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Abstract

Text embeddings have played a key role in obtaining state-of-the-art results in natural
language processing. Word2Vec and its variants have successfully mapped words with
similar syntactic or semantic meanings to nearby vectors. However, extracting universal
embeddings of longer word-sequences remains a challenging task. We employ the con-
volutional dictionary model for unsupervised learning of embeddings for variable length
word-sequences. We propose a two-phase ConvDic+DeconvDec framework that first learns
dictionary elements (i.e., phrase templates), and then employs them for decoding the ac-
tivations. The estimated activations are then used as embeddings for downstream tasks
such as sentiment analysis, paraphrase detection, and semantic textual similarity estima-
tion. We propose a convolutional tensor decomposition algorithm for learning the phrase
templates. It is shown to be more accurate, and much more efficient than the popular
alternating minimization in dictionary learning literature. Our word-sequence embeddings
achieve state-of-the-art performance in sentiment classification, semantic textual similarity
estimation, and paraphrase detection over eight datasets from various domains, without
requiring pre-training or additional features.

1. Introduction

We have recently witnessed the tremendous success of word embeddings or word vector
representations in natural language processing. This involves mapping words to vector
representations such that words which share similar semantic or syntactic meanings are
close to one another in the vector space Bengio et al. (2006); Collobert and Weston (2008);
Collobert et al. (2011); Mikolov et al. (2013); Pennington et al. (2014). Word embeddings
have attained state-of-the-art performance in tasks such as part-of-speech (POS) tagging,
chunking, named entity recognition (NER), and semantic role labeling. Despite this impres-
sive performance, word embeddings do not suffice for more advanced tasks which require
context-aware information or word orders, e.g. paraphrase detection, sentiment analysis,
plagiarism detection, information retrieval and machine translation. Therefore, extracting
word-sequence vector representations is crucial for expanding the realm of automated text
understanding.

Previous works on word-sequence embeddings are based on a variety of mechanisms.
A popular method is to learn the composition operators in sequences Mitchell and Lapata
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(2010); Yu and Dredze (2015). The complexity of the compositionality varies widely: from
simple operations such as addition Mitchell and Lapata (2010); Yu and Dredze (2015) to
complicated recursive neural networks Socher et al. (2011, 2013); Belanger and Kakade (2015),
convolutional neural networks Kalchbrenner et al. (2014b,b), long short-term memory (LSTM)
recurrent neural networks Tai et al. (2015), or combinations of these architectures Wieting et al.
(2015). All these methods produce sentence representations that depend on a supervised task,
and the class labels are back-propagated to update the composition weights Kalchbrenner et al.
(2014a).

Since the above methods rely heavily on the downstream task and the domain of the
training samples, they can hardly be used as universal embeddings across domains, and re-
quire intensive pre-training and hyper-parameter tuning. The state-of-the-art unsupervised
framework is Skip-thought Kiros et al. (2015), based on an objective function that abstracts
the skip-gram model to the sentence level, and encodes a sentence to predict the sentences
around it. However, the skip-thought model requires a large corpus of contiguous text, such
as the book corpus with more than 74 million sentences. Can we instead efficiently learn
sentence embeddings using small amounts of samples without supervision/labels or anno-
tated features(such as parse trees)? Also, can the sentence embeddings be context-aware,
can handle variable lengths, and is not limited to specific domains?

We propose an unsupervised ConvDic+DeconvDec framework that satisfies all the above
constraints. It is composed of two phases, a comprehension phase which summarizes tem-
plate phrases using convolutional dictionary elements, followed by a feature-extraction phase
which extracts activations using deconvolutional decoding. We propose a novel learning
algorithm for the comprehension phase based on convolutional tensor decomposition, as de-
scribed in Section 1.1. Note that in the comprehension phase, phrase templates are learned
over fixed length small patches (patch length is equal to phrase template length), whereas
entire word-sequence is decoded to get the final word-sequence embedding in the feature-
extraction phase.

