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Enhanced North American carbon uptake associated
with El Niño
Lei Hu1,2*, Arlyn E. Andrews2*, Kirk W. Thoning2, Colm Sweeney2, John B. Miller2,
Anna M. Michalak3,4, Ed Dlugokencky2, Pieter P. Tans2, Yoichi P. Shiga3,
Marikate Mountain5, Thomas Nehrkorn5, Stephen A. Montzka2, Kathryn McKain1,2,
Jonathan Kofler1,2, Michael Trudeau1,2, Sylvia E. Michel6, Sébastien C. Biraud7,
Marc L. Fischer8, Doug E. J. Worthy9, Bruce H. Vaughn6, James W. C. White6,
Vineet Yadav10, Sourish Basu1,2, Ivar R. van der Velde1,2,11

Long-term atmospheric CO2 mole fraction and d13CO2 observations over North America document persistent
responses to the El Niño–Southern Oscillation. We estimate these responses corresponded to 0.61 (0.45 to 0.79)
PgC year−1 more North American carbon uptake during El Niño than during La Niña between 2007 and 2015,
partially offsetting increases of net tropical biosphere-to-atmosphere carbon flux around El Niño. Anomalies in
derived North American net ecosystem exchange (NEE) display strong but opposite correlations with surface air
temperature between seasons, while their correlation with water availability wasmore constant throughout the
year, such that water availability is the dominant control on annual NEE variability over North America. These
results suggest that increased water availability and favorable temperature conditions (warmer spring and
cooler summer) caused enhanced carbon uptake over North America near and during El Niño.
INTRODUCTION
Earth’s climate and the carbon cycle are closely linked and mutually
affect each other. The El Niño–Southern Oscillation (ENSO) influ-
ences weather and climate worldwide (1), causing substantial impacts
on the rates of global and regional carbon cycling. At the global scale,
the interannual variability (IAV) of atmospheric CO2 growth rates
shows remarkably strong correlation with ENSO (2–7), primarily
due to ENSO-induced anomalous CO2 fluxes from tropical ocean
(4, 8, 9) and tropical land (10–13).

The impact of ENSO on net terrestrial carbon fluxes in extratropical
regions was thought to be small, presumably due to weak atmospheric
teleconnections between ENSO and extratropical regions and cancella-
tion of compensating effects within subcontinents (2, 5). Over North
America, however, we find from a dense network of atmospheric mea-
surements that atmospheric CO2 mole fractions and d13CO2 show a
broadly consistent response to ENSO (Fig. 1). Here, we detrended
and deseasonalized atmospheric CO2 and d13CO2 data below 1000 m
(above ground) at each North American flask air sampling site in the
U.S. National Oceanic and Atmospheric Administration (NOAA)’s
Global Greenhouse Gas Reference Network (fig. S1 and table S1). We
then averaged the residuals to derive average monthly CO2 and d

13CO2

anomalies. The average monthly anomalies of atmospheric CO2 over
North America were generally negative around El Niño [Oceanic Niño
Index (ONI)≥ 0.5] and positive around LaNiña (ONI≤−0.5) periods.
They strongly correlated with the ONI with a P-value of 0.0002
(r = −0.38; n = 252). Meanwhile, anomalies of d13CO2 were anticorre-
lated with CO2 anomalies (Fig. 1), suggesting that the response of CO2

and d13CO2 anomalies to ENSO was likely due to changes in terrestrial
ecosystem exchange rather than variations in upwind oceanic fluxes.
This is because plants (especially C3 plants) take up 12CO2 more effi-
ciently than 13CO2, whereas net oceanic exchange does not strongly dis-
criminate against 13CO2 (versus

12CO2) (3, 14), so its influence on
d13CO2 is minimal.

The variability of atmospheric CO2 mole fraction and d13CO2 ob-
servations over North America reflects an integrated influence of
fluxes not only from North America but also from upwind terrestrial
ecosystems (i.e., Eurasia). To quantify the extent to which CO2 and
d13CO2 anomalies observed in the atmosphere over North America
were associated with changes in North American terrestrial carbon
uptake, we inversely modeled North American net ecosystem exchange
[NEE = ecosystem respiration (ER) − gross primary production
(GPP)] from atmospheric CO2 observations using a high-resolution
regional inversemodel CarbonTracker-Lagrange (CT-L) (seeMaterials
and Methods) for 2007–2015, a period with extensive ground- and
airborne-based air sampling (fig. S1). Along with NOAA’s long-term
flask air measurements, we also included additional CO2 observations
from NOAA’s continuous tower measurements and measurements
made by the Environment and Climate Change Canada and the U.S.
Department of Energy available over this period. Estimation of NEE
using regional inverse modeling of atmospheric observations requires
presubtraction of upwind or background CO2 mole fractions (repre-
sentative of those in air before it encounters North America) and mole
fraction enhancements due to fossil fuel combustion and biomass burn-
ing emissions (see Materials and Methods). The remaining spatial and
temporal variability in CO2 observations is then used to optimize “a
priori” flux estimates such that derived posterior fluxes better represent
observed atmospheric mole fractions (than the a priori). In this anal-
ysis, we considered three prior flux fields, which were derived from
1 of 10



