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Abstract

A general theoretical framework is developed for the study of branch speculation.
The framework yields a systematic way to select the schedule in a given set that, for
any (estimated) bias of the branch, minimizes the expected execution time. Among
other things, it is shown that in some cases the optimal schedule is neither of those
resulting from aggressively speculating on any given outcome of the conditional. Our
results can be useful in either static or dynamic approaches. We propose a simple run-
time estimator for the bias and discuss how to combine it with schedule selection. A
number of examples motivate and illustrate the techniques, and show that our approach

| vields better performance in the case of highly unpredictable branches.

1 Introduction

and speculative execution. In particular, we study the relationship between static (compile-

time) and dynamic (run-time) branch prediction and speculation, and derive a rigorous frame-
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work in which the interaction between these techniques can be understood. While the basic

model used for illustrations throughout this paper is a VLIW model, the resulting framework

is also useful for the understanding and future development of superscalar machines.

1.1 The machine model

The machine model we will use for our illustrations throughout this paper is a standard
VLIW model, were each instruction can contain up to k operations. An operation can be
an arithmetic or logical RISC type operation, a memory access (load/store) operation, or a
conditional or unconditional jump. Each operation takes exactly one cycle to execute, and
all operands in an instruction are read prior to assignment of any results computed during
that instruction. Instructions are executed one at a time, with the unique next instruction
to be executed being determined by the conditional(s) executed in the current instruction.

A sequential schedule for a given program consists of the RISC machine-level program
control-flow graph of the program, with each node in the graph consisting of a single RISC
operation. In our machine model, execution of a sequential schedule corresponds to com-
pletely sequential execution of the code.

A compacted schedule for a program consists of a transformed version of the sequen-
tial schedule, where some operations have been moved in order to execute in parallel with
other operations. To be meaningful, the compacted schedule must preserve the semantics
of the original schedule. Thus, for example, the move of an operation should not violate
data-dependences. In effect, compaction™ attempts to fill a VLIW instruction with as many
operations as possible—subject to data-dependences, control-flow and resource constraints—

to shorten the execution time of the program.

1.2 Motivation

Control flow complicates the compaction process in two ways. Firstly, it imposes additional
constraints on the motion of operations, e.g., an operation from the true branch of a condi-
tional branch cannot be moved, as is, above the conditional if its destination is live (used)

on the false branch.

*I.e., the process (technique) that derives a compacted schedule.



Secondly, and more important for the purpose of this paper, executing an operation from
one branch of a conditional prior to the conditional gambles on the direction the conditional
will take—in effect guessing that the operation should eventually be executed. If that branch
is not taken, time was wasted not only because a useless operation was performed, but
also because an opportunity to execute a useful operation (e.g. from the other branch) was
missed. Speculation is the process of scheduling and executing operations before the direction
a conditional will take is actually known.

Though not always a good idea, there are several reasons why speculation is quite useful.
Most important is the fact that conditionals occur with surprisingly high frequency in most
programs (one out of every 3-8 operations is a conditional jump, according to a variety of
studies [NiFi84, Ku88]). These same studies indicate that to find substantial amounts of
instruction-level parallelism one has to search for it across conditionals, since the amount
of code between conditionals is too small to yield more than a factor of two parallelism, if
that. Furthermore, some of the conditionals themselves will depend on the code that precedes
them, thus delaying their execution and in a sense increasing the need for speculation.

In the presence of unlimited resources, the choice of which branch to speculate on would
not be an issue, as we could guarantee that we execute all operations as early as possible
(subject to data dependences, etc.) by simply aggressively speculating on both branches of
every jump. Similarly, if we could predict, either dynamically or statically, that a branch of
a conditional is always taken we could act accordingly. Indeed, there are situations where
aggressive speculation on both branches is feasible, and one of the branches is virtually al-
ways taken. Trace Scheduling [Fi81] and Superblock [HMCC93] are based on the assumption
that branches are very highly biased, and that this fact can be statically determined. Other
techniques, like Percolation Scheduling [Ni85, Eb87] allow or even encourage aggressive spec-
ulation on both branches of a conditional. However, in the general case, the available limited
resources combines with the presence of unpredictable (or dynamically predictable but unbi-
ased) branches greatly complicate the issue of when and how to speculate. Dynamic schemes,
implemented in virtually all superscalar processors available today, testify to the importance
of such statically unpredictable, partially biased, or unbiased branches.