We employ our sentence embeddings in the tasks of sentiment classification, semantic
textual similarity estimation, and paraphrase detection over eight datasets from various
domains. These are challenging tasks since they require a contextual understanding of text
relationships rather than bags of words. We learn the embeddings from scratch without
using any auxiliary information. While previous works use information such as parse trees,
Wordnet or pre-train on a much larger corpus, we train from scratch on small amounts of
text and obtain competitive results, which are close or even better than the state-of-the-art.

This is due to the combination of efficient modeling and learning approaches in our work.
The convolutional model incorporates word orders and phrase representations, and our tensor
decomposition algorithm can efficiently learn an set of parameters (phrase templates) for
the convolutional model. We describe our framework in detail below.

1.1 Convolutional Dictionary Model and Tensor Decomposition Algorithm

Word embeddings focus on mapping words to fixed length vector representations and ignores
the order of the words. To model the word-sequence or the word order, we consider a
convolutional dictionary learning model which posits that the observed word-sequence is
generated from a superposition of phrase templates (a.k.a dictionary elements) {f∗

1 , . . . f
∗
L}
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activated at various locations in the word-sequence. Therefore, the convolutional model x =
∑

i∈[L] f
∗
i ∗w∗

i is natural, where activations are represented by activation maps {w∗
1, . . . w

∗
L}.

Now training the convolutional dictionary model is the problem of joint prediction of a good
set of phrase templates f∗

1 , . . . f
∗
L and activation maps w∗

1, . . . w
∗
L given the observed word-

sequence x. And the activation maps w∗
1, . . . w

∗
L are further used as the word-sequences

embedding for word-sequences x as it contains the discriminative features that distinguish
different word-sequences.

To be precise, the convolutional dictionary model learning solves the following optimiza-
tion problem

min
fi,wi:‖fi‖=1

‖x−
∑

i∈[L]

fi∗wi‖
2. (1)

A popular heuristic for solving (1) is based on alternate minimization (AM) Bristow and Lucey
(2014), where the phrase embeddings fi are optimized, while keeping the activations wi fixed,
and vice versa. Each alternating update can be solved efficiently since it is linear in each
of the variables. However, there are two main drawbacks: computational inefficiency and
sub-optimality. AM requires a pass over all the samples in each iteration and is therefore
computationally expensive in the large sample setting. Moreover, due to the non-convexity
of the objective function as in (1), obtaining the global optimum of (1) is NP-hard in general.
AM has no local or global convergence guarantees even in usual dictionary learning setting
(multiplicative model). This problem is severely amplified in the convolutional setting due
to additional symmetries. Due to shift invariance of the convolutional operator, shifting
a phrase embedding fi by some amount, and applying a corresponding negative shift on
the activation wi leaves the objective in (1) unchanged. Thus, solving (1) is fundamentally
ill-posed and has a large number of equivalent solutions.

To solve the computational inefficiency and sub-optimality problem, we propose a convo-
lutional tensor decomposition method Huang and Anandkumar (2015). Our convolutional
tensor decomposition method employs the inverse method of moments, and decompose a
data cumulant (empirically computed from aggregate statistics or data moments) as phrase
embeddings and shifted versions of phrase embeddings. The entire process requires one
pass of data to compute the cumulant whereas AM requires data passes in each iteration.
The reason why our tensor decomposition framework avoids multiple passes of the data
samples is that we only estimate the phrase embeddings fi in the learning step. Moreover,
the algorithm is carefully implemented and algorithmically optimized that it requires only
simple operations such as Fast Fourier Transforms (FFT) and matrix multiplications. These
operations have a high degree of parallelism: for estimating L phrase embeddings, each of
length n, we require O(log n+logL) time and O(L2n3) processors. Our convolutional tensor
decomposition yields optimization problems (in each iteration) that can be solved in closed
form and it converges much faster compared to AM Huang and Anandkumar (2015).