SC I ENCE ADVANCES | R E S EARCH ART I C L E
different process-based terrestrial biogeochemical models (TBMs):
two Carnegie-Ames-Stanford Approach (CASA) biogeochemical
model runs (CASA GFEDv4.1s and CASA GFED-CMS) (15) and the
simple biosphere CASA (SiBCASA) biogeochemical model (fig. S2)
(16)). We performed an ensemble of 18 inversions (table S2) to include
not only uncertainties associated with prior fluxes but also those related
to estimated error covariances of prior fluxes and background CO2

mole fractions (see Materials and Methods and table S2) that cannot
be explicitly derived from a single inversion.
RESULTS AND DISCUSSION
IAV of North American NEE
The mean annual net North American land CO2 flux derived from
CT-L (posterior NEE + prescribed emissions from fires) was −0.70
(−1.24 to −0.34) PgC year−1 between 2007 and 2015, considering
the range of 18 inversion results plus the 2s uncertainties from each
inversion. This agrees well with estimates from the global inverse
models such as CarbonTraker (CT2016) (−0.56 PgC year−1) and
CarbonTracker-Europe (CTE2016) (−0.67 PgC year−1) over these
same years. It is also within the range of earlier estimates provided
by other inverse models between 2000 and 2015 (fig. S3) (17–20).

Monthly NEE anomalies are used to diagnose IAV and were es-
timated from each inversion by subtracting the derived monthly
NEE from themonthly fluxes averaged for the samemonths between
2007 and 2015.Monthly NEE anomalies discussed below are average
anomalies across 18 inversions. Derived monthly NEE anomalies
varied by as much ±1.5 PgC year−1 during 2007–2015 and are domi-
nated by flux anomalies derived for temperate North America (~ 25°
to 50°N) (Fig. 2A). The temporal variability in derived monthly NEE
Hu et al., Sci. Adv. 2019;5 : eaaw0076 5 June 2019
anomalies is similar to the variability in measured atmospheric CO2

mole fraction and d13CO2 (Fig. 1) and anticorrelatedwith theONIwith
1 to 3 months lag (r < −0.36; P < 0.03). The temporal variability and
spatial patterns of the derived NEE anomalies suggest broad responses
of both temperate and boreal North American terrestrial ecosystems
to ENSO (Fig. 2 and fig. S4) with larger anomalies being derived for
three biomes: forest field, crops, and coniferous forests (fig. S4). These
forested biomes have previously been identified as the primary contrib-
utors to the overall IAV of North American NEE (21).

Our derivedNEE anomalies fromCT-L show that, during El Niño,
there was an additional 0.61 (0.45 to 0.79) PgC year−1 (the range from
18 inversions) sequestered by North American terrestrial ecosystems
compared to the La Niña periods (Fig. 2B). This response seems to be
asymmetric, with a stronger response to the El Niño phase [−0.38
(−0.48 to −0.30) PgC year−1] than to the La Niña phase [0.22 (0.07 to
0.31) PgC year−1] (Fig. 2B). The natural variability of North American
NEE resulting from climate variability largely associated with ENSO is
much larger than the IAV of fossil fuel or fire emissions (1s≤ 0.05 PgC
year−1 between 2007 and 2015). It is also substantial compared to the
magnitude of natural or anthropogenic fluxes of greenhouse gases over
North America: It is equivalent to roughly 80% of North American an-
nualNEE (−0.78 PgC year−1), one third of annual total NorthAmerican
Fig. 1. Variability ofmonthly anomalies of atmospheric CO2mole fractions and
d13CO2 observations shows a broadly consistent response to ENSO. (A) The ONI.
(B and C) Six-month running averages of monthly CO2 mole fraction and d13CO2

anomalies averaged across NOAA’s long-term flask air sampling sites over North
America (table S1). The number of sites included to calculate the monthly average
anomalies of CO2 and d13CO2 is 7 to 12 for 1995–2003, 16 to 19 for 2004–2007,
and 25 to 30 for 2008–2015. Gray shading indicates standard errors of the calculated
6-month running average anomalies. Light yellow shading indicates El Niño periods,
whereas light blue indicates La Niña periods.
Fig. 2. Anomalies of derivedNEEoverNorthAmerica displaydistinct responses
to different phases of ENSO between 2007 and 2015. (A) Derived monthly NEE
anomalies from 18 inversions considered in this study from CT-L (gray shading),
their monthly means (black thin line), and 6-month running averages (black thick
line). Blue and red solid lines indicate the 6-month running averages of monthly
NEE anomalies derived for boreal and temperate North America. Light yellow
shading indicates El Niño, whereas light blue indicates La Niña. (B) Average
monthly NEE anomalies during El Niño, neutral, and La Niña periods [which were
indicated by yellow, white, and blue shadings in (A)], derived from TBMs (CASA
GFEDv4.1s, CASA GFED-CMS, and SiBCASA), CarbonTracker (CT2016), and CT-L
(this study). Anomalies derived from CT-L were indicated by the boxplot with
red lines representing the medians, blue boxes indicating the 25th and 75th per-
centiles, and black dashed bars indicating the minimums and maximums of the
ranges calculated from the 18 inversions.
2 of 10
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fossil fuel CO2 emissions (1.7 PgC year−1) (17, 22) and twice as large as
the total U.S. anthropogenic non-CO2 greenhouse gas emissions (CH4,
N2O, and fluorinated gases) (0.3 PgC-equivalent year−1) (23, 24). This
implies that shifts in climate (i.e., ENSO phases) have the potential to
largely alter the overall carbon fluxes from North America.

