
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
The SITES reserve selection system: A critical review

Permalink
https://escholarship.org/uc/item/9hg8w8wz

Journal
Environmental Modeling and Assessment, 10(3)

ISSN
1420-2026

Authors
Fischer, Douglas T.
Church, R L

Publication Date
2005-09-01

DOI
10.1007/s10666-005-9005-7
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9hg8w8wz
https://escholarship.org
http://www.cdlib.org/


U
N
C
O
R
R
EC

TED
PR

O
O
F

1 The SITES reserve selection system: A critical review
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4 E-mail: fischer@geog.ucsb.edu
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8 Numerous models have been put forth to help with the growing demand for the establishment of biodiversity reserves. One site

9 selection model that has been used in several recent studies is SITES [S.J. Andelman, I. Ball, F.W. Davis and D.M. Stoms, SITES V 1.0:

10 an analytical toolbox for designing ecoregional conservation portfolios, Unpublished manual prepared for the nature conservancy, 1999,

11 1Y43. (available at http://www.biogeog.ucsb.edu /projects/tnc/toolbox.html)]. SITES includes two heuristic solvers: based on Greedy and

12 Simulated Annealing. We discuss the formulation of the SITES model, present a new formulation for that problem, and solve a number of

13 test problems optimally using off-the-shelf software. We compared our optimal results with the SITES Simulated Annealing heuristic and

14 found that SITES frequently returns significantly suboptimal solutions. Our results add further support to the argument, started by

15 Underhill [L.G. Underhill, Optimal and suboptimal reserve selection algorithms, Biol. Conserv. 70 (1994) 85Y87], continuing through

16 Rodrigues and Gaston [A.S.L. Rodrigues and K.J. Gaston, Optimization in reserve selection procedures Y why not?, Biol. Conserv. 107

17 (2002) 123Y129], for greater integration of optimal methods in the reserve design/selection literature.

18 Keywords: reserve site selection, optimization, integer programming, heuristics, model formulation, Simulated Annealing

19 1. Introduction

20 As awareness of conservation issues has grown over the

21 last several decades, a growing number of planners have

22 focused on ways to conserve individual species, whole eco-

23 systems, and other natural resources. A key strategy for

24 conservation has been the establishment of reserves that can

25 be managed for the benefit of the targeted conservation

26 elements, be they endangered species, threatened vegetation

27 communities, unique habitat types, or some other element

28 of conservation concern. Until recently, most efforts to es-

29 tablish reserves have focused on areas with scenic and

30 recreational value, resulting in ad hoc reserve networks with

31 substantial redundancy and many gaps. As more areas ex-

32 perience environmental degradation and more species are

33 threatened with extinction, greater attention has focused on

34 designing comprehensive sets of reserves, where all conser-

35 vation elements in a region are adequately represented in the

36 reserve system [4Y6].

37 Social and economic considerations often preclude sim-

38 ply conserving all land in a region; so the problem of re-

39 serve design has focused on selecting small portions of a

40 region for conservation. Because there may be consider-

41 able flexibility in which portions are selected, the problem

42 is far from simple. This design dilemma has fueled the

43 development of a wide variety of computer-based reserve

44 site selection models (e.g., [4Y17]).

45 Reserve site selection models are different from many

46 other applications of optimization techniques. In most

47 cases the ecological data available to conservation planners

48contain much larger uncertainties than in more traditional

49optimization applications in business or the military. In ad-

50dition, unmodeled objectives (e.g., aesthetics, public opin-

51ion, politics, etc.) often play a much more influential role in

52the implementation of a reserve system than in other appli-

53cations (e.g., [18]). The primary utility of reserve site selec-

54tion algorithms, then, is not to produce single, prescriptive

55solutions. Rather, the principle utility of reserve site

56selection algorithms is to explore the ranges of performance

57possible for various modeled objectives, and the potential

58tradeoff curves that may exist between them. The optimal

59solutions thus produced then provide benchmarks against

60which specific on-the-ground plans can be compared.

61Prendergast et al. [19] argue that there is a gap between

62theory and application and that current site-selection algo-

63rithms do not address many of the pressing and practical

64issues in reserve design, including ease of use for managers

65and decision makers. Although Pressey and Cowling [20]

66answer many of the issues raised by Prendergast et al. [19],

67there remains a real need to make better selection models,

68solution procedures, and decision support systems for

69reserve planning and design. Within this same spirit, there

70is a need to test and compare existing models and solution

71methods.