2. Word-Sequence Modeling and Formulation

Our ConvDic+DeconvDec framework focuses on a convolutional dictionary model to summa-
rize phrase templates, and then decode word-sequence signals to obtain the word-sequence

3
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embeddings. The first question is how to encode the word sequence into a signal, to be input
to the convolutional model and we discuss that below.

2.1 From raw text to signals

Word encoding: A word is represented as a one-hot encoding vector, i.e. with vector
ei ∈ R

d whose ith entry is 1 and other entries are 0, where i is the index of the word in
the dictionary. Alternatively, one could use the word2vec embeddings instead of one-hot
encodings. We then stack the one-hot encoding vectors of each sentence together to form a
encoding matrix. The stacking order conforms the word-sequence order.

replacemen

d

k

kN1 N2 N3

svd
=

=

=Y
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Sseq1
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Figure 1: Principal component projection to obtain [Y1,Y2, . . . ,YM ] = U⊤
S =

U⊤[Sseq1
,Sseq2

, . . . ,SseqM
] using S. Note that U is the top k left eigenvectors of S.

To be precise, let us consider sentenc with N words. The encoding matrix of this word-
sequence Sseq is Sseq := [sword1

, sword2
, . . . , swordN

] ∈ R
d×N .

Principal components: Now that we have encoded words in each sentence, we want
to find a compact representation of them in terms of a dictionary model. However, the
encoding matrices are too sparse to fit a convolutional model in the word space. Instead, we
perform dimensionality reduction through PCA and carry out dictionary modeling in the
projected space.

Concretely, we stack the encoding matrices side by side as S := [Sseq1
,Sseq2

, . . . ,SseqM
] ∈

R
d×(

∑M
i=1

Ni), assuming there are M number of sentences in the collection of varying lengths
N1, N2 and so on. Let U ∈ R

d×k denote the top k left eigenvectors of S. We consider
Yi := U⊤Sseq1 ∈ R

k×Ni , for each sentence i. We treat the rows of Yi independently in

parallel and fit convolutional model to each row. Denote jth row of Yi as y
(j)
i , and thus

Yi =







y
(1)
i
...

y
(k)
i






.
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Activation Maps

stack Coordinate 1
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Word-sequence Embedding

Comprehension Phase Feature-extraction Phase

Figure 2: Overview of our ConvDic+DeconvDec framework for the ith word-sequence over k
coordinates. The Comprehension Phase learns phrase templates using tensor decomposition
algorithm. The Feature-extraction Phase decodes activation maps using deconvolutional
decoding algorithm. The activation maps are max-k pooled and stacked as the final word-
sequence embedding.

Each y
(j)
i is generated through a convolutional dictionary model over phrase templates

and activation maps. Our goal in the learning phase is to learn template phrases for the

collection of [y
(j)
i ] over all word-sequences ∀i ∈ [M ] across all parallel directions ∀j ∈ [k].

We will state the learning problem formally in the next section. Since all the coordinates
are independent and the phrase templates are learned in parallel over all the coordinates,

we drop the index j to denote a coordinate of the ith word sequence y
(j)
i . In the following

subsection, a patch from y
(j)
i will be denoted as x.

2.2 Comprehension Phase – Learning Phrase Templates

+= =∗∗

x xf∗

1
w∗

L
f∗

L
w∗

1
F∗ w∗

(a) Convolutional model (b) Reformulated model

Figure 3: Convolutional tensor decomposition for learning convolutional ICA mod-
els Huang and Anandkumar (2015).(a) The convolutional generative model with template
phrases. (b) Reformulated multiplicative model where F∗ is column-stacked circulant ma-
trix.

A word sequence is composed of superposition of overlapping patches, therefore we are
interested in learning a generative model over overlapping patches. We can also view these
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= +...+ + +...+

C3 λ1(F
∗
1 )

⊗3 +λ2(F
∗
2 )

⊗3. . .