The response ofNorthAmerican net carbon uptake to ENSO iden-
tified here is not present in the a priori fluxes that were calculated from
process-based TBMs (fig. S5). It only emerges in posterior fluxes that
were optimized using atmospheric observations (fig. S5). Fluxes es-
timated from the global inverse model CarbonTracker (CT2016)
(Fig. 2B and fig. S5) (25), which used a similar suite of atmospheric
CO2 observations and the same prior fluxes (CASA GFEDv4.1s and
CASA GFED-CMS) as CT-L, also display a clear response to ENSO
but with a magnitude less than half of that estimated by CT-L (Fig.
2B and fig. S5). The difference in North American NEE response to
ENSO derived from CT-L and CT2016 may arise from the higher
resolution of CT-L in both the atmospheric transport simulation
and inverse modeling setup. In CT2016, air transport was simulated
at 1° × 1° resolution over North America (between 20° to 64°N and
132° to 60°W and at 2° latitude × 3° longitude over the rest of the globe),
and scaling factors of fluxes were derived on a weekly basis for each
ecoregion. InCT-L,we computed air transport at 10-km resolution over
most of North America (see Materials and Methods) and optimized
weekly scaling factors of fluxes at 1° × 1° resolution with adjustment
of the averageweekly diurnal cycle ofNEE (seeMaterials andMethods).
Thus, compared to CT2016, CT-L has more flexibility to adjust diurnal
cycles and spatial patterns of NEE. High-resolution (1° × 1° × 3 hourly)
NEE estimates derived using the same transport simulations as CT-L
from 2007 to 2012 but using a geostatistical inverse modeling approach
(21) show an almost identical magnitude of response to ENSO over this
period as our estimate (fig. S5B). This supports the hypothesis that the
difference in the estimated NEE response to ENSO from CT-L and
CT2016may result from the difference in transport models and inverse
modeling resolution. Compared to the global CarbonTracker, fluxes
derived from our regional model are likely more accurate, as indicated
by better agreement with the atmospheric CO2 observations at a 99.9%
confidence interval (figs. S6 and S7). This may be because the use of
higher-resolution models improves air transport simulation (26, 27)
and reduces spatial and temporal aggregation errors when deriving
fluxes (figs. S8 and S9) (28, 29). The response ofNorthAmerican carbon
uptake to ENSO likely also occurred before the availability of our flux
estimates that begin in 2007, as indicated by atmospheric CO2 mole
Hu et al., Sci. Adv. 2019;5 : eaaw0076 5 June 2019
fraction and d13CO2 observations (Fig. 1) and in fluxes derived from
CarbonTracker (fig. S10).

Climate Drivers for IAV of North American NEE
To understand why North American NEE exhibits such a consistent
response to ENSO, we first investigated how climate variables drive
the IAV of North American net carbon uptake. Current understand-
ing of these relationships is so poor that projections of future carbon
sequestration rates disagree in both sign and magnitude (30). In par-
ticular, the relative roles of air temperature and water availability in
controlling NEE have been intensely debated [e.g., (3, 12, 31–37)].
Jung et al. (36) partially resolved this debate by suggesting that spatial-
ly compensatory effects of water-dominated controls on local scales
minimize its influence so that air temperature is the dominant control
on global yearly land carbon sink. Over temperate North America, pre-
cipitation was recently suggested to dominate control of GPP and total
ER (37). However, because of their compensating effects, it remains
unclear what dominates the control on the IAV of NEE. Furthermore,
studies have also suggested that the control of climate variables on
IAV of North American NEE may vary geographically (21, 38) and
seasonally (39). Therefore, the relative importance of air temperature
versuswater availability on controllingNorthAmerican carbonuptake
needs to be further explored.

With our newly derived NEE from atmospheric CO2 observations,
we conducted a correlation analysis between monthly NEE anomalies
and anomalies of climate variables, including air temperature, precip-
itation, relative humidity (RH), water vapor pressure deficit (VPD;
deficit between saturation water vapor pressure and actual water va-
por pressure in ambient air), and soil moisture (SM). We find that
North American NEE anomalies correlated significantly with anom-
alies of hydrological parameters such as VPD, RH, SM, and precip-
itation over temperate North America at a 95% confidence interval
(Table 1 and table S3). Although the correlation with precipitation is
statistically significant, it is much weaker than with other hydrological
parameters on the continental scale. In addition, NEE anomalies are
significantly correlated with anomalies of VPD, RH, SM, and precipita-
tion only when a 1- to 2-month lag was considered in NEE (table S3),
suggesting a time lag for the response of net carbon fluxes to hydro-
logical conditions. This has also been noted over the Amazonian rain-
forest (40).

When considering all months of the year together, monthly North
American NEE anomalies are not correlated with air temperature
Table 1. Correlation coefficients between CO2 flux anomalies over North America and anomalies of area-weighted average air temperature, pre-
cipitation, RH, VPD, and SM over temperate North America, using prior fluxes (CASA GFEDv4.1s) and derived posterior fluxes from CT-L. Correlations were
calculated with fluxes lagging climate variables by 1 month. The P value associated with each correlation is included in parentheses. The correlation is higher for
yearly average anomalies than that for monthly anomalies as noise in the datasets are smoothed out.
Climate variables
 Prior fluxes (monthly)
 Posterior fluxes (monthly)
 Posterior fluxes (yearly)
Air temperature
 −0.09 (0.34)
 −0.01 (0.90)
 0.30 (0.43)
Precipitation
 −0.03 (0.78)
 −0.21 (0.03)
 −0.78 (0.01)
RH
 −0.14 (0.15)
 −0.38 (<0.0001)
 −0.69 (0.04)
VPD
 0.16 (0.09)
 0.39 (<0.0001)
 0.75 (0.02)
SM
 −0.23 (0.02)
 −0.32 (0.001)
 −0.66 (0.05)
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anomalies (Table 1 and table S3). However, when considered on a sea-
sonal basis, correlations emerge that change signs with season (Fig. 3):
In spring (March to May), a negative correlation exists between tem-
perature andNEE anomalies, suggesting thatwarmconditions in spring
enhance North American carbon uptake; whereas in summer (June
to August), the opposite correlation exists, implying that increased
summertime temperatures reduce terrestrial carbon uptake. During
fall (September to November) and winter (December to February),
the correlation between air temperature and NEE anomalies is sta-
tistically insignificant. Note that the spring and summer correlations
were significant with or without a 1-month lag. These correlations are
even stronger than those between hydrological variables and NEE
anomalies in these seasons (Fig. 3). However, in contrast to opposite
correlations between seasons (in the relationship between air tem-
perature and NEE anomalies), correlations between hydrological
variables andNEE anomalies were relatively more constant through-
out the year (Fig. 3).

