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Abstract	
Ultrasonic guided waves represent a promising technique for detecting and localizing structural damage, 
but their application to realistic structures has been hampered by the complicated interference patterns 
produced by scattering from geometric features.  This work presents a new damage localization 
paradigm based on a statistical approach to dealing with uncertainty in the guided wave signals.  A 
bolted frame and a section of a fuselage rib are tested with different simulated damage conditions and 
used to conduct a detailed comparison between the proposed solution and other sparse-array 
localization approaches.  After establishing the superiority of the statistical approach, two novel 
innovations to the localization procedure are proposed: an approach to sensor fusion based on the 
Neyman-Pearson criterion, and a method of constructing simple models of geometrical features.  
Including the sensor fusion and geometrical models produces a substantial improvement in the system’s 
localization accuracy.  The final result is a robust and accurate framework for single-site damage 
localization that moves structural health monitoring towards practical implementation on a much 
broader range of structures. 
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1. Introduction	
Within the paradigm of structural health monitoring (SHM), there exists a hierarchy of information 
about a structure’s state that may be exploited in order to provide a meaningful diagnosis and thereby 
make well-informed decisions about performance, maintenance, or operational fitness [1].  The most 
basic SHM systems provide some form of indication about whether the structure has become damaged, 
based upon pre-established definitions of the target damage resulting from an operational evaluation of 
the system.  The next question following that of existence is the question of location of the damage.  
Damage extent and type would then be addressed, finally leading to a damage prognosis assessment, 
the ultimate goal for practical implementation of SHM systems [2]. 

In order to begin considering the answers to these questions, a particular inspection technology must be 
selected based on the parameters of the system to be monitored.  In this study, ultrasonic guided waves 
(UGWs) sent and received by a sparse array of piezoelectric transducers are the mechanism for 
extracting damage information.  Sparse array techniques can provide excellent coverage area per 
sensor, thus offering cost and weight savings over methods utilizing denser configurations [3].  In this 
paper, UGW interrogation is applied to testbeds of significant geometric complexity, including bolted 
connections, through-holes, stringers, boundaries, and other geometric features.  One of the chief 
difficulties with UGW interrogation has been that any geometric feature causes the waves to scatter 
(often in a manner similar to a target defect).  The resulting multitude of reflections often creates 
complex, multi-path interference patterns, making the waveforms difficult to interpret.  Techniques 
specifically developed for problems of a realistic level of complexity are needed in order to transition 
SHM systems to real-world applications. 



The present work focuses only on the damage localization problem, or the second step in the SHM 
decision hierarchy which assumes that the more basic question “Is damage present?” has been 
answered affirmatively in a global sense.  An optimal approach to the purely damage detection problem 
has been presented previously for the same testbeds [4].  Therefore, the fundamental objective of this 
paper is to develop methods that will most accurately predict the location of single-site damage on 
complex structures given that the damage exists. 

In this study, a statistical approach is utilized to determine first-arrival time-of-flight information for 
sparse arrays on two distinct and geometrically-complex testbeds – a bolted frame structure and a 
fuselage rib aircraft component.  The statistical approach, which was presented previously for a notably 
simpler structure [5], is extended to the more complex testbeds considered here.  The results not only 
demonstrate the robustness of the approach to specific structure and (simulated) damage types, but 
also confirm its superior localization performance compared to a representative selection of other 
localization algorithms in the literature.  To further enhance the localization accuracy, two novel 
techniques are developed and implemented: a sensor fusion approach based on the Neyman-Pearson 
criterion and a simple modeling approach for the most significant geometric features.  The integrated 
localization approach, considering sensor fusion and modeling techniques, provides excellent 
localization accuracy for highly-complex structures and represents a significant step toward the 
implementation of viable SHM systems. 

2. Localization	Strategy	
Most sparse ultrasonic sensor arrays in the SHM field utilize the method of delay-and-sum beamforming 
as the basis of determining the damage location [6–8].  In this method, reflectors are located by 
launching a pulse into the medium from one transducer and receiving the waveform at another 
transducer.  Through knowledge of the wave velocity, sensor locations, and actuation time, the time of 
arrival of the first reflected wave packet (or “first arrival”) can be translated into the total distance from 
actuator to reflector to receiver.  Most often, it is the residual signal—the signal resulting from a 
baseline subtraction procedure—that is considered, in order to reduce (ideally, to remove entirely) the 
influence of the direct arrival between sensors and any reflections from any benign structural features.  
The optimal baseline subtraction procedure is used in this study, as a straightforward technique to also 
minimize the impact of any changes in environmental condition by subtracting the baseline taken in the 
nearest environmental state, and thereby localize only damage-related reflections [9]. 

Because realistic structures tend to be more geometrically complex than a uniform plate, reflected 
damage signals quickly become obscured by reflections from benign geometric features.  While 
appropriate baseline subtraction can help mitigate the effect of these features, all of the echoes from 
any damage will likewise scatter from the geometric features, causing the residual signal to become 
substantially more complicated as well.  As a result, many adaptations to the delay-and-sum technique 
have been proposed.  A representative selection of these techniques has been implemented in order to 
compare the proposed solution with those existing in the literature.  The details of each localization 
algorithm are presented in the “Localization Results” section. 