Figure 4: The third order cumulant is decomposed superposition of third order outer
product of template phrases and third order outer product of shifted template phrases.

patches as phrases. A length n patch x is generated as the superposition of L phrase
embeddings f∗

l convolved at L activation maps w∗
l , ∀l ∈ [L]. Due to the property of the

convolution, the convolution is reformulated as the multiplication of F∗ and w∗, where
F∗ := [Cir(f∗

1 ),Cir(f
∗
2 ), . . . ,Cir(f

∗
L)] is the concatenation of circulant matrices and w∗ is the

row-stacked vector w∗ :=











w∗
1

w∗
2
...

w∗
L











∈ R
nL. To be precise, a patch

x =
∑

l∈[L]

f∗
l ∗wl

∗ = F∗ · w∗, (2)

This is illustrated in Fig 4(a). Cir(f∗
l ) is circulant matrix corresponding to phrase template

f∗
l , whose columns are shifted versions of f∗

l as shown in Fig 4(a). Note that although F∗

is a n by nL matrix, there are only nL free parameters. Given access to the collection of
word-sequence sample patches, X := [x1, x2, . . .], generated according to the above model,
we aim to estimate the true template phrases f∗

i , for i ∈ [L]. In section 3 we will elaborate
on our convolutional tensor decomposition dictionary learning method (ConvDic).

If the patches are in the same coordinate of the word sequence, these patches share a
common set of phase templates, but their activation maps are different. The activation maps
are the discriminative features that distinguish different patches. Once the template phrases
are estimated, we can use standard decoding techniques, such as the square loss criterion in
(1) to learn the activation maps for the individual maps.

2.3 Feature-extraction Phase – Word-sequence Embeddings

Activation maps in a coordination: After learning a good set of phrase templates
{f1, . . . , fL} and thus F , we use the deconvolutional decoding (DeconvDec) to obtain the
activation maps for the jth coordinate. For each observed coordinate of the word-sequence

y
(j)
i , the activation map w∗

l in (2) indicates the locations where ith template phrase f∗
l is

activated and w∗ is the row-stacked vector w∗ := [w∗
1;w

∗
2; . . . w

∗
L]. An estimation of w∗, w

(j)
i ,

is achieved as follows

w
(j)
i = F†y

(j)
i

⊤
. (3)

Note that the estimated phrase templates are zero padded to match the length of the word-
sequence.
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We assume that the elements of w∗ are drawn from some product distribution, i.e. dif-
ferent entries are independent of one another, and we have the independent component
analysis (ICA) model in (2). When the distribution encourages sparsity, e.g. Bernoulli-
Gaussian, only a small subset of locations are active, and we have the sparse coding model
in that case. We can also extend to dependent distributions such as Dirichlet for w∗, along
the lines of Blei et al. (2003), but limit ourselves to ICA model for simplicity. This activa-

tion map w
(j)
i ∈ R

Ni·L contains sequence embeddings from coordinate j only, and will be
used as one coordinate of our final word-sequence embeddings.

Varying sentence length: One difficulty in learning the template phrases using our
convolutional tensor decomposition model is that different word-sequence has a different
length Ni, therefore the activation maps are of varying length as well. We resolved this
problem by max-k pooling. In other words, we extract most informative global discriminative
features from the activation maps, as illustrated in Figure 2. Finally, we concatenate all the
max-k pooled coordinate sequence embeddings as a long vector as the final word-sequence
embedding.

The overall framework flow is depicted in Fig 2.

3. Convolutional Dictionary Model Learning

In this section, we will focus on the comprehension phrase and propose a tensor decompo-
sition dictionary learning method for learning the phrase templates. As we demonstrated
earlier, the generative model for a patch from one coordinate, x, is illustrated in Fig 4. x is
generated as the superposition of L phrase embeddings f∗

l convolved at L activation maps
w∗
l , ∀l ∈ [L]. Let f∗

l ∈ R
n be the unknown template phrases, where j ∈ [L] denotes the

index of phrases. Under the convolution ICA model, we show that the third order cumulant
has a nice tensor decomposition form Huang and Anandkumar (2015), as given below.