72One model that has received significant attention and

73has been used in recent studies of reserve design [21Y24]

74is the SITES model [1,25] that was developed for The

75Nature Conservancy. The SITES program includes various

76mapping and analysis functions, all built around a con-

77ceptual model for reserve selection, and a pair of heuristics

78for solving reserve selection problems based on this model.

79The model is an area-representation model similar to the
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80 BMAS model [6] with a goal-programming approach and

81 added terms to encourage clustering. Our objective in this

82 paper is to present a reformulation of this model, test off-

83 the-shelf software in solving this model, and compare these

84 results to the solvers provided with the SITES program.

85 We will show that the performance of the existing heu-

86 ristics for the SITES model can be improved.

87 In the next section, we describe the SITES model, based

88 upon both the SITES user manual as well as several

89 supporting papers. Working from this conceptual model,

90 the SITES developers opted for the development of two

91 heuristics. These have been tested on several problems [13]

92 and have been compared against each other [26]. Up to

93 now, the SITES model has been solved only heuristically;

94 thus, the quality of the solutions determined from the

95 heuristic solvers has never been fully evaluated. In a

96 subsequent section, we offer an alternate formulation for

97 the SITES model. We demonstrate that this new formula-

98 tion can be used to solve problem instances optimally.

99 Thus, we are able to provide an assessment of the efficacy

100 of the heuristics already developed for solving SITES. We

101 provide a comparison of heuristic and optimal approaches

102 and then conclude with a summary and final assessment.

103 2. The SITES model

104 The SITES program is described as picking from among

105 a number of feasible sites, a set that comprises a portfolio

106 [1]. The objective is to pick sites for the portfolio in such a

107 manner that all conservation goals are met and that the cost

108 is minimized. That is, the stated objective is to find the

109 minimal cost set of sites such that each conservation goal is

110 satisfied. The conservation goals can include representation

111 goals (coverage of species or area of habitat) and spatial

112 configuration goals. The SITES program attempts to select

113 a minimal cost portfolio where the portfolio cost is defined

114 as:

Total Portfolio Cost ¼ cost of selected sitesð Þ
þ
�

penalty cost for not meeting the stated

conservation goals for each element
�

þ
�
cost of spatial dispersion of the selected sites

as measured by the total boundary length of

the sites in portfolioÞ:

ð1Þ

115 This is further described as:

Total Cost ¼
X

i

Cost site i

þ
X

j

Penalty cost for element j

þ wb

X
Boundary length:

ð2Þ

116 This Btotal cost^ function represents the sum of the costs of

117 selected sites (e.g., site area, acquisition cost, opportunity

118 cost, habitat quality), plus the sum of the penalties for not

119meeting specific conservation targets, plus the weighted

120perimeter of all selected sites. The third term of the cost

121objective is weighted by the term, wb (and is actually a

122measure of clustering and compactness rather than of spa-

123tial dispersion [17]). The higher the value of wb, the more

124important it is to select a set of sites that are clustered with

125a small perimeter, even if doing so increases the other costs

126somewhat. Thus, the total cost function allows for tradeoffs

127between boundary length (i.e., an encouragement to cluster

128elected sites) and the costs of sites and penalty costs for not

129meeting specific conservation targets. In addition to the

130terms described above, the SITES documentation [1]

131includes references to the selection of spatially separated

132clusters of reserves. Our understanding is that this function-

133ality was never fully implemented in SITES (D. Stoms, per-

134sonal communication, 2001), and so we have omitted it.

135The second term of the total cost function, as described

136by Andelman et al. [1], involves the penalty costs asso-

137ciated with falling short of any conservation targets. In

138minimizing total portfolio costs, the penalty function

139encourages sites to be chosen in such a manner that all

140conservation targets are met. When all targets are met or

141exceeded, then the penalty costs are zero for all conserva-

142tion elements. A conservation target for an element is stat-

143ed in terms of a minimum desired value. An element may

144represent a species, habitat type, or other factor of interest.

145It is assumed that each site contains a specific quantity of

146each element. The total of that element over all selected

147sites represents the amount protected among the sites in the

148selected portfolio. If the total is lower than the target for

149that element, then a penalty cost is incurred that is pro-

150portional to the shortfall. For example, consider the hy-

151pothetical problem and solution portfolio comprised four

152sites presented in table 1.

