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Summary

Decision making is often driven by the subjective value of available options, a value which is 

formed through experience. To support this fundamental behavior, the brain must encode and 

maintain the subjective value. To investigate the area specificity and plasticity of value coding, we 

trained mice in a value-based decision task and imaged neural activity in 6 cortical areas with 

cellular resolution. History- and value-related signals were widespread across areas, but their 

strength and temporal patterns differed. In expert mice, the retrosplenial cortex (RSC) uniquely 

encoded history and value-related signals with persistent population activity patterns across trials. 

This unique encoding of RSC emerged during task learning with a strong increase in more distant 

history signals. Acute inactivation of RSC selectively impaired the reward history-based 

behavioral strategy. Our results indicate that RSC flexibly changes its history coding and 

persistently encodes value-related signals to support adaptive behaviors.
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In Brief

During decision making values formed through experience are flexibly yet persistently maintained 

in the retrosplenial cortex over time to support adaptive behaviors

Introduction

The selection of an action among multiple possible options is influenced by a multitude of 

factors. In certain cases where there are external cues that determine the appropriate action 

(e.g. traffic lights), a simple association between the sensory cues and motor outputs may 

govern action selection. However, in many other situations there is no explicit cue that 

instructs the appropriate action, or the external cues are ambiguous. In these cases, internal, 

subjective processes may have a dominant role in biasing action selection. A major internal 

factor that biases action selection is the subjective value of each action. Individuals form 

such subjective values by integrating their personal experiences, and update these history-

dependent values continuously based on the outcomes of their selected actions. To support 

such a behavior, the brain must maintain subjective values that are updated by each choice 

and its outcome.

Neural representations of value-related information have been intensely investigated. Neural 

recordings in animals performing decision making based on history-dependent value have 

been instrumental in this endeavor. These studies have identified individual neurons in 

multiple brain areas whose activity is modulated by history (Hwang et al., 2017; Kawai et 
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al., 2015; Morcos and Harvey, 2016; Scott et al., 2017; Sugrue et al., 2004; Sul et al., 2011; 

Sul et al., 2010) and action values (Hamid et al., 2016; Kepecs et al., 2008; Padoa-Schioppa 

and Assad, 2006; Platt and Glimcher, 1999; Samejima et al., 2005; Stalnaker et al., 2014; 

Sugrue et al., 2004; Sul et al., 2011; Sul et al., 2010; Tsutsui et al., 2016). These results have 

thus established that information related to history-dependent value is widely distributed in 

many brain areas. However, a comprehensive understanding of across-area differences in 

population encoding is still lacking. Furthermore, little is known about whether and how the 

encoding is influenced by the learning of behavioral strategies.

In the current study, we sought to address two main questions about neural encoding of 

value: how does value encoding differ across cortical areas, and does their encoding of 

history information change across learning? First, we tested the potential differences across 

areas in the nature of their value coding. We reasoned that the brain must stably maintain 

value information to be able to retrieve it anytime as needed to bias action selection that may 

be prompted at unpredictable intervals. Therefore, we asked whether a certain area encodes 

value as a persistent population activity pattern that spans the entire period between one 

choice and the next. Second, we addressed the dynamics of history encoding over weeks of 

task learning. We hypothesized that, while animals learn to perform value-based decision 

making, specific areas preferentially enhance their encoding of choice-outcome history. We 

addressed these questions in mice performing a decision-making task based on history-

dependent value. Mathematical modeling of behavior allowed an estimate of the value on a 

trial-by-trial basis with high accuracy. Using a chronic cranial window that exposed most of 

the dorsal cortex (Kim et al., 2016), we applied two-photon calcium imaging during the 

performance of this task in 6 dorsal cortical areas: anterior-lateral motor cortex (ALM) (Guo 

et al., 2014; Komiyama et al., 2010), posterior premotor cortex (pM2) (Yamawaki et al., 

2016), posterior parietal cortex (PPC) (Harvey et al., 2012; Hwang et al., 2017; Morcos and 

Harvey, 2016; Raposo et al., 2014; Scott et al., 2017; Song et al., 2017), retrosplenial cortex 

(RSC) (Alexander and Nitz, 2015; Cembrowski et al., 2018; Czajkowski et al., 2014; 

Makino and Komiyama, 2015; Mao et al., 2017; Yamawaki et al., 2016), primary 

somatosensory cortex (S1), and primary visual cortex (V1). Although all the 6 cortical areas 

significantly encoded history- and value-related information, direct comparisons of 

population activity across areas revealed area specificity in the encoding of history and 

value-related information, and in the plasticity of history coding during task learning. In 

particular, we made a surprising finding that RSC uniquely and potently encodes value-

related information in a persistent population activity pattern, and preferentially extends 

history coding during learning. Furthermore, acute optogenetic inactivation of RSC 

selectively impaired the reward history-based strategy. These results highlight RSC as a 

critical region for decision making based on history-dependent value.

Results

Decision making task based on history-dependent value in head-fixed mice

We sought to compare neural ensemble activity across cortical areas during decision making 

driven by history-dependent value. Towards this goal, we adapted a dynamic foraging task 

(Hamid et al., 2016; Johnson et al., 2016; Kawai et al., 2015; Samejima et al., 2005; Sugrue 
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et al., 2004; Sul et al., 2011; Sul et al., 2010; Tsutsui et al., 2016) for mice under head 

fixation (Figure 1A). Each trial begins with a ready period (2 or 2.5 s, signaled by an LED 

light) during which mice need to withhold from licking. The ready period is followed by an 

answer period with an auditory cue. During the answer period, mice are free to choose 

between licking either the left or right lickport. The first lick triggers the delivery of a water 

reward at the lickport if it is assigned a reward. In each block of trials, a reward is assigned 

to each lickport based on predetermined probabilities: [60%, 10%], [52.5%, 17.5%], [17.5%, 

52.5%], or [10%, 60%] probability combinations for [left, right]. Once a reward is assigned 

to a lickport, it remains assigned there until chosen in subsequent trials. Reward assignment 

probabilities change approximately every 60–80 trials, and there is no explicit cue indicating 

the changes. Therefore, mice need to adjust their choice preference based on the history of 

their choices and reward outcomes. During training with this task over weeks, mice learned 

to adjust their strategy and improved the fraction of trials in which they received a reward 

(Figure 1B). This learning accompanied an increase in the fraction of trials in which mice 

chose the side with a higher reward probability (Figure 1C). Mice also stochastically 

explored the alternative option at variable intervals (Figures S1A–S1D). Previous studies of 

dynamic foraging tasks have found that the ratio of two choices matches the ratio of the 

number of rewards from each alternative (‘Herrnstein’s matching law’) (Baum, 1974; 

Corrado et al., 2005; Herrnstein, 1970; Lau and Glimcher, 2005). We found that our head-

fixed mice gradually developed matching behaviors during training (Figures 1D–1F), and 

their choice sensitivity to reward ratio reached the level equivalent to previous studies with 

monkeys (Corrado et al., 2005; Lau and Glimcher, 2005). To quantify the history 

dependency of their choices, we fit the behavior with a logistic regression model with 3 

types of history predictors: rewarded choice history (RewC(t-i), 1 for rewarded left choice, 

−1 for rewarded right choice, and 0 otherwise), unrewarded choice history (UnrC(t-i), 1 for 

unrewarded left choice, −1 for unrewarded right choice, and 0 otherwise), and outcome-

independent choice history (C(t-i), 1 for left choice, −1 for right choice) (Figure 1G and 

STAR Methods [eq. 2]). Information about past rewarded choices and unrewarded choices is 

essential for adaptive behavior in this task. This regression analysis revealed a dominant 

increase in the influence of rewarded choice history from 4 previous trials on decision 

making during learning (Figure 1G). This result indicates that mice improved the reward rate 

in the task by learning to adjust their strategy such that they preferentially chose the option 

that was more frequently rewarded in the recent trials.

Reinforcement learning model to estimate subjective value

The behavioral results above suggest that expert mice used the recent choice-outcome 

history to form the subjective value of each option, and chose the option with a higher value. 

To study neural representations of value, which is an internal variable that is not directly 

measurable, we need to estimate the value on a trial-by-trial basis. The reinforcement 

learning (RL) theory (Sutton and Barto, 1998) provides a framework to estimate history-

dependent value. Thus we fit the choice patterns of our expert mice with RL models. In the 

classic RL model (Sutton and Barto, 1998), value (Q) of the chosen option is updated by the 

difference between the actual outcome and the value of the chosen option (i.e. reward 

prediction error) multiplied by the learning rate α (STAR Methods [eq. 3]). The behavioral 

probability of choosing each option is estimated by a soft-max function based on the value 
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difference between the two options (QL – QR, or ∆Q) and the parameter representing the 

sensitivity to the value difference (β∆Q) (STAR Methods [eq. 4]). We made several 

modifications to the classic RL model to improve the fit to the behavior (Figure 1H). First, 

we separated the learning rate for rewarded and unrewarded trials (αrew and αunr), as these 

two types of trials may have different levels of influence on value updates. Second, we 

included a forgetting rate (δ) to consider the possibility that the value of the unchosen option 

decayed (Barraclough et al., 2004; Ito and Doya, 2009). Third, we introduced a constant 

value bias term (β0) to account for a static preference for one option over the other. We 

quantified the fit by calculating the Akaike information criterion (AIC). The model that 

included all of these three modifications had the lowest AIC, indicating a significant 

improvement of the behavioral fit (Figure 1I). We note that AIC has a penalty for a larger 

number of parameters and thus the decrease in AIC represents a fit improvement beyond 

expected by the increased number of parameters. This modified RL model also 

outperformed the ‘local matching law’ model previously reported (Figures S1E–S1G) 

(Sugrue et al., 2004). This RL model with 5 parameters predicted choice patterns equally 

well as a logistic regression model with 10-trial history predictors (31 parameters in total) 

(Figure 1J), suggesting that the RL model indeed captures the behavioral strategy of the 

expert animals efficiently (Figure 1K).