However, in this work structures with a high level of geometric complexity are specifically targeted.  
These structures present challenges that lend themselves to a statistical formulation given the 
uncertainty imposed by the complexity.  Therefore, a maximum likelihood estimation (MLE) approach 
presented previously is used as an “arrival filter” to compute the likelihood that any given point in the 
time series of a particular sensor pair is the true first arrival point [5].  The key assumptions of this 
approach are as follows: before the first arrival, the enveloped residual signal may be described by a 
Rayleigh-distributed random process.  After the first arrival (due to the complex, overlapping echoes of 
waves reflected from the damage), the signal may be described as a Raleigh-distributed random process 
with a greater Rayleigh parameter.  Computing the maximum likelihood estimate of each of the two 
Rayleigh parameters, a likelihood ratio test can be implemented to describe the likelihood that each 
time point is the first arrival.  Because the maximum of the resulting vector is the predicted arrival point, 
the output of this filter may then be used in a delay-and sum procedure to produce a predicted damage 
location in the structure. 

There are some other key assumptions that go into the first-arrival estimation procedure.  First, as is 
common to all delay-and-sum formulations, this approach assumes single-mode propagation.  That is, 
one mode is dominantly actuated and received by the sensor array, and this mode has a known group 
velocity.  The velocity in both of these structures has been estimated from the time of flight of the direct 
arrivals (without baseline subtraction) and the known distance between sensors.  The final values 
consist of the average of the velocities estimated from all tests and most sensor pairs (excluding sensor 
pairs too far apart to receive direct arrivals and, in the fuselage rib, those with direct line-of-sight 
obstructions).  The final values obtained are 2120 m/s for the frame structure and 5450 m/s for the 
fuselage rib structure.  This procedure deliberately estimates an “effective” or in situ group velocity, 
which represents the speed at which energy actually propagates between sensors and requires no 
detailed wave propagation models of the medium.  Because in guided wave SHM, the frequency and 
wave mode are usually chosen to avoid the most highly dispersive situations, using the estimated, in situ 
velocity is enough of a robust approach to be effectual without the need for any explicit dispersion 
compensation model. 

Furthermore, the fundamental premise of the estimation is that the signal is broken into two sections– 
before and after the first arrival of a significant damage reflection.  Thus, the method inherently 
assumes that sensor pairs at arbitrary locations are actually able to observe damage reflections—that is, 
the amplitude of the first arriving wave (and the subsequent reflections) should be greater than the 
noise floor in a quantifiable sense.  However, the impact of sensor pairs not observing the damage can 
be mitigated with proper application of sensor fusion principles.  The damage modes considered here 
are not particularly directional, so the assumption of damage observability effectively replaces detailed 
models of scattering behavior (although such models could still be utilized with the proposed 
methodology).   

This study is concerned only with point-like scatterers assumed to occur at one location.  Should 
multiple-site damage be of interest, it is possible the MLE approach could be modified to take this into 
account.  The fundamental premise of the approach is that the first arrival is identified by the many, 
overlapping echoes that follow, so if the damage modes are separated by enough distance that they are 



observed by different sensor pairs, both sites may be evident in the delay-and-sum result.  Damage sites 
closer together or damage modes covering a larger area would be expected to cause maxima at each 
edge, depending on the direction of the incoming waves.  Thus, while it seems theoretically possible 
that this approach could be extended to multiple damage locations or even damage modes covering a 
larger area, such damage modes are outside the scope of the present study. 

 

Figure 1 - Flowchart of general localization architecture. Data are represented by nodes with square corners; processes are 
represented by nodes with rounded corners. 

Figure 1 shows a visual representation of the overall processing procedure used in the proposed 
paradigm.  The process begins with the data being collected on the left and moves all the way to the 
damage location estimate on the right.  The “Cleansed Data” box refers to the data after filtering, 
baseline subtraction, and enveloping procedures are applied.  Each of the orange, double-lined nodes in 
the figure represents a step where one of various techniques may be chosen to enhance the SHM 
system performance.  The central element of the process is the weighted delay-and-sum beamforming 
step, which takes as inputs the estimated first arrival points and weights from the sensor fusion 
technique, beam spread function, and feature models.  Each of those steps is discussed in this study, 
with the exception of the feature computation step which was addressed previously [4].  The beam 
spread function and feature modeling steps are based on the geometry of the system and are grouped 
accordingly.  The sensor fusion procedure is described in the next section and relies on information from 
the detection process in order to supplement the localization process.  The objective of this work, 
therefore, is to demonstrate a comprehensive methodology for damage location prediction from UGW 
SHM systems on complex structures.  The next section, therefore, will describe the selecting approaches 
for each of the modeling steps. 



3. Sensor	Fusion	and	Modeling	Approach	

3.1. Sensor	Fusion	
Sensor fusion refers to the process of integrating data from multiple sensors in a way that enhances the 
decision-making performance of the system.  The sensor fusion process takes the full data matrix (which 
has a size corresponding to the number of time samples by the number of sensor pairs by the number of 
trials) and reduces it down to a form where a decision can be made.  Each trial represents one full round 
of data acquisition (including averaging if used), each with an independent damage state.  Thus, in the 
context of detection, the fusion result usually consists of a one-dimensional vector (with a length 
corresponding to the number of trials) to which a threshold value may be applied to decide the damage 
state estimates.  In the present context of localization, the data must undergo the further step of 
transformation through the wave velocity from the time domain to the spatial domain in order to 
estimate the damage location. 