153For this example, assume that these sites do not share

154any boundary in common. There are five different elements

155with conservation targets. The first two elements involve

156specific types of habitat (called habitat types 1 and 2). The

157remaining three elements involve the representation of

158three different species. For example, site 65 contains 200

159ha of habitat type 1, 2,500 ha of habitat type 2, contains

160species C, but not species A or B. (Note, for species

161presence data, a 1 means the species is present at the site

162and a 0 means that the species is absent). Together, this

163portfolio of four sites contains 3,500 ha of habitat type 1

164and 4,500 ha of habitat type 2. Because the target values

165for each habitat type is 4,000 ha, the portfolio falls short of

166habitat type 1 by 500 ha and meets the target for habitat

167type 2. The element target shortfall amounts are given in

168the penultimate column of the table. For species presence

169targets, it is desired to pick sites so that each species is

170present in at least two sites in the portfolio. Note that

171species B is found at sites 21 and 109. Thus, species B is

172found at two sites and meets the conservation target.

173Unfortunately, species A is present at only one site so a

174shortfall of representation occurs for this species. In cal-

175culating the total cost, we have multiplied each cost by a

D.T. Fischer and R. Church / SITES Critique
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177 cluded in formula (2), SITES provides for separate weights

178 for each element shortfall, as described below. (While

179 SITES does not provide for weights for site costs, such

180 weights are easily applied before loading cost data into the

181 program.) The total cost for this portfolio, as shown in the

182 rightmost column of table 1 is:

Total cost ¼ 1� 4; 000 site costð Þ
þ 3� 500 penalty cost for habitat 1ð Þ
þ 3� 0 penalty cost for habitat 2ð Þ
þ 500� 1 penalty cost for Species Að Þ
þ 500� 0 penalty cost for Species Bð Þ
þ 500� 0 penalty cost for Species Cð Þ
þ 0� 64; 772 penalty for boundary lengthð Þ
¼ 4; 000þ 1; 500þ 0þ 500þ 0þ 0þ 0

¼ 6; 000

ð3Þ

183 It is important to note that the overall penalty cost for a

184 given shortfall is proportional to the amount of shortfall.

185 That is, the penalty cost is a linear function with respect

186 to shortfall. In McDonnell et al. [26], the penalty cost for

187 a given target is normalized by the amount of the target

188 (and multiplied by an additional, heuristically determined

189 weight), so that a balance can be struck between targets

190 involving small acreage and those involving larger acreage.

191 Each possible portfolio has a calculated total cost. The

192 objective is to identify the portfolio with the smallest Btotal

193 cost.^ If the units of site cost and element penalty are very

194 different in magnitude, lowest-cost solutions may involve

195 selecting all the area to eliminate any penalties, or ac-

196 cepting all penalties to avoid the cost of selecting any sites,

197 or somewhere in between.

198 McDonnell et al. [26] provide additional description of

199 the underpinning model of SITES. The following notation

200 is necessary to describe their formalism:

201 ci – Total area or cost of site i;

202 aik – Area or other measure of conservation value k on

203 site i;

204 bi – Total boundary length of site i;

205bk – Required area or amount of conservation value k

206needed in portfolio;

207bij – Length of shared boundary between sites i and j;

208K – Set of all conservation elements k;

209I – Set of all sites i;

210m – Total number of sites available for selection

211The decision to select a site for the portfolio can be rep-

212resented by the following 0Y1 decision variable:

xi ¼
1; if site i is selected for the portfolio

0; otherwise

(

213Using this notation, McDonnell et al. [26] describe the

214following Bcrisp^ optimization problem:

Minimize C xð Þ

¼
X

i

cixi þ wb

X

i

bixi � 2
Xm � 1

i ¼ 1

Xm

j ¼ i þ 1

bijxixj

 !

ð4Þ

215But ensure that sites selected for portfolio contain a

216minimum quantity of element k

X

i

aikxi � Lk for each element k 2 K ð5Þ

217Subject to:

218Enforce integer restrictions on site decision variables

xi ¼ 0; 1 for each site i 2 I ð6Þ

219This formulation is an integer nonlinear programming

220model. The objective (4) involves the minimization of site

221costs and weighted total boundary length. The boundary

222length is calculated as the sum of all boundaries of each of

223the selected units minus twice the distances of the shared

224edges (since each shared edge is counted twice in the sum).

225If a pair of sites i and j are both selected for the portfolio,

226then the term xixj will equal 1, and two times the shared

227boundary of bij will be subtracted from the total sum of the

228individual site boundary lengths. If the term xixj is zero,

229then at least one of the two sites i and j has not been

t1.1 Table 1

Sample SITES problem with two habitat protection targets, and three species representation targets.

