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Preface 

The Public Interest Energy Research (PIER) Program supports public interest energy research 
and development that will help improve the quality of life in California by bringing 
environmentally safe, affordable, and reliable energy services and products to the marketplace. 

The PIER Program, managed by the California Energy Commission (Energy Commission), 
conducts public interest research, development, and demonstration (RD&D) projects to benefit 
California’s electricity and natural gas ratepayers. The PIER Program strives to conduct the 
most promising public interest energy research by partnering with RD&D entities, including 
individuals, businesses, utilities, and public or private research institutions. 

PIER funding efforts are focused on the following RD&D program areas: 

• Buildings End-Use Energy Efficiency 
• Energy-Related Environmental Research 
• Energy Systems Integration  
• Environmentally Preferred Advanced Generation 
• Industrial/Agricultural/Water End-Use Energy Efficiency 
• Renewable Energy Technologies 
• Transportation 

Drought analysis of the California Central Valley surface-groundwater-conveyance system is the final 
report for the project, Development and Application of a California Basin Water-Energy Model 
(contract number 500-02-004, work authorization number MR-05-05A) conducted by Lawrence 
Berkeley National Laboratory and the University of California, Berkeley in collaboration with 
the California DEpartment of Water Resources. 

For more information on the PIER Program, please visit the Energy Commission’s website 
www.energy.ca.gov/pier/ or contract the Energy Commission at (916) 654-5164. 
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Abstract 

Four dynamic regional climate models (RCMs) and one statistical downscaling 
approach were used to downscale 10 years of historical climate in California. To isolate 
possible limitations of the downscaling methods, we used initial and lateral boundary 
conditions from the NCEP global reanalysis. Results of this downscaling were 
compared to observations and to an independent, fine-resolution reanalysis (NARR). 
This evaluation is preparation for simulations of future-climate scenarios, the second 
phase of this CEC scenarios project. Each model has its own strengths and 
weaknesses, which are reported here. In general, the dynamic models perform as well 
as other state-of-the-art dynamical regional climate models, and the statistical model 
has comparable or superior skill, although for a very limited set of meteorological 
variables. As is typical, the dynamical models have the most trouble simulating clouds, 
precipitation, and related processes, especially snow. This suggests that the weakest 
aspects of the models are parameterized subgrid scale processes, the hydrological 
cycle, and land surface processes. However, the resulting probabilistic ensemble 
simulations result in reduced model uncertainty and a better understanding of model 
spread. 
 

 

 

Keyword: California climate, baseline simulation, dynamic and statistic downscaling 
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Executive Summary 

Introduction 

The Energy Commission Public Interest Energy Research (PIER) Program is 
developing probabilistic climate change scenarios for California.  These scenarios will 
be used for both State planning and research activities. Recent PIER Reports (e.g. 
PIER Reports 2005-006, 2005-019) have indicated a need to (1) further enhance the 
performance of Regional Climate Models (RCMs) and (2) inter-compare RCMs, 
evaluating how well these models perform with such new enhancements when 
simulating California’s climate. The RCM Enhancement and Baseline Climate 
Intercomparison (REBI) study presented here builds upon several earlier CEC-funded 
projects with a goal of quantifying and reducing RCM uncertainties, and comparing 
RCM 10 km resolution simulations of historical climate in California to observations, to 
each other, and to statistically downscaled simulations of climate. The current REBI-
RACS project is the final phase of the REBI effort leading to the first phase of the RCM 
Analysis of Climate change Sensitivities (RACS), where each model is forced by IPCC 
global climate model outputs. 
 
Purpose  

The purpose of this study is to perform a series of numerical simulations, both dynamic 
and statistically based, to determine model performance limitations and to generate a 
baseline set of model climatologies as part of the scenarios projection preparations. The 
follow-on project, RACS, will rely on these results for better understanding model 
biases, signal-to-noise, and to reduce model uncertainties. 

Project Objectives  

The objectives are to develop California regional intercomparisons and bias analysis, 
and to complete the first phase of the sensitivity analysis of projected climate change in 
California at fine scale. This analysis is of high value to the climate science research 
community, impact assessment community, and California policy makers. The set of 
research RCMs have improved simulations with quantification of the reduced errors.  
 

Project Outcomes  

The output data from the NCAR/NCEP II Reanalysis-forced RCMs (WRF-CLM3, WRF-
RUC, RegCM3, RSM) for the integration period 1980 – 1989 has been examined for 
model performance and skill. The specific analysis is based on MatLab analysis and 
plotting tools, and the PCMDI Climate Data Analysis Tool (CDAT), NCAR Command 
Language (NCL), and the AMWG Diagnostics Package.  
 
Variables that have been analyzed include; total precipitation, maximum and minimum 
daily surface air temperature, surface specific humidity, surface downwelling shortwave 
radiation, zonal and meridional surface wind speed, snow depth, surface latent heat 



flux, surface sensible heat flux, surface downwelling and upwelling longwave radiation, 
outgoing longwave radiation, and 500 hPa geopotential height. 
 

Conclusions  

Understanding the details of model errors and how each model has propagated such 
errors has further advanced our current probabilistic understanding of the potential 
consequences of climate change in California. The dynamically downscaled RCM 
sensitivity analysis provides the statistical downscaling procedures with a separate set 
of intercomparisons, and will provide the California impacts models with multiple 
variables in ensemble form. 
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1. Introduction 
 
California’s climate, hydrology, and ecology represent one of the most diverse and 
sensitive regional systems in the U.S., with over 1100 miles of coastline, desert 
regions, irrigated agricultural regions, and mountainous snowpack water storage 
regions. It has been determined in previous studies (IPCC 2001, 2007, USGCRP 2001, 
CA Ass 2001, 2006) that California’s ecosystems, water resources, and infrastructure 
are at significant risk due to heat absorbing atmospheric greenhouse gasses (GHG) in 
the form of carbon dioxide from fossil fuels. In 2006 the California State Legislature 
passed, and the Governor signed into law, Assembly Bill 32 (AB32), the California 
Global Warming Solutions Act. AB32 establishes a “first-in-the-world comprehensive 
program of regulatory and market mechanisms to achieve real, cost-effective 
reductions of greenhouse gasses (GHG).” It makes the California Air Resources Board 
(CARB) responsible for monitoring and reducing GHG emission reduction targets in 
California to 2000 levels by 2010, and 1990 levels by 2020. AB32 requires the CARB to 
coordinate oversight of the efforts made to meet these targets and report to the 
Governor and the State Legislature biannually on progress made toward meeting the 
GHG emission reduction targets and climate change impacts to California. This 
includes impacts to water supply, public health, agriculture, the coastline, and forestry. 
As part of the biannual reporting process, a series of regional climate model 
simulations and analyses of present and projected climate are being prepared and 
used as input for a number of California impacts studies to meet the AB32 reporting 
requirement.  
 
As an initial step towards fully quantifying the range of climate variability and change in 
California (CA) at high spatial resolution (10-km), one statistical and three dynamical 
downscaling approaches are intercompared and evaluated against observations. The 
rationale here is to test the usefulness and appropriateness of the different climate 
downscaling techniques based on observational data availability, computational 
constraints, climate stationarity assumptions, and model parameterizations. Each 
approach has uniquely different, and in some cases similar, advantages and 
disadvantages. 
 
Climate model evaluation and intercomparison provides quantitative evaluations of 
model and process performance using observations and other models as standards for 
comparison. It allows for model advancements, leading to reduced errors and improved 
model performance. Climate model intercomparisons are essential for understanding 
how model-simulated projections of the future compare with the present. Improved 
model performance will allow for better decision making of actions needed for climate 
change mitigation, adaptation, and coping strategies.  
 
Since 1989, the DOE’S Program for Climate Model Diagnostics and Intercomparison 
(PCMDI) has led the intercomparison of global-scale general circulation models 
(GCMs).  The PCMDI mission is to develop and apply improved methods and tools for 
the diagnosis and intercomparison of GCMs, and represents a quality control 
gatekeeper for the GCMs that are part of the Intergovernmental Panel on Climate 
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Change (IPCC). While GCMs provide an important understanding of the climate on 
subcontinental and larger scales, they are unable to resolve fine-scale climate features 
and forcings that are of importance at local-to-regional scales; hence downscaling 
techniques have and will continue to be an essential element of climate change 
impacts analysis. 
 
Dynamical downscaling uses a fine-resolution climate model having a global or smaller 
domain to produce fine-scale information. Physical knowledge comes from laws 
describing the atmosphere included in the fine-resolution model. If it has a limited 
geographical domain, this model is driven by initial and boundary conditions from a 
coarse simulation with a larger (typically global) domain. Required boundary condition 
data for limited-domain model includes 3-dimensional atmospheric fields at 3-hour or 6-
hour intervals; this involves a large data volume, and few climate simulations save this 
output. Thus, most coarse-resolution climate simulations cannot be downscaling using a 
nested, limited-domain model. This restriction has recently been studied in detail by 
Yoshimura and Kanamitsu 2008, who proposed a method to relax this restriction. Global 
high-resolution simulations can be performed using only monthly-mean sea-surface 
temperatures and sea ice concentrations as boundary data; this is available from 
virtually all simulations. Thus this technique is widely applicable; an additional 
advantage is that it provides global downscaled data. It is, however, much more 
computationally demanding than using a limited-domain model. Dynamical downscaling 
in general is computationally demanding, but produces a complete range of physically 
consistent meteorological output. Because of this physical consistency, the output is 
useful for research on physical mechanisms of the local scale climate change. The most 
important shortcoming of dynamical downscaling is errors in the dynamical models 
(both nested and large-scale). Many of the model errors are systematic, but can be 
removed by using the differences or anomalies. This approach is frequently used in the 
study of changes due to global warming. . 
 
Statistical downscaling uses empirical, data-driven techniques to produce fine-scale 
climate information. In the constructed analogues approach, relationships between 
local- or regional-scale climate features and large-scale features are developed by 
analyzing observations. Key assumptions in this approach are that the future climate 
patterns can be derived from linear combinations of the weather from a library of 
previously observed patterns, and that climate changes predicted using coarse-
resolution models are correct at fine spatial scales. In another method, the delta change 
or perturbation approach, changes in key climate quantities (such as predicted 
temperature increases) from a coarse simulation are added (multiplied) to fine-scale 
historical climate data, producing a fine-scale future temperature (precipitation) 
prediction. An advantage is that using predicted changes from climate models results in 
a first-order elimination of biases from these models. Some analogue approaches also 
include bias correction (e.g. Imbert and Benestad, 2005). Statistical downscaling is 
computationally inexpensive, but in general produces results for only a few 
meteorological quantities (e.g. precipitation and near-surface temperatures). Another 
disadvantage of statistical downscaling is the difficulty of uncovering physical 
mechanisms behind unexpected results. 



 3 

 
An important difference between dynamical and statistical approaches is that the latter, 
being empirical, do not require knowledge or accurate characterization of specific 
climate forcings; poor knowledge of these forcings (e.g. aerosols and land-use effects) 
can limit the fidelity of dynamically based simulations. This can be a disadvantage, 
however, if forcings change significantly between the period used for 
development/calibration of the statistical model and the period being simulated; this in 
general will result in violation of the stationarity assumption fundamental to statistical 
approaches. 
 
In 2003, the California Energy Commission (CEC) sponsored a series of road-mapping 
exercises, including the report, Modeling Regional Climate Change in California 
(Gates, 2003). This report recommended the design of a regional climate model 
intercomparison protocol, control climate simulations, an evaluation and analysis of 
downscaling methods, development of a California database, and the development of a 
database access system. The present study builds upon the report recommendations, 
two previous CA investigations to intercompare climate model physics and dynamics 
(e.g. Duffy et al. 2006, Kueppers et al. 2008), and several past and ongoing regional 
climate investigations, such as the Program to Intercompare Regional Climate 
Simulations (PIRCS, Gutowski et al. 1998, 2000; Tackle et al. 1999), the North 
American Regional Climate Change Assessment Project (NARCCAP: Mearns et al. 
2004), an Asian domain intercomparison (Leung et al. 1999; Fu et al. 2005), an Arctic 
RCM intercomparison (Curry and Lynch 2002), and a European intercomparison 
(PRUDENCE: Christensen et al. 2007; Déqué et al. 2007; Jacob et al. 2007).  
 
The next section provides details of the approach for intercomparing and evaluating 
downscaled CA regional climate and model imitations. This is followed by an analysis 
of the results, significance, and applicability of each model with regard to AB32, and 
lastly a discussion with concluding summary.  
 
 
2. Approach 
 
The downscaling evaluation here includes one statistical and three dynamic 
approaches. In order to best evaluate the multi-model performance, domains, grids, 
and forcings were specified to be the same or as similar as possible. Each RCM used 
similar double nested domains and resolutions (Figure 1) with the same set of lateral 
boundary conditions and similar forcings, to generate 10-year baseline simulations for 
1 January 1980 to 31 December 1989 at 30-km (outer nest) and 10-km (inner nest) 
resolutions. An exception is the RSM, which downscaled directly from 200 km 
resolution global reanalysis to 10 km resolution. Each model output includes a common 
set of variables and fluxes, mapped onto identical grids for analysis. This procedure 
follows the PCMDI protocols used for the IPCC AR4 intercomparisons. The statistical 
methods used the same inner domain as shown in Figure 1, but produced only 
precipitation and temperature fields at daily to monthly time-steps. In the following 
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subsection dynamic and statistical methods used in this study are discussed, followed 
by a subsection on the input data. 
 
 
2.1 Dynamic and Statistical Downscaling  
 
The Weather, Research, and Forecasting (WRF) model was developed at the National 
Center for Atmospheric Research (NCAR) and has been enhanced by LBNL 
researchers to include the NCAR Community Land Model version 3 (CLM3: Oleson et 
al. 2004), an advanced land surface scheme with sub-grid representation for advanced 
snow processes and dynamic vegetation with plant functional types, and lateral 
hydrologic flow capability. This enhancement to WRF, especially the subgrid 
representation and advanced snow processes, results significant error reductions 
(Section 3). The enhanced code, WRF-CLM, is set up with the Kain-Fritsch convection 
parameterization for cumulus clouds (Kain and Fritsch 1993), the Yonsei University 
(YSU) planetary boundary layer (PBL) scheme, and the Medium Range Forecast 
Model scheme (Hong and Pan 1996). The microphysics scheme used here is the WRF 
Single-Moment 3-class (WSM3) scheme (Hong et al. 2004). The Rapid Radiative 
Transfer Model (RRTM) is based on Mlawer et al. (1997) and is used for describing 
longwave radiation transfer within the atmosphere and to the surface; the shortwave 
radiation scheme was developed by Dudhia (1989).  
 
The Regional Spectral Model (RSM; Juang and Kanamitsu 1994) originates from the 
one used at the National Centers for Environmental Prediction (NCEP), but the code 
was updated with greater flexibility and much higher efficiency (Kanamitsu et al. 2005) 
at the Scripps Institution of Oceanography. The RSM utilizes a spectral method (with 
sine and cosine series) in two dimensions. A unique aspect of the model is that the 
spectral decomposition is applied to the difference between the full field and the time-
evolving background global analysis field. The model configuration and the 
downscaling methods are basically the same as that of CaRD10 (10 km California 
Reanalysis Downscaling; Kanamitsu and Kanamaru 2007), applying the scale-selective 
bias correction (SSBC, Kanamaru and Kanamitsu 2007) nudging scheme to the 
Reanalysis large-scale thermodynamic fields for a 10 km resolution simulation. Major 
updates from the CaRD10 project are: 1) Noah land surface model (Ek et al., 2003) 
with 4 soil layers instead of the 2-layered OSU (Pan and Mahrt 1987), 2) incorporation 
of cloud water and cloudiness as prognostic variables (Tiedtke 1993, Iacobellis and 
Sommerville, 2000) for better precipitation prediction, 3) a larger domain size: 19.506°– 
50.193°N, 135.314°–103.587°W, which are 180% and 175% larger in zonal and 
meridional directions than those of the CaRD10, to improve summer time monsoon 
flow from the Gulf of California, and 4) narrower lateral boundary nudging zones that 
extend only 2.5% of the total width in each of four lateral boundaries instead of 11.5% 
in CaRD10 to increase the useable domain. 
 
The International Center for Theoretical Physics (ICTP) Regional Climate Model, 
RegCM3 (Pal et al., 2007), is a third-generation regional-scale climate model derived 
from the National Center for Atmospheric Research-Pennsylvania State (NCAR-PSU) 
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MM5 mesoscale model.  RegCM3 uses the same dynamical core as MM5. RegCM3 
also includes the Biosphere-Atmosphere Transfer Scheme (BATS1E: Dickinson et al., 
1993) for surface process representation and the CCM3 radiative transfer package 
(Kiehl et al., 1996). RegCM3 documentation and source code are available at the 
ICTP, Trieste, Italy site; www.ictp.trieste.it/RegCNET/model.html. In this experiment, 
RegCM3 was configured with the Grell cumulus scheme (Grell, 1993) utilizing the 
Fritsch and Chappell closure scheme (Fritsch and Chappell, 1980) and the Holtslag 
boundary layer scheme (Holtslag and Boville, 1993). This version of BATS has 22 land-
cover types and 3 soil layers, with rooting depth and other soil properties linked to land 
cover type. 
 
The Constructed Analogues (CANA) statistical downscaling approach is based on the 
methods developed by van den Dool (2003) and has been presented by Hidalgo et al. 
(2008). The CANA method is based on the matching of daily Reanalysis weather 
patterns (e.g. precipitation and temperature) with previously observed weather patterns 
contained in an independent “library” of matching pairs of coarse-scale (Reanalysis) 
and corresponding high-resolution 1/8 degree (12-km) weather patterns (Maurer et al. 
2002 data) for the same day. The 30 most similar historical patterns (analogues) to the 
Reanalysis pattern to be downscaled are used in a linear regression to produce a 
coarse-scale estimate for each day. The regression coefficients obtained from the 
coarse-scale analysis for each day are then applied to the corresponding 30 high-
resolution analogue weather patterns to produce daily-downscaled estimates at 1/8 
degree (Hidalgo et al. 2008).  In this way, a large fraction of the daily variability of the 
weather patterns at high resolution is conserved. A comparison of the CANA method 
with the statistical method of bias correction following with spatial downscaling (Wood 
et al. 2004) can be found in Maurer and Hidalgo (2008). For the REBI analysis the 
library of previously observed patterns was selected from the period 1950 to 1978 so 
the downscaling period (1979-1999) is independent of the library used to derive the 
analogues.  
 
In Hidalgo et al. (2008), the linear predictor equations were trained and validated for 
the period 1950 to 1999, where the even-numbered years were used for model 
calibration and odd-number years were used for model cross-validation. The CANA 
method showed very good skill (day to day validation correlations of the downscaled 
estimates with the observed data on the order of 0.7 or more) in downscaling coarse-
scale temperature to a 12-km grid, and in reproducing precipitation in the coastal states 
of the western US, with less skill in the interior regions (Hidalgo et al. 2008).  
 
2.2 Input Data 
 
The National Centers for Environmental Prediction-Department of Energy Atmospheric 
Model Intercomparison Project II Reanalysis (NCEP/DOE-2) data were used for the 
dynamic model initial and lateral boundary conditions, as well as for training and 
validation of the CANA statistical model. The Sea Surface Temperatures (SSTs) were 
initialized with Atmospheric Model Intercomparison Project (AMIP) dataset for WRF 
and RegCM, while the European Reanalysis 40 year SST data (ERA40 
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http://www.ecmwf.int/research/era/do/get/era-40) was used for the RSM lower boundary 
conditions over the Pacific Ocean.  
 
Model results are evaluated with the Parameter-elevation Regressions on Independent 
Slopes Model (PRISM) climatologies for California temperature and precipitation with 
monthly, yearly, and event-based climatic parameters (Daly et al. 2001, 2008). PRISM 
is a unique knowledge-based system. It includes point observations, digital grid 
estimates, digital elevation maps, and expert knowledge of climatic extremes, including 
rain shadows, coastal effects, and temperature inversions. The resulting PRISM 
climatologies are often taken as near-truth data sets and are used for numerous 
applications, including impacts analysis. Other simulated quantities are evaluated 
against the North American Regional Reanalysis (NARR; 
http://www.emc.ncep.noaa.gov/mmb/rreanl/) dataset. This is a fine-resolution reanalysis 
data product based on the Eta limited-domain model. Noteworthy features of NARR 
include direct assimilation of precipitation and some radiative fluxes. We use NARR to 
compare simulated quantities such as radiative fluxes for which adequate observations 
are not available. 
 
Results of all REBI simulations were converted to a common format that adheres to 
standards developed for the climate and weather forecast (CF) community.  The CF 
conventions specify standard variable names, dimension names, coordinate systems, 
calendars, metadata, etc. (http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.0/cf-
conventions.html) REBI model outputs were interpolated in the vertical to a standard set 
of atmospheric pressure levels. For certain analyses, such as calculating inter-model 
differences, results were interpolated to a common latitude/longitude grid having 
approximately the same 10-km grid spacing as the original RCM coordinate grids (1/12 
degree in latitude and longitude). 
 
3. Results 
 
3.1 Climatological Means of Temperature and Precipitation  
 
Three dynamic downscaling models (RegCM, RSM, WRF-CLM3), one statistical 
downscaling method (CANA), and a commonly-used, off-the-shelf, version of WRF 
(WRF-RUC), are evaluated and intercompared for model skill, as forced with the 
NCAR/NCEP Reanalysis II fields for 1980-1989. The climatological 10-year mean 
maximum and minimum 2-m air temperature and cumulative precipitation are shown 
for the winter and summer periods in Figures 2-6.  
 
Figures 2a and b show spatial maps of California 10-year climatologies for June-
August (JJA) daily maximum and minimum 2-m air temperature (Tmax, Tmin), 
respectively. Figure 3a and b shows their corresponding difference plots, as compared 
with the PRISM climatologies. The JJA maximum temperatures are well represented, 
with all models reproducing the large-scale spatial pattern of observed temperatures 
within the study domain. Nonetheless, all models have significant local biases. CANA 
and WRF-CLM shows cold biases along coastal regions. RSM is too warm (by 3-5oC) 
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throughout the Central Valley, south coast, and Sierra. WRF-CLM3 has a strong cold 
bias in part of the Sierras, consistent with the existence of year-round snow (discussed 
below) in that region. RegCM3 shows overestimates near the coasts and in the south 
(i.e. 3-7oC) over a smaller area than WRF-CLM, but is too cold in the Central Valley. 
This last issue is probably a result of a simplified representation of irrigation, in which 
surface soil moisture is fixed at 75% of field capacity. As noted below, this results in 
excessive latent heat fluxes, and hence a local cold bias. WRF-RUC shows larger JJA 
Tmax overprediction for the Central Valley than WRF-CLM3. Similarly, the JJA minimum 
2-m air temperature shows that the CANA performs well, with very slight 
underestimates along a north-south inland region, RSM has overestimates near the 
coast and southern inland region, with some overestimates in the southern foothills and 
mountains, WRF-CLM3 appears to have topographic over- and under-estimates, with 
significant overestimates in the inland south similar to RSM, WRF-RUC is generally too 
warm, and RegCM has topographic over- and under estimates, but somewhat less 
severe than WRF-CLM3. Comparison of results of WRF-RUC and WRF-CLM to those 
of the other models shows that simulated near-surface temperatures are roughly as 
sensitive to the land-surface scheme as other aspects of the model. 
 
The winter December-February (DJF) maximum and minimum 2-m air temperatures 
(Figs. 4 and 5) behave quite similarly to the JJA , revealing slight overestimates for 
Tmax in all cases, especially WRF-RUC and RSM in the Central Valley region. The DJF 
Tmin differences show that CANA tends to have negative biases, whereas all the 
dynamical models (especially WRF-RUC) are largely too warm. The new coupling of 
CLM3 to WRF shows a dramatic reduction in this overestimate of Tmin, but both WRF-
CLM3 and RegCM are still too warm for DJF. 
 
These differences in near surface temperature likely involve differences in land surface 
treatments (CLM-3, Noah and BATS) used in the three regional climate models. Full 
understanding of the temperature difference would require understanding effects of 
differences in specified land characteristics (vegetation type, surface roughness, 
albedo and soil type), as well as radiation fluxes and near surface meteorological 
parameters. 
 
The cumulative November to March (NDJFM) precipitation and difference, as 
compared with the PRISM NDJFM precipitation climatologies are shown in figures 6a 
and b, respectively. Considerable effort was put into the evaluation and enhancement 
of models to optimize convective schemes (Shimpo and Kanamitsu, 2008) and to 
evaluate the SST sensitivity (Jin et al. 2008). All the models capture the large-scale 
spatial distribution of precipitation, which is dictated primarily by lateral boundary data 
and by topographic variations. However, the models exhibit significant biases in 
precipitation amounts: RegCM3, WRF-RUC, and to a lesser extent RSM are too wet in 
Sierra Nevada Mountains and in the wet Northwest part of the State. The difference 
plots show that CANA has smaller precipitation biases than any of the dynamical 
models, while WRF-CLM has the smallest biases among the dynamical models. WRF-
RUC and RegCM3 are too wet everywhere in the State except the dry Southwest 
region. As noted below, RegCM3 seems to have insufficient latent heat fluxes over 
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ocean, particularly off the coast of Northern California. This makes the model’s wet bias 
more remarkable, since not only is the correct amount of moisture entering the model 
domain, but also ocean evaporation is contributing too little to the water available for 
precipitation. 
 
Overestimation of precipitation in an area of large precipitation is a common problem in 
high-resolution regional models, and is evident in three out of the four models analyzed 
here. (Nonetheless, PRISM may not be accurate over high topography areas.). The 
smaller bias in WRF-CLM3 likely results from use of the Kain and Fritsch 
parameterization scheme used in WRF-CLM3. A similar reduction in bias was 
observed in RSM test runs using Kain and Fritsch, but the high computer cost of this 
parameterization prevented its use in this study. 
 
Model-based cumulative monthly precipitation is correlated in time with the PRISM 
precipitation in Figure 6c. The statistically downscaled CANA precipitation has 
excellent correlation with PRISM for most of the R field at or above 90%. The dynamic 
models cannot reach such high levels of correlation, however, RegCM3 does perform 
excellently (R > 90 percent) in the far northwest, while RSM is between 40 and 70 
percent correlation, with its highest values showing up in the southern Sierra Nevada 
region. WRF-RUC has somewhat higher correlation values over a larger spatial domain 
and is an improvement over WRF-RUC. 
 
3.2 Snow Water Equivalent  

Accurate simulation of snow is important for studies of water resource and other 
societal impacts. Snow is a particularly difficult quantity to simulate, however, since it is 
sensitive to both meteorology (temperature and precipitation) as well as land surface 
processes. Furthermore, even if the atmospheric and land surface model physics is 
correct, snow in California will tend to be under-simulated as a result of finite model 
resolution; this results in truncated elevations in the mountains, and hence overly high 
surface temperatures. Our results, described below, exemplify the difficulty of 
accurately simulating snow cover in California. 
 
Figure 7a shows Snow Water Equivalent (SWE) as a function of time for the 1980-1989 
integration, using WRF-CLM3, WRF-RUC, RegCM3, and COOP observations 
(www.weather.gov/os/coop/coopmod.htm) over a Sierra Nevada sub-domain. (SWE 
results from RSM are discussed below, and CANA does not predict SWE). Alone 
among the models, WRF-CLM does a good job of simulating winter snow amounts, 
including year-to-year variability. As a result of this, its correlation coefficient against 
observed snow amounts (R=0.84) is higher than that of the other models. (R=0.61 for 
RegCM3 and R=0.50 for WRF-RUC). WRF-CLM’s cold bias in night-time DJF 
temperatures in the Sierra (Figure 4b) probably does not affect simulated snow 
amounts, since even observed night-time temperatures in this season and region are 
below freezing. It is striking that WRF-RUC and RegCM3 underestimate winter snow 
despite over-estimating winter precipitation. On the other hand, WRF-CLM, and, to a 
lesser extent, RegCM3 erroneously preserve some snow cover throughout the year, 
even though RegCM3 significantly underestimates winter SWE. Figure 7b shows that 
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in some high-elevation grid cells in RegCM3 snow not only remains during the summer, 
but actually accumulates from year to year. 
 
Other recent RCM evaluations (e.g. Leung and Qian, 2003, Duffy et al. 2006) have 
attributed a significant fraction of errors in simulated SWE to deficiencies in land-
surface models (as opposed to meteorology). Slater et al. (2001) demonstrated the 
sensitivity of simulated SWE to land surface treatments, by forcing 18 off-line land-
surface models with observed meteorology. In our simulations, WRF-CLM has a strong 
cold bias in JJA daily maximum temperatures in the Sierra Nevada Mountains. Thus 
the erroneous persistence of snow in this simulation could be a consequence of 
meteorological biases (although the presence of snow will amplify a cold bias). On the 
other hand, RegCM3 does not have a spatially consistent bias in maximum JJA 
temperatures in the Sierra. Hence in this simulation the summertime snow is likely due 
to a land-surface problem. 
 
The RSM model simulated near-zero SWE at SNOTEL locations throughout the study 
period. One reason is that two SNOTEL stations are located on “water” grid cells in 
RSM (Lake Tahoe) where no snow is simulated. In addition, the RSM has a warm bias 
in near-surface temperatures on the lee side of the Sierra Nevada Mountains, and most 
of the precipitation there falls as a rain. Precipitation is also underestimated on the lee 
side. The SNOTEL stations compared in this paper are located near Lake Tahoe, 
which happens to be the area where the ratio of snowfall to precipitation decreases to a 
very low value in RSM. Also, most of SNOTEL stations are on leeward of the Sierras 
(at least in RSM topography), so there is very little snowfall in RSM. The SWE over the 
windward side and higher elevation seems to be a little more reasonable in RSM. The 
model precipitation and snowfall is very sensitive to small changes in topography and 
elevation in this area and care should be taken to select representative locations for 
evaluation of simulated SWE. 
 
3.3 Spatio-temporal variability  
 
Looking beyond biases in seasonal mean quantities, Taylor diagrams (Taylor, 2001) 
provide a convenient means to display pattern correlations and RMS errors between 
simulated and observed quantities, as well as a simple evaluation of the spatiotemporal 
variability of simulated quantities. Figure 8 shows Taylor diagrams of near-surface 
temperature, precipitation and SWE in our simulations. These are based upon monthly-
mean quantities, mapped to a common spatial grid. The angular coordinate is the 
correlation coefficient between simulated and observed quantities, based upon monthly 
mean results at each grid cell. This evaluates if maxima and minima in the simulations 
occur at the correct times and geographical locations, but is independent of any errors 
in the magnitude of spatiotemporal variability. The latter is evaluated by the radial 
coordinate, which is the standard deviation of the models results for each month and 
grid cell, normalized by the same quantity in observations. (Again, this is calculated 
from monthly mean quantities at each grid cell, and thus reflects combined space and 
time variability.) The added value of a Taylor diagram is that the distance on the plot 
from the point marked “REF” on the horizontal axis is a normalized root mean square 
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(RMS) error; thus the Taylor diagram displays three useful statistical measures on a 
two-dimensional plot. All these measures are independent of errors in the mean (i.e., 
biases), so the Taylor diagrams complement information presented so far. 
 
The Taylor diagrams show that all the simulations do well at representing 
spatiotemporal variability in daily minimum and (especially) daily maximum near-
surface temperatures; the CANA results come close to matching the best of the 
dynamical models (RSM) in this respect. For precipitation, CANA again performs better 
than all the dynamical models except the RSM, despite seriously underestimating 
spatiotemporal variability. The excessive spatiotemporal variability of precipitation in 
RegCM3 and WRF-RUC seen in the Taylor diagram is due at least in part to these 
models’ excessive precipitation in Northwest California and the Sierra Nevada 
mountains (Figure 6a).  
 
RegCM3 and WRF-RUC in particular underestimate the spatiotemporal standard 
deviation of SWE; this is consistent with these models having far too little SWE in 
winter (Figure 7). 
 
3.4 Surface Energy Fluxes and Clouds 
 
In general, apparent biases in simulated surface energy fluxes can reflect deficiencies 
either in the models being evaluated or in NARR, which we use as a standard for 
comparison. (Of course apparent biases can always results from errors in the 
observational standard; we emphasize the possibility here since NARR is a model-
based data product.). In some cases, as noted below, inter-model differences are at 
least as large as the differences between individual models and NARR; this implies 
significant biases in at least some of the models, regardless of any possible errors in 
NARR. Furthermore, in some cases noted below, biases in simulated surface energy 
fluxes clearly result from deficiencies in other aspects of the simulation. 
 
As with other aspects of simulated climate, biases in surface energy fluxes can reflect 
errors in imposed climate forcings, as distinct from a model’s representation of physical 
processes. For example, RegCM3 shows much higher latent heat fluxes in the Central 
Valley in JJA than NARR (and the other models). This results from enhanced soil 
moisture in RegCM3, which is imposed as a way of representing the climatic effects of 
large-scale irrigation. (Soil moisture content was constrained to be 75% of field 
capacity in irrigated regions and seasons.) This simple representation of irrigation also 
influences JJA sensible heat fluxes in RegCM3 (Figure 10). More generally, biases in 
simulated seasonal-mean latent heat fluxes (Figure 9) appear to correlate with biases 
in the seasonal mean of daily maximum temperatures. (Compare, e.g. Figure 3a to 
Figure 9). 
 
The increased latent heat flux just off the coast of Los Angeles during DJF is a 
reflection of Santa Ana events (Kanamitsu and Kanamaru, 2008); this is very clearly 
shown in RegCM3 and RSM (somewhat obscured in WRF), but is not found in NARR. 
This is due to the coarse resolution (32km) used in NARR.  The WRF simulation tends 
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to have maximum evaporation just off the coast, which is very different from other 
models. 
 
NARR results for surface downwelling solar fluxes exhibit the expected large-scale 
features: fluxes are higher in summer than winter, in winter are lower in the Northern 
part of the State, and in summer are lower over the ocean (Figure 11). The biases in 
WRF-CLM and RSM in downwelling solar radiation (Figure 11) are consistent with their 
biases in vertically-integrated cloud fraction (Figure 12). The RSM model captures 
NARR’s large-scale pattern of downwelling solar fluxes well in both seasons. All the 
models have relatively small biases in downwelling solar fluxes over land in summer, 
indicating that they are doing an adequate job of simulating the relatively little cloud 
cover in that season and region. Over ocean, however, WRF has too little downwelling 
solar, and RegCM3 has too much. In the case of RegCM3, we can verify that this 
reflects inadequate cloud cover (Figure 12). The largest cloud bias in RegCM3 is over 
Nevada, but the model’s precipitation bias in largest in California. This presumably 
indicates reduced available moisture after air masses have passed over the California 
mountains. Over-land biases in downwelling solar are larger in winter; this is expected, 
since cloud cover, and hence potential for biases in cloud cover, are greater in winter. 
WRF-CLM’s spatial pattern of downwelling solar flux is very different from that of the 
other models in both DJF and JJA. This presumably results from cloud biases, but this 
cannot be verified due to lack of availability of cloud results from WRF-CLM. 
 
The largest local biases and apparent biases in upwelling solar fluxes (Figure 13) have 
to do with deficiencies in simulated snow cover. In DJF, all three models have much 
stronger solar radiation upwelling from the surface in the mountain regions than NARR 
does; this is largely a result of insufficient snow cover in NARR, due to its relatively 
coarse grid spacing (32 km). Hence this apparent model bias primarily reflects a 
limitation of NARR. On the other hand, both WRF-CLM and RegCM3 have a strong 
local maximum in upwelling solar in the mountains in summer (JJA). This is a 
consequence of these models having year-round snow in this region (discussed 
above), which is not observed. 
 
Downwelling longwave radiation at the surface (“RLDS;” Figure 14a) reflects 
atmospheric temperature and moisture distributions as well as cloudiness distributions. 
RLDS is fairly similar among the models. The larger RLDS over ocean in WRF is 
consistent with its small downwelling short wave flux (Figure 11), and is presumably 
due to think clouds. Again RSM is very similar to NARR, but other models have clear 
positive biases, particularly over land. 
 
3.5 Geopotential Heights and Surface Winds 

 
The January and July 10-year climatological mean-monthly spatial plots of 500 mb 
geopotential height are shown in Figure 17.  The January height fields show that all the 
models tend to be too high. For July, the spectral RSM replicates the large-scale 
Reanalysis forcing, while the RegCM3 underestimates height fields and the WRF 
appears to capture more detail associated with topographic disturbances. This is further 
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seen in Figure 18, where simulated mean-monthly geopotential heights are plotted 
against the NCEP/NCAR Reanalysis heights for three points, P1, 120W, 39N (American 
River Basin), P2, 117.5W, 37N (Merced Basin), and P3, 122.5W, 38N (Russian River 
Basin). A general conclusion that can be drawn from these results is that WRF 
underestimates geopotential heights, especially when the reanalysis heights are low. 
 
To understand the time-evolution of the height fields, fields that reveal the presence of 
storm systems propagating through the study domain, Figure 19 provides model-
reanalysis Hovmeuller plots of the mean-monthly 500 hPa geopotential heights for 
1980 to 1989 for a northern California latitude (38.5N) and a southern California 
latitude (34.0N). 
 
Except as noted below, the models reproduce the large-scale patterns in surface wind 
components estimated by NARR. Despite this, errors in individual grid cells can be 
comparable in magnitude to the wind component itself. In significant regions of 
Southern California, RegCM3 has an incorrect sign on one or both wind components. 
 
As a further analysis of the model-simulated heights, we have added 1980 – 1989 
precipitation Hovmeuller plots for Northern California and the Pacific Ocean at latitude 
38.5 for longitudes -119 to -123, including the Russian and American River Basins. 
Figure 20 shows these results using PRISM, CANA, RSM, RegCM, WRF-CLM, and 
WRF-RUC.  Precipitation making landfall is near -122 and shows good skill using 
CANA, WRF-CLM, and RSM, but is overestimated by RegCM, WRF-RUC.  The 
American River Basin is closer to Longitude -123, where WRF-CLM shows the highest 
overall skill for this location.  
 
4. Summary and Conclusions 
 
Any downscaling approach is only as good as the large-scale forcing, and in this study 
we use reanalysis initial and boundary conditions to isolate shortcomings in the 
downscaling methods. To further isolate the effects of different model formulations, the 
three dynamic downscaling models (WRF-CLM, RegCM3, and RSM) that we ran and 
analyzed were configured with domains and grid spacing as close as possible to 
identical. Unique to each model are the parameterization schemes for boundary layer 
development, cloud physics, convection, and land surface processes. More important 
is the boundary condition updating method. The lateral boundary conditions differ most 
significantly between the spectral model (RSM) and the Cartesian models (RegCM3, 
WRF). Spectral updating is a fully internal procedure, where the large-scale values 
update the entire field, while latitude-longitude model updates are along a set of nudge 
points based on the Barnes (1973) or Cressman (1959) schemes. This difference is 
important for the way in which the internal dynamics sets up and the degree of 
independence the RCMs within the internal fields. Error propagation using the spectral 
approach may likely be more damped and when evaluating with the large-scale signals 
are better behaved.  
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As noted in detail above, all the models (dynamical and statistical) analyzed here have 
limitations. Nonetheless, they perform as well as other state-of-the-art downscaling 
systems, and all do a credible job simulating the historical climate of California. The 
empirically-based CANA statistical approach performs at least as well as the dynamical 
models; it is notably spatiotemporal variability of precipitation and near-surface 
temperature. Its errors tend to be distinct from those of the dynamical models. The 
most important limitation of this approach is the very limited set of output variables 
(near-surface temperature and precipitation) that have so far been predicted using this 
method. There is no fundamental reason why additional meteorological quantities could 
not be simulated sing this approach. 
 
The dynamical models do better at simulating the large-scale circulation (as diagnosed 
by 500 mb heights), surface winds and near-surface temperatures than parameterized 
quantities such as clouds, precipitation, and snow cover. Errors in these quantities lead 
to errors in others; for example, deficiencies in cloud amounts and snow cover results 
in large errors on downwelling and upwelling short-wave fluxes. Snow cover is 
particularly difficult to simulate, being sensitive to both simulated meteorology and land 
surface processes. None of the models evaluated here simulated year-round snow 
cover well. Among the dynamical models, WRF-CLM performs best at simulating 
seasonal precipitation amounts. 
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7. Tables and Figures: 
 
Table 1. Summary of RCM settings 
 RegCM3 RSM WRF-CLM WRF-RUC 
Land 
Surface  

BATS1E 
Dickinson 1986 

NOAH 
Mitchell et 
al. 2002 

CLM3 
Oleson et al. 
2002 

RUC 

Microphysics Orville and 
Kopp 1977 

Iacobellis 
and 
Somerville 
2003 

Lin et al. 1983 WSM 3-class 
simple ice 
scheme 
(Hong et al. 
2004) 

Shortwave 
Radiation 

Kiehl et al. 
1996 

Chou and 
Lee 1996 

Goddard  
Chou and 
Suarez 1999 

Goddard  
Chou and 
Suarez 1999 

Longwave 
Radiation 

Kiehl et al. 
1996 

Chou and 
Suarez 1994 

RRTM  
Mlawer et al. 
1997 

RRTM  
Mlawer et al. 
1997 

Planetary 
Boundary  

Holstag and 
Boville 1993 

Hong and 
Pan 1996 

Mellor-
Yamada 1982 

Mellor-
Yamada 1982 

Cumulus Grell 1993 Moorthi and 
Suarez 1992  

Grell-Devenyl 
2002 

Kain-Fritsch 
scheme 
Kain 2004 
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Figure 1.  Model domains used in this study. A. Western U.S. and Eastern Pacific 
Ocean, 30-km resolution, [139W21N x 104W51N], B. California, Nevada, Eastern 
Pacific Ocean, 10-km resolution, [128W31N x 113W44N] 
 
 

 
Figure 2a. Seasonal mean of daily maximum 2-m air temperature during June – 
August. Results shown are climatological means for 1980-1989. 
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Figure 2b. Like Figure 2a, except for JJA daily minimum temperatures.  

 
Figure 3A. Difference relative to PRISM in maximum 2-m air temperature during June – 
August. 
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Figure 3B. Difference relative to PRISM in minimum 2-m air temperature during June-August. 
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Figure 4A. Seasonal mean of daily maximum 2-m air temperature during December-

February. 

 
Figure 4B. Like Figure 4a except for DJF daily minimum temperatures. 
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Figure 5A. Like Figure 3a except for December – February daily maximum 

temperatures. 

 
Figure 5B. Like Figure 5a except for DJF daily minimum temperatures. 
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Figure 6A. Cumulative November-March precipitation, climatological mean for 1980-

1989. 

 
Figure 6B. Cumulative November – March precipitation differences relative to PRISM. 
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Figure 6C. Temporal correlations between monthly-mean precipitation in models and 
the PRISM observation-based data set.  
 

 

 

 
Figure 7. Top: Spatial mean Snow Water Equivalent (SWE) in a Sierra Nevada  
subdomain for WRF-CLM, WRF-RUC, RegCM3 with COOP observations. Bottom: 
Simulated SWE in one high-elevation grid cell in RegCM3. 
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Figure 8. Taylor diagrams showing WRF-CLM, WRF-RUC, RSM, and RegCM 
model-to-observation performance scores based on normalized standard deviations 
and correlations for monthly means of (a) maximum temperature, (b) minimum 
temperature, (c) precipitation, and (d) SWE.  
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Figure 9: Surface latent heat fluxes. All results are climatological means for 1980-1989, for DJF 
(left two columns) and JJA (right two columns). Within each quadrant, the 4 panels show results 
from Regcm3, RSM, WRF-CLM, and the North American Regional Reanalysis (NARR). Top two 
rows show seasonal means from models and NARR; bottom two rows show differences 
between the models and NARR (i.e. model biases). 
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Figure 10: Same as Figure 9, except showing sensible hear flux at the surface. 
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Figure 11: Same as Figure 9, except showing downwelling solar radiation at the 
surface.
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Figure 12: Same as Figure 9, except showing vertically integrated cloud fraction. 
Results from WRF-CLM are not available.
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Figure 13: Same as Figure 9, except showing upwelling solar radiation at the surface. 
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Figure 14: Same as Figure 9, except 
showing downwelling longwave radiation at 
the surface. 
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Figure 15: Same as Figure 9, except showing zonal wind component at the surface. 
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Figure 16: Same as Figure 9, except showing meridional wind component at the 

surface. 
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Figure 17. Geopotential Height (a) January mean-monthly distribution and (b) July 
mean-monthly distribution. 
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Figure 18. Model and Reanalysis comparison of the 500 hPa geopotential height for 
three locations P1. 120W, 39N (American River Basin), P2. 117.5W, 37N (Merced 
Basin), and P3. 122.5W, 38N (Russian River Basin). 
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Figure 19. Hovmueller plots of the 500 hPa geopotential heights (a) 38.5N and (b) 34N. 
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Figure 20. Hovmueller plots of the winter precipitation across latitude 38.5N . 

 