Hall [10] gives a good overview of the general sensor fusion process along with many application 
examples.  Liu and Wang [11] proposed a three-level hierarchy of different sensor fusion methods, 
where the three levels are data-level, feature-level, and decision-level.  Data-level fusion refers to 
combining raw data from sensors directly.  Feature-level fusion involves performing the feature 
extraction (i.e., applying the appropriate detector) on each sensor pair individually and then combining 
the features to make the decision.  Decision-level fusion is the highest-level fusion – all sensors make a 
decision independently, and the results from their decisions are then fused.  This hierarchical view was 
subsequently applied to guided wave SHM by Lu and Michaels [12].  Haynes et al. [4] compared many 
different fusion techniques from the literature and their effect on detection performance for the same 
experimental data used here. 

The form of fusion proposed for the present localization paradigm is based on decision-level fusion.  
Because decisions are made on a sensor-by-sensor basis, more information is available for the delay-
and-sum procedure.  For large enough structures instrumented with a sparse array, damage in arbitrary 
locations does not cause significant changes in the signal between some of the sensor pairs, which 
causes the maximum-likelihood estimate of the first arrival to break down.  Therefore, the Neyman-
Pearson (NP) criterion is applied to the signal from each sensor pair separately and only the sensors that 
detect the presence of damage are utilized.  This method will be referred to as “NP binary fusion”.  
Much the same approach has been proposed by Niri et al. [13] in the context of acoustic emission.  The 
sensor-level damage detection procedure follows that laid out previously (in a study using the same data 
sets), utilizing the normalized residual energy (NRE) as the theoretically-optimal damage detection 
metric for systems with minimal a priori knowledge and high signal complexity [4].  Equation (1) gives 
the equation for calculating the NRE values (denoted as E) for each sensor pair i and j, based on the 
baseline-subtracted residual signals x and the filtered, baseline signals y.   
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Next, the threshold values for each sensor pair (denoted as T) are computed by taking the maximum 
across all of the undamaged trials as shown in Equation (2).  The index (k) represents the different trials. 

  (2) 

Then the NRE values are compared to the thresholds to form D: 

  (3) 

Finally, the scaling factor of each pair, S, is set to one for all pairs that exceed the threshold and zero 
otherwise: 

  (4) 

Increasing the sophistication by one more step, the contribution of each sensor pair to the delay-and-
sum procedure can be scaled by a factor proportional to the confidence that the sensor pair can observe 
the damage.  Niri et al. [13] at this juncture rely on a Monte Carlo simulation from a model of the 
structure to predict the signal-to-noise ratio (SNR) of each sensor a priori.  However, this is a less 
practical solution for baseline subtraction techniques, and so instead a data-driven method is proposed.  
The only data available to help estimate the confidence of each sensor pair are the metric values 
computed on each waveform.  By comparing the current metric value to the sensor-level threshold, 
“confidence factors” may be formed by computing a statistical distance from the baseline set.  This 
method will be referred to as “NP direct scaling” fusion, and it is also described mathematically in 
Equation (5).   

  (5) 

These confidence factors represent a kind of SNR representing by what margin a particular 
measurement has risen from the “noise floor” of residual energy levels that belong to the baseline set. 
No guarantee of optimality is given for this method because such a guarantee would have to consider 
the relationship between uncertainty in the input and output of the MLE first arrival estimation, which is 
a complicated question outside the scope of the current study.  In this case, the statistical distance used 
is simply the ratio provided by the NRE metric, but other scaling functions are possible (for example, the 
number of standard deviations of the baseline NRE values from the threshold could be used).  Further 
study to understand the propagation of uncertainty through the MLE filtering process is required to 
determine what the optimal scaling technique might be.  However, considering that the approach 
utilizes the only helpful information available—that is, the comparison with threshold levels for each 
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pair—it is reasonable to expect it to improve performance.  The data, presented below, support this 
supposition.   

In order to apply the confidence factors correctly, prior to applying the confidence factors the minimum 
of each MLE filter result is subtracted from itself to make the minimum value zero.  Since the MLE 
formulation is invariant to additive shifts, this subtraction does not impact the delay-and-sum 
procedure.  Note that the range of values produced by the MLE filter is difficult to relate to any 
particular property of the underlying signal.  Therefore, scaling by confidence factors does not weaken 
the validity of the imaging scheme in any way. 

3.2. Feature	Modeling	
In addition to applying appropriate sensor fusion techniques, there are opportunities to add physical 
knowledge of the system into post-processing to further enhance detection performance.  In particular, 
Flynn et al. demonstrated that for a 2D structure with a bonded stringer, implementing simple models of 
such geometric features can provide significant improvement in detection performance [14].  Flynn et 
al. also showed that increasing the complexity of those models further produced only marginal 
performance improvements.  Essentially, these modeling approaches attempt to estimate the amplitude 
of response that should be expected for each possible damage location and then utilize that estimate to 
enhance the predictions.  Alternatively, the models could be viewed as weighting the localization 
procedure according to the uncertainty in the localization estimate, because the more features the 
waveform crosses, the more uncertain that the result is truly representative of damage.  Applying a 
similar approach to the current problem, simple models were developed to represent the features in 
each of the two testbeds in this study.  Sensor fusion is also often used in combining data from sensors 
that are not alike, so this type of information could easily be incorporated as well, had disparate sensors 
been used in this study. 