Problem definition Selected portfolio Portfolio costt1.2

Weight Target

value

Site 21 Site 65 Site 13 Site 109 Element

shortfall

Weighted

objectivet1.3

Boundary 0 11,267 14,321 22,456 16,728 0t1.4
Cost 1 1,000 1,000 1,000 1,000 4,000t1.5
Habitat type 1 3 4,000 2,000 200 0 1,300 500 1,500t1.6
Habitat type 2 3 4,000 100 2,500 1,900 0 0 0t1.7
Species A 500 2 1 0 0 0 1 500t1.8
Species B 500 2 1 0 0 1 0 0t1.9
Species C 500 2 0 1 1 0 0 0t1.10

t1.11 The selected portfolio of four sites meets the habitat protection target for type 2, but not type 1, and represent species B and C adequately, but not species

A. The portfolio cost is a weighted sum of the costs of the selected sites, and the penalties for not meeting protection targets.

D.T. Fischer and R. Church / SITES Critique
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230 selected and no shared boundary is subtracted. If bij = 0,

231 then the two sites i and j units are not adjacent and

232 selecting them will not alter the total boundary length. The

233 first type of constraint (5) ensures at least a prescribed

234 minimum area (or some other measure) of each conserva-

235 tion element is achieved by the selected sites. The second

236 type of constraint (6) refers to the integer restrictions on

237 the decision variables. We refer to this as a Bcrisp^ model

238 as each conservation element must be protected by se-

239 lecting a set of sites that contain at least a minimum

240 amount of area (or representation) for the element.

241 Recognizing that it is easier to develop a heuristic for an

242 unconstrained optimization problem, McDonnell et al. [26]

243 present a reformulated version of the above model where

244 shortfalls in each conservation target are allowed. Consider

245 the following additional notation:

246
247 uk – Amount of protection shortfall, if any, for

248 conservation element k;

249 wk – Penalty weight per unit of shortfall for

250 conservation element k;

251 SPFk – User-specified weight for each element.

252 The value of wk is determined heuristically as described in

253 McDonnell et al. [26].

254 With these additional terms they formulated the follow-

255 ing expanded model, which is the mathematically explicit

256 version of equations (1) and (2):

Minimize C xð Þ ¼
X

i

cixiþ
X

k

wkSPFk

Lk

� �
uk

þ wb

X

i

bixi � 2
Xm � 1

i ¼ 1

Xm

j ¼ i þ 1

bijxixj

 ! ð7Þ

257 Subject to:

258 Define the amount of shortfall in conservation element k

259 associated with sites selected for portfolio

X

i

aik xi þ uk � Lk for each element k 2 K ð8Þ

260 Enforce integer restrictions on site decision variables

xi ¼ 0; 1 for each site i 2 I ð9Þ

261 Enforce nonnegativity on Shortfall variables

uk � 0 for each element k 2 K ð10Þ

262 This second formulation contains the penalty terms de-

263 scribed by Andelman et al. [1] in the SITES manual. That

264 is, this model solves for the optimal portfolio set of sites

265 that together minimize the total cost function described

266 above in equations (1) and (2).

267 Although both integer nonlinear programming models

268 convey exactly what is modeled in the SITES program, the

269 formulations are not amenable to direct, optimal solution

270 by commercially available software (except for relatively

271 small problem instances), because they are nonlinear.

2723. Description of the two SITES heuristics

273There are two possible approaches to dealing with the

274difficulties of solving the above integer quadratic prog-

275ramming problem: (1) rely on heuristics, or (2) attempt a

276reformulation, to create a similar, linear problem that would

277be solvable. Taking the first route (i.e., rely on a heuristic

278approach) is pragmatic where the second approach proves

279unsatisfactory. To rely solely on the development of a

280heuristic approach, however, means that it may be impos-

281sible to truly assess the quality of the solutions generated.

282Where the second approach is feasible, Rodrigues and

283Gaston [3] effectively show that it is often advantageous.

284Moreover, the skill and effort required to program an

285efficient heuristic from scratch is significantly greater than

286that required to format a problem for solving by an off-the-

287shelf optimization code.

288The SITES program provides two solvers designed to

289select a portfolio [1]. Details of these approaches can also

290be found in [1, 13, 25, 26]. The first solver is a Greedy

291heuristic. Starting with no sites in the portfolio, Greedy

292selects the site that yields the lowest value of the total cost.

293For the second site Greedy picks the site that reduces the

294total cost the most and adds it to the portfolio. At each step,

295Greedy adds one more site to the portfolio [1]. The heu-

296ristic stops when no site that can be added to the portfolio

297would lower total cost. Thus, Greedy may stop short of

298meeting all conservation targets because the reduction of

299penalty costs by selecting additional sites may be over-

300whelmed by additional site costs or weighted boundary

301length. At this point, according to the objective function, it

302is not Bcost effective^ to add any more planning units to

303the portfolio, even though it is possible that not all goals

304have been satisfied for all elements [1].