To quantify the learning of the RL strategy, we defined the RL index as a measure of the 

degree to which the behavior resembled the RL strategy (STAR Methods [eq. 8]). The RL 

index gradually increased, indicating that mice acquired a RL-like strategy with learning 

(Figure 1L). In expert mice (RL index > 0.08), we found that αrew was significantly higher 

than αunr and δ (Figure 1M), indicating that the value difference between two options was 

more strongly updated after rewarded trials than unrewarded trials. This result is consistent 

with the dominant influence of rewarded choice history on upcoming choice (Figure 1G). 

The constant value bias β0 varied across sessions (Figure 1M). Expert mice showed high 

β∆Q, indicating that they indeed made decisions based on the value difference of the two 

options (Figure 1M). The forgetting rate δ was significantly above zero, indicating that the 

value of the unchosen option decayed (Figure 1M). Because an assigned reward remains 

assigned at the port until it is collected, the reward probability increases for the unchosen 

option in this task. Therefore, the ideal strategy is to increase the value of the unchosen 

option (δ < 0) instead of discounting it (δ > 0). The significantly positive δ suggests that 

their strategy was suboptimal. Nevertheless, stochastic exploration of the low-value option 

allowed the mice to achieve a relatively high reward rate.

In summary, this behavioral modeling provides two features that are critical for our study. 

First, the RL model confirmed that expert mice in our task indeed performed decision 

making based on history-dependent value. Second, the RL model provides a close estimate 

of their subjective value for each option on a trial-by-trial basis.

Heterogeneity of history coding across cortical areas in expert mice

To study neural correlates of history and value signals during this history-dependent, value-

based decision making task, we performed two-photon calcium imaging in task-performing 

mice (Figure 2A). We used CaMKIIa-tTA::tetO-GCaMP6s double transgenic mice that 
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express GCaMP6s widely in cortical excitatory neurons (Wekselblatt et al., 2016). We 

adopted a surgical preparation that exposed most dorsal cortical areas for optical access 

(Kim et al., 2016), which allowed us to image multiple cortical areas in each mouse (Figure 

2B). We focused on neurons in layer 2/3, and fluorescence signals from individual neurons 

were deconvolved to remove fluorescence decay and estimate spiking activity (Pachitariu et 

al., 2018) before all analyses. We first focused on expert sessions (defined as training day > 

15 and RL index > 0.08) and imaged 6 dorsal cortical areas: ALM (n = 6,721 neurons from 

13 fields in 7 mice), pM2 (n = 9,759 neurons from 17 fields in 10 mice), PPC (n = 7,703 

neurons from 16 fields in 11 mice), RSC (n = 10,481 neurons from 17 fields in 9 mice), S1 

(n = 7,576 neurons from 14 fields in 7 mice), and V1 (n = 2,767 neurons from 6 fields in 4 

mice) (Figure 2B). We included only one image field for each cortical area per hemisphere 

per animal for analysis. In each behavioral session, we simultaneously imaged hundreds of 

neurons (542.3 ± 122.0 cells; mean ± SD) in one of the 6 cortical areas. Behavioral 

performance was equivalent in the sessions used to image each area (Figure S2).

Each area contained many neurons with activity aligned to task epochs. Individual neurons 

showed heterogeneous activity patterns, and their peak timing tiled the entire trial period and 

inter-trial intervals in all 6 areas (Figure 2C). Many of these task-related neurons were tuned 

to specific task events. Figures 2D and 3E show 6 example neurons imaged in RSC that 

show specific tuning to task events. In Figure 2D, Neuron 1 was strongly activated during 

reward (R(t) cell), Neuron 2 was activated when ipsilateral choice was rewarded (RewC(t) 

cell), and Neuron 3 was particularly active when ipsilateral choice was unrewarded (UnrC(t) 

cell).

In addition to such activity modulations based on ongoing task events, activity of many 

neurons was modulated by past events. The examples in Figure 2E show a neuron that was 

modulated by the reward history of the immediately preceding (t-1) trial (Neuron 4, R(t-1) 

cell) and neurons that were modulated by the rewarded choice (Neuron 5, RewC(t-1) cell) or 

unrewarded choice (Neuron 6, UnrC(t-1) cell) history from the preceding trial. To analyze 

how these history events modulated population activity in each area, we performed decoding 

analysis to classify various history and current events using population activity of 200 

neurons from each area with multivariate partial least square (PLS) regressions. This method 

allows the decoding of multiple variables: in this case, multiple types of history information 

from multiple past trials, using a set of potentially collinear predictors (activity of individual 

neurons) (STAR Methods). This analysis revealed that the encoding of current and history 

events was area-specific. The encoding of current trial (t) events was generally strong in 

ALM and PPC. In contrast, history events, especially long (≤ t-2) history of rewarded choice 

and unrewarded choice, were most strongly encoded in RSC (Figure 2F). Long history 

modulation was weakest in primary sensory areas (V1 and S1, Figure 2F).

Retrosplenial cortex uniquely encodes value-related information as persistent activity

The results above indicate that history information is differentially represented across 

cortical areas in expert animals. This raises the possibility that these areas differentially 

encode value-related variables, since value in this task is a specific computational product of 

various types of history (Figure 3A). We focused on three types of value-related variables: 1) 
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value difference between the two options (∆Q) which is the main driver of choice in this task 

and directly updated by rewarded and unrewarded choice history, 2) value of upcoming 

choice (Qch) which could contribute to whether the mouse chooses the high-value option 

(‘exploitive’ behavior) or the low-value option (‘explorative’ behavior) in each trial, and 3) 

the sum of the values for the two options (ΣQ) which may relate to the motivational state of 

the mouse (Tsutsui et al., 2016). We performed a multiple linear regression for the activity 

of each neuron with these three value-related variables. We also included the choice and 

reward information of the current trial in the regression to separate their contributions from 

history-dependent value (STAR Methods [eq. 12] and [eq. 13]). Regressions using the 

activity from each task-aligned time window identified individual neurons that were 

significantly modulated by value-related variables in each cortical area (Figures 3B–3D). 

The fractions of neurons varied across areas. In particular, RSC stood out as the area with 

the highest fractions of neurons encoding value-related variables among the 6 cortical areas.

We next examined how value-related information is encoded in each cortical area at the 

neural population level. Using neural population activity during the ready period, we 

performed linear decoding of ∆Q and Qch, two value-related variables important for value-

based decision making (STAR Methods). All the 6 cortical areas encoded both Qch and ∆Q 

above chance level (Figure S3F), but the decoding accuracies varied across cortical areas. In 

particular, RSC had an especially high decoding accuracy for both Qch and ∆Q, followed 

closely by PPC (Figures 3E and 3F). Decoding accuracies were similar when we used neural 

activity during the inter-trial-interval (ITI) (Figures 3G and 3H). To examine whether the 

across-area differences depend on our decoder design, we repeated the decoding analysis 

using feedforward neural networks with a hidden layer for nonlinear decoding of value-

related information (Figure S3). Similar to the linear decoding, RSC remained the area with 

particularly high decoding accuracies for Qch and ∆Q with the nonlinear model (Figure 

S3C). Furthermore, we found that the improvement in decoding accuracy by adding 

nonlinearity was marginal (Figures S3D and S3E). Thus it appears that the value-related 

information is largely encoded linearly in the 6 cortical areas.

In order to use value-related information to reliably guide behavior, the brain needs to stably 

maintain the information over time. Thus, we tested whether value information is maintained 

as a stable population activity pattern across time. We did this by projecting the population 

activity from other time windows onto the value axes defined by the ready period activity. If, 

for example, an area encodes ∆Q in a persistent population activity pattern across time, 

population activity along the ∆Q axis (defined with the ready period activity) should 

consistently encode ∆Q even outside of the ready period. Alternatively, if ∆Q coding is 

temporally unstable, then the population activity along the ∆Q axis would not encode ∆Q 

outside of the ready period. In most of the areas, the separation of population activity 

according to ∆Q and Qch observed during the ready period decreased as the time window 

moved away from the ready period (Figures 4A and 4B). However, only in RSC, the 

population activity traces were nearly flat and persistently separated based on ∆Q and Qch 

throughout the ITI and ready period (Figures 4A and 4B). As a result, only in RSC, we 

could consistently decode value-related variables, especially ∆Q, across time along a single 

axis (Figures 4C and 4D). We also quantified the persistence of value coding using the 

temporal variance of activity along the ∆Q or Qch axis during the period spanning the ITI 
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and ready period. The temporal activity variance along each axis was normalized by the 

across-trial activity variance along the same axis. This analysis revealed that RSC had the 

smallest temporal activity variance along the value-related axes (Figures 4E and 4F). Even 

though PPC and RSC had similar decoding accuracies when the decoders were trained with 

the activity during the tested period, their temporal persistence of value coding was 

strikingly different. These results indicate that RSC uniquely maintains value-related 

information in persistent population activity patterns.

Persistence of population activity along the value-related axes in RSC could result from 

population activity that is generally persistent. Alternatively, RSC population activity could 

be persistent specifically along the value-related axes, while maintaining variability along 

the other activity axes. To distinguish these possibilities, we examined the activity variance 

along different population activity axes. We used ready period activity of 200 neurons and 

defined the ∆Q or Qch axis as above. We then compared the temporal variance of activity 

during the period spanning the ITI and ready period along the ∆Q or Qch axis with the 

variance along the remaining 199 orthogonal axes (STAR Methods). Strikingly, this analysis 

revealed that the temporal activity variance along the value-related axes is smaller than the 

variance along almost all of the other orthogonal axes (Figures 4G and 4H). The results were 

similar with nonlinear decoders (Figure S4). Thus, the RSC population activity pattern is 

persistent specifically along the value-related axes.