The correlations betweenNEE anomalies and hydrological variables
discussed above were mostly insignificant in the prior fluxes computed
from different process-based TBMs, CASA (CASA GFEDv4.1s and
CASA GFED-CMS), and SiBCASA (Fig. 3, Table 1, and table S3). The
correlations emerge only from the optimization of these fluxes through
inverse modeling of the atmospheric CO2 observations (Fig. 3, Table 1,
and table S3). This suggests an underestimation of the sensitivity of
NEE to water availability or moisture conditions over North America
Hu et al., Sci. Adv. 2019;5 : eaaw0076 5 June 2019
byTBMs.With no time lag, the opposite seasonal temperature effects of
air temperature onNEE anomalies in spring and summer derived in the
posterior fluxes of CT-L did not exist in prior TBM-computed fluxes
(Fig. 3).When considering a 1-month lag, anomalies of prior fluxes also
showed an opposite correlation with temperature anomalies, but much
weaker than derived from the posterior fluxes. Poor representation of
the carbon uptake and climate relationships by theTBMs likely partially
explains why the computed North American fluxes from TBMs have
not shown a response to ENSO. The poor representations of IAV of
North American carbon uptake and their relationships with climate
variables in the TBMs have also been noted elsewhere (17, 21, 41).

Correlations between NEE anomalies and climate variables over the
major ecoregions (that have larger net carbon uptake; fig. S4) are similar
to those noted on the continental scale (fig. S11). They show a strong
and opposite temperature control on NEE in spring and summer, al-
though hydrological conditions (VPD, SM, RH, and precipitation) were
also important especially during summer in controlling the IAV of
NEE. During fall, hydrological variables seem to be more important
in controlling net carbon uptake than temperature in many ecoregions,
except over some biomes in boreal North America: semi-tundra and
northern taiga (fig. S11), where air temperature positively correlated
with NEE anomalies. This relationship was noted previously and sug-
gests net carbon losses from northern high-latitude ecosystems in re-
sponse to autumn warming (42). In winter, the correlations between
NEE and climate anomalies are the weakest among all seasons with
Fig. 3. Climate drivers for anomalies of North American NEE and their response to ENSO. (A) Correlation coefficients between NEE anomalies and anomalies of air
temperature, precipitation, VPD, and SM in different seasons using prior fluxes (computed from TBMs) and fluxes derived from CT-L. Strong correlations with P < 0.1 are
indicated by color-filled symbols, whereas weaker correlations with P > 0.1 are shown in empty symbols. (B) Differences of average air temperature anomalies between
El Niño and non–El Niño (La Niña and neutral conditions) periods in spring and summer and difference of average VPD anomalies between El Niño and non–El Niño
periods averaged for all seasons. While the impact of El Niño on North American air temperature is opposite between spring and summer, its impact on North American
VPD (and other hydrological variables) is relatively more constant throughout the year (fig. S14).
4 of 10
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precipitation and moisture conditions more important in control-
ling ecoregional NEE than air temperature.

Spatial distribution of Pearson’s correlation coefficients between
anomalies of hydrological variables andNEE indicates stronger control
of water availability on NEE over temperate than boreal regions (fig.
S12). The consistent sign in the Pearson’s correlation coefficients across
temperate North America indicates small spatial cancellation effects
over this region, as opposed to strong spatial cancellation noted on a
global scale (36). For the correlation between air temperature andNEE
anomalies (fig. S13), it was stronger in boreal and eastern temperate
NorthAmerica than that inwestern temperateNorthAmerica in spring,
whereas in summer, they were most strongly correlated across the tem-
perate region, although the correlations between summer and spring
had opposite signs. Climate sensitivities, as derived from slopes of a
linear regression between climate variables and NEE anomalies, suggest
generally larger sensitivities over temperate than boreal regions (figs. S12
and S13), likely due to much larger variability of NEE in temperate eco-
systems (Fig. 2).
UNDERSTANDING THE RESPONSE OF NORTH AMERICAN NEE
TO ENSO
Earlier studies have shown that, around El Niño periods, there was
above normal precipitation in temperate North America from 1875
to 1990 (43, 44). We found that a similar impact was also evident
for the last several decades (figs. S14 and S15). The strength of ENSO,
expressed by the ONI, not only strongly correlates with anomalies of
precipitation but also significantly correlates with anomalies of RH,
VPD, and SM over temperate North America (with ± a few-month
time lag) (table S4 and fig. S15), suggesting more precipitation, higher
RH, smaller VPD, and greater SM over temperate North America be-
fore, during, and after an El Niño event (figs. S14 and S15). This ENSO-
climate correlation over temperate North America appears to be much
stronger after 1980 than during 1950–1980 (fig. S16).

Besides increased water availability (increased precipitation, SM,
and RH and smaller VPD), favorable temperature conditions further
enhanced North American carbon uptake around El Niño over the
last decade. In summer, it was cooler during El Niño than non–El
Niño (neutral and La Niña) periods (Fig. 3 and fig. S14). As tempera-
ture positively correlates with NEE in summer, decreased air tem-
perature would result in more negative NEE (more carbon uptake).
Meanwhile, warmer than usual spring was observed during El Niño,
especially over the boreal region (Fig. 3 and fig. S16), andwould further
enhance terrestrial carbon uptake overNorth America, as air tempera-
ture negatively correlates with NEE anomalies (Fig. 3).

The response of North American terrestrial ecosystems to ENSO
derived here is opposite to the ENSO–carbon flux relationship ob-
served over tropical terrestrial ecosystems (3, 11, 13). In the tropics,
the climatic impact of El Niño tends to be reduced precipitation and
increased air temperatures (drought) (13), whereas the imprint of
El Niño over North America appears to be wetter with increased
temperatures in winter and spring and decreased temperatures in
summer (fig. S14). When compared to the increased net biospheric
carbon flux over the tropics estimated for the recent ENSO event
(2.5 ± 0.3 PgC year−1 increase between the May 2015 to April 2016
El Niño period and the 2011 La Niña period) (11), we estimate an
offsetting carbon uptake in the extratropics from North America that
is roughly a quarter [24% (16 to 36%)] as large, considering the anom-
alies we estimated for 2007–2015 [−0.61 (−0.79 to −0.45) PgC year−1].
Hu et al., Sci. Adv. 2019;5 : eaaw0076 5 June 2019
Our approximation neglects the difference in time periods associated
with both estimates. Neither did we consider the ENSO response of
other extratropical land regions (e.g., Eurasia), whichmay additionally
enhance this offset. Our results highlight the importance of improving
the understanding of regional carbon-climate relationships, which
represent a major uncertainty in future climate projections (30). Fur-
thermore, since climate change will likely result in more frequent and
intense ElNiño events in the future (45), our results also underscore the
importance of improving quantification of regional response of car-
bon cycling rates to climate anomalies associated with ENSO to more
accurately estimate the overall climate impact of future ENSO events.
MATERIALS AND METHODS
Atmospheric observations
Atmospheric CO2 observations used in this analysis for 2007–2015
were from the GLOBALVIEWplus v2.1 ObsPack (www.esrl.noaa.gov/
gmd/ccgg/obspack/) prepared by the Global Monitoring Division
(GMD), Earth System Research Laboratory (ESRL), NOAA, United
States. Those observations included flask air measurements (table S1)
and continuous in situ measurements primarily made by GMD with
additional contributions from the Environment and Climate Change
Canada andU.S. Department of Energy (fig. S1). Flask air samples were
collected from near the Earth’s surface, towers, and aircraft, whereas
continuous measurements were made only from towers. CO2 observa-
tions included in inversions between 2007 and 2015 were ground-based
observations selected and simulated by the NOAA CarbonTracker
(CT2016), plus aircraft data that had above zero sensitivity to upwind
surface fluxes (or “footprints”) (46). The selection criteria for atmo-
spheric CO2 observations used in CarbonTracker’s assimilation are de-
scribed on the NOAA CarbonTracker website (www.esrl.noaa.gov/
gmd/ccgg/carbontracker/CT2016_doc.php#tth_sEc7.1). The total
number of observations used in the inversions conducted by this study
was 88949, 16.9% of which were from aircraft. CO2 observations used
for analyses before 2007 were only based on measurements made from
flask air samples collected by GMD.

Atmospheric d13CO2 observationsweremade from flask air samples
collected by GMD (fig. S1 and table S1) and analyzed by the Institute
of Arctic and Alpine Research (INSTAAR), University of Colorado.
Methods for measurements of d13CO2 can be found in White et al.
(47) and Trolier et al. (48). INSTAAR used a local realization of the
VPDB-CO2 scale based on many measurements made in the early
1990s (48). Since then, the local scale has been propagated by CO2-
in-air cylinders. Although there were documented offsets from other
laboratories, long-term surveillance cylinders showed the consistency
of the INSTAAR scale over time.

Anomalies of atmospheric CO2 and d13CO2 were calculated from
measured atmospheric CO2 dry air mole fractions or d13CO2 subtracted
from their long-term trends andmultiyear averaged seasonal cycle at each
site, computed from the algorithms given by Thoning et al. (49). The
detrended and deseasonalized residuals were then averaged within
each month to obtain monthly average anomalies at individual sites.

Estimating North American NEE using a high-resolution
regional inverse model: CT-L
We recently developed a high-resolution regional inverse modeling
framework for estimating North American regional fluxes by as-
similating atmospheric data: CT-L (www.esrl.noaa.gov/gmd/ccgg/
carbontracker-lagrange/). CT-L used the high-resolution Weather
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Research and Forecasting–Stochastic Time-Inverted Lagrangian Trans-
port (WRF-STILT) model (50) to simulate atmospheric transport and
compute footprints. TheWRFmodel fields had 10-km spatial resolution
below 55°N over temperate North America and 30- to 40-km spatial
resolution above 55°Nduring 2007–2010. After 2010, the high-resolution
(10 km) domain was extended to 55°N, covering most of boreal North
America except for Alaska. STILT footprints have 1° × 1° × 1 hour
resolution and represent simulated upwind influences over 10 days
before each measurement. With precomputed footprints, we estimated
NEE using Bayesian inversion algorithms described below and in our
earlier papers (24, 51, 52). NEE here is defined as the difference between
ER and GPP. Negative NEE indicates CO2 uptake by terrestrial biomes
from the atmosphere, and positive NEE implies CO2 releases from
terrestrial biomes to the atmosphere.

We assumed that each CO2 mole fraction observation (zCO2
) can

be modeled as the sum of the CO2 mole fraction in background air
upwind of the North American continent (zbg) and recent contribu-
tions from NEE (zbio), fossil fuel emissions (zff), and emissions from
wildfires (zfire). Background CO2 mole fraction (zbg) for each obser-
vation was estimated by three approaches using CarbonTracker
(CT2016) simulated four-dimensional (4D) CO2 mole fraction field,
an alternative 4D CO2 mole fraction field estimated from an empir-
ical method, and back trajectories (see detailed description below).
Contributions from fossil fuel (zff) and fire (zfire) emissions were es-
timated by multiplying footprints computed fromWRF-STILT with
fossil fuel and fire emission inventories. We averaged the two fossil
fuel emission products (“Miller” and “ODIAC” datasets) and fire
emission products (“GFED4.1s” and “GFED_CMS”) used in Carbon-
Tracker (CT2016) on a 3-hourly basis and used the average 1° × 1° ×
3 hour emissions to compute their associated CO2 mole fraction en-
hancement. The remaining variability of CO2 observations (zbio) (the
observed CO2 mole fractions minus estimated background mole
fractions and mole fraction enhancements due to fossil fuel and fire
emissions) was then used in our Bayesian inversion framework to
estimate North American NEE.

The cost function for Bayesian inverse modeling can be written as

L ¼ 1
2
ðzbio � KlÞTR�1ðzbio � KlÞ þ 1

2
ðl� lpÞTQ�1ðl� lpÞ ð1Þ

where zbio = zCO2
− zbg − zff − zfire; K is the estimated change in the

CO2 mole fraction due to fluxes over 10 days before each measure-
ment using prior 3-hourly NEE (Pbio) or K = HPbio; H is the sensi-
tivity of atmospheric observations to upwind fluxes or footprints as
mentioned above. lp is a vector of prior scaling factors with values of
ones. l is a vector of optimized posterior scaling factors for prior
fluxes that were solved through inversions. We solved for eight
scaling factors (l) per week for each 1° × 1° grid cell, one for each
3-hourly time of day (i.e., a weekly average adjustment to the diurnal
cycle). Prior NEE (Pbio) had 1° × 1° × 3-hour resolution, so posterior
NEE (Fbio; Fbio = lPbio) did account for day-to-day variability within
a given week to the extent that the prior fluxes captured variability
such as ecosystem responses to local weather conditions. The length
of lp or l was equal to the number of fluxes being estimated, which
equated to the number of grid cells multiplied by the number of
weeks in each batch inversion that spanned a year plus 2 weeks before
and after the year. R andQ are covariancematrices ofmodel-datamis-
match errors and prior relative flux errors, both of which were esti-
mated by maximum likelihood estimation (MLE) (53).
Hu et al., Sci. Adv. 2019;5 : eaaw0076 5 June 2019
The posterior scaling factors of the 1° × 1° NEE fluxes were solved
according to Eq. 2, while the posterior error covariance matrix (C)
was computed using Eq. 3 (A and B):

l ¼ lp þ QKTðKQKT þ RÞ�1ðzbio � KlpÞ ð2Þ

V ¼ Q� QKTðKQKT þ RÞ�1KQ ð3AÞ

C ¼ FbioVF
T
bio ð3BÞ

where V is the posterior error covariance matrix of the 1° × 1°
scaling factors. The 1s error of the 1° × 1° posterior fluxes is equal
to the square root of the diagonal elements of C. Note that it is
impractical to compute the V and C matrices explicitly due to their
large size, so we adapted the methods described by Yadav and Michalak
(54) to calculate monthly or annual V and C. The 1s errors of pos-
terior fluxes aggregated to ecoregions (55) or for North America,
temperate or boreal North America (defined in fig. S1), are equal
to the square root of the sum over rows and columns of C correspond-
ing to the grid cells representing those regions, considering their cross
correlations. The definition of ecoregions and temperate or boreal
North America used in this analysis is consistent with that used in
CarbonTracker (25). The errors mentioned above are statistical errors
computed from each inversion run. Additional uncertainties asso-
ciated with prior fluxes, estimated error covariance matrices, and es-
timate background mole fractions were considered by performing an
ensemble of 18 inversions with different choices for those parameter-
izations (table S2). Systematic errors in air transport simulation were
not specifically examined in this study. However, the IAV, which we
focused on in this paper, is expected to be relatively insensitive to sys-
tematic errors of air transport as found by previous studies (24, 38, 56).
Similarly, errors in fossil fuel combustion and biomass burning (fire)
emissions may be propagated into the estimate of NEE. Because the
IAV of fossil fuel combustion and biomass burning (fire) emissions
are relatively small, the contribution of their associated errors to the es-
timated IAV of NEE is likely negligible.
Prior net ecosystem exchange
We used three different prior NEE (fig. S2) to test the sensitivity of
derived posterior fluxes to prior flux magnitudes, amplitudes of di-
urnal variability, and spatial distributions. The three prior fluxes are:
(i) and (ii) two prior flux products used in CT2016, which estimated
3-hourly NEE fluxes from monthly NEE calculated from two dif-
ferent CASA biogeochemical model runs (CASA GFED-CMS and
CASA GFEDv4.1s) (15) and (iii) fluxes computed from the SiBCASA
terrestrial carbon cycle model (16). The diurnal cycle used for the
CT2016 prior fluxes was the result of temporal downscaling according to
algorithmsdeveloped byOlsen andRanderson (57), whereas in SiBCASA,
the diurnal flux was simulated explicitly. The SiBCASA 3-hourly prior
fluxes have a diurnal cycle with amplitude approximately half as large
as CT2016 prior fluxes (CASA GFED-CMS and CASA GFEDv4.1s)
(fig. S2). There were also differences in spatial distributions and mag-
nitudes ofmonthly and annual NEE between CT2016 prior fluxes and
SiBCASA fluxes.
Estimating error covariances
Error covariances (R and Q) are critical parameters that determine
the weight between prior fluxes and atmospheric observations in
the final posterior solution. Many previous studies have relied on
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“expert judgment” to specify error covariances. Here, we used a
more objective approach, MLE (52, 53), for estimating R and Q. This
approach guarantees a reduced c2 of 1 in the posterior solution. In this
study, we estimated a seasonally (every 3 months) and interannually
varying model-data mismatch error (the square root of the diagonal
element in R) on a site-by-site basis and a seasonally and interannually
varying prior flux error on a relative scale (the square root of the diag-
onal element in Q) across North American land. The MLE-estimated
model-data mismatch errors are typically in a range of 0.4 to 3.4 ppm
(0 to 90th percentile) and estimated prior flux errors are ~100 to 300%
for the three priors used in inversions, CASA GFED-CMS, CASA
GFEDv4.1s, and SiBCASA, depending on seasons or years. Since mea-
surement errors are typically on an order of 0.1 ppm (58), the MLE-
estimated model-data mismatch errors are likely dominated by the other
components, such as transport errors, model representation errors,
and background errors.

We also used MLE to optimize the e-folding correlation scales (in
time and space) in each batch inversion for each year.Here, we assumed
the correlation decays exponentially in time and space as applied
previously in other inversion analyses [e.g. (29, 52)]. The estimated
e-folding correlation scales in prior flux errors are in an approximate
range of 20 to 50 days and 200 to 600 km depending on the year or
the prior flux (table S2). To test the sensitivity of modeled posterior
fluxes to the prior flux error correlation scales, we also performed
inversions with assumed e-folding correlation scales (7 days and
1000 km) that were much different from what were derived from
the MLE method. Note that, for the temporal correlation scales, we
applied correlations across days at the same time of day (e.g., 1:00 p.m.
today is correlated with 1:00 p.m. tomorrow) and no within-day cor-
relation (e.g., 1:00 p.m. today is not correlated with 3:00 p.m. or 11 a.m.
today). This approach was also used by Gourdji et al. (20). As expected,
our inversions using longer spatial correlation scales (1000 km versus
200 to 600 km) resulted in spatially smoother fluxes, and inversions
with shorter temporal correlation scales (7 days versus 20 to 50 days)
resulted in larger temporal variability in derived monthly fluxes.
Background CO2 mole fraction estimation
Background CO2 mole fraction for each CO2 observation was esti-
mated using three approaches combining 4D background CO2 mole
fraction fields with WRF-STILT back trajectories: (i) The approach
“CTBG” used CT2016’s simulated 4D CO2 mole fraction field and
is the average value of the sampled CO2 mole fractions from this field
at locations where the 500 back trajectory particles exited the WRF
modeling domain. Any trajectory particles remaining in the domain
after 10 days were sampled at their ending locations within the do-
main. (ii) The approach “EBG” used an alternative 4DCO2mole frac-
tion field that was constructed from observations made in the remote
atmosphere either within themarine boundary layer at remote sites or
within the free troposphere at aircraft sites over North America. The
free troposphere reference surfaces were created for altitudes > 3 km
above sea level, using forward and backward trajectory ensemble to
extend the influence of individual aircraft observations throughout
the domain. An extended aircraft dataset was created by assuming
the measured value was valid along these trajectories at 3-hourly in-
tervals. Trajectories were terminated when any trajectory particle
dropped below 3 km above ground level, as surface fluxes would
be expected to modify the value at low altitudes. The extended data-
set has the highest density in the vicinity of the actual measurement
location, and the density decreases as the trajectories disperse. The
extended dataset was gridded to 5° × 5° × 1 km (longitude × latitude ×
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altitude intervals), and smooth curves were fitted to each bin using
methods described by Thoning et al. (49). Random errors were esti-
mated on the basis of the curve fit residuals andwere scaled according
to the number of actual observations (instead of the extended obser-
vations). The free troposphere reference surfaces were combined
with separate Atlantic and Pacific marine boundary layer reference
surfaces (constructed using the same methodology used to construct
the global marine boundary layer reference, www.esrl.noaa.gov/
gmd/ccgg/globalview/). The free troposphere reference surfaces
and Atlantic and Pacific marine boundary layer reference surfaces
were combined to provide time-dependent lateral and upper bound-
ary values for NorthAmerica.WRF-STILT trajectories for each obser-
vation used in the inversions were sampled at their endpoints as for
the method (i). Any trajectories terminating within the continental
boundary layer were assigned a latitude-dependent Pacific or Atlantic
marine boundary layer value depending on whether the trajectory
endpoint longitude was west or east of 100°W. The EBG approach
has the advantage of being directly constrained by aircraft andmarine
boundary layer observations, but it does not capture synoptic varia-
bility and it lacks an accurate representation of the continental bound-
ary layer. For midcontinent and eastern sites, up to 20% of trajectories
terminated within the continental boundary layer so biases may be
nonnegligible. (iii) Considering known seasonal biases in CT2016’s
CO2 simulations compared to observations (fig. S6) and the limita-
tions of the EBG approach, the third approach applied a correction
for background mole fractions estimated from CTBG for each season
each year on a site-by-site basis (CTBGcorr). For this correction, we
first selected a subset of “background observations” that had minimal
sensitivity [summed footprints ≤ 1 ppm (mmol m−2 s−1)−1] to land
fluxes over the North American land (fig. S17). Then, a correction
was made on the basis of an average seasonal difference between
CTBG and the selected background observations below 3 km above
ground at each site (fig. S18). This approach was applied previously
to anthropogenic gases (24).

Observing system simulation experiments using
pseudo-observations to optimize inversion configuration
We conducted a suite of observing system simulation experiments
(OSSEs) to determine an optimal inversion configuration that yields
reliable flux estimation with a reasonable computing efficiency. In
these experiments, we first assumed 3-hourly SiBCASA fluxes were
the “truth” and computed pseudo-observations with added random
noise (1s = 0.1 ppm). The computed pseudo-observations had the
same sampling times and locations as real observations. We then used
one of CT2016’s prior 3-hourly fluxes (CASAGFEDv4.1s) as the prior
of these experiments. We computed the scaling factors of prior fluxes
at three different spatial and temporal resolutions using Bayesian in-
version algorithms described above: (i) Similar to the inversion setup
of the CarbonTracker, we solved for weekly scaling factors of prior
fluxes on ecoregional scales [ecoregions are defined in the same way
as CarbonTracker (55) and shown in fig. S1]. (ii) Compared to the
configuration (i), we increased the spatial resolution of the inversion
setup by solving for weekly scaling factors for fluxes on 1° × 1° grid
scales. (iii) Compared to configuration (i), we increased both spatial
and temporal resolution of the inversion by solving for weekly scaling
factors at 1° × 1° with an additional optimization on weekly average
diurnal cycles on 1° × 1° grid scales (eight scaling factors per week per
grid cell). The third setup is the one thatwas used in real-data inversions
in CT-L. To rule out the impact of different covariance parameters
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on the inversed results, we applied the same covariance parameters
calculated fromMLE to all three configurations. Note that theseOSSEs
represent idealized cases with no systematic biases and no transport
errors considered. However, they are useful for testing the mechanics
of the inversion and optimizing the mathematical construct of the in-
version. If an inversion setup does not work to retrieve true fluxes in
the OSSEs, then it would be even harder to derive accurate fluxes in
real-data inversions.

Whenwe solved for weekly scaling factors of prior fluxes on 1° × 1°
grid scale with an adjustment on the diurnal cycle of prior fluxes, the
derived posterior fluxes had the smallest aggregation errors in time
and space, compared to those obtained from weekly scaling on eco-
regional or grid-scale fluxes described in configurations i and ii above
(figs. S9 and S10). They also better agreedwith true fluxes on ecoregional
scales, especially over regions such as semi-tundra and northern taiga.
Allowing for adjustment of diurnal cycles of NEE has already been im-
plemented in previous regional CO2 inversion studies (20, 29, 40, 59) but
has typically been neglected in global CO2 inversions.

Climatological data
The ONI between 1950 and 2017 was downloaded fromNOAA’s Na-
tional Weather Service Climate Prediction Center (http://origin.cpc.
ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.
php). It represented 3-month running mean of ERSST.v5 sea surface
temperature anomalies in the Niño 3.4 region (5°N to 5°S, 120° to
170°W). An El Niño condition was defined as ONI≥ 0.5. All periods
with ONI < 0.5 were considered as non–El Niño conditions, includ-
ing neutral (−0.5 < ONI < 0.5) and La Niña (ONI≤−0.5) conditions.

Gridded monthly air temperature, precipitation, and RH were
fromNOAA’s National Centers for Environmental Prediction’s North
American Regional Reanalysis (NARR), provided by NOAA/OAR/
ESRL PSD, Boulder, Colorado, USA, from their website at www.esrl.
noaa.gov/psd/. NARRdatasets were available at 32-km resolution over
North America for 1979 to 2017. Gridded (0.5° × 0.5°) monthly SM
data were from the NOAA Climate Prediction Center’s SM database.
They were downloaded from the NOAA/OAR/ESRL PSD (www.esrl.
noaa.gov/psd/data/gridded/).

VPD was calculated from saturation water vapor pressure (Vsat) at
ambient air temperature and the RH in the ambient air

VPD ¼ Vsat 1� RH
100

� �
ð4Þ

where, Vsat was computed from

Vsat ¼ 0:6178e
17:27T
Tþ237:3ð Þ ð5Þ

T is the air temperature in degrees Celsius and Vsat is in kilopascal.
Monthly average air temperature, precipitation, RH, SM, and VPD

over boreal and temperate North America were calculated on the
basis of area-weighted averages over grid cells in those regions. To
examine the monthly anomalies that resulted from IAV, we first
removed the decadal and multidecadal variabilities by subtracting
their 10-year running means from the monthly average data. We
then removed the average seasonality from the monthly datasets to
derive monthly anomalies of air temperature, precipitation, RH, SM,
and VPD.
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Correlation between the environmental variables (air temperature,
precipitation, RH, SM, and VPD) and ONI was performed on the
basis of their 3-month averages. Since ONI data were 3-month
running averaged data, we only extracted values that did not have a
temporal overlap; for each year, we only had 4 independent ONI
values instead of 12 ONI values. This approach allowed us to correctly
count the degrees of freedom in the climate datasets and prevented
overestimating their correlations.
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Fig. S7. Vertical profiles indicating seasonally averaged residuals (differences) between
simulated and observed CO2 mole fractions.
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Fig. S10. Anomalies of NEE for North America derived from CarbonTracker (CT2016: black;
CT2017: red).
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precipitation, VPD, RH, and SM for spring (March to May), summer (June to August), fall
(September to November), and winter (December to February) for major biome types over
North America that have larger carbon uptake (indicated in fig. S4).
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flask air samples.
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