305It should be understood that the greedy heuristic has

306been of interest in the Operations Research and Computer

307Science literature because it is relatively easy to prove

308worst-case bounds for complex problems. It is rarely used

309in practice because other techniques have proved to be

310considerably better. The Greedy heuristic in the SITES

311program should be used with considerable caution, espe-

312cially if the Simulated Annealing (SA) process described

313below is not used. Church and Revelle [27] described how

314the greedy process can perform poorly in location and

315siting problems. Essentially, as sites are added to the port-

316folio, newly added sites tend to marginalize sites that are

317already members of the portfolio. Without the ability to

318remove sites from the portfolio as it is being constructed,

319Greedy suffers in performance because some sites added

320early on may not, in the end, be needed, or be justified in

321terms of net cost minus target penalties. This means that

322Greedy tends to construct solutions that are Bbloated,^ with

323more sites than are necessary.

324One important note is that SITES Greedy is not

325deterministic. Most greedy heuristics have defined tie-

326breaking rules, so that multiple runs will always produce

327the same solution. SITES Greedy may produce different

D.T. Fischer and R. Church / SITES Critique
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328 solutions (with different objective values) in different runs,

329 because any ties during the solution process are broken by

330 random selection [26].

331 We conducted a small test of SITES Greedy using the

332 five zero-perimeter Santa Barbara datasets (described be-

333 low). The heuristic produced different solutions every time

334 for each of 50 restarts on all five problems. In contrast, when

335 using the Small Sierra dataset (SPF of 10, also described

336 below), SITES Greedy produced only one solution for each

337 of the five problems with 50 restarts each. Whatever the spe-

338 cifics of SITES Greedy, it appears more likely to be con-

339 sistent on sparser datasets because of the lower likelihood

340 of ties. In all cases, solution quality was inferior to solu-

341 tions generated by the second solver included with SITES.

342 The second solver that is provided with the SITES

343 program is based upon a solution technique called Sim-

344 ulated Annealing (SA). SA is based upon a statistical anal-

345 ogy between solution quality and energy states of particles

346 in the process of tempering glass and metals by systematic

347 heating and cooling [28]. The SA procedure in SITES

348 starts with a random set of sites. At each iteration, the

349 procedure identifies a single site at random, and then ex-

350 amines the possibility of either adding that site to the

351 portfolio, or, if currently selected, of discarding it from the

352 portfolio. If the change (dropping a site or adding a site)

353 produces an improved solution, the change is automat-

354 ically accepted. If it does not produce an improvement,

355 the change may still be accepted (based on comparing a

356 random number to a probability distribution). The prob-

357 ability of accepting a change that degrades solution quality

358 is taken from the Boltzmann distribution (which describes

359 the number of particles that will have a higher energy state

360 than a specified state, at a given temperature). Statisti-

361 cally, when the simulated temperature is high, and the

362 proposed change is not substantially worse, the probabil-

363 ity of accepting a change is relatively high. But, as the sim-

364 ulated temperature is lowered (systematically as the process

365 runs), the probability of accepting changes that worsen a

366 portfolio (by even a small amount) decreases. This pro-

367 cess has the capability of converging to a local optimum and

368 backing out of the local optimum (making a portfolio

369 worse) and then finding even better local optima. SA has

370 been applied to other site selection problems with varying

371 degrees of success [29,30]. As with any SA heuristic, the

372 success in application is somewhat dependent on the

373 problem being solved and the parameter settings used

374 (e.g., cooling rate and the number of iterations). The only

375 parameters in SITES SA that can be set by the user are the

376 number of restarts and the number of iterations per restart.

377 Most applications of SA require multiple restarts of the

378 process, where only the best solution or solutions found

379 among the different restarts is/are considered. SITES in-

380 cludes an option for examining the sum of results from

381 multiple restarts, showing how many times each site was

382 selected. Andelman et al. [1] suggest that this analysis pro-

383 vides a measure of the Brobustness^ of a solution, as though

384 the number of times a site was chosen by SA was an in-

385dicator of its importance to an optimal solution. This

386conclusion is not supportable. Fischer [31] described SITES

387problems where the median solution quality was more than

38850% worse than the best solution. With most solutions

389being very inferior, any site that was selected a majority of

390the time was necessarily a part of many very inferior

391solutions. In each case examined, Fischer [31] also found

392numerous Bpopular^ sites (selected in more than 50% of

393the solutions) that were not part of an optimal solution, and

394numerous Bunpopular^ sites (selected in fewer than 20% of

395the solutions) that were. The Bsummed solution^ approach

396described in SITES is a haphazard approach to modeling

397robustness (a field reviewed by Owen and Daskin [32])

398that appears to be uninformative at best.