However, conventional wisdom holds that either branches are clearly biased towards one



branch (and then that branch should be chosen for speculation), or operations from both

branches should be given equal priority when speculating. In particular, it is widely assumed
that for branches that are not heavily biased, not much can be done at compile-time, beyond
randomly selecting one or the other of the branches to be speculatively scheduled.

To our knowledge, the important issue of how best to speculate in the presence of
such branches, and the related issue of how such static speculation compares with dynamic

schemes, has not been investigated in detail.

1.3 The Problem

The problem actually consists of two separate issues: (a) how to predict/estimate branch
bias, and (b) what to do with the result of the prediction in terms of scheduling.

We will show that as the probability of bias in a conditional changes from favoring the
false branch to favoring the true branch, there are a sequence of (probability) sub-intervals
that each correspond (have) a particular speculative schedule that is optimal for that interval.
Of course, finding the optimal schedule for each interval is NP-H, and in practice heuristics
will be used. However, given a set of heuristics that produce some schedules, our technique
can be used to efficiently select the best schedules from within this set for each probability
interval. Thus our approach could be used to improve the performance of a program in the
presence of highly unpredictable, or even dynamically changing branching probabilities of
conditional jumps.

In this paper we develop a framework for studying the above problems of speculation
and branch prediction. We start by describing some examples that motivate our approach.
We then introduce the framework upon which we base our analysis, and propose a new
technique based on this framework. Next we present a prediction mechanism for branch bias
(probability) suitable for integration with the proposed speculation technique. Finally, we

present some real examples of applying our approach, followed by conclusions.
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2 Some Examples

We present two theoretical examples, which serve as additional motivation. These examples
illustrate that a schedule created through aggressive speculation on one branch is suboptimal

for all probabilities of execution of the conditional statement.

2.1 Example 1

Consider the code in Figure 1. We assume for simplicity that the machine used for this
example executes up to (any) three operations per cycle, and the operations have the data

dependences shown in Figure 1la.

A
Expected Time
3n+
F
T
Equal
2n
T o
0.0 Probability of TRUE 1.0
Figure 2: Time vs probability graph for Example 1. J



Furthermore, the conditional statement is assumed to be operation A,, i.e., A;,...A_;

have to execute (in order) before A, can execute. Two possible compacted schedules are
shown in Figures 1b and 1lc. They correspond to aggressive speculation on the “F” branch
(1b) and balanced speculation on both the “F” and “T” branch (1c). Aggressive speculation
on the “T” branch is symmetric to that shown in Figure 1b and is thus omitted. Also, we
omitted clearly suboptimal schedules such as speculating only on the non-critical paths of
the branches.

Figure 2 relates branch probabilities and cycle counts. This figure shows that for all
probabilities, the best schedule is obtained by aggressively scheduling across both branches.
Existing static and dynamic approaches typically schedule only across one or the other branch

(or switch back and forth between these schedules, incurring some penalty).

2.2 Example 2

Likewise, consider the code shown in Figure 3. This shows three different compacted sched-
ules, all with differing cycle counts. Comparing probabilities versus cycle counts, we obtain
the results shown in Figure 4. In this case, the best overall schedule again consists of all three
compacted schedules, dynamically selected based upon probability. Note that as in Example
1, we have omitted suboptimal schedules from our presentation. We also do not show the
the schedule that results from aggressive speculation across the “T” branch; it is symmetric

to the “F” branch schedule shown in Figure 3b.
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3 The Framework

We now investigate systematically how to compare different schedules for a given segment of
code containing one conditional statement. Assuming that somehow a set of schedules has
been generated, the goal is to have a systematic procedure to select the best schedule as a
function of the bias of the conditional.