Lemma 1 (Decomposition of Cumulants) The unfolded third order cumulant C3 in (6)
has the following decomposition form

C3 =
∑

j∈[nL]

λ∗
jF

∗
j (F

∗
j ⊙F∗

j )
⊤ = F∗Λ∗ (F∗ ⊙F∗)⊤ , where Λ∗ := diag(λ∗

1, λ
∗
2, . . . , λ

∗
nL) (4)

where F∗
j denotes the jth column of the column-stacked circulant matrix F∗ and λ∗

j is the
third order cumulant corresponding to the (univariate) distribution of w∗(j).

The third order cumulant C3 is a third order tensor, which could be empirically estimated
using first three orders of moments. The form of the cumulant tensor is in Appendix A.1.

The decomposition form in (4) is known as the CANDECOMP/PARAFAC (CP) de-
composition form Anandkumar et al. (2014) (the usual form has the decomposition of the
tensor and not its unfolding, as above). We attempt to recover the unknown template
phrases f∗

i through decomposition of the third order cumulants C3. Our goal is to obtain
template phrase estimates fl’s ∀l ∈ [L] and weight estimates Λ such that the cumulant
C3 is decomposed as FΛ (F ⊙ F)⊤, as in equation 4. The formal statement is deferred to
Appendix A.2.
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We propose convolutional tensor decomposition using efficient Alternating Least Square
with Circulant Constraint to solve the non-convex optimization problem. Consider the
asymmetric relaxation and introduce separate variables F ,G and H for filter estimates along
each of the modes to fit the third order cumulant tensor C3. ALS iteratively alternates over
the three variables and updates one mode by fixing the two other modes

min
F

‖C3 −FΛ (H⊙ G)⊤‖2F s.t. blkl(F) = U · diag(FFT(fl)) · U
H, ‖fl‖

2
2 = 1,∀l ∈ [L] (5)

Similarly, G and H have the same column-stacked circulant matrix constraint and are up-
dated similarly in alternating steps. The diagonal matrix Λ is updated through normal-
ization. The objective function is defined in Huang and Anandkumar (2015), refer to ap-
pendix A for details.

4. Experiments

We evaluate the quality of our word sequence embeddings using three challenging natural
language process tasks: sentiment classification, paraphrase detection, and semantic textual
similarity estimation. Eight datasets which cover various domains are used as shown in
Table 1.

Dataset Domain Label Label Distribution M
Review Moview Reviews {-1,1} [0.49,0.51] 64720
SUBJ Obj/Subj comments {-1,1} [0.50,0.50] 1000
MSRpara news sources {-1,1} [0.33,0.67] 5801×2
STS-MSRpar newswire [0,5] [0.00,0.02,0.10,0.24,0.47,0.17] 1500×2
STS-MSRvid video caption [0,5] [0.13,0.21,0.14,0.16,0.21,0.14] 1500×2
STS-OnWN glosses [0,5] [0.01,0.02,0.04,0.12,0.35,0.47] 750×2
STS-SMTeuroparl machine translation [0,5] [0.01,0.00,0.00,0.02,0.19,0.78] 1193×2
STS-SMTnews machine translation [0,5] [0.00,0.01,0.01,0.06,0.19,0.73] 399×2

Table 1: Summary statistics of the datasets used.

For all the datasets, we train a simple logistic regression model on the training samples
and report test classification accuracy using a 10-fold cross validation. Sentiment analysis
and paraphrase detection belong to binary classification tasks. In a binary classification task,
either accuracy or F score is used as evaluate metric. Recall that F-score is the harmonic
mean of precision and recall, i.e., F = 2 · (precision · recall)/precision + recall. Precision is
the number of true positives divided by the total number of elements labeled as belonging
to the positive class, and recall is the number of true positives divided by the total number
of elements that belong to the positive class.