399McDonnell et al. [26] present a comparison of the

400Greedy approach and the SA approach in solving the

401SITES model applied to a vegetation dataset of Northern

402Territory, Australia. Their comparison demonstrates that at

403times the Greedy approach outperforms SA, although they

404conclude that the SA process is probably better suited to

405solving the SITES problem. As with all heuristics, there is

406no guarantee that the Greedy or SA processes will find

407optimal solutions. It should also be understood that the

408quality of the solutions cannot be ascertained without ac-

409tual optimal solutions with which to make a comparison.

410That is, the results of a heuristic, used by itself, should be

411interpreted with caution.

412To evaluate the SITES solution process further, an as-

413sessment is needed in terms of how close to optimal either

414technique solves the SITES problem. In the next section we

415present a reformulated model for SITES and then describe

416how this model can be solved in practice. With this model

417we will provide an assessment of the SITES heuristics later

418in this paper.

4194. A reformulation of the SITES model

420The major obstacle to using an optimal solver for the for-

421mulation of the SITES model (as described in McDonnell

422et al. [26]) is the set of quadratic terms that are used to

423define the boundary length of the sites selected for the

424portfolio:

Xm � 1

i ¼ 1

Xm

j ¼ i þ 1

bijxixj ð11Þ

425With the exception of these terms, the model is an integer-

426linear programming problem. These terms make the

427previous two formulations difficult or impossible to solve

428optimally. It is, however, possible to reformulate the model

429and circumvent the need for the quadratic terms. We can

430do this by introducing the following new variable:

zij ¼
1; if sites i and j have been selected for

the portfolio

0; otherwise

:
8
<

:

D.T. Fischer and R. Church / SITES Critique
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431 We need to define such a variable for each pair of sites that

432 share an edge. Therefore, consider:

Z ¼ set of site pairs i; jð Þ which share boundaries;

where i G j

433 Each pair of adjacent sites will be addressed where the

434 smaller of the two site indices is given first in the site pair.

435 This distinction allows us to represent each possible edge

436 with one decision variable. Using the two discrete decision

437 variables xi and zij, it is now possible to construct a model

438 that represents the SITES problem and eliminates the

439 quadratic terms:

Minimize Obj ¼ wc

X

i

cixi

þ
X

k 2K

wk spf k

Lk

� �
uk þ wb

X

i

bixi � 2
X

i; jð Þ2 Z

bijzij

0

@

1

A

ð12Þ

440 Subject to:

441 Define amount of shortfall for target involving conserva-

442 tion element k

X

i

aikxi þ uk � Lk for each element k 2 K ð13Þ

443 Ensure zij is only allowed to be 1 if adjacent sites i and j are

444 both selected

ðaÞ xi � zij � 0 for each shared edge where i; jð Þ 2 Z

ðbÞ xj � zij � 0 for each shared edge where i; jð Þ 2 Z

ð14Þ

445 Enforce integer requirements on site decision variables

xi ¼ 0; 1 for each site i 2 I ð15Þ

446 Enforce nonnegativity on Shortfall variables

uk � 0 for each element k 2 K ð16Þ

447 The first term in the objective function sums the costs

448 of all of the selected sites. The second term represents the

449 weighted penalty costs of incurring any shortfall in meet-

450 ing conservation targets and the third term calculates the

451 total boundary of the sites selected, accounting for any

452 shared edges. The first type of constraint (13), the same as

453 (8) used in the previous model, defines any shortfall in

454 conservation targets that may exist in the set of sites cho-

455 sen. The second type of constraint (14) is used to define

456 the values of the zij variables. Each zij variable must equal

457 zero unless both sites i and j are selected. If both i and j

458 are selected, zij is allowed to have any value between zero

459 and one. Since the objective function encourages zij to be

460 as large as possible (to reduce total boundary length), zij is

461 effectively 0 or 1. Defining zij this way accurately captures

462 the boundary length of the selected sites, without the com-

463 putational burden of defining each zij as an integer var-

464iable. This type of model construct was recently introduced

465for a related reserve design model by Fischer and Church

466[17].