The subsections of this sections are respectively devoted to (i) formalizing the problem, (ii)
characterizing the optimal schedules within a given set, (iii) efficiently finding such optimal

schedules, and (iv) discussing the implications of the results.

3.1 A Formal Definition of the Problem

We assume that the segment of code under consideration consists of a two-sided conditional
statement, preceded (and possibly followed) by some straight-line code. A schedule for the
code is a machine-language program semantically equivalent to it. We denote by f (respec-
tively, t) the ezecution time of a schedule when the condition evaluates to false (respectively,
true). We measure the bias of the conditional by p, the probability that the condition evalu-

ates to true. Then, the ezpected ezecution time for the schedule is:

T(p)=(1-p)f + pt. (1)

Our goal can be formulated as follows:

Problem: Given a set of schedules § = {5,53,...,5,}, where S; has parameters f; and
t;, determine, for each p € [0, 1], the value(s) of ¢ such that §; yields the minimum expected

execution time among the schedules in S.

It is important to observe that, if S contains all possible schedules for the given code,
then the solution of the above problem will yield the absolutely optimal schedules. On the
other hand, if § is the result of a heuristic procedure to generate schedules, then the solution

to the above problem will yield the schedules that are relatively optimal (i.e., the best within

S).
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3.2 A Characterization of the Optimal Schedules

Since the expected time of a schedule § is uniquely determined by its parameters f and ¢,
we find it convenient to work with the set of parameter pairs A = {(f;,;)|S; € S} and to
view A as a set of points in the plane. We say that a point P; = (f;,%;) € A is useless within
set A if, for any value of p € [0, 1], there is some P; = (f;,t;) € A that yields equal or better

expected time at p, i.e.:
Ti(p) = (1 - p)fi + pti < Tj(p) = (1 - p)f; + pt;. (2)

The points of A that are not useless will be called useful. The next theorem characterizes
the set of useful points as well as the probability intervals of their usefulness. An example

illustrating the theorem is shown graphically in Figure 5.

Theorem 1 For any set A as above, the subset A’ C A of its useful points enjoys the
following properties:
| 1. A" can be written as {P! = (f},t})|i = 1,...,k} so that the polygonal line 7 joining
" P{,P;,..., P is the graph of an up-ward convez, decreasing function in the (f,t) plane,

t.e.:
o] £ % B¢ JLand@d s> i

(b) the quantity s; = (t. — ti,,)/(fl,, — fi) decreases with i, for i =1,2,...,k — 1.

1

2. For any point P = (f,t) € A, either (i) f > f] and t >t or (ii) P lies on or above

the polygonal line .

3. Letpo=0,pr =1, and p; = 1/(14 s;) fori =1,2,...,k — 1. Then, for p € [p;-1,pi],
point (f!,1!) yields better expected time than any other point in A.

Proof.

1. (a) Let us say that a point (f,t) is strictly dominated by a point (f',t') is f > f,
t > t',and (f,t) # (f',t'). Clearly, if (f',t') € A, then (f,t) ¢ A’ since, according
to Inequality (2), (f,t) is made useless by (f’,#'). In fact,

T'(p)=(1-p)f' +pt' <T(p)=(1-p)f + pt,

11
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Figure 5: Example illustrating Theorem 1. Set A includes useful point P{, P, Pj, and P}
together with some useless points denoted by a “*”. Schedules 57, §% Sj, and S} respectively
correspond to points Pj, P; P;, and P;. These schedules are respectively optimal within
the probability intervals [py = 1, p1], [p1,p2), [P2,pa), and [ps,ps = 1], where for i = 1,2,3,
pi = (1+tan¢;)™", with tang; = (¢; — t},,)/(fly; — f!). Observe how ¢; > ¢y > ¢3 leads to

1
1
m l

n < p2 < ps.



(b)

with equality holding at most for one value of p (i.e., T(0) = T(0) if f = f' or
(=T ii=4):

Then, if we sort the point in A’ by increasing abscissa, f] < fi < ... < f[, they
will be also sorted by decreasing ordinate t{ > #), > ... > t|. Otherwise, if for
some ¢ we had t{,; > ti, point (fi,;,t,,,) would be strictly dominated by point
(frt).
By contradiction suppose that, for some i, s;_; > s;, that is,

(Hioa = 8)(F = fla) 2 @ =t )l = 1D (3)

Since f/_; < f{ < f,;, for some a € (0,1), we can write

fi=Q-a)fl.y +afly,. (4)

By using Equation (4) in Inequality (3), after straightforward manipulations we
obtain:

t.>(1-a)ti_y + ati,;. (5)

Relations (3) and (4) and some simple algebra yield:

Ti(p) = (1-p)f+pt

> (1-p)(A-e)fiiy +afiy]+pl(1-a)ti_; + at],]
= (1-a)T_1(p) + aT11(p)
> min(T/_(p), T/;1(p)),

with equality in the last line holding only for the unique value of p such that
Ti_1(p) = T{1(p).
In conclusion, the expected time for point P/ is always equal or worse than ei-

ther that one for point P/_; or that one for point P/ ,. Therefore, P/ ¢ A’, a

contradiction.

2. A simple inductive argument will show that if a point (f,?) € A is useless, then for any

b,

T(p) = (1~ p)f +pt 2 min T/(p). (6)

13



It follows that f > f{; otherwise, T(0) = f < f/ = T/(0) for any ¢ and Inequality (6)
would be violated at p = 0.
It also follows that t > t}; otherwise T(1) = ¢ < f/ = T/(1) for any i and Inequality (6)

would be violated at p = 1.

Let us then assume that f] < f < f; and, more specifically, that f/_; < f < f/. Then,

for some a € (0,1), we can write

f=Q0Q-a)fi_y+ef. (7)

If, by contradiction, (f,?) lies below polygonal line m, and in particular below the

segment from (f/_,,ti_y) to (f/,t:), then
t<(1-a)ti_;+ atl. (8)
By developments similar to those of part 1(b) of the present proof, we can use Relations
(7) and (8) to derive
T(p) < (1= )T{_4(p) + aT;(p). (9)

It is easy to verify that, for p = p; = 1/(1 + s;), with 8; = (t; — —=ti41)/(fiz1 = f;), we
have T}(p;) = T!_;(p:). Hence, Inequality (9) yields:

T(p:) < (1= )T (pi) + T (pi) = T{(pi) = Ti_1(ps). (10)

The latter relation shows that, at p = p;, point (f,t) yields a better expected time than
points P/_; = (f{_y,ti_;) and P/ = (f,t!). Since, according to part 3 of the theorem
statement (proven below), for p = p;, points P/_; and P/ yield the best expected time
of all points in A, we reach a contradiction. In conclusion, p = (f,t) lies on ar above

line 7.

. From the very definition of set A’, it follows that, for any given value of p € [0, 1], the

minimum expected time achievable by any schedule in S is
R e
Tmin(p) = min T}(p). (11)

It is readily verified that p; (as defined in the theorem statement) is the value for which

T(pi) = T/;1(pi). Since p; = 1/(1 + s;), from part 1(b), we observe that p; increases

14



with i. If we focus on the interval [p;_;,p;] and consider that the graph of T)(p)is a

straight line, we can make the following observations:
(i) For j < 1, the (graph of ) T;j(p) starts lower than T}(p) (since T}(0) = f! < f! = T}(0))

and intersects it at the left of p,_;. Hence, for p > p;_1, T{(p) < T}(p).

(ii) For j > 4, the (graph of) T}(p) ends lower than T;(p) (since T}(1) =t} < t! = T}(1))
and intersects it at the right of p;. Hence, for p < p;, T{(p) < T}(p).

Therefore, for p € [pi—1,pi], T!(p) < T;(p), for any j.
In conclusion, Equation (11) can be rewritten as

Tmin(p) = T{(p) for p € [pi—1,pil, (12)

completing the proof of part 3.

3.3 An Algorithm to Filter out the Useful Schedules

Next, we develop an efficient algorithm to compute the useful points A’ of a given set A. The

key steps of the algorithm are as follows:
1. Input A.

2. Sort A by non decreasing abscissa (f) and, in case of tie, by increasing ordinate (t).

Call the resulting sequence of points A;.

3. Scan sequence A; producing a subsequence A; as follows. Let @ = (f,t) be the point
being currently scanned in A;. Let Q' = (f’,t') be the last point of A; inserted in As.
Initialize (), @" and A; to the first element in A;. For each Q € A;, if t < t' then
append @ to A; and let Q' = Q.

4. Scan sequence A; producing a subsequence As, as follows. Denote by Q; and Q, the

first and the second point in Aj, respectively. Then, execute the following procedure:

15



append @; and @, to (an initially empty) As;

Qa = Q1;

Qb := Q2;

for Q. € Az — {Q1,Qs} do

begin

append @, to As;

while @, # null and slope(Q,Q.) < slope(Q.Qs) do
begin

remove )y from As;

Qb = Qa;

Qo 1= predecessor 4, (Qs) (null if @ is the first element of Aj3)
endwhile

Qa = Qp;

Qb :=Qq;

endfor

If we let Q; = (fz,tz), for z = a,b,c, then slope(@pQ.) = (te — t)/(fe — f) and
slope(Q.Qs) = (t» — ta)/(fo — fa) so that the condition of the while statement can be
rewritten as (fc — 4)(fo — fa) < (ts — ta)(fe — fb)-

5. Output A" = Aas.

The correctness of the algorithm is established by observing that Step 2 discards all
points of A that are dominated by some other point in A, and Step 3 discards all points
that lie on or above the segment that joins any two other points. In essence, Step 3 is a
straightforward adaptation of Graham’s algorithm [Gra72] for finding the convex hull of a
planar set. Indeed, it follows from Theorem 1 that the convex hull of set AU {(0, 00),(0,0)}
is exactly A’ U {(0, o), (00,0)}.

The running time of the algorithm is O(nlogn) for the sorting in Step 1, and O(n) for
each of Step 2 and Step 3. In Step 2, a constant amount of time is spent on each element
of list A;, and |A;| < n. Constant work per element is also done in Step 3; in fact, each

iteration of the for (respectively, while) loop appends to (respectively, removes from) A3 a

16



different element of A,, and |Az| < n.

In conclusion, we have:

Theorem 2 Set A’ can be obtained from set A in time O(nlogn).

3.4 On Schedule Generation

The previous sections show how to select the best schedules out of a given set. Of course,
the question remains of how to generate a set of schedules guaranteed to obtain the optimal
ones. The problem is known to be NP-hard in the presence of limited resources, even for
straight-line code. Nevertheless, Theorem 1 is helpful in formulating the specific type of
scheduling problem that arises in our context, and sheds some light on possible heuristics.
Let S be the set of all possible schedules for a given code. Let f(S) (respectively, #(5))
be the time to execute schedule § € § when the condition is false (respectively, true). We are
interested in the following integer function 7 of the integer variable f, with the convention
that min ) = +o0:
r(f) = min{t(S) : £(S) < f,5 € S}. (13)

In general, 7(f) is a non increasing function with 7(f) = +oo for f < f] and that 7(f) =
T(fy) =t for f > fi (fi, fi, and t} as in Theorem 1).

It is easy to verify that no optimal schedule is discarded in the following subset of S:

S ={5€8:485)=(f(5)), fi<f(S)< fi}-

Then, the optimal schedules can be identified by applying our techniques to the set A, =
{((f(S5),(S)) : § € S;} and computing the corresponding A’. In general, A, may be a
proper subset of A;, since when A, is arranged by increasing abscissa, the corresponding
sequence of ordinates is non increasing, but not necessarily strictly decreasing or up-ward
convex.

We outline a strategy to find the optimal solutions:
1. Compute f{ = min{f(5): S € S}.

2. Compute t}, = min{¢(5): 5 € S}.

17



3. Compute f = min{f(S5):¢S) <}, S € S}.

4. Compute 7(f) = min{t(5): f(S) < f, S e S}, for fi < f < fi,» and the corresponding
A,

5. Compute A} from A, by Theorem 2.

Steps 1 and 2 of the outlined strategy require the solution of a minimum schedule problem
for a straight-line code. Steps 3 and 4 require the solution of the more general problem where
the length of the schedule for one-branch is minimized, subject to an upper bound on the
length of the schedule for the complementary branch.

As the above scheduling problems are NP-hard, one may have to settle for some heuristics
and hence obtain only an approximate answer in Steps 1 to 4. However, it is important
to observe that Step 5 will always yield the best schedules among those produced by the

heuristics.

3.5 The Restructured Code

Once a set of (absolutely or relatively) optimal schedules S;,S,,...,S5; are obtained, with
the corresponding probability intervals as in Theorem 1, the original code can be replaced by

the a semantically equivalent code structured as follows:

1. input(p);
2. find (smallest) ¢ such that p;_y < p < p;;

3. execute code for schedule §;;

The value of p could be decided statically, from analysis of original code structure or from
results of suitable execution profiles; then, Steps 1 and 2 would actually be compiler’s tasks
and the target code would reduces to just the code for ;.

Alternatively, p could be estimated at run time, by either software or hardware techniques;

then, each of the k schedules must be in the target code.

18




4 Estimating the Bias at Run Time

Given a code segment with the properties assumed in the previous section, let C' denote the
condition and, for h = 1,2,...,let ¢, € {0 = false, 1 = true} be the value taken by condition
C at the h-th execution of the conditional statement (when the program runs on some fixed
input data).

We view the (Boolean) sequence ¢y, ¢3,. .. as arandom process. The goal is to estimate the
conditional probability r, = Pr(c, = 1|ey,€2,...,¢,-1). Arbitrarily sophisticated schemes
could be adopted to perform this estimate, and any of them could be coupled with the strategy
developed in the previous section. Here, we shall propose a simple and effective estimator
in order to demonstrate that the bias estimate can be obtained with negligible (hardware or
software) overhead.

Our estimator is a first-order filter, with an adjustable parameter 8 € [0,1]. Denoting by

by, the estimate of rj, the estimator is described the the following recurrence relation:

l’:"h+1 = (1 "—,B)bh_ +Jach ’ h > 13 (14)

with initial condition b1, to be statically selected. It is interesting to observe that the proposed
estimator is completely symmetric with respect to false and true branches. In fact, if we let
gn = (1 — by) be the estimate for the bias of the false branch, we can easily rewrite Equation
(14) as

ghar=(1—Bgn+B(1—cn), h>1, (15)

with g; = 1 — b;, which has the same form as Equation (14) does.
Below are a few, simple to derive, properties of the estimator, which help to develop some

intuition on its behavior.
e If 0 < b <1, then for every h > 1, we have 0 < by, < 1.

o If for every h we have ¢, = 0, then by = (1 — 3)"b;, which converges to 0 exponentially,

the larger 3 the faster. (Symmetrically, if ¢; = 1, b, converges to 1.)

e If 3 =0, then by = by, for any h. In this case, there is no dynamic update of the

estimate, which remains uniquely determined by the statically selected initial condition.

19



e If 7 =1, then bpy1 = cp, for any h. In this case, the condition is estimated to be
completely biased according to the previous outcome of the condition (except for the

first execution).

e In general, |by+1 —br| < 8. As [ increases from 0 to 1, the resulting estimator becomes
more sensitive to the most recent history of the condition and less sensitive to the
remote history. Hence, for larger values of 3, the estimator responds more quickly to

changes in bias, but is correspondently less stable.

From the standpoint of implementation, we observe that to perform one update of the bias
estimate only requires a small number of operations (see Equation (14)). These operations
can be further simplified by choosing 3 = 277. In this case, Equation (14) can be rewritten
as

bhyr = b — 2790y +27¢,, h>1, (16)

only requiring one shift, one subtraction, and one addition (if ¢, = 1).

4.1 Integrating the Estimator with the Schedules

We recall that, when we use the approach developed in the preceding section, the probability
interval [0, 1] is partitioned into subintervals [p;_1,p;], fori = 1,2,...,k, and to each interval
there correspond an optimal schedule to be used when p is in that interval. Of course, as p
is not known, we will work with its estimate b instead.

Let 7j, be such that by € [pi,—1,pi,]. It is interesting to observe that, since |bpyq —by| < 3,

if 8 < max;(p; — pj—1), then |ip41 — ix| < 1. More specifically, we have:

if ¢, = 0 then
if bpy1 > pi—1
then ipyq = i3
else iy =4, — 1
else

if b1 2 iy
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then ipy =i + 1
else 1541 = i
(If variable I holds the current value of ¢;, then the above code can be further simplified).
Between consecutive executions of the condition, control moves only between consecutive

schedules in the sequence.

5 A Real Example
Consider the following C code fragment, taken from a multimedia application (one of the
applications used to motivate the MMX instruction set [PWW97]):

for (i = 1; 1 <= N; i++)
if (a[i] == K)

out[i] = c[i];
else
out[i] = b[i];

Assuming that each VLIW instruction may contain up to 3 operations (of any kind per cycle),

the loop compiles into the following VLIW instruction stream S1:

i =0 | N> =N % 4
Loop: rl=a+i

r2 = Mem[r1i]

jneq r2,K,Else
Then: 13 = out + i | 4 = c + i | i =1+ 4

r5 = Mem[r4]

Mem[r3] = r5 | jit i,N’,Loop | jge i,N’,Done
Else: 13 = out + i | 4 = b + i i =1+4

r5 = Mem[r4]

Mem[r3] = r5 | j1t i,N’,Loop

Done:

This code is optimized to maximize parallelism without scheduling across either branch. Note
that variables are referenced by name for readability purposes; these variables would occupy
registers in the final schedule. Each iteration of the loop requires 6 cycles.

Now, suppose we assume the conditional is always TRUE. Scheduling aggressively across

the then-branch yields the following schedule S2:
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i=0 | N> =N * 4
Loop: rl1=a+1i | r3 =out +i | réd=c+i
r2 = Mem[r1i] | r5 = Mem[r4] | i=1i+ 4
I |

1
jneq r2,K,Else Mem[r3] = r5 jlt i,N’,Loop

jge 1i,N’,Done
Else: r4 =50 +1

r5 = Mem[r4]

Mem[r3] = r5 | jit i,N?,Loop
Done:

In this case, the operations from the then-branch are moved up to fill the resources available
in the instructions that perform the conditional test. As a result, each iteration of the loop
now requires only 3 cycles (4 on the last iteration) if the conditional is in fact TRUE, and 6
cycles if the conditional turns out to be FALSE.

If we assume the opposite, that the conditional is always FALSE, the results are symmet-
ric: each iteration of the loop requires only 3 cycles (4 on the last iteration) if the conditional
is in fact FALSE, and 6 cycles if it turns out to be TRUE. We denote this schedule symmetric
52,

Finally, suppose we assume that the branches are equally likely, i.e. that the condi-
tional could be TRUE or FALSE with equal probability. Scheduling aggressively across
both branches yields the schedule S3:

i =0 N’ =N % 4
Loop: rl=a+1 r3 = out + i 4= c + 1
r2 = = Mem[r4] T4’ = b + i

|
|
jneq r2,K,Else r5’ = Mem[r4’] | i =i + 4
Then: Mem[r3] = r5 jlt i,N’,Loop | jge i,N’,Done
Else: Mem[r3] = r5’
Done:

|

|
Mem[r1] | 5

I

I

| jit i,N’,Loop

In this case, the available resources are split between the needs of both branches, resulting
in a schedule that requires 4 cycles for each iteration of the loop—regardless of the value of
the conditional.

Table 1 compares the cycle times for 1000 iterations of the loop, under varying branch
probabilities and execution strategies. Each row denotes the probability of one branch exe-
cuting in favor of the other. The first four rows reflect a random distribution of branches.

The latter rows all denote probabilities of 0.5, but where the branch distribution is based on
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an alternating sequence of T and F branches: d denotes the duration (number of iterations)
before the branch switches from T to F (or F back to T). The columns denote different
strategies for executing the loop, the first three denoting compile-time approaches and the
fourth denoting a typical run-time approach. It is assumed that in the run-time case, the
penalty for switching between schedules is 0 cycles (this is very optimistic). On the other
hand, the run-time approach is using a two-bit predictor, and thus takes two iterations to
recognize a sustained switch in the control flow of the conditional. Our approach is using a

four-bit history estimator.

static static our approach dynamic

N=1000 (S2) (avg S3) | (speculation $2-S3) | (HW speculation S1)

picked | picked

correct | wrong
p=d 3000 6000 4000 3000 3000
p=0.9 3312 5685 4000 3354 3365
p=07 3886 5111 4000 3993 4133
p=0.5 4522 4477 4000 4287 4455
p = 0.5 (d=1) || 4500 4500 4000 4001 4500
p = 0.5 (d=2) || 4500 4500 4000 4000 5994
p = 0.5 (d=3) || 4500 4500 4000 3999 4995
p=0.5(d=4) || 4500 4500 4000 4494 4494
p=0.5 (d=5) || 4500 4500 4000 4194 4194

Table 1: Cycles required to execute multimedia loop.

Statically scheduling across one branch enables a 3-cycle iteration if execution follows the
scheduled branch, but 6 cycles if not. As shown in Table 1, this does well when the probability
is high AND the compiler happens to pick the correct branch. Statically scheduling for the
best average case does well for lower probabilities, but is unable to exploit high probabilities
of one branch being taken over the other. The dynamic approach uses hardware-based branch
prediction at run-time to generate a schedule, either 52 or symmetric $2. This performs well
when the flow of execution is highly-predictable, and when the branches do not alternate
frequently between T and F.

Our approach, which generates 3 schedules at compile-time (S2, symmetric $2, and S3)
AND then selects one during each iteration at run-time, performs well across a range of

probabilities. In particular, our approach always performs as well OR better than the dynamic
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scheme. In comparison to static schemes, our approach generally does better, though one can
construct cases in which our technique does worse (e.g. p=0.5 with d=4). This is a function
of the estimator’s accuracy, in particular how much history it can retain. For example, Table
1 shows that the worst-case cycle time for the dynamic case is 5994 (p=0.5,d=2), which
is due to its use of a two-bit predictor. In our approach, the worst-case cycle time is 4494

(p=0.5,d=4), given our four-bit estimator.

5.1 Additional examples from other Applications

Please note: the final version of the paper will contain additional examples taken from other
benchmarks. Regardless, we feel that the point of the paper has been made, given the strong

theoretical foundation and the demonstration of its potential on a real example.

6 Conclusions

We presented a general theoretical framework for the study of branch speculation. The frame-
work yields a systematic way to select the schedule in a given set that, for any (estimated)
bias of the branch, from aggressively speculating on any given outcome of the conditional.
We showed that in some cases, the optimal schedule is a combination of schedules, and not
those resulting only from aggressively speculating on any given outcome of the conditional.
This approach yields better performance than existing static and dynamic techniques in the
case of highly unpredictable branches, and performs no worse otherwise. This work is useful

for both static and dynamic approaches to branch speculation.
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