Consistent with the population analysis above, we were able to identify individual RSC 

neurons whose activity was persistently modulated according to the ∆Q and Qch values 

(Figure 5A). In contrast, neurons in the other areas that encoded ∆Q and Qch in the ready 

period did not consistently encode the value signals outside ready period (Figure S5), in line 

with the population analysis above (Figure 4). The RSC ∆Q and Qch neurons changed their 

activity depending on ∆Q and Qch in a graded manner (Figure 5B).

A recent study pointed out that slowly fluctuating neural activity can lead to spurious 

correlation with value (Elber-Dorozko and Loewenstein, 2018). However, in our data, ∆Q 

and Qch cells in RSC tracked value updates on individual trials, eliminating the possibility 

that activity of these neurons correlated with the value-related variables because of slow and 

random fluctuations (Figure 5C). Furthermore, when we separated trials based on the 

upcoming choice of the current trial, the RSC ∆Q cells still reliably encoded ∆Q (Figures 5D 

and 5E), excluding the possibility that the ∆Q cells simply encode motor plan. Similarly, 

population activity along ∆Q axis was not affected by upcoming choice in RSC (Figure 5F).

These results highlight RSC as a unique cortical area where value-related signals are 

potently and specifically encoded in a persistent population activity pattern across trials.

History coding preferentially increases in retrosplenial cortex with task learning

The results so far revealed heterogeneous encoding of history and value-related information 

across the cortex. We next asked if these features are stable across sessions, or if they 

emerge during learning of the task when mice gradually increased history dependency 

(Figure 1G). To examine potential plasticity of history coding, we performed two-photon 

calcium imaging in early sessions (≤ day 6) and compared the data with the expert sessions. 
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For this longitudinal analysis, we only analyzed the neurons that were reliably imaged in 

both one early and one expert sessions, and focused on premotor and association areas, 

namely ALM (n = 3,526 neurons in 9 fields in 5 mice), pM2 (n = 2,906 neurons in 7 fields 

in 5 mice), PPC (n = 3,441 neurons in 11 fields in 9 mice), and RSC (n = 4,417 neurons in 8 

fields in 4 mice). History-independent behavioral parameters were consistent between early 

and expert sessions (Figures S6A–S6C). We randomized the order of imaging of areas 

across animals. Consequently, similar to expert sessions, behavioral performance was 

equivalent across the early sessions used for imaging of each area (Figures S6D–S6G).

We analyzed history information in population activity from each area in early and expert 

sessions. We focused on history information instead of value for this analysis because the 

early session behavior was not fit by the RL model as well as expert sessions, making value 

estimates less reliable in early sessions (Figure 1L). We quantified population coding of each 

type of history information between early and expert sessions, with the same methodology 

used in Figure 2F. Strikingly, in early sessions, we found that long (≤ t-2) history coding in 

these areas was indistinguishable from each other, and short (t-1) history for rewarded 

choice and choice-independent reward outcome was most strongly encoded in ALM (Figure 

6A). However, after learning, history coding increased in an area-specific manner, resulting 

in area differences of long (≤ t-2) history coding in expert sessions (Figure 6B). The area 

specificity in the expert sessions in this longitudinal dataset (Figure 6B) was similar to that 

of the analysis in Figure 2F that included all the neurons imaged in expert sessions. The 

increase in long (≤ t-2) history coding was particularly strong in RSC for rewarded choice 

history and unrewarded choice history (RSC increase was larger than ALM (P < 10−8), pM2 

(P < 10−7), PPC (P < 10−8) for RewC history, and larger than ALM (P < 10−2), PPC (P < 

10−3) for UnrC history. Two-way ANOVA with Tukey’s post-hoc test). These results 

indicate that specific cortical areas preferentially increase history signals when these signals 

are used for decision making. The potent history coding in RSC is a result of learning.

The results above indicate that history coding in RSC is not fixed but is dynamically 

increased during task learning. This led us to wonder whether history coding in RSC is 

flexible even within expert sessions. Specifically, we asked whether history coding in RSC 

reflects the ongoing behavioral strategy in expert sessions. We analyzed how closely the 

population activity reflected history in individual sessions. This was done by a decoding 

analysis as above, and we averaged the decoding accuracy for t-1 to t-10 trials. The average 

decoding accuracy of RSC population activity for the rewarded choice history and 

unrewarded choice history showed significant correlations with β∆Q in the RL model, which 

is a measure of the behavioral sensitivity to the value difference of the two choices (Figure 

6C). In other words, the RSC population better encoded the history information when the 

ongoing behavioral strategy relied more on history-dependent value. This correlation with 

behavioral strategy was specific, and not observed for choice-independent reward history 

information (Figure 6C) or for information about current trial (Figure 6D) in RSC. 

Furthermore, the other cortical areas did not show a correlation between behavioral strategy 

and population encoding (Figures 6C and 6D).
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Taken together, these results indicate that RSC flexibly encodes history information 

depending on the ongoing behavioral strategy, and strongly encodes the specific history 

information required for that ongoing behavior.

Retrosplenial cortex is required for reward history-based strategy

To examine whether RSC is necessary for the task performance, we performed optogenetic 

inactivation of RSC. We used PV-Cre::LSL-ChR2 double transgenic mice that express 

channelrhodopsin2 (ChR2) in parvalbumin-positive inhibitory neurons. By delivering blue 

light to activate inhibitory neurons, we bilaterally inactivated RSC from the onset of the 

ready period until the choice in a subset of trials. Since RSC is rostro-caudally elongated, we 

generated elliptical illumination patterns with a DLP projector (Figures 7A and 7B) 

(Dhawale et al., 2010; Haddad et al., 2013). In the other trials, the light was directed onto the 

head bar, away from RSC. We found that RSC inactivation decreased both the probability of 

repeating the same action after rewarded trials (‘win-stay’) and the probability of changing 

action after unrewarded trials (‘lose-switch’) (Figure 7C), suggesting that the RL strategy is 

impaired in trials with RSC inactivation. Furthermore, regression analysis revealed that RSC 

inactivation selectively impaired behavioral dependency on rewarded and unrewarded choice 

history, while preserving the dependency on outcome-independent choice history and choice 

bias (Figures 7D–7F). These results indicate that the activity of RSC is required for the 

reward history-based behavioral strategy.

Our imaging results and previous studies suggested widespread encoding of history and 

value-related information across areas. To test the possibility that other areas can 

compensate for the function of RSC when it is removed chronically, we performed chronic, 

bilateral lesions of RSC by injecting NMDA to induce excitotoxicity (Figure 7G). In 

contrast to acute optogenetic inactivation, RSC lesion did not affect behavioral performance 

in subsequent sessions (Figures 7H, 7I and S7). These results suggest that while RSC is 

involved in the reward history-based strategy in normal mice, other areas can compensate for 

the chronic loss of RSC. We note, however, that the results do not exclude the possibility 

that the remaining neurons in RSC that survived the lesion were sufficient to support the 

behavior.

Discussion

By adapting the dynamic foraging task (Hamid et al., 2016; Johnson et al., 2016; Kawai et 

al., 2015; Samejima et al., 2005; Sugrue et al., 2004; Sul et al., 2011; Sul et al., 2010; 

Tsutsui et al., 2016) to head-fixed mice, we established a paradigm in which mice learn to 

perform decision making based on history-dependent value. We combined this behavior with 

two-photon calcium imaging to record the activity of hundreds of neurons simultaneously in 

each area at each learning stage, allowing the analysis of population coding of action value 

and plasticity of history coding. Equipped with this dataset of neural activity totaling 45,007 

neurons, we found that the strength and temporal stability of history and value-related 

signals are heterogeneous across areas. Previous studies have revealed widespread activity 

related to history- and value-related information across many brain areas (Hamid et al., 

2016; Hwang et al., 2017; Kawai et al., 2015; Kepecs et al., 2008; Morcos and Harvey, 2016; 
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Padoa-Schioppa and Assad, 2006; Platt and Glimcher, 1999; Samejima et al., 2005; Scott et 

al., 2017; Stalnaker et al., 2014; Sugrue et al., 2004; Sul et al., 2011; Sul et al., 2010; Tsutsui 

et al., 2016), but the differences in the nature of population coding across individual brain 

areas have remained unclear. Here we found significant history- and value-related 

information in 6 dorsal cortical areas, even in primary sensory areas. However, we showed 

that only specific areas increase their encoding of history information when it is used for 

decision making, and maintain value-related information persistently.

A major finding in the current study is that RSC uniquely maintains persistent value-related 

population activity that tracked value updates on a trial-by-trial basis. Value-related 

information must be accessible to action selection circuitry even when actions are not on a 

fixed temporal schedule (e.g. variable inter-trial intervals as in our task). The persistent value 

coding in RSC may allow other brain areas to retrieve this information with a fixed read-out 

mechanism at any time. We note, however, that persistent population activity may not be the 

only mechanism by which value information is maintained in the brain. Persistent activity 

seems particularly suitable for short-term maintenance of value information when the brain 

needs to frequently retrieve value information and update it, as in our task in which mice are 

making hundreds of decisions in each behavioral session. We postulate that this mechanism 

may coexist with additional mechanisms that favor a more long-term, stable storage of value 

information when it may only need to be accessed in the distant future. Such long-term 

storage mechanisms may involve stable changes in synaptic weights.

Another main finding is that history coding in RSC is flexible. RSC increased history coding 

when mice learned to use history for decision making. Even within expert sessions, RSC 

history coding was the strongest in the sessions when the behavioral strategy relied more on 

the choice-outcome history. The other areas examined in this study did not show such 

correlations with the ongoing behavioral strategy. These results indicate that even though 

history coding is widespread, its flexibility is area-specific. History coding in RSC is 

particularly sensitive to the ongoing behavioral strategy.

We also found that RSC is required for the reward history-based decision making. Acute 

optogenetic inactivation of RSC during the pre-choice period selectively impaired behavioral 

dependence on rewarded and unrewarded choice history. These behavioral effects contrast 

with the previously reported effects of mouse mPFC inactivation, which specifically affected 

choice bias but not the dependence on reward history (Nakayama et al., 2018), indicating 

that different areas mediate different aspects of the behavior. We also presented evidence 

that chronically lost functions of RSC can be compensated for by other areas. This idea fits 

with our findings that history- and value-related information is widespread across many 

areas. The partial redundancy of value coding likely ensures the robustness of value-based 

decision making, a fundamental and evolutionarily conserved behavior.

To our knowledge, this is the first study to expose a unique coding of RSC in value-based 

decision making. RSC is heavily interconnected with many areas including the hippocampus 

and related cortical areas (Cembrowski et al., 2018; Ranganath and Ritchey, 2012), premotor 

cortex (Yamawaki et al., 2016), and the basal ganglia. With this hub-like connectivity (Vann 

et al., 2009), RSC may be an ideal area for the computation and persistent maintenance of 
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history-dependent value, with access to choice and outcome information as well as action 

selection circuits. Our findings open an avenue for future investigations of circuit 

mechanisms for the plasticity and persistence of value coding, with RSC as a central locus.

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Takaki Komiyama (tkomiyama@ucsd.edu).

Experimental Model and Subject Details

All procedures were in accordance with the Institutional Animal Care and Use Committee at 

University of California, San Diego. Mice were obtained from The Jackson Laboratory 

(CaMKIIa-tTA: B6;CBA-Tg(Camk2a-tTA)1Mmay/J [JAX 003010]; tetO-GCaMP6s: 

B6;DBA-Tg(tetO-GCaMP6s)2Niell/J [JAX 024742]; PV-Cre: B6;129P2-Pvalbtm1(cre)Arbr/J 

[JAX 008069]; Ai32: B6.Cg-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J [JAX 

024109]). All surgeries and experiments were carried out in adult mice (6 weeks or older). 

Mice were typically group housed in a plastic cage with bedding in a room with a reversed 

light cycle (12h-12h). All mice were prepared exclusively for the experiments described in 

this paper. Health conditions of mice were monitored daily during training. Both male and 

female healthy adult mice were used. Post hoc analysis revealed a tendency that males 

performed closer to our RL model than females in late (≥ day 14) sessions among CaMKIIa-

tTA::tetO-GCaMP6s mice (Mean RL index, males: 0.1378 ± 0.0409 (n = 7 mice, mean ± 

SD), females: 0.0968 ± 0.0268 (n = 9 mice, mean ± SD), p = 0.0296 with two-sided t-test). 

However, of these late sessions, we only included sessions in which the performance was 

consistent (RL index > 0.08). In these sessions, the RL index did not significantly differ 

between sexes (p = 0.1272 with two-sided t-test).

Method Details

Surgery for imaging and optogenetics.—Adult mice were injected with 

dexamethasone (2 mg/kg) subcutaneously prior to surgery and continuously anesthetized 

with 1–2 % isoflurane during surgery. After cleaning the surface of dorsal skull with a razor 

blade, we applied saline on the skull and waited for a few minutes until the skull became 

transparent enough to visualize vasculature patterns. We recorded stereotactic coordinates of 

vasculature patterns through intact skull, and this information was used to identify imaging 

areas under the two-photon microscope. A craniotomy with a variable window size (ranging 

from a small circular window with ~2 mm diameter for imaging a single cortical area/mouse 

to a large hexagonal window for imaging multiple cortical areas/mouse) was performed on 

each mouse. The dura was left intact. A glass window was secured on the edges of the 

remaining skull using 3M Vetbond (Nishiyama et al., 2014) (WPI), followed by 

cyanoacrylate glue and dental acrylic cement (Lang Dental). The largest glass windows we 

used in this study were made by cutting a coverslip into a 5.5 × 7 mm rectangular glass and 

further cutting 2 frontal edges to make a hexagonal window. After the glass implantation, 

custom-built metal head-bar was secured on the skull above the cerebellum with 

cyanoacrylate glue and dental acrylic cement. Buprenorphine (0.1 mg/kg of body weight) 
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and Baytril (10 mg/kg of body weight) were subcutaneously injected after surgery, and mice 

were monitored until they recovered from anesthesia.

Behavior.—Following a minimum of 5 days of recovery after surgery, mice were water-

restricted at 1–2 ml/day. After at least a week of water-restriction, behavioral training began. 

Behavioral control was automated with a real-time system running on Linux communicating 

with Matlab (BControl, C Brody and Z Mainen). During behavioral sessions, two lickports 

were placed to the left and right sides of the head-fixed mouse and licking was monitored by 

IR beams. An amber LED was used as a ready cue (5mm diameter, placed ~5cm away from 

nose), and a speaker was used as a go cue (10 kHz tone). Each trial began with a ready 

period (2 or 2.5 s with LED light), followed by an answer period with an auditory go cue. 

The go cue was terminated when mice made a choice (the first lick to one of the two ports) 

or when the answer period exceeded the maximum duration of 2 s. Each choice triggered a 

50 ms feedback tone (left, 5 kHz; right, 15 kHz). In rewarded trials, ~2.5 µ l of water reward 

was given immediately after the choice. Mice went through 3 phases of pre-training under 

head-fixation before starting the dynamic foraging task. In the first phase of pre-training (2–

3 days), mice were rewarded for every left or right choice during the answer period with 

100 % reward probability. Licking during ready period was not punished at this phase. We 

gradually increased mean ITI from 1 s to 6 s. In the second phase of pre-training (1–3 days), 

mice were trained in another task where reward was delivered alternately from left and right 

lickports following either choice (first lick during answer period). Beginning with this 

training phase, licking during ready period was punished by 500 ms white noise alarm and 

trial abort with an extra 2 s ITI. In the third phase of pre-training (1–2 weeks), mice were 

required to alternate their choices between left and right on every choice trial. Through the 3 

phases of pre-training, mice learned the general task structure, including that only their first 

lick during answer period is associated with outcome, and that they need to withhold licking 

during ready period.

After the pre-training, mice started training in the dynamic foraging task where reward was 

probabilistic. Inter-trial intervals (ITI) varied randomly between 5–7 s. In a trial in which 

mice made a choice, ~2.5 µl of water reward was delivered immediately after choice if a 

reward had been assigned to the lickport on the trial. Reward was assigned at each lickport 

on every choice trial with a specific reward assignment probability for the lickport. Once a 

reward was assigned to a lickport, the reward was maintained until it was chosen. The 

combinations of reward assignment probabilities were either [60 %, 10 %] or [52.5 %, 

17.5 %] in a trial, and reward assignment probability switched randomly every 60–80 trials 

in the order of [Left, Right] = …, [60 %, 10 %], [10 %, 60 %], [52.5 %, 17.5 %], [17.5 %, 

52.5 %], [60 %, 10 %], …. The probability switch was postponed if the fraction of choosing 

the lickport with higher reward assignment probability was below 50 % in recent 60 trials 

until the fraction reached at least 50 %. Trials in which mice licked during ready period 

(‘alarm trials’) and the trials in which mice failed to lick during the answer period (‘miss 

trials’) were not rewarded. We did not include alarm and miss trials in neural activity 

analyses to ensure that the ready periods we analyzed were free of licking behaviors and that 

mice were engaged in the task in the trials. We defined expert sessions as the sessions in 

which the mice have been trained for at least 15 days in the dynamic foraging task and RL 
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index was above 0.08 for the session. Expert mice typically performed > 600 trials in a 

session (711.5 ± 203.5 trials / session, 4.97 ± 3.29 % alarm rate and 4.51 ± 4.61 % miss rate 

in experts (mean ± SD)).

Two-photon calcium imaging.—Imaging was conducted with a commercial two-photon 

microscope (B-SCOPE, Thorlabs) running Scanimage using a 16× objective (0.8 NA, 

Nikon) with excitation at 925 nm (Ti-Sapphire laser, Newport). Six cortical areas 

investigated in this study are anterior lateral motor (ALM, 1.7 mm lateral and 2.25 mm 

anterior to bregma), posterior premotor (pM2, 0.4 mm lateral and 0.5 mm anterior to 

bregma), posterior parietal (PPC, 1.7 mm lateral and 2 mm posterior to bregma), 

retrosplenial (RSC, 0.4 mm lateral and 2 mm posterior to bregma), primary somatosensory 

(S1, 1.8 mm lateral and 0.75 mm posterior to bregma), and primary visual (V1, 2.5 mm 

lateral and 3.25 mm posterior to bregma) cortex. Images (512 × 512 pixels covering 524 × 

564 µ m) were continuously recorded at ~29 Hz. Some of the mice were used for both early 

and expert session imaging. Areas that were not consistently imaged across frames were 

discarded from analyses (Typically ~10 pixels from each edge of the field of view).

Optogenetic inactivation.—To activate PV-positive inhibitory neurons in RSC of PV-

Cre::LSL-ChR2 double transgenic mice using optogenetics, we generated elliptical 

illumination patterns with a DLP projector (Optoma X600 XGA). A single-lens reflex (SLR) 

lens (Nikon, 50 mm, f/1.4D, AF) was coupled with 2 achromatic doublets (Thorlabs, 

AC508–150-A-ML, f=150 mm; Thorlabs, AC508–075-A-ML, f=75 mm) to shrink and focus 

illumination patterns on RSC. A dichroic mirror (Thorlabs, DMLP490L) and a blue filter 

(Thorlabs, FESH0450) were placed between the 2 achromatic doublets and after the 2nd 

achromatic doublet, respectively, to pass only blue light (400–450 nm). Illumination patterns 

were generated with Psychtoolbox in MATLAB (http://psychtoolbox.org/). In RSC 

inactivation trials, a 2 mm × 0.5 mm ellipse was focused on RSC in each hemisphere (Center 

at 0.3 mm lateral and 2 mm posterior to bregma). In all other trials, two 1 mm × 1 mm 

circles were focused on the head bar (‘head bar trials’). The total light intensity was 

equivalent between RSC inactivation trials and head bar trials. We projected the patterns at 

30 Hz as a sequence of square pulses from the onset of the ready period until the choice, 

with a linear attenuation in intensity over the last 100 ms. The intensity at the focus ranged 

between 2.5–6 mW/mm2 to moderately activate ChR2-expressing neurons (Dhawale et al., 

2010; Haddad et al., 2013). We set the frequency of RSC inactivation trials within a session 

to either 15% (12 sessions) or 5% (3 sessions) with the constraint that each RSC inactivation 

trial must be followed by at least 3 head bar trials to avoid excessive perturbation of 

reinforcement learning. We inactivated RSC through a glass window for 4 mice and through 

the skull for 1 mouse. The skull for the through-skull inactivation was made semi-

transparent by covering the dorsal skull surface with a layer of cyanoacrylate glue (Makino 

et al., 2017).

Lesion.—Twelve adult mice were trained to perform the task, and after at least 7 days of 

stable performance underwent excitotoxic-lesion or sham-lesion surgery. Stable, expert 

performance for this task was determined to be choice prediction accuracy of a standard RL 

model ([eq.3], [eq.4]) > 65 % in at least 6 sessions during the 7 days; these sessions also met 
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the > 0.08 RL index criterion for imaging mice in at least 6 sessions during the 7 days. Mice 

were anesthetized with 1–2% isoflurane during surgery. Three burr-hole craniotomies per 

hemisphere (6 total) were opened on the dorsal skull over RSC. A tapered glass pipette was 

inserted to perform the cortical microinjection. Injection sites were, in mm and relative to 

Bregma: AP = −1.6, −2.3, −3.0, ML = ± 0.3, ±0.35, ±0.4, and DV = −0.4 from the dura 

surface in all sites. Injection was of 50 nl/site of either NMDA in sterile saline (20 µ g/µl or 

10 µ g/µ;l Sigma) or sterile saline, at a rate of 0.05–0.1 µl/min. After injection, the pipette 

was left for 5 minutes to ensure diffusion of the solution. Buprenorphine (0.1 mg/kg of body 

weight) and Baytril (10 mg/kg of body weight) were subcutaneously injected after surgery. 

Following surgery, the mouse resumed the behavioral task on the next day, and thereafter 

every day. Both the surgeon and the experimenter for the behavior were blind to the identity 

of the substance that was injected, and became unblinded only after the last day of data 

collection. Of the 12 mice, 5 received saline, 7 received NMDA. One of the NMDA mice 

was excluded due to small and off-target lesion, as quantified by histology.

Brains of lesion and saline mice were collected at 21–25 days post injection. To quantify the 

lesion size, 50 µm-thick coronal sections were prepared with a microtome (Thermo Fisher 

Scientific) and blocked with 10% goat serum, 1% bovine serum albumin, and 0.3% Triton 

X-100 in PBS. Immunostaining was then performed with anti-NeuN primary antibody 

(1:400; Mouse, Millipore) and anti-mouse Alexa Fluor 488 secondary antibody (1:1000; 

Goat, Thermo Fisher Scientific). Both missing areas and areas that lacked NeuN-positive 

neurons were considered lesioned. Images of coronal sections with RSC and the 

corresponding brain atlas (Paxinos and Franklin, 2001) were superimposed to quantify the % 

of lesion within RSC.

Quantification and Statistical Analysis

Generalized matching law.—Generalized matching law (Baum, 1974) is an extension of 

the original Herrnstein’s matching law (Herrnstein, 1970) to describe behavior in which 

animals match the relative frequency of responding with that of reinforcement. We 

formulated the relationship for our task as follows:

CL
CR

= b
RL
RR

S
or ln

CL
CR

= s ⋅ ln
RL
RR

+ ln b [eq. 1]

where CL and CR are the number of left and right choices, respectively, RL and RR are the 

number of reinforcers (rewards) from left and right, respectively, s is the sensitivity of choice 

patterns to the reward ratio, and b is the choice bias. For each session, we calculated the 

choice and reward ratios for each probability block, excluding the first 20 trials at the 

beginning of each block. The logarithmic version of the model was fit with ordinary least 

squares.

Quantification of behavioral history dependency.—To quantify dependency of 

decision making on history, we fit the following logistic regression model with 3 types of 

history predictors:
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logit PL(t) =
i = 1

10
βRewC(t − i) ∗ RewC(t − i) +

i = 1

10
βUnrC(t − i) ∗ UnrC(t − i)

+
i = 1

10
βC(t − i) ∗ C(t − i) + β0

[eq. 2]

where RewC(t − i) is the rewarded choice history on trial t − i (1 if rewarded left choice, −1 

if rewarded right choice, 0 otherwise), UnrC(t − i) is the unrewarded choice history on trial t 
− i (1 if unrewarded left choice, −1 if unrewarded right choice, 0 otherwise), C(t − i) is the 

outcome-independent choice history on trial t − i (1 if left choice, −1 if right choice, 0 

otherwise). βRewC(t–i), βUnrC(t–i) and βC(t–i) are the regression weights of each history 

predictor, and β0 is the history-independent constant bias term. The model was regularized 

with L1-penalty where the regularization parameter was selected by 10-fold cross-validation 

(minimum cross-validation error plus one standard error). The prediction accuracy of choice 

was calculated by 2-fold cross-validation to separate the test trial sets from the training trial 

sets.

Reinforcement learning model.—In a standard RL model (Sutton and Barto, 1998), 

action value for the chosen option is updated as follows:

Qch(t + 1) = Qch(t) + α ∗ R(t) − Qch(t) [eq. 3]

where Qch(t) is the subjective action value of the chosen option on trial t, R(t) is the reward 

outcome on trial t (1 if rewarded, 0 if unrewarded), and α is the learning rate. The 

probability of choosing left on trial t is estimated by a softmax function as follows:

PL(t) = 1
1 + e

−βΔQ(QL(t) − QR(t)) [eq. 4]

where QL(t) and QR(t) are the action values of the left and right choices on trial t 

respectively, and β∆Q defines the sensitivity of decision making to the value difference.

We made several modifications to the above standard Rescorla-Wagner RL model to 

improve the prediction accuracy for our mouse behaviors. We validated each additional 

parameter using Akaike information criterion (AIC) and only used the additional parameters 

that improved (decreased) AIC for the behavior in the current task (Figure 1I). In our final 

model, action values of chosen (Qch) and unchosen (Qunch) options are updated as follows:

Qch(t + 1) =
Qch(t) + αrew ∗ R(t) − Qch(t) i f rewarded R(t) = 1
Qch(t) + αunr ∗ R(t) − Qch(t) i f unrewarded R(t) = 0

[eq. 5]
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Qunch(t + 1) = (1 − δ) ∗ Qunch(t) [eq. 6]

where we prepared separate learning rates for rewarded (αrew) and unrewarded (αunr) trials, 

δ is the forgetting rate for the unchosen option (Barraclough et al., 2004; Ito and Doya, 

2009), R(t) is reward outcome on t (1 for rewarded, 0 for unrewarded trials). The learning 

rates and the forgetting rate were constrained between 0 and 1. However, even without the 

positive constraint, the forgetting rate never took a negative value in any of the late sessions 

(≥ Day 12, n = 460 sessions). In alarm and miss trials, values of both options were 

discounted by δ. The probability of choosing left (PL) on trial t is estimated using left (QL) 

and right (QR) action values as follows:

PL(t) = 1
1 + e

−βΔQ(β0 + QL(t) − QR(t)) [eq. 7]

where β0 is the value bias which is constant within each session, and β∆Q is the sensitivity to 

value difference. The RL model was fit to the behavioral choice patterns by maximum 

likelihood estimation. Using the maximum likelihood of the model, we quantified how 

closely the value update rule of the RL model captured the mouse strategy by defining the 

RL index as follows:

RL index = Maximum likelihood o f the RL modeln − Likelihood explained by β0
n [eq. 8]

where n is the number of choice trials in a session, and the likelihood explained by β0 was 

calculated using the following choice probability:

PL(t) = 1
1 + e

−βΔQ ∗ β0
[eq. 9]

where both β∆Q and β0 are fit parameters from the above RL model.

The prediction accuracy of choice was calculated by 2-fold cross-validation.

Local matching law and its generalization.—Local matching law (Sugrue et al., 

2004) is an extension of the Herrnstein’s matching law (Herrnstein, 1970) to estimate the 

trial-by-trial choice probability in a dynamic environment. The local matching law estimates 

the choice probability on each trial by integrating reward history of each action with 

exponential functions. The instantaneous choice probability ratio is estimated as follows:
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PL(t)
PR(t) = k = 1

t − 1

RL(k) ∗ e
− t − 1 − k

τ

k = 1

t − 1

RR(k) ∗ e
− t − 1 − k

τ

[eq. 10]

where PL and PR are the probability of choosing left and right, respectively, RL and RR are 

the number of rewards from left and right, respectively (1 if rewarded, 0 if unrewarded), and 

τ is the time constant for the exponential functions.

We also generalized this local matching law such that it can account for choice bias and 

imperfect sensitivity of animals to reward ratio (Baum, 1974) as follows:

PL(t)
PR(t) = b k = 1

t − 1

RL(k) ∗ e
− t − 1 − k

τ

k = 1

t − 1

RR(k) ∗ e
− t − 1 − k

τ

S

[eq. 11]

where s is the sensitivity of choice patterns to the reward ratio, and b is the choice bias. The 

generalized local matching law outperformed the local matching law (Figure S1F). The local 

matching law and generalized local matching law were fit to the behavioral choice patterns 

by maximum likelihood estimation.

Two-Photon Image Processing—Slow drifts in the imaging field were manually 

corrected during imaging. Acquired images were motion corrected by a custom-written 

motion correction algorithm (Mitani and Komiyama, 2018) offline, and slow image 

distortions were corrected by affine transformations based on enhanced correlation 

coefficients between frames (Evangelidis and Psarakis, 2008). After motion correction, we 

used Suite2P (Pachitariu et al., 2016) to generate regions of interest (ROIs) corresponding to 

individual neurons and extract their fluorescence. ROI classifications by the automatic 

classifier were further refined by manual inspection. We excluded ROI pixels that overlap 

with the other ROIs, and linear trends in fluorescence signals were removed before further 

processing. The de-trended signals from cellular ROIs were deconvolved with a non-

negative deconvolution algorithm to remove fluorescence decay and estimate underlying 

spiking activity (Pachitariu et al., 2018). This published method also removes contamination 

of activity of neuropil structures surrounding each cellular ROI. The deconvolved signals 

were used for all neural activity analyses. For a subset of mice, imaging was conducted in 

the same cortical areas from both left and right hemispheres. To avoid overrepresentation of 

a local population that could skew our results, we only included imaging data from one 

image session per cortical area per hemisphere in each mouse for analyses of neural activity. 

We excluded sessions if bone re-growth covered the areas of interest.
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Multiple regression analysis of cellular activity.—To quantify the fraction of 

neurons that significantly encode value-related information at each time point in a trial, we 

first averaged neural activity with non-overlapping moving windows (200 ms bins) starting 

from either go cue or choice (first lick). The first bins at the go cue or choice are the 

averages between the go cue ± 100 ms or choice ± 100 ms. After the binning, value-related 

modulation of neural activity within each bin was analyzed using the following 2 models for 

pre-choice period ([eq. 12]) and post-choice period ([eq. 13]):

Activity(t) = βC(t)C(t) + βQch(t)Qch(t) + βΔQ(t)ΔQ(t) + β Q(t) Q(t) + β0 [eq. 12]

Activity(t) = βRewC(t)RewC(t) + βUnrC(t)UnrC(t) + βR(t)R(t)

+ βQch(t)Qch(t) + βΔQ(t)ΔQ(t) + β Q(t) Q(t) + β0

[eq. 13]

where C(t) is the choice on trial t (1 if contralateral choice, −1 if ipsilateral choice, 0 

otherwise), R(t) is the reward outcome on trial t (1 if rewarded choice, −1 if unrewarded 

choice, 0 otherwise), RewC(t) is the rewarded choice on trial t (1 if rewarded contralateral 

choice, −1 if rewarded ipsilateral choice, 0 otherwise), UnrC(t) is the unrewarded choice on 

trial t (1 if unrewarded contralateral choice, −1 if unrewarded ipsilateral choice, 0 

otherwise), Qch(t) is the value of chosen option on trial t, ∆Q(t) is the value difference 

between contralateral and ipsilateral options on trial t, and ∑ Q (t) is the sum of values of 

both options on trial t. For some analyses (Figures 5A–E and Figure S5), averaged ready 

period activity (averaged between −1.9 and −0.1 s from go cue) was used instead of 200 ms 

bin. We tested the significance of each regression weight using Two-sided t-test to classify 

cells with significant history or value information. The median variance inflation factors for 

βC(t), βQch(t), β∆Q(t), β∑ Q(t) in [eq.12] were 1.7174, 3.8833, 1.8048, 3.7684, respectively. 

The median variance inflation factors forβRewC(t), βUnrC(t), βR(t), βQch(t), β∆Q(t), β∑ Q(t) in 

[eq.13] were 1.4099, 1.3860, 1.0411, 3.8926, 1.8124, 3.8648, respectively. To minimize the 

effects of multicollinearity, we focused our analysis on the fractions of statistically 

significant coefficients instead of using the raw coefficients for these multiple regression 

analyses.

Decoding of history information from population activity.—We used a multivariate 

partial least square (PLS) regression model (Wold et al., 2001) to build a multivariate 

decoder that would decode various history information in multiple past trials based on the 

activity of neural ensembles that include interneuronal correlations (i.e. multicollinearity). 

PLS regression projects both response and predictor variables into new orthogonal spaces 

with reduced dimensions such that the covariance between response and predictor variables 

is maximized. We first built a predictor matrix X of size [Number of trials for model 

training] × [Number of neurons] where each element is the average of z-score normalized 

deconvolved neural activity during either ready period or post-choice period. The size of 

response matrix Y was [Number of trials for model training] × [Number of current/history 
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events to decode]. The column size was 61 for ready period decoding (upcoming choice C, 

and −20 to −1 trial history for RewC, UnrC and R) and 63 for post-choice period decoding 

(RewC, UnrC and R of current trial, and −20 to −1 trial history for RewC, UnrC and R). C, 

RewC, UnrC and R of current/history events take −1, 0 or 1 as described in the section of 

multiple regression analysis above. PLS regression decomposes predictor matrix X and 

response matrix Y into a lower-dimensional space as follows:

X = TP′ + E1 [eq. 14]

Y = UQ′ + E2 [eq. 15]

where T and U are projections of X and Y, respectively, to new low-dimensional spaces, P 

and Q are orthogonal loading matrices with reduced dimensions, and E1 and E2 are error 

terms. Then a least square regression was performed between T and U as follows:

U = TB + E3 [eq. 16]

where B is a matrix with a set of regression coefficients and E3 is the error term. We 

obtained solutions of PLS regression with the nonlinear iterative partial least squares 

(NIPALS) method such that covariance between T and U is maximized. After fitting the 

model to training set trials, we decoded information of current and past trial events using 

activity of test trial sets as follows:

Ytest = Xtest(PBQ′ [eq. 17]

where Xtest and Ytest are predictor matrix and response matrix for test trial set, respectively. 

The elements in the decoded response matrix Ytest were further binarized for binary 

classification of current and history events based on the sign of the decoded elements. Each 

decoding was performed by 10-fold cross-validation. For each image field, we subsampled 

either 200 cells (Figure 2F) or 138 cells (Figures 6A and 6B) in each iteration allowing 

repetitions with the smallest number of iterations to include every cell at least once for 

decoding, and the decoding accuracy from the iterations were averaged. 138 was the 

smallest number of neurons that we longitudinally tracked between early and expert sessions 

within the same field of view.

Linear decoding of value-related information from population activity.—To 

decode information of Qch and ∆Q from population activity during ready period or ITI, we 

used the following linear decoders:
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Qch(t) =
k = 1

n
βk

Qch Activity(t) k + β0 [eq. 18]

ΔQ(t) =
k = 1

n
βk

ΔQ Activity(t) k + β0 [eq. 19]

These equations decode Qch and ∆Q using a weighted linear sum of the activity of a neural 

population (n neurons) during early ITI (between −5.9 and −4.1 s from go cue), late ITI 

(between −3.9 and −2.1 s from go cue) or ready period (average between −1.9 and −0.1 s 

from go cue). These linear models were regularized with L1-penalty where the 

regularization parameter was selected by 10-fold cross-validation so that the cross-validated 

mean squared error is minimized. The objective functions of the models were minimized by 

Sparse Reconstruction by Separable Approximation (SpaRSA) (Wright et al., 2009). The 

decoding was performed by 10-fold cross-validation. We quantified decoding accuracy using 

Pearson correlation coefficient between the decoded values and behaviorally estimated 

values from the RL model. The decoding analyses were repeated until all cells were used at 

least once, as described in the PLS regression section, and decoding accuracies from 

multiple iterations were averaged for each session. The Qch and ∆Q axes were defined using 

regularized regression coefficients from the above decoders as follows:

Qchaxis = β1
Qch, β2

Qch, β3
Qch, …, β200

Qch [eq. 20]

ΔQ axis = β1
ΔQ, β2

ΔQ, β3
ΔQ, …, β200

ΔQ [eq. 21]

Population activity at different time points was projected to these axes by taking the inner 

product of the population activity vector and these axis vectors. The constant bias coefficient 

β0 from each decoder was added to the inner product to derive the final projected population 

activity. However, the inclusion of β0 did not significantly affect the final results (not 

shown). Projected population activities of multiple 200-cell sets were averaged within each 

session. The chance level of decoding accuracy was calculated by shuffling the trial labels of 

the test set trials 1,000 times.

Nonlinear decoding of value-related information from population activity.—To 

decode information of Qch and ∆Q from population activity without assuming a linear neural 

code, we trained feedforward neural networks with a hidden layer for nonlinear decoding of 

value-related information. The hidden layer consisted of 10 sigmoid neurons, which 

conferred on the networks the ability to learn complex nonlinear relationships between 
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population activity and the value-related information. The neural networks were trained by 

Bayesian regularization backpropagation with Levenberg-Marquardt optimization. The 

decoding was performed by 10-fold cross-validation. The decoding analyses were repeated 

until all cells were used at least once, as described in the PLS regression section, and 

decoding accuracies from multiple iterations were averaged for each session.

Temporal activity variance along value-related axes and their orthogonal axes.
—The population activity of 200 neurons that we used to identify value-related axes has 200 

dimensions. To identify 199 axes that are orthogonal to each value-related axis, we 

performed singular value decomposition (SVD) of each axis vector as follows:

Qch or ΔQ axis = UΣVT [eq. 22]

where U is a left singular matrix, Σ is a diagonal matrix with singular values, and V is a right 

singular matrix. The first column of V is the normalized value-related axis vector, and the 

other columns are 199 axis vectors that are orthonormal to the value-related axis vector and 

to each other. To calculate the activity variance, we first projected population activity of each 

trial between −6 and 0 s from go cue (smoothed with 500 ms moving averaging) to the 200 

orthonormal axes. To obtain temporal activity variance, we subtracted the mean activity 

during the time window from projected activity trace for each trial to remove across-trial 

activity variance, and then concatenated these mean-centered activity traces of all trials. 

Variance across time of the concatenated trace was used as the temporal activity variance 

along each axis. This temporal activity variance was normalized by dividing with the across-

trial activity variance, which is the variance of mean activity during the time window across 

trials along each axis.

Effects of optogenetic RSC inactivation on behavioral history dependency.—
To quantify the effects of RSC inactivation on the behavioral history dependency, we fit the 

following logistic regression model:

logit PL(t) =
i = 1

5
βRewC(t − i)

HB ∗ RewC(t − i) +
i = 1

5
βUnrC(t − i)

HB ∗ UnrC(t − i)

+
i = 1

5
βC(t − i)

HB ∗ C(t − i) + β0
HB ∗ HB(t)

+
i = 1

5
βRewC(t − i)

RSC ∗ RewC(t − i) +
i = 1

5
βUnrC(t − i)

RSC ∗ UnrC(t − i)

+
i = 1

5
βC(t − i)

RSC ∗ C(t − i) + β0
RSC ∗ RSC(t)

[eq. 23]

where RewC(t − i) is the rewarded choice history on trial t − i (1 if rewarded left choice, −1 

if rewarded right choice, 0 otherwise), UnrC(t − i) is the unrewarded choice history on trial t 
− i (1 if unrewarded left choice, −1 if unrewarded right choice, 0 otherwise), C(t − i) is the 
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outcome-independent choice history on trial t − i (1 if left choice, −1 if right choice, 0 

otherwise). HB(t) is 1 on head bar trials and 0 on RSC inactivation trials. RSC(t) is 1 on 

RSC inactivation trials and 0 on head bar trials. βRewC(t–i), βUnrC(t–i), and βC(t–i) are the 

regression weights of each history predictor, and β0 is the history-independent constant bias. 

The model has separate regression weights for head bar and RSC inactivation trials. The 

model was regularized with L1-penalty where the regularization parameter was selected by 

10-fold cross-validation (minimum cross-validation error). To prevent overpenalization of 

regression weights for less frequent RSC inactivation trials, we matched the number of head 

bar trials to the number of RSC inactivation trials for each fitting by randomly subsampling 

head bar trials. The subsampling and fitting were repeated with the smallest number of 

iterations to include every head bar trial at least once, and the regression weights from the 

iterations were averaged.

Effects of RSC lesion to behavioral history dependency.—To quantify the effects 

of RSC lesion to the behavioral history dependency, we fit the following logistic regression 

model:

logit PL(t) =
i = 1

5
βRewC(t − i) ∗ RewC(t − i) +

i = 1

5
βUnrC(t − i) ∗ UnrC(t − i)

+
i = 1

5
βC(t − i) ∗ C(t − i) + β0

[eq. 24]

The model was regularized with L1-penalty where the regularization parameter was selected 

by 10-fold cross-validation (minimum cross-validation error). The model was fit to the 

choice patterns of each session.

Statistical analysis.—Normality of distributions was tested for each dataset using 

Lilliefors test to decide whether to use parametric or non-parametric tests. Tukey–Kramer 

method was used for post hoc multiple comparison tests. For all statistical analyses, we 

calculated a single value for each session. For example, we calculated cell fractions per 

cortical area in a session and did not pool cells from different mice or sessions to calculate 

the cell fractions. All statistical and data analyses were performed in MATLAB. The 

numbers of cells, animals, and sessions for each experiment are provided in the text and 

figure legends.

Data and Software Availability

All data and analysis code are available upon reasonable request to the Lead Contact, Takaki 

Komiyama (tkomiyama@ucsd.edu).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

History and value-related information was widespread across 6 dorsal cortical areas

Retrosplenial cortex (RSC) encoded value signals as persistent population activity

RSC history coding increased with learning, reflecting ongoing behavioral strategy

Acute inactivation of RSC selectively impaired the reward history-based strategy
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Figure 1. Learning of a head-fixed dynamic foraging task
(A) Task schematic.

(B) Fraction of rewarded trials in choice trials increases during learning (n = 21 mice, mean 

± s.e.m.).

(C) Probability of choosing the lickport with higher reward assignment probability increases 

during learning (mean ± s.e.m.). (Some data points in early sessions are below 0.5 because 

of slow shifts in their choice preference after block transition.)

(D) Behavior of an example mouse showing a matching behavior (matching of the choice 

ratio with the reward ratio: note the reward ratio here is based on the actual reward 

frequencies the mice experienced, rather than the reward assignment probabilities). Each 

data point represents a single probability block. Block transition periods (20 trials after 

probability switch) were excluded from the analysis. All blocks from days 12–18 are shown. 

Red line is the linear fit.

(E) Goodness-of-fit of the matching law improves during learning (mean ± s.e.m.).

(F) Behavioral sensitivity to reward ratio increases during learning (mean ± s.e.m.).
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(G) Weights from a logistic regression model that predicts each mouse’s choice with the 3 

types of history (RewC(t-i): rewarded choice, UnrC(t-i): unrewarded choice, C(t-i): 

outcome-independent choice history) (mean ± s.e.m., Two-sided Wilcoxon signed-rank test).

(H) Our modified RL model.

(I) The effects of additional parameters on model fit were assessed with Akaike information 

criterion (AIC) (n = 21 mice, mean ± s.e.m., Two-way ANOVA with Tukey’s post-hoc test). 

∆AIC indicates AIC difference from the standard RL model, and negative values indicate fit 

improvement beyond expected by overfitting. In the standard RL model, values update with 

a single learning rate α regardless of reward outcomes, unchosen value does not change, and 

constant value bias is zero. The RL model with two learning rates, bias, and forgetting rate 

best described the behavior in our task and thus we used this model in our study.

(J) Comparisons of choice prediction accuracies between a logistic regression model with a 

single constant bias term (Const.), a logistic regression model with rewarded choice, 

unrewarded choice, and outcome-independent history predictors from past 10 trials (31 

parameters, [eq. 2] in STAR Methods), and our best RL model for expert imaging 

experiments (n = 83 sessions, mean ± s.e.m., One-way ANOVA with Tukey’s post-hoc test). 

Our best RL model with only 5 parameters performed as well as the logistic regression 

model with 31 parameters. Prediction accuracies were calculated by 2-fold cross-validation.

(K) Example performance of a mouse in early (day 3) and late (day 14) sessions. Black lines 

show reward assignment probability for left choice. Rewarded and unrewarded choice trials 

are marked by orange and grey ticks, respectively, for left choices (top) and right choices 

(bottom). Green lines show behavioral frequency of left choice within 5 trials (± 2 trials 

from each trial). Magenta lines show estimation of left choice probability by the RL model. 

Miss and alarm trials are not shown.

(L) Mice acquired RL strategy during task learning, shown by an increase in the RL index (n 

= 21 mice, mean ± s.e.m.).

(M) Distributions of RL model parameters in late session mice (day 12–18, n = 21 mice, 

One-way ANOVA with Tukey’s post-hoc test). The horizontal red lines indicate the 

medians, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 

respectively. The whiskers extend to the most extreme data points, excluding outliers. The 

red + symbols indicate outliers.

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

See also Figure S1.
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Figure 2. Area specificity of history signals in expert mice
(A) Schematic of two-photon imaging during task performance.

(B) Large craniotomy preparation that exposes most of the dorsal cortex for optical access 

(left) and locations of the 6 dorsal cortical areas imaged (right). Bregma is indicated with 

asterisk.

(C) Z-score normalized activity aligned to choice for all neurons imaged from expert mice. 

High activity during pre-choice period in V1 likely reflects visual response to ready cue 

(LED light).
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(D) The activity of 3 example neurons in RSC tuned to the reward (Neuron 1, R(t) cell), 

rewarded choice (Neuron 2, RewC(t)), or unrewarded choice (Neuron 3, UnrC(t)) of the 

current trial.

(E) The activity of 3 example neurons in RSC tuned to the reward (Neuron 4, R(t-1) cell), 

rewarded choice (Neuron 5, RewC(t-1)), or unrewarded choice (Neuron 6, UnrC(t-1)) of the 

immediately preceding (t-1) trial.

(F) Decoding accuracy for current and history information based on population activity of 

200 neurons from each of the 6 cortical areas. Ready period activity (between −1.9 and −0.1 

s from go cue) was used for history decoding ((t-10) to (t-1)), and post-choice period activity 

(between 0 and 1 s from choice) was used for current trial information decoding (t). 

Decoding accuracy was calculated by 10-fold cross-validation with PLS regression. Note 

that this analysis is potentially confounded by the autocorrelation of choice, which may 

inflate the length of encoded history. Thus we limit our interpretation to the differences 

across areas. Bar graphs show mean ± s.e.m. Two-way ANOVA with Tukey’s post-hoc test 

for (t-10)~(t-2), One-way ANOVA with Tukey’s post-hoc test for (t-1) and (t).

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. All error bars are s.e.m.

See also Figure S2.
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Figure 3. Preferential encoding of value-related information in retrosplenial cortex of expert 
mice
(A) Value signals are constructed from a combination of the 3 types of history.

(B-D) Fractions of neurons that significantly encoded Qch (B), ∆Q (C), or ΣQ (D) (P < 0.05, 

Two-sided t-test of regression coefficients). Each fraction was calculated using 200 ms bin. 

Grey shading indicates 5% chance fraction. (Left) The fraction of significant neurons in each 

time bin. Data points with filled circles indicate the fractions that were significantly above 

the 5 % chance level (P < 0.05, One-sided t-test). (Right) Mean fraction during ready period 

(between −1.9 and −0.1 s from go cue) with statistics based on Two-way ANOVA with 

Tukey’s post-hoc test using the bins during the ready period.

(E-F) Decoding accuracy of Qch (E) or ∆Q (F) from population activity of variable numbers 

of neurons during ready period. Pearson correlation coefficient (r) was used as the decoding 

accuracy index (Two-way ANOVA with Tukey’s post-hoc test. Only the comparisons 

between RSC and the other areas are shown).
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(G-H) Decoding accuracy of Qch (E) or ∆Q (F) from the activity of 200 cells during early 

ITI (between −5.9 and −4.1 s from go cue), late ITI (between −3.9 and −2.1 s from go cue), 

and ready period (between −1.9 and −0.1 s from go cue). Both ITIs and ready period encode 

the value-related information. Decoding was independently performed for each period.

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. All error bars are s.e.m.

See also Figure S3.
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Figure 4. Persistent population encoding of value-related information in retrosplenial cortex of 
expert mice
(A-B) Projection of 200-cell population activity to Qch (A) or ∆Q (B) axis defined by ready 

period (yellow shading) activity. Qch was normalized such that it ranged from 0 to 1 for 

each session. ∆Q was normalized such that the negative and positive ∆Q ranged from −1 to 0 

and from 0 to 1, respectively, for each session. Trials were averaged with 0.2 bin of the 

normalized Qch or ∆Q. Population activity along each axis was z-score normalized before 

averaging across sessions.

(C-D) (Left) Performance of decoders trained on ready period activity of 200 neurons at 

various time points (1.9-sec bins) in a trial. (Right) Slopes of the decoding accuracy curves 

before (−7 to −1 s, ‘pre-ready’) or after (−1 to 1 s, ‘post-ready’) the ready period (One-way 

ANOVA with Tukey’s post-hoc test for linear regression coefficients. Only the comparisons 

between RSC and the other areas are shown. The pre-ready slope for V1 was obtained using 

only −3 and −1 s.). Decoding accuracy quickly decays as the window moves away from 

ready period except for RSC, indicating value coding with persistent population activity 

pattern in RSC. (E-F) Temporal activity variance normalized by across-trial activity variance 

along Qch axis (E) or ∆Q axis (F) for 200-cell population from 6 cortical areas (One-way 
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ANOVA with Tukey’s post-hoc test. Only the comparisons between RSC and the other areas 

are shown.). RSC shows the most persistent value coding.

(G-H) Temporal activity variance normalized by across-trial activity variance along Qch axis 

(G), ∆Q axis (H) or 199 axes orthogonal to either Qch or ∆Q axis for 200-cell RSC 

population activity. (Left) Distribution of variance along 200 axes in an example session. 

Qch and ∆Q axes are highlighted with red. (Right) Distributions of variance from all expert 

sessions. The horizontal lines of boxplots indicate medians, and the 25th and 75th 

percentiles. The whiskers extend to the most extreme data points, excluding outliers. The 

black dots indicate outliers.

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. All error bars are s.e.m.

See also Figure S4.
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Figure 5. Graded and persistent encoding of value-related information by individual neurons in 
retrosplenial cortex of expert mice
(A) Z-score normalized activity of two example Qch cells (top, a high Qch-preferring cell; 

bottom, a low Qch-preferring cell) and two example ∆Q cells (top, a contra-Q preferring 

cell; bottom, an ipsi-Q preferring cell) in RSC. Trials were averaged with 0.2 bin of 

normalized Qch or ∆Q. These cells encode Qch or ∆Q in a persistent and graded manner.

(B) Z-score normalized mean ready period activity of all RSC cells that significantly 

encoded Qch or ∆Q in their mean ready period activity (between −1.9 and −0.1 s from go 

cue). Activity was separately averaged according to the signs of activity modulations for 
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Qch (high Qch-preferring, 4.95 ± 0.62 % of all imaged RSC cells; low Qch-preferring, 7.10 

± 0.66 %, mean ± s.e.m.) and ∆Q (Qcontra-preferring, 14.5 ± 1.58 %; Qipsi-preferring, 13.6 

± 0.88 %, mean ± s.e.m.). These cells encode Qch or ∆Q in a graded manner.

(C) Change across adjacent trials in Z-score normalized mean ready period activity of all 

RSC cells that significantly encoded Qch or ∆Q, plotted against the updates of Qch or ∆Q 

across adjacent trials. Population activity tracks updates of value-related variables on a trial-

by-trial basis.

(D-E) ∆Q coding neurons reliably track ∆Q information within contralateral choice trials 

(D) and ipsilateral choice trials (E). (Left) Same as the bottom plot in (B), but separated 

based on the choice of the upcoming trials. (Middle and Right) Population-averaged activity 

of contra-preferring ∆Q neurons (Middle) and ipsi-preferring ∆Q neurons (Right) that were 

identified using ready period (yellow shading) activity (Trials were averaged with 0.2 bin of 

normalized ∆Q). These cells do not reflect the upcoming choice but instead encode ∆Q in a 

persistent and graded manner.

(F) 200-cell population activity projected to ∆Q axis in contralateral or ipsilateral choice 

trials. All traces were smoothed with a 500 ms moving average. All error bars are s.e.m.

See also Figure S5.
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Figure 6. History coding of retrosplenial cortex reflects ongoing behavioral strategy
(A-B) Decoding accuracy for current and history information based on population activity of 

138 neurons from each of the 4 cortical areas in early (A) or expert (B) sessions. Only 

longitudinally tracked neurons were included in this analysis. Ready period activity 

(between −1.9 and −0.1 s from go cue) was used for history decoding ((t-10) to (t-1)), but 

post-choice period activity (between 0 and 1 s from choice) was used for current trial 

information decoding (t). Bar graphs show mean ± s.e.m. Two-way ANOVA with Tukey’s 

post-hoc test for (t-10)~(t-2), One-way ANOVA with Tukey’s post-hoc test for (t-1) and (t). 

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. All error bars are s.e.m.

(C) The relationship between the behavioral sensitivity to value difference based on the RL 

model and population encoding of history events (t-1 to t-10 trials) in mean ready period 

activity (between −1.9 and −0.1 s from go cue) in the expert sessions from the 4 cortical 

areas. Only the population encoding of rewarded and unrewarded choice history by RSC 

significantly correlates with the ongoing behavioral strategy (Spearman correlation).

(D) The relationship between the behavioral sensitivity to value difference based on the RL 

model and population encoding of the current trial events in mean post-choice period 

activity (between 0 and +1 s from choice) in the expert sessions from the 4 cortical areas. 

None of the comparisons shows significant correlations (Spearman correlation).

See also Figure S6.

Hattori et al. Page 38

Cell. Author manuscript; available in PMC 2020 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Acute inactivation of RSC, but not its chronic lesion, impairs reward history-based 
strategy
(A) Schematic of the projector-based optical stimulation system. Patterned light is resized 

and focused on cortex to optogenetically activate parvalbumin-positive inhibitory neurons.

(B) RSC was bilaterally inactivated in a small subset of trials within a session (5% or 15% of 

trials). In all other trials, the head bar was illuminated with the same light intensity and area. 

Elliptic illumination patterns were used for RSC inactivation trials to cover rostro-caudally 

elongated RSC. The illumination was applied from the onset of ready period until the choice 

at 30 Hz with a linear attenuation in the intensity after choice.

(C) Effects of RSC inactivation on the win-stay and lose-switch probabilities (Left: n = 5 

mice; Right: n = 12 sessions). Red line indicates the mean of each condition. Only 

successive choice trials were used to derive the probabilities. P(Win-stay) was normalized by 

the overall stay probability (the average of P(Win-stay) and P(Lose-stay)). Similarly, 

P(Lose-switch) was normalized by the overall switch probability (the average of P(Win-

switch) and P(Lose-switch)). For the n = animals plots (left), all sessions from each mouse 

were pooled to calculate the probabilities. For the n = sessions plots (right), only pairs from 

the 15% inactivation sessions were included. RSC inactivation made the stay and switch 

probabilities less dependent on the reward outcomes from the −1 trials. Paired t-test.

(D) Behavioral dependency on rewarded choice (RewC(t-i)), unrewarded choice (UnrC(t-i)) 

and outcome-independent choice (C(t-i)) history in head bar trials and RSC inactivation 

trials (STAR Methods [eq. 23]). (E) Effects of RSC inactivation on behavioral dependency 

on the 3 types of history from −1 trial (Left: n = 5 mice; Right: n = 15 sessions). Pairs of 

head bar trials (black) and RSC inactivation trials (blue) are shown. Red lines indicate the 

means. RSC inactivation reduced behavioral dependency on choice-reward history, 

especially for the rewarded choice history. Wilcoxon signed-rank test was used for non-
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normally distributed UnrC(t-1) weights of n = sessions, and paired t-test was used for the 

other comparisons.

(F) Effect of RSC inactivation to choice bias (Left: n = 5 mice; Right: n = 15 sessions). The 

absolute value of bias is shown for pairs of head bar trials (black) and RSC inactivation trials 

(blue). Red line indicates the mean of each condition. Paired t-test. The sign of the bias was 

also generally unaffected by inactivation (not shown).

(G) (Top) Example coronal section from a mouse with lesioned RSC. The section is stained 

with NeuN to visualize the presence of neurons. RSC largely lacks NeuN-positive neurons. 

Dashed lines indicate the borders of RSC. (Bottom) Corresponding brain atlas. Yellow lines 

outline RSC. Purple shading indicates lesioned area.

(H) Effects of RSC lesion on win-stay and lose-switch probabilities (Sham: n = 5 mice; 

Lesion: n = 6 mice). Difference between the mean of 7 sessions before sham/lesion and the 

mean of 7 sessions after sham/lesion is shown. Red lines indicate the means. Two-sided t-

test.

(I) Effects of RSC lesion on behavioral dependency on the 3 types of history from −1 trial. 

Two-sided t-test.

*P < 0.05, **P < 0.01, ***P < 0.001.

See also Figure S7.
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