467The above model represents a reformulation of the

468SITES problem. This formulation is an integer-linear

469programming problem. Since commercially available soft-

470ware exist for solving this type of programming problem,

471it makes sense to test such software first, instead of in-

472vesting in development of a special solver for this specific

473type of problem. As the heuristic solvers now exist, it

474makes sense to test their performance, and in the next sec-

475tions, we present information for three different datasets

476and compare results from SITES heuristics with results

477from a commercial code for solving the reformulated

478SITES model.

4795. Comparing SITES solvers with an IP/LP approach

480In the following sections we provide a comparison of

481the SA heuristic of the SITES model with solutions gen-

482erated for the reformulated SITES model. With this new

483model formulation, it is straightforward to solve the SITES

484model using the techniques of linear and integer prog-

485ramming. We used an off-the-shelf optimization pack-

486age called CPLEX (ILOG Corporation), which is a widely

487used, general-purpose, linear-integer programming solv-

488er. We do not give further details of SITES Greedy since,

489overall, we found that the SA heuristic performed consid-

490erably better than Greedy on the problems that we analyzed.

491As with any SA heuristic, the SITES solver has a num-

492ber of parameters (other than weights for the different

493objectives) that affect its performance [30]. In the inter-

494ests of operational simplicity, the designers of SITES have

495hard-coded a number of parameters, such as initial temper-

496ature, cooling rate, etc. Remaining variables that must be

497set to solve a SITES problem are the number of iterations,

498the number of restarts, and the species penalty factor.

499The SITES manual recommends using at least 106 iter-

500ations. In the interest of speed, we tried a few exploratory

501runs using 105 iterations and found solutions significantly

502inferior. All of the results presented here used 106 iter-

503ations. For each problem that we solved, we tested using

50450 restarts and 500 restarts of the SA heuristic. We also

505tested the sensitivity of model results to varying levels of

506the species penalty factor.

507As mentioned earlier, the value of one of the weights

508applied to protection shortfalls, wk (7), is determined heu-

509ristically in SITES during each run [26]. The method of

510calculation of this term is not adequately defined to allow

511independent replication of its values. As a result, we were

512unable to explain or replicate the penalty values derived

513by SITES for solutions that did not meet all protection

514targets. We conducted a number of tests with CPLEX

515and found that unconstrained problems where shortfalls

516were allowed, with proportional penalties, were solved

517quite a bit faster than problems where shortfalls were
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518 not allowed. Only solutions that met all protection tar-

519 gets are compared below.

520 SITES is compiled for a Windows/Intel platform. Our

521 testing was conducted on a PC with an 800-MHz AMD

522 Athlon processor and 256 MB of RAM, running Windows

523 98SE. For each problem instance, we ran the SA heuristic

524 twice, first with 50 restarts, then with 500 restarts. We

525 wrote a short code to then reformat the SITES input files

526 into an MPS file (a standard text file format for Linear and

527 Integer Programming codes), to allow side-by-side testing.

528 Each MPS file was loaded into CPLEX version 6.6 on a

529 Sun Ultra SPARC 10 Station with a 467-MHz processor.

530 To confirm that SITES was not running on a slower

531 machine, we benchmarked the computers with a billion

532 iterations of the main elements of the SA solver (generate a

533 random number, compare to an array, and store results to

534 an array). The SITES machine performed the benchmark

535 1.7 times faster than the CPLEX machine.

536 CPLEX utilizes a branch-and-bound process to solve

537 mixed-integer problems like these [33]. At each step in the

538 process, CPLEX looks for an improved solution, and

539 establishes a lower bound below which it has proven that

540 no feasible solutions exist. As the process continues, the

541 lower bound rises and (hopefully) the objective value of

542 the best-known solution decreases. We used three stopping

543 rules. The first was a gap of 0.01% (0.0001). That is, when

544 the lower bound is within 0.01% of the best known so-

545 lution, we declare the current solution optimal (while a

546 better solution is possible, it could be no more than 0.01%

547 better than the current solution). We also terminated the

548 CPLEX run after branching to 500,000 nodes or if the

549 branch-and-bound tree exceeded 500 Mb.

550 Data from three reserve selection problems were used,

551 each providing a different test environment. The datasets

552 and the results from each are described in the next two

553 sections.

5546. Sierra datasets

555The first two datasets were prepared as part of the Sierra

556Nevada Ecosystem Project [34]. Both datasets are from

557primarily forested areas of the northern Sierra Nevada that

558roughly correspond to the Jepson Northern Sierra Ecor-

559egion [35]. They consist of distribution and conservation

560information for different plant communities. Distribution is

561given as an areal extent of the vegetation formation within

562each of the several hundred watersheds making up the

563study area.

564The first dataset is Okin’s [36] north.M.35. This dataset

565uses 663 watersheds as the sites. These sites have 1,834

566edges that are shared between adjacent sites. Thirty-six

567plant community types are used as conservation elements.

568The minimum protection target for each element is 10% of

569the existing range. This dataset is hereafter referred to as

570the Small Sierra dataset.

571The second dataset is distributed as sample data by

572Andelman et al. [1]. This dataset uses an expanded area

573of the northern Sierra Nevada, encompassing 776 wa-

574tersheds. These sites have 2,148 edges that are shared be-

575tween adjacent sites. It includes 55 plant community types

576as conservation elements, and requires 25% of their ex-

577isting ranges as minimum protection targets. As a result,

578the problem requires a substantially greater number of sites

579to be selected as reserves, and serves as a significantly dif-

580ferent test environment for the model. This dataset is

581hereafter referred to as the Large Sierra dataset. Maps of

582three solutions from this dataset are included as figure 1.

583In both datasets, area is measured in hectares. Site costs

584are represented in part by a site suitability index defined by

585Davis et al. [34], where small numbers indicate planning

586units that are very suitable for conservation, and high

587numbers indicate areas that are unsuitable due to road den-

588sity, fragmented ownership, degraded habitat, etc. Because

Figure 1. Maps of the three optimal reserve networks for the Large Sierra dataset. Map A shows the network requiring minimum land area. The network

that optimizes land suitability scores is shown in map B. Map C shows an optimal solution trading off area and suitability with perimeter to encourage

clustering of selected land. The Small Sierra dataset covers all but the northwest corner of this area.
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589 SITES utilizes only a single cost term for each site, we

590 summed weighted area and weighted suitability index val-

591 ues for each site to generate a single cost term before

592 preparing each set of data files for SITES. Perimeter is mea-

593 sured in meters.

594 For the purposes of this study, we chose five sets of

595 weights based on methods originally outlined by Cohon

596 et al. [37]. Figure 2 gives an example of their method for

597 efficiently estimating two-dimensional tradeoff curves

598 using Suitability and Perimeter for the Large Sierra dataset.

599 Solanki et al. [38] extended this method for systematically

600 varying objective weights to estimate n-dimensional trade-

601 off surfaces, and we used their method for calculating the

602 three-dimensional weights. Table 2 shows the weights used

603 and provides a quick comparison between the three da-

604 tasets used in this study.

605 Previous experience with SITES showed that solution

606 quality can vary a great deal depending on the magnitude

607 of SPF values compared to cost and perimeter values [31].

608 With that in mind, we solved each problem for the Small

609 and Large Sierra datasets with three different SPF values.

610 The remainder of this section will compare the solvers

611 in terms of solution speed and solution quality. For each

612 problem instance, table 3 lists the lower bound derived by

613 CPLEX, the solution time required by CPLEX (to reach

614 one of its stopping rules), and solution quality for each solv-

615 er. Solution quality is expressed as Bgap^ defined as the

616difference between the best known objective and the lower

617bound, expressed as a percentage of the bound. The first line

618of table 3 lists the result from the Small Sierra dataset

619minimum area problem. CPLEX solved the problem in 6

620min or 0.10 h. The best solution found by CPLEX was

6210.01% above the proven lower bound of 78308. The first

622row under SA shows results using an SPF of 10. The best

623solution found by SA in 50 restarts was 10.82% above the

624bound. After 500 restarts, the best solution found by SA

625was better, at 6.61% above the bound. Finally, 49.4% of

626the SA500 solutions met all protection targets.

627For all five problems using the Small Sierra dataset,

628CPLEX solved to within 0.01% of optimality with a me-

629dian solve time of 39 h (i.e., each final solution was within

6300.01% of its respective final lower bound, and was thus

631declared optimal). The two problems with perimeter

632weights of zero was solved in less than 7 min, whereas

633those with perimeter considerations took much longer to

634solve optimally. After running CPLEX for 1 h, both mul-

635tiobjective problems had solutions that eventually proved

636to be within 3% of optimality (at the time, the gap was only

637known to be less than 16%). The minimum perimeter so-

638lution proved difficult to solve, with the best solution after

6391 h being 18% above optimal, and still 8% above optimal

640after 12 h.

641For the large Sierra dataset, solution times were gen-

642erally shorter, and CPLEX solved all but one problem to

Figure 2. Estimation of a two-dimensional trade-off curve using the method of Cohon et al. [38] using the Large Sierra dataset. Steps are as follows.

Optimize each single objective. