adj. (see definition below table), and root-mean-square error (RMSE), for 
demographic variables, FFMI, FMI and Percent Fat from PCA modes and demographic information using the 
boys’ data.  

Variable (method)   Boys Prediction equation  R2adj  RMSE 

% Fat (demo)  ‐94.943 + 1.761*height ‐ 0.007*height2 + 0.44*weight + 1.421*BMIZ  0.457  4.411 

% Fat (PCA) 
21.818 + 13.218*pc0 ‐ 6.225*pc1 + 21.929*pc4 + 17.214*pc5 + 14.52*pc6 + 
30.348*pc10 ‐ 28.108*pc12 ‐ 49.375*pc16 ‐ 42.53*pc19 + 32.767*pc21 

0.728  3.119 

% Fat (PCA + demo)  (no demographic variables added significantly to the model)     

     

FMI (demo)  3.523 + 1.266*BMIZ  0.519  1.186 

FMI (PCA) 
4.291 + 6.025*pc0 ‐ 1.461*pc1 + 2.45*pc3 + 4.989*pc4 + 6.007*pc5 + 4.508*pc6 ‐ 

2.237*pc8 + 8.5*pc10 ‐ 5.873*pc12 ‐ 8.393*pc16 ‐ 6.109*pc19 + 7.043*pc21 
0.861  0.637 

FMI (PCA+demo)  (no demographic variables added significantly to the model)     

     

FFMI (demo)  14.979 ‐ 0.061*height + 0.197*weight  0.884  0.875 

FFMI (PCA) 
14.043 + 8.538*pc0 + 1.792*pc2 + 3.204*pc3 ‐ 3.863*pc4 + 5.034*pc5 ‐ 5.954*pc7 + 
6.664*pc12 ‐ 12.616*pc13 + 17.425*pc16 ‐ 10.531*pc17 + 13.946*pc19 ‐ 9.234*pc21 

0.822  1.084 

FFMI (PCA + demo) 
14.093 ‐ 3.536*pc4 ‐ 3.335*pc10 + 4.013*pc12 ‐ 5.218*pc13 + 7.87*pc16 + 7.814*pc19 

‐ 5.581*pc21 + 0.176*age ‐ 0.05*height + 0.126*weight + 0.692*BMIZ 
0.946  0.599 

demo: R2 and RMSE were calculated using only demographic variables 
PCA: R2 and RMSE were calculated using only the PCA coefficients derived from the active shape model 
PCA + demo: R2 and RMSE were calculated using both PCA & demo. 
R2 adj: the coefficient of determination adjusted for the number of parameters used in the model equation.
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Table 5.4. Prediction equations, R2 adj. (see definition below table), and root-mean-square error (RMSE), for 
demographic variables, FFMI, FMI and Percent Fat from PCA modes and demographic information using the 
girls’ data.  

Variable (method)  Girls Prediction equation  R2adj  RMSE 

% Fat (demo)  23.586 + 5.257*BMIZ  0.606  3.830 

% Fat (PCA)  24.998 + 17.594*pc0 ‐ 7.372*pc1 + 11.857*pc3 + 18.405*pc5 + 19.104*pc10  0.586  3.926 

% Fat (PCA + demo) 
23.577 + 7.099*pc0 + 19.925*pc10 ‐ 18.239*pc15 ‐ 21.687*pc16 ‐ 

32.043*pc17 + 4.111*BMIZ 
0.691  3.392 

     

FMI (demo)  4.217 ‐ 0.0002422*height2 + 0.137*weight + 0.913*BMIZ  0.851  0.795 

FMI (PCA) 
4.766 + 7.609*pc0 ‐ 1.022*pc1 + 2.038*pc2 + 3.375*pc3 + 2.599*pc4 + 

7.732*pc5 + 6.181*pc6 + 8.311*pc10 ‐ 5.523*pc13 ‐ 5.651*pc17 
0.886  0.694 

FMI (PCA+demo) 
5.19 + 1.43*pc0 + 5.079*pc10 ‐ 3.931*pc12 ‐ 4.834*pc15 ‐ 4.907*pc16 ‐ 

6.405*pc17 ‐ 5.28*pc19 ‐ 0.00032333*height2 + 0.153*weight + 0.586*BMIZ 
0.895  0.667 

     

FFMI (demo)  10.767 + 0.165*age ‐ 0.00029077*height2 + 0.173*weight  0.881  0.712 

FFMI (PCA) 
13.288 + 6.962*pc0 + 1.807*pc1 + 2.258*pc2 + 8.859*pc5 + 4.099*pc6 + 

9.11*pc15 + 9.64*pc16 
0.732  1.069 

FFMI (PCA + demo) 
10.649 ‐ 3.135*pc10 + 5.363*pc17 + 0.192*age ‐ 0.00028224*height2 + 

0.166*weight 
0.892  0.679 

demo: R2 and RMSE were calculated using only demographic variables 
PCA: R2 and RMSE were calculated using only the PCA coefficients derived from the active shape model 
PCA + demo: R2 and RMSE were calculated using both PCA & demo. 
R2 adj: the coefficient of determination adjusted for the number of parameters used in the model equation. 
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Figure 5.4. Comparison between FMI (top), FFMI (middle), and percent fat (bottom) values acquired from DXA 
scans and predicted by the PCA models constructed from silhouettes with boys (left) and girls (right). The 
associated R2 adj. values are found in Table 3 and 4. 
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Discussion 
In this study, we evaluated the possibility of using silhouettes, or whole body 

shadow images, to estimate fat and lean body composition indices. We found that the 

addition of the shape descriptors in the form of principal components did improve on the 

estimates of body composition over a demographics-alone model for both boys and 

girls. Additionally, the demographics-only and the PCA-only models had comparable R2 

adj. and RMSE, with the exception of girls’ FFMI. Even though these silhouettes were 

made from DXA whole-body scans, this study suggests that shadow imaging using 

simpler optical imaging devices, such as simple cell phone cameras, could be used to 

generate similar silhouettes and associations to body composition. To our knowledge, 

this is the first study of its kind to show that the shape of silhouettes can be used to 

quantify body composition measures. 

Clearly, some principal components generated by our analysis were related to 

the positioning of the individual. DXA whole-body scans are acquired with standardized 

positioning, but the standardization was not intended for direct image registration. It 

would easily be possible to eliminate many of the positioning variation modes (leg 

abduction/adduction, torso twisting, arm raising, etc.) if the DXA scans were acquired 

with this detail in mind. Likewise, for an optical acquisition protocol, positioning of the 

arms and legs could be more tightly controlled to reduce the contribution of positioning 

to the overall total variation or omitted if it is found that they provide little to no benefit in 

the model. In DXA scans, there is a tendency to not repeat a scan if there are minor 

positioning issues because of radiation exposure.  

This study was a pilot demonstration and not intended to be a final model since, 

ultimately, it is not useful to use DXA images as the primary data source for silhouettes. 
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Silhouette models should be derived for a specific imaging technology, since 

magnification and projection differences may change the presentation of the silhouette. 

The silhouettes used in this study were low spatial resolution compared to cell phone 

cameras. The DXA-based silhouette images were created with a maximum of 21,800 

pixels (1.0 x 6.5 mm2 pixel size), or in common camera terminology, the equivalent to a 

0.022 megapixel resolution. This resolution is worse than that of the cheapest 640x480 

(i.e. 0.31 Megapixel) cell-phone camera. Most current cell phones have cameras with 

resolution of 1 megapixels or above. Besides spatial resolution, one must also consider 

the pose (position + orientation) of subjects, their clothing, and the imaging background. 

These three factors require standardization for optical imaging as it was for the DXA 

imaging to create a successful ASM. For optical imaging, clothing would have to be 

thinly layered and fit snugly so as to not significantly alter patients’ body outline. In 

addition, patients should be optically imaged using standardized anatomical positioning 

to minimize the variance unrelated to body composition (as seen in some of the PCA 

modes). Unlike DXA, repositioning and re-imaging could be performed repeatedly until 

an ideal image is acquired. The distance between the imaging plane and the camera 

would also need to be equivalent across all images. To adjust for differences in optical 

characteristics of different cameras, a calibration object of known dimensions (e.g. a 

meter stick or piece of letter-size paper) may be placed coplanar with the subject. Post-

acquisition scaling can then be performed to normalize pixel dimensions. Lastly, a 

“green screen” technique could be used to insure the removal of background was 

consistent. Given that the above mentioned factors are mitigated, cell phone images 

should perform equally or better than DXA images for generating silhouettes. The 
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optical extension of this study could be useful in clinical applications, low resource 

settings (e.g., point-of-care centers) or when traveling with light equipment is desired 

(e.g., visiting patients’ homes to acquire adiposity measurements). Three-dimensional 

optical images, such as available from the Microsoft Kinect[104], may be advantageous 

to 2D images in that they collect more detail on body curvature, especially that 

curvature that cannot be seen in a silhouette. The strengths and limitations of 2D versus 

3D approaches for fitness and nutritional assessment have yet to be explored. 

This study had several limitations. First, the participants were imaged in a supine 

position. We envision that the practical application will use a standing position. Body 

shape will be different for standing versus supine, but all the concepts derived here 

should be just as applicable. There is the possibility of over-fitting, given the number of 

variables included in our models. To address this, we used a cross-validation (leave one 

out) approach. Ideally, future validations of the optical imaging approach should use 

separate populations. Additionally, we did not address body shape difference by 

ethnicity. The sample size for each ethnicity was small. A larger and more diverse 

sample (separated into ethnicities) will be used in future studies to determine if there are 

unique body shapes by ethnicity. 

We have demonstrated the potential to derive FMI, FFMI, and percent fat 

estimates from whole body silhouettes that could be useful for the assessment of 

adiposity and muscularity. The technique presented here may be appropriate to apply to 

images acquired with simple cell-phone cameras.  
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Chapter 6 Future Directions 
 

The three-compartment breast technique is still in early development, though it 

has applications in other modalities as well. The concept of using a three-compartment 

model for tissue compositions can be applied in dual-energy computed tomography and 

magnetic resonance imaging as well. There have already been applications in CT by 

Ding et al.[105-107] Since CT has a sweep angle of 180°, the total thickness can be 

computed easily without any external phantoms. Their studies have shown that it is 

feasible to apply the 3CB technique to CT. In MRI, the total thickness can also be easily 

computed, since MRI is also a 3D imaging modality. In addition, chemical composition is 

already possible with MRI, so water, lipid, and protein signatures can be estimated. 3CB 

can also be implemented in digital breast tomosynthesis, and preliminary work has been 

done in this thesis. If it is shown possible to obtain accurate breast thickness estimates 

from tomosynthesis projections, one would still need to consider performing 𝐼଴ 

corrections, however.  

As shown, one limitation of the 3CB technique is how prone it is to errors. It 

would be valuable to assess the detectability of lesions using the 3CB technique. For X-

ray applications, a contrast detail mammography (CDMAM) phantom made from 3CB 

materials could elucidate 3CB limits. In addition, a separate CDMAM phantom made 

from biological materials would be even more informative, though precise manufacturing 

of such a phantom could be impractical.  

Recently, investigations combining the 3CB technique and quantitative imaging 

have revealed promising results for discriminating between benign and malignant 
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legions during diagnostic imaging. The positive predictive value (PPV) was 32.1% (35 of 

109; 95% CI: 23.9% - 41.3%) with a sensitivity of 100% for diagnostic digital 

mammography and 49% (34 of 70; 95% CI: 36.5% - 58.9%; p < .001) with a sensitivity 

of 97% and 35.8% (39 of 109) fewer total biopsies (p < .001)for combined 

mammography radiomics plus quantitative 3CB image analysis. Further developments 

could lead to lowering unnecessary breast biopsies.[108] 
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Chapter 7 Conclusions 
 

The work in this dissertation focused on further developing the three-

compartment breast composition technique, initially developed by Laidevant et al. in Dr. 

John Shepherd’s Lab, for use in clinical practice. Major efforts were made in correcting 

sources of error, which initially had impractical compositional thickness estimates. 

Another major task was to do initial developments for 3CB applications in digital breast 

tomosynthesis. Lastly, a novel technique for measuring body composition from 2D 

optical images to help monitor and maintain healthy body weight was covered. The 

conclusions for each of these works are summarized here. 

Three major sources of error were discovered that made the 3CB technique 

susceptible to incorrect compositional estimates. All three error sources have direct ties 

to minimizing differences between patient and calibration images; that is, all three 

sources should be corrected according to specific energies at which 3CB images are 

acquired. Attenuation coefficient differences in biological materials—for which 3CB is 

estimating compositional estimates—and their calibration equivalents relied on creating 

linear mappings between material spaces with bovine and chicken phantoms at specific 

kVps. Secondly, an empirical flat-fielding model was created to remove nonuniformities 

in FFDM from X-ray source spectra, making it so that 𝐼଴ would be position-independent 

along the detector plane. Thirdly, both 𝐼଴ correction models made it possible to obtain 

similar log-signal values between breast and calibration images, and both were made 

for specific kVps. Energy-based errors seemed to have limited the 3CB technique from 
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becoming clinically practical in FFDM, and efforts should be made to minimize 

differences between all patient and calibration imaging conditions.  

To make the 3CB applicable to DBT, two areas were investigated. Firstly, dose 

measurements and estimates were made for HE 3CB DBT images. It was found that a 

copper filter of 0.4064 mm (16 mils) seems to be optimal in terms of meeting dose 

requirements, availability, and CNR. In addition, imaging at 71 mAs seems to optimize 

CNR while satisfying dose requirements. Secondly, investigations sought to derive 

potential variables of interest as predictors of breast thickness from raw DBT 

projections. It was found that variables derived from sinograms could be potentially 

useful in estimating breast thickness from raw DBT projections. Though these two 

efforts have advanced 3CB DBT, there still remain many challenges. Indeed, many 

efforts will most likely focus on minimizing differences between patient and calibration 

images.  

The last topic discussed in this thesis focused on developing a novel body 

composition technique from optical images. This proof-of-concept study showed that it 

may be possible to determine fat mass index, fat-free mass index, and percent-fat from 

2D optical images. For breast cancer applications, this could aid in monitoring adipose 

and muscular tissues to monitor and maintain a lean weight to reduce risk of cancer for 

postmenopausal women.  

In Summary, two of the three major works in this study advanced the 3CB 

imaging technique to become more clinically practical in dual-energy absorptiometry 

applications. The last focus of this thesis may make it easier to monitor body 

composition in low-resource settings. 
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Appendix A: Code Availability 
Several software tools and analysis scripts were developed over the course of 

this dissertation. These pieces of code are maintained in secure repositories on the 

Shepherd Lab GitHub (https://github.com/shepherd-lab). A listing of relevant 

repositories is provided below. Please direct inquiries to Jesus Avila 

(jiavila@berkeley.edu) or John Shepherd (johnshep@hawaii.edu). 

 3CB Repository (https://github.com/shepherd-lab/3c_sxa) 

o MATLAB scripts for automatic processing and reprocessing of 3CB 

patients for estimating water, lipid, and protein thicknesses of breast 

lesions annotated by radiologists. 

o ASTRA Toolbox scripts in MATLAB for simulating and estimating breast 

thickness
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