Our ConvDic+DeconvDec learns word-sequence embeddings from scratch and requires
no pre-training. When working on a new dataset from a new domain, we train fresh set of
phrase templates as called domain phrase templates. Using these domain phrase templates,
we decode activation maps and then form phrase-embeddings. Our approach is different
from skip thoughts, where universal phrase embeddings are generated Kiros et al. (2015).
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4.1 Evaluation Task: Sentiment Classification

Sentiment analysis is an important task in natural language process as automated labeling of
word sequences into positive and negative opinions is used in various settings. We evaluate
our sentence embeddings on two datasets from different domains, such as movie review
and subjective and objective comments, as in Table 1. Using word-sequence embeddings
combined with NB features, we obtain the state-of-the-art classification results for both
these datasets as in Table 2.

Method MR SUBJ
NB-SVM Wang and Manning (2012) 79.4 93.2
MNB Wang and Manning (2012) 79.0 93.6
cBoW Zhao et al. (2015) 77.2 91.3
GrConv Zhao et al. (2015) 76.3 89.5
RNN Zhao et al. (2015) 77.2 93.7
BRNN Zhao et al. (2015) 82.3 94.2
CNN Kim (2014) 81.5 93.4
AdaSent Zhao et al. (2015) 83.1 95.5
Paragraph-vector Le and Mikolov (2014) 74.8 90.5
Skip-thought Kiros et al. (2015) 75.5 92.1
ConvDic+DeconvDec 78.9 92.4

Table 2: Binary classification tasks: sentiment analysis task of cataloging a word-sequence
into two different categories. Classification accuracies in percentage on standard benchmarks
(movie review and subject dataset) are displayed. The first group contains results using bag-of-
words models; the second group exhibits some supervised compositional models; the third group is
paragraph vector; the fourth is the skip-thought result.

Method Outside Information 1 F score
Vector Similarity Mihalcea et al. (2006) word similarity 75.3%
ESA Hassan (2011) word semantic profiles 79.3%
LSA Hassan (2011) word semantic profiles 79.9%
RMLMG Rus et al. (2008) syntacticinfo 80.5%
ConvDic+DeconvDec none 80.7%
Skip-thought Kiros et al. (2015) train large book corpus 81.9%

Table 3: Binary classification tasks: paraphrase detection task, which operates on pairs of
word-sequences and decides on whether they are a paraphrase of each other or not. Com-
parison of F-score with other unsupervised sentence paraphrase approaches. Other methods
use auxiliary information such as word similarities trained on Wikipedia or from WordNet.
In contrast, our algorithm learns sentence embeddings from scratch.

1. The word similarities information they use are either trained in Wikipedia (4.4 million articles in contrast
to the 4076 sentences of paraphrase dataset we use) or from WordNet with expert knowledge.

9
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4.2 Evaluation Task: Paraphrase Detection

We consider the paraphrase detection task on the Microsoft paraphrase corpus Quirk et al.
(2004); Dolan et al. (2004). We employ 4076 sentence pairs as training data to learn the
sentence embeddings and regress on the ground truth binary labels with our learned sentence
embeddings. The remaining test data is used to calculate classification error.

As discussed in Tai et al. (2015), we combine the pair of sentence embeddings produced
earlier wL and wR, i.e., the embedding for the right and the left sentences. We generate fea-
tures for classification using both the distance (absolute difference) and the product between
the pair (wL, wR): [wL⊙wR, ‖wL −wR‖], where ⊙ denotes the element-wise multiplication.

In contrast to other unsupervised methods which are trained using outside information
such as wordnet and parse trees, our unsupervised approach use no extra information, and
still achieves comparable results with the state of art Wiki (2014) as in table 3. We show
some examples of paraphrase and non-paraphrase we identified.

Paraphrase detected: (1) Amrozi accused his brother, whom he called "the witness",
of deliberately distorting his evidence. (2) Referring to him as only "the witness", Amrozi
accused his brother of deliberately distorting his evidence. The two sentences are the “difficult
sentence” to show how our algorithm detect paraphrases since they are not simple switching
of clauses, and the sentence structures differ quite significantly in the two sentences.

Non-paraphrase detected : (1) I never organised a youth camp for the diocese
of Bendigo. (2) I never attended a youth camp organised by that diocese. Similarly with
non-paraphrase detection, the two sentences share common words such as youth camp and
organized, but our method is able to successfully detect them as non-paraphrase.

4.3 Evaluation Task: Semantic Textual Similarity Estimation

For the Semantic Textual Similarity (STS) task, the goal is to predict a real-valued similarity
score in a range [1,K] given a sentence pair. We include datasets from STS task in various
domains including news, image and video description, glosses from WordNet/OntoNotes,
the output of machine translation systems with reference translation.

To frame semantic test similarity estimation task into the multi-class classification frame-
work, the gold rating τ ∈ [K1,K2] is discretized as p ∈ ∆K2−K1 in the follow manner Tai et al.
(2015), pi = ⌊τ⌋ − τ + 1 if i = ⌊τ⌋ + 1 −K1, pi = τ − ⌊τ⌋ if i = ⌊τ⌋ + 2 −K1, and pi = 0
otherwise. This reduces to finding a predicted p̂θ ∈ ∆K2−K1 given model parameters θ to be
closest to p in terms of KL divergence Tai et al. (2015). We use a logistic regression classifier
to predict p̂θ and estimate τ̂θ = [K1, . . . ,K2]p̂.

Results on STS task datasets are illustrated in Table 4. As in Wieting et al. (2015),
Pearson’s r of the median, 75th percentile, and highest score from the official task rankings
are showed. We then compare our method against the performance of supervised models
in Wieting et al. (2015): PARAGRAM-PHRASE (PP), projection (proj.), deep-averaging
network (DAN), recurrent neural network (RNN) and LSTM; as well as the state-of-the-art
unsupervised model skip-thought vectors Kiros et al. (2015).

As we can see from the table, LST is performing poorly even though a back-propagation
after seeing the training labelings is carried out for sequence embedding learning. Our
method is an unsupervised approach as in skip-thought vectors. However, our algorithm
doesn’t output universal word-sequence embeddings across domains. We train a fresh model
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and a new set of domain phrase templates from scratch. Therefore our algorithm is perform-
ing better for these individual datasets on the STS task.

Supervised + Unsupervised Supervised Methods Unsupervised Methods

Dataset 50% 75% Max DAN RNN LSTM Skip-thought ConvDic+DeconvDec

MSRpar 51.5 57.6 73.4 40.3 18.6 9.3 16.8 36.0

MSRvid 75.5 80.3 88.0 70.0 66.5 71.3 41.7 61.8

SMT-eur 44.4 48.1 56.7 43.8 40.9 44.3 35.2 37.5

OnWN 60.8 65.9 72.7 65.9 63.1 56.4 29.7 33.1

SMT-news 40.1 45.4 60.9 60.0 51.3 51.0 30.8 72.1

Table 4: STS task results: Pearson’s r × 100 on MSRpar, MSRvid, OnWN, SMTeuroparl and

SMTnews dataset. The first three columns are official rankings reported in the STS2012
official website, so it combines both supervised and unsupervised methods. The second
three columns are reported by Wieting et al. (2015). Our comparison against the state-of-
the-art unsupervised word-sequence embedding method is in the last two columns.

5. Conclusion

Our unsupervised efficiently ConvDic+DeconvDec yields word-sequence representations that
perform well across a wide range of NLP tasks over datasets from various domains. At the
same time, our efficient tensor learning algorithm requires a relatively small amount of data
and computation. In the future, we plan to investigate the use of ConvDic+DeconvDec for
other domains such as images and videos, as well obtaining joint text-image embeddings.
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Appendix A. Convolutional Tensor Decomposition For Learning

Convolutional Dictionary Model

A.1 Cumulant Form Huang and Anandkumar (2015)

Let C3 ∈ R
n×n2

denote the unfolded version of third order cumulant tensor, it is given by

C3 := E[x(x⊙ x)⊤]− unfold(Z) (6)

where [Z]a,b,c := E[xa]E[xbxc]+E[xb]E[xaxc]+E[xc]E[xaxb]−2E[xa]E[xb]E[xc], ∀a, b, c ∈ [n].
For example, if the lth activation is drawn from a Poisson distribution with mean λ̃, we

have that λ∗
l = λ̃. Note that if the third order cumulants of the activations, i.e. λ∗

j ’s, are
zero, we need to consider higher order cumulants. This holds for zero-mean activations and
we need to use fourth order cumulant instead. Our method extends in a straightforward
manner for higher order cumulants.

A.2 Alternating Least Squares for Convolutional Tensor
Decomposition Huang and Anandkumar (2015)

Objective Function: Our goal is to obtain template phrase estimates fi’s which mini-
mize the Frobenius norm ‖ · ‖F of reconstruction of the cumulant tensor C3,

min
F

‖C3 −FΛ (F ⊙F)⊤‖2F ,

s.t. blkl(F) = Udiag(FFT(fl))U
H, ‖fl‖2 = 1, ∀l ∈ [L], Λ = diag(λ). (7)

where blkl(F) denotes the lth circulant matrix in F , i.e., F = [blk1(F), . . . , blkL(F)]. The
conditions in (7) enforce blkl(F) to be circulant and for the template phrases to be normal-
ized. Recall that U denotes the eigenvectors for circulant matrices. Now we explain our
proposed convolutional tensor decomposition using efficient Alternating Least Square with
Circulant Constraint to solve (7).

To solve the non-convex optimization problem in (7), we consider the alternating least
squares (ALS) method with column stacked circulant constraint. We first consider the asym-
metric relaxation of (7) and introduce separate variables F ,G and H for filter estimates along
each of the modes to fit the third order cumulant tensor C3. We then perform alternating
updates by fixing two of the modes and updating the third one. For instance,

min
F

‖C3 −FΛ (H⊙ G)⊤‖2F s.t. blkl(F) = U · diag(FFT(fl)) · U
H, ‖fl‖

2
2 = 1,∀l ∈ [L] (8)

Similarly, G and H have the same column-stacked circulant matrix constraint and are up-
dated similarly in alternating steps. The diagonal matrix Λ is updated through normaliza-
tion.

We now introduce the Convolutional Tensor (CT) Decomposition algorithm to efficiently
solve (8) in closed form, using simple operations such as matrix multiplications and fast
Fourier Transform (FFT). We do not form matrices F ,G and H ∈ R

n×nL, which are large,
but only update them using filter estimates f1, . . . , fL, g1, . . . , gL, h1, . . . hL.

Using the property of least squares, the optimization problem in (8) is equivalent to

min
F

‖C3((H⊙ G)⊤)†Λ† −F‖2F s.t. blkl(F) = U · diag(FFT(fl)) ·U
H, ‖fl‖

2
2 = 1,∀l ∈ [L] (9)
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when (H ⊙ G) and Λ are full column rank. The full rank condition requires nL < n2 or
L < n, and it is a reasonable assumption since otherwise the filter estimates are redundant.
In practice, we can additionally regularize the update to ensure full rank condition is met.
Denote

M := C3((H⊙ G)⊤)†, (10)

where † denotes pseudoinverse. Let blkl(M) and blkl(Λ) denote the lth blocks of M and
Λ.Since (9) has block constraints, it can be broken down in to solving L independent sub-
problems

min
fl

∥

∥

∥
blkl(M) · blkl(Λ)

† − U · diag(FFT(fl)) · U
H

∥

∥

∥

2

F
s.t. ‖fl‖

2
2 = 1,∀l ∈ [L] (11)
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