Direct measurement is the most straightforward way of obtaining the scattering properties of different 
structural features, but is not always practical in every situation.  Where it is not feasible to measure, it 
is possible to estimate those properties through supervised learning.  In this case, the model parameters 
were estimated by a global minimization process where the average localization error was used as the 
fitness function for the search.  The set of damaged trials for each structure was split into “training” and 
“test” cases.  For the frame, every fourth trial was used in training; for the fuselage rib, one case each 
from the first, third, and fourth hole diameters were selected, also dedicating one-fourth of the cases 
for training.  Only these training cases were used in generated the model parameters, and to calculate 
the results presented in the “Localization Results” section, only test cases are used.  Such a procedure is 
standard for machine-learning problems.  Because the bolted frame has only two parameters (an 
attenuation coefficient and a time delay), a direct search method was computationally feasible. On the 
other hand, the fuselage rib’s four parameters (attenuation coefficient and time delays for both holes 
and stringers) necessitated the use of a genetic algorithm routine.   

Calibrating the values in a post hoc fashion is necessary because some kind of training data is always 
required in SHM applications where detailed models are not available or are highly uncertain.  However, 
similar to the previous study, the localization results are only weakly sensitive to changes in the 



particular modeling parameters.  In other words, merely including some recognition of the presence of 
geometric features is enough to realize most of the performance benefit.  The impact of applying 
appropriate model parameters on the localization performance is presented in the “Modeling and 
Localization Performance” section. 

3.3. Beam	Spreading	
Another modeling consideration that cannot be ignored in this discussion involves how a wavefront 
loses energy as it travels, either from material attenuation or from geometric spreading of the wave 
energy [15].  The material attenuation in metallic structures (typically modeled as a logarithmic decrease 
in wave amplitude with distance) is negligible compared to the geometric spreading [16, 17], which will 
be referred to here as the beam spread function.  While different beam spread function models have 
been proposed, in a 2D medium the amplitude B should vary according to: 

  (6) 

where dixy is the distance from the first transducer to an arbitrary scattering point, and djxy is the 
distance from the scattering point to the second transducer [14, 15].  For a structure composed of 1D 
elements, there is no beam spread effect.  Such models have been shown to be beneficial in situations 
where estimating the expected amplitude of the scattered waveform is important.  However, when this 
model was applied to the localization problem, the resulting prediction accuracy only deteriorated.  This 
observation likely stems from the fact that the MLE first-arrival localization result is not directly an 
amplitude, but is instead a likelihood that the signal model has changed.  Furthermore, the MLE result is 
calculated from the baseline-subtracted residual signal, which contrary to ordinary signals has a 
tendency to grow in time due to increasingly imprecise subtraction.  Therefore, the true beam spread 
function, representing the expected amplitude of the residual signal, should actually be composed of 
two terms – one decreasing due to the energy dissipation and one increasing due to increasingly 
imprecise baseline subtraction.  The resulting function would be difficult to estimate a priori, because 
the baseline subtraction accuracy will be geometry-dependent as well as time- (or distance) dependent.  
A beam spread function of unity (which is in fact the default if no such modeling is considered) produced 
the best results and is used for the remainder of this study.  

4. Experimental	Validation	
In order to verify that the localization techniques developed here are generalizable to different complex 
structures and damage types, results from two different testbeds are considered. 

4.1. Three-Story	Bolted	Frame	Structure	
The first testbed is a bolted frame structure consists of 19 elements made of 2-inch-wide by 1/8-inch-
thick (5.08 cm by 3.18 mm) steel plates with 12 and 24 inch (30.5 and 61.0 cm) lengths.  The elements 
are bolted together using steel angle brackets with two ¼-inch-diameter (6.35 mm) bolts per element.  A 
detailed picture of the geometry is given in Figure 2. 
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Figure 2 - Photograph of bolted frame structure 

 
Figure 3 - Schematic of bolted frame structure showing 

coordinate axes and sensor locations 

 

For this test, 16 piezoceramic sensor-actuators (PZTs) were positioned on the structure as shown in 
Figure 3.  Note that the sensors were applied asymmetrically with the anticipation that such placement 
would minimize multipath ambiguity in locating the source of an arriving wave packet.  The sensors 
were attached to a National Instruments data acquisition system, which is able to record both pitch-
catch and pulse-echo modes at 2.5 MHz sampling frequency.  The actuation signal used was a Gaussian-
modulated sinusoid centered at 135 kHz.  Each of these PZT sensors had a diameter of 12 mm, and it 
was determined that they produce predominantly antisymmetric (A0) mode waves with an estimated 
wavelength of 25 mm. 

The damage mode for this structure consisted of placing a magnet on the structure, which causes a local 
change in the mechanical impedance.  This serves to scatter waves in such a way as corrosion or other 
forms of damage might, and has the benefit of being completely reversible so the performance of the 
algorithms might better be assessed in a controlled manner [18].  Furthermore, each of the elements for 
the frame structure was considered to be essentially 1D for the purposes of the wave propagation.  As 
the magnet was nearly as wide as the element width (and was always placed in the center with respect 
to the element width), there is no inconsistency in making the assumption.  Loss of preload in the bolted 
joints was considered in a past study [19].  Such damage produced very high magnitude changes that 
were easily detected and localized by a similar (yet less sophisticated) approach, so only magnet damage 
along the element is considered in the present work. Choosing thresholds in such a way as to allow no 
false alarms in the finite data set (consistent with the detection study), 223 of the 261 damage locations 
were detected.  These 223 are the trials used to test the various localization algorithms. 



For the frame structure, the bolted joints are the geometric features for which models were developed 
to play a part in the localization process.  The bolted joint connections, which in the actual structure 
have a physical dimension, were abstracted to occur only at the point connecting the different 
elements.  Because only damage modes along the elements were considered (i.e., damage to the bolted 
joints themselves was not considered), this model is sufficient to capture the relevant physics.  The 
model consists of a simple attenuation factor and a time delay for waves passing through a joint, with all 
joints assumed to be identical and direction-invariant.  The attenuation factor accounts for the fact that 
only a fraction of the incident energy will continue propagating in the forward direction.  The time delay 
reflects the fact the wavefront will be slowed as it passes through the joint, which has a slightly longer 
path distance than the idealized model would indicate.  Utilizing the direct search methods described 
previously, the best values were determined for both the NP binary and NP direct scaling fusion 
methods.  These results are presented Table 5 in the “Modeling and Localization Performance” section. 

4.2. Fuselage	Rib	Structure	
The second testbed is a fuselage rib section from a BAe 146 aircraft.  The structure is shown in Figure 4.  
The structure includes non-uniform thicknesses, stiffeners, and through-holes of various sizes, all of 
which serve as scatterers.  

Six PZTs were directly applied to the top surface of the plate with cyanoacrylate adhesive in the 
arrangement shown in Figure 4.  Note that the sensors were placed with no symmetry, and some were 
deliberately placed with line-of-sight obstructions to test the effect on detection performance.  The 
excitation signal was a Gaussian-modulated sinusoid centered at 190 kHz for this test, and the sensors 
were used exclusively in pitch-catch mode.  The PZTs had a diameter of 20 mm and were designed to 
excite the first symmetric Lamb wave mode (S0) with ten times the magnitude of the first antisymmetric 
(A0) mode. 

Damage was introduced destructively in two modes: through-holes and simulated cracks.  Holes were 
drilled in 4 stages, with diameters of 3.4, 4.8, 6.0, and 8.0 mm.  Damage locations were selected to 
present increasing levels of difficulty for the sensor network to detect (i.e., further removed from the 
center of the sensor cluster with more intervening geometric features), as can be seen in Figure 4.  
Cracks were simulated by using a hacksaw to notch the stiffeners (through the whole thickness) on the 
reverse side of the fuselage rib.  Notches were introduced in two stages, the first being about half the 
depth of the stiffener, and the second being the full depth.   



 

Figure 4 - Schematic of fuselage rib structure showing sensor and damage locations. The bold black lines indicate where the 
likelihood maps presented later are truncated for ease of viewing. 

In the detection study, all of the hole damage was well-identified.  Specifically, all of the damaged metric 
values exceeded all of the baseline metric values, except for the most remote hole at the smallest 
diameter, which overlapped in value with a few of the baseline cases.  All of these trials are considered 
in the localization study.  However, despite the fact that the crack damage was easily detected by the 
energy metric, the localization algorithms were not effective in predicting their location.  This poor 
performance is likely because the cracks do not serve as point scatterers in the same way as the other 
forms of damage because the damage is not on the top surface that the sensors are on.  As a result, the 
crack damage results are not considered here, but may be a topic for future study. 

For the fuselage rib, similar energy loss coefficients and time delays to those for the bolted joints were 
used for the locations of significant stringers and the through-holes in the part.  The values of those 
parameters, however, vary substantially because the stringers on this specimen are significantly less of 
an obstacle to guided waves than a bolted joint.   While the waves in the part actually propagate around 
the through-holes in the specimen, these too can be considered as an attenuation coefficient and a time 
delay in order to simplify the model.  Calibrating the parameters yielded the values found in Table 6 in 
the “Modeling and Localization Performance” section. 

5. Localization	Results	
The localization for both structures was carried out using identical processes.  The only algorithm inputs 
that differed were geometry-related or related to the different data acquisition systems used to collect 
the data.  Using identical procedures ensures that the localization strategy is truly generalizable, 
although usually some structure-specific information is beneficial for improving the system 
performance. 

5.1. Localization	Performance	Comparisons	
First, a comparison of the proposed approach with other localization techniques from the literature is 
presented in order to further validate the maximum likelihood estimation approach to sparse array 
localization.  A similar comparative study was performed by Flynn et al. previously [5], and the current 
list of methods is the same except for the addition of the MVDR method.  A brief description and 
references are given here for each method – for more details, the reader is referred to Flynn et al. or the 
references given here. 



All methods operate on the data filtered about the input frequency band and optimally baseline-
subtracted. Each signal is also enveloped by taking the magnitude of the Hilbert transform unless 
otherwise mentioned. The WTOA, TDOA, and WTP methods all use an exponential window on the data, 
where the time constant was chosen as 80 µs for the fuselage rib and 200 µs for the frame structure 
(according to the approximate ratio of group velocities).  The compared methods are reviewed briefly 
here: 

TOA – the time of arrival method or the ellipse method is the most basic approach, simply computing 
the delay-and-sum result for the enveloped waveform.  [20] 

WTOA – the windowed time of arrival method adds an exponential time window to the TOA method in 
order to suppress later reflections. Because the boundary reflections and inaccurate baseline 
subtraction effects become more and more dominant with time, the purpose of the exponential time 
window is to mitigate those effects by giving the information earlier in the signal a relatively higher 
weighting. 

TDOA – the time difference of arrival method is based on correlations between each two sensor pairs 
that have exactly one sensor in common.  This method is commonly used for source localization using 
passive systems, since the algorithm does not require knowledge of the time origin of the source signal.  
For the cross-correlations, an exponential window was also applied to the data.  Because the method 
operates on two sensor pairs simultaneously, the fusion approaches are not implemented to avoid a 
potentially false comparison.  [21] 

RAPID – the reconstruction algorithm for the probabilistic inspection of damage is based on the zero-lag 
cross-correlation of the baseline and test signals (without enveloping).  The results for each transducer 
pair are then computed over elliptical sub-regions, the size of which is controlled by a factor beta.  The 
additional beta parameter was calibrated in post-processing to maximize the localization accuracy and 
set to a value of 1.45, with a time window of 50 µs. [22] 

EA – the energy arrival method is based on calculating the energy in a time window beginning at the 
estimated arrival time (without enveloping the signal first).  The resulting value is then inversely 
weighted, in effect, by the amount of energy before the estimated arrival time.  This formulation is 
similar to the MLE approach in that it is looking for a time point where the previous energy is minimized 
compared to the energy in the window, but it differs in that it does not consider the reflections 
occurring after the narrow time window.  [23] 

TP – the total product method is based on taking the product of the short-time Fourier transform of 
each sensor pair’s waveform, computed at the actuation frequency and centered on the expected 
arrival time.  As was previously noted by Flynn et al., this is approximately equivalent to the product of 
the each sensor pair’s waveform (after filtering and enveloping) at the expected arrival time for each 
point on the structure, and therefore the simpler implementation has again been adopted.  
Furthermore, because this technique is multiplicative, applying weighting factors to the sensor pairs 
does not change the result.  Therefore, there is no difference in this method between NP binary and NP 
direct scaling fusion techniques.  [24] 



WTP – the weighted total product method adds an exponential time window to the TP method. 

MVDR – the minimum variance distortionless response method attempts to compute a set of optimal 
weights such that the energy that is not present in the “look direction” of any given pixel is minimized.  
The objective of this approach is to minimize imaging artifacts not in the given look direction.  Phase 
information, dispersion compensation, and scattering fields may also be integrated directly into the 
approach where appropriate and when such information is available.  However, to perform a fair 
comparison with the other techniques presented, none of these options were used.  Beam speading is 
typically included in the computation of the initial “steering vectors” according to Equation 6.  While it 
was not implemented for the frame structure to better represent the physics, for the fuselage rib the 
method was found to perform marginally better including the beam spread effect, and it has been 
included.  Furthermore, the MVDR method is already optimizing over the look vector, which is 
analogous to the sensor weighting provided by the sensor fusion techniques, so the direct scaling 
approach was not implemented.  [25] 

Table 1 - Comparison of localization algorithms in bolted frame structure (all trials) 

  

Table 1 gives a comparison of the different localization algorithms for the frame structure with no 
feature modeling applied.  For this purpose, taking the distance between the predicted location and the 
true damage location provides a convenient and descriptive measure of the localization accuracy for 
quantitative comparison.  Both the results for the NP binary fusion and NP direct scaling fusion methods 
are presented, along with the results for using all pitch-catch sensor pairs.  For those methods where the 
fusion method chosen either does not influence the results or is undefined, only one entry is made.  For 
a structure of this complexity, the TOA, EA, and TP methods are unable to outperform the completely 
uninformed localizer, which for the frame structure produces a mean error of 644 mm (as presented 
later in Table 5).  (The uninformed localizer is one given no information on the damage location, so the 
best damage prediction possible is to always predict the “geometric centroid” of the structure, which is 
to say whatever point is closest, on average, to every other possible damage location.)  The MLE 
formulation works the best, with only the RAPID and WTP methods approaching the level of 
performance achieved by MLE.  Also note that in every case, the NP direct scaling fusion improved 
localization performance over that obtained by the NP binary fusion. 

Table 2 - Comparison of localization algorithms in fuselage rib structure (all trials) 

  

MLE TOA WTOA TDOA RAPID EA TP WTP MVDR Fusion Technique
250 1019 730 624 636 926 1010 743 423 All PC channels
132 1004 645 - 222 943 1077 391 612 NP binary
120 970 614 - 141 747 - - - NP direct scaling

Frame Structure - Mean Prediction Error (mm)

MLE TOA WTOA TDOA RAPID EA TP WTP MVDR Fusion Technique
194 573 339 296 336 259 473 303 414 All PC channels

74 601 309 - 149 188 630 337 382 NP binary
63 443 324 - 141 163 - - - NP direct scaling

Fuselage Rib Structure - Mean Prediction Error (mm)



Table 2 presents the comparison of the localization algorithms for the fuselage rib structure, again with 
no feature modeling.  Again, the MLE formulation performs the best, this time by a factor of more than 
two (in terms of mean prediction error) over the second-best method.  The second-best method for 
each structure is the RAPID technique, while none of the other methods performed well on both of the 
structures tested. 

To more completely visualize the performance of each algorithm, localization performance curves are 
computed.  Rather than simply giving the average localization error, these plots express the fraction of 
damage cases had an error less than a specific bound.  They may be interpreted similar to receiver 
operating characteristic curves, in that the ideal localizer should produce a square curve in the top left 
corner.  Results for the bolted frame structure are given in Figure 5 and the corresponding plot for the 
fuselage rib is given in Figure 6. 

 

Figure 5 - Localization performance curves for the bolted frame structure. NP direct scaling fusion, no feature modeling. 



 

Figure 6 - Localization performance curves for the fuselage rib structure. NP direct scaling fusion, no feature modeling. 

To further quantify these localization performance curves, an area-under-the-curve (AUC) metric may be 
implemented by integrating from zero to the maximum error and then normalizing such that perfect 
localization produces a value of one.  The comparison results are again presented using this metric in 
Table 3 and Table 4. 

Table 3 - Normalized AUC metric comparison for all localization algorithms in the frame structure (all trials) 

  

Table 4 - Normalized AUC metric comparison for all localization algorithms in the fuselage rib structure (all trials) 

  

All three methods of comparing the different localization procedures suggest the same conclusion – the 
MLE procedure produces the most accurate results.  The RAPID method performs second-best, and no 
other method is able to produce comparable results for both testbeds.  These conclusions hold whether 
all sensor pairs are considered, or whether the NP binary or direct scaling fusion methods are applied. 

MLE TOA WTOA TDOA RAPID EA TP WTP MVDR Fusion Technique
0.857 0.412 0.580 0.641 0.633 0.466 0.417 0.572 0.757 All PC channels
0.925 0.420 0.629 - 0.874 0.456 0.378 0.776 0.647 NP binary
0.931 0.440 0.647 - 0.919 0.570 - - - NP direct scaling

Frame Structure - Normalized AUC

MLE TOA WTOA TDOA RAPID EA TP WTP MVDR Fusion Technique
0.785 0.346 0.615 0.667 0.618 0.709 0.462 0.657 0.529 All PC channels
0.921 0.313 0.648 - 0.832 0.788 0.280 0.617 0.567 NP binary
0.929 0.495 0.630 - 0.838 0.818 - - - NP direct scaling

Fuselage Rib Structure - Normalized AUC



5.2. Modeling	and	Localization	Performance	
With the MLE first arrival localization approach having been validated for the proposed application, the 
next step is to test the performance of the proposed sensor fusion and modeling approaches.  Table 5 
and Table 6 show results for the MLE formulation with different sensor fusion and modeling strategies 
implemented.  Runs 100 and 200 represent the performance with no localization information (i.e. simply 
picking the geometric centroid each time) for a reference.  Next, the results using all pitch-catch (PC) 
channels is presented, followed by the results obtained by using the location of the sensor receiving the 
most votes in the sensor-by-sensor detection threshold process.  These two methods are also presented 
as a baseline for the performance an intelligent SHM system should exceed.  It should be noted that 
without appropriate sensor fusion techniques (as in the case of 101 and 201), the ellipse methods of 
localization for such complex structures are very inaccurate, and methods not based on delay and sum 
(as for 102 and 202) can be more accurate.  Finally, results are presented for NP binary fusion and NP 
direct scaling fusion, both with and without the feature modeling parameters obtained as described 
previously.  For simplicity, the feature modeling parameters were calculated using the NP direct scaling 
only and kept constant for both of the fusion methods presented here.  These tables are calculated 
using only the trials designated as “test”, so as not to bias the model parameter estimation.  The results 
in the previous section were presented for all trials, which accounts for the minor discrepancies in some 
parallel results.  Both the average prediction error and the AUC metric are presented for each case.   

Table 5 - Mean localization error for bolted frame structure (MLE formulation with different modeling and fusion techniques) 

  

Run # Mean Error (mm) AUC Delay (µs) Attenuation Fusion Technique
100 649 0.562 0 1 Centroid (no info)
101 251 0.832 0 1 All PC channels
102 133 0.911 0 1 Most popular sensor
103 136 0.911 0 1 NP binary
104 121 0.919 0 1 NP direct scaling
105 69.4 0.955 5.8 0.595 NP binary
106 65.4 0.957 5.8 0.595 NP direct scaling

Frame Structure Model Parameters



Table 6 - Mean localization error for fuselage rib structure hole damage (MLE formulation with different modeling and fusion 
techniques, all test cases) 

  

For both the frame and rib structures, the implementation of some form of feature modeling produced 
a drop in the localization error, which was very significant for the frame structure.  The fuselage rib 
structure benefitted less from the feature modeling, most likely because there are many more 
intervening features (which were actually inhomogeneous), making model parameters more imprecise.  
NP direct scaling also outperformed NP binary sensor fusion in all cases, just as both of those techniques 
outperformed the results using all sensor pairs.  The final value for the average localization error in the 
frame structure was a mere 65 mm, compared to a maximum path distance in the structure of 1.8 
meters.  The wavelength for this structure is about  25 mm, and getting an average error about 2.5 times 
the wavelength value is an excellent result.  The results in the fuselage rib structure are similarly 
excellent, with the average error decreasing from 196 mm with no sensor fusion or feature modeling 
down to just 56 mm when NP direct scaling and feature modeling were implemented. 

As mentioned previously, the localization error is not strongly sensitive to small fluctuations in the 
model parameters – for example, attenuation values from 0.25 to 0.80 (depending on the time delay) 
yielded results within 10% of the minimum error for the bolted frame.  This further removes the need to 
create detailed models – estimated parameters are likely sufficient to capture the majority of the 
benefit. 

5.3. Localization	Figures	
Now that the optimal localization procedure has been established, a final graphical view of the results is 
presented.  The following damage localization figures are maps of the likelihood that the damage (which 
has been detected already, as previously noted) is at a given point on the structure.  Therefore, the 
location of the maximum likelihood is taken to be the predicted damage location.  Sensors are plotted as 
white circle with the corresponding channel number.  For convenience, the log-likelihood values output 
from the algorithm have been normalized to a linear scale between 0 and 1.  However, it should be 
noted that these values do not represent a probability in any sense, only a normalized likelihood which 
is useful for visualizing why a particular maximum point was selected.  These maps are also not meant to 
represent damage maps directly, and they cannot be used to estimate the size or extent of damage. 

Run # Mean Error (mm) AUC Delay (µs) Attenuation Fusion Technique
200 254 0.703 [0, 0] [1,1] Centroid (no info)
201 196 0.780 [0, 0] [1,1] All PC channels
202 140 0.838 [0, 0] [1,1] Most popular sensor
203 78.9 0.916 [0, 0] [1,1] NP binary
204 59.6 0.931 [0, 0] [1,1] NP direct scaling
205 72.5 0.922 [1.44, 0.010] [0.995, 0.995] NP binary
206 56.2 0.936 [1.44, 0.010] [0.995, 0.995] NP direct scaling

Fuselage Rib Structure Model Parameters [Hole, Stringer]



Two damage likelihood maps (of the 223 total) were chosen as representative examples.  Figure 7 shows 
an example where the damage location estimate directly coincided with the prediction.  Note that the 
likelihood values are highest on the element containing the damage, dramatically lower on the other 
elements, and tend to decrease with distance from the damage – all as would be expected for a good 
localization procedure.  Figure 8 is an example of a less accurate estimation.  In that case, the damage 
was located on an element on which no sensor was placed, a situation that tended to produce higher 
estimation errors (again, as expected).  The accuracy of the localization is dependent on the part of the 
structure in which the damage occurs.  This effect is due to the fact that the coverage is not uniform – 
damage toward the center of the structure will disrupt the signal between more sensor pairs, whereas 
some elements are without a sensor at all. 

 

Figure 7 - Damage likelihood map, frame structure trial 95 (all dimensions given in mm) 



 

Figure 8 - Damage likelihood map, frame structure trial 185 (all dimensions given in mm) 

For the fuselage rib structure, black circles represent through-holes in the part, where the solid black 
lines represent the larger stringers behind the instrumented surface.  This represents a simplification of 
the part’s actual geometry—smaller stringers and thickness changes were not considered for simplicity.  
Again, the likelihood values were normalized to fall between 0 and 1, where 1 represents the predicted 
damage location. 

One example from each hole location on the fuselage rib is presented (each at the maximum hole 
diameter).  The first two hole locations, shown in Figure 9 and Figure 10, are centrally located with 
respect to the sensor array and are therefore located very accurately.  Figure 11 shows a hole location 
that is obscured from the direct line of sight of the closest sensors by through-holes, and the likelihood 
map is distorted in that region because the localization algorithm considers the obstacle.  Similar 
distortions may be observed around the features in each of the likelihood maps.  Finally, Figure 12 
depicts hole location 4, which is well outside of the sensor array.  Because the array viewed from that 
angle is nearly linear, the range to the damage can be predicted well, but the angular component is 
unreliable.  As a result, there is a roughly elliptical band of high likelihoods with nearly the correct range, 
but the predicted position fluctuates within that band, causing a higher prediction error to be observed 
for the last hole location. 



 

Figure 9 - Damage likelihood map, fuselage rib, first hole location 

 

Figure 10 - Damage likelihood map, fuselage rib, second hole location 

 

Figure 11 - Damage likelihood map, fuselage rib, third hole location 



 

Figure 12 - Damage likelihood map, fuselage rib, fourth hole location 

6. Conclusion	
A statistical approach to localization which is applicable to highly-complex structures has been 
presented and validated.  Two dissimilar structures with different modes of single-site, simulated 
damage were used to conduct a detailed comparison between different delay-and-sum imaging 
approaches in the literature.  The maximum likelihood estimation approach outperformed all of the 
other approaches to which it was compared.  To further improve the localization performance, a novel 
approach to the sensor fusion process was then developed based upon applying the Neyman-Pearson 
criterion to each sensor pair and weighting contributions according to their sensor-level thresholds.  In 
order to explicitly consider the impact of the geometry on localization, simple models were developed 
for bolted joints, stringers, and holes in each specimen.  Including the sensor fusion and geometric 
modeling steps in the localization procedure further enhanced the estimation accuracy, reducing the 
average error by 74% for the bolted frame and 71% for the fuselage rib over using the MLE approach 
alone. 

This work illustrates the importance of developing SHM techniques specifically designed for structures 
of realistic complexity.  While many challenges still remain, one of the chief hindrances for ultrasonic 
SHM systems has been the multi-path interference and scattering from non-damage reflectors which 
can make the signals difficult to interpret.  The demonstrated improvement in localization performance 
given by the proposed techniques represents a significant step toward overcoming these obstacles and 
making SHM feasible in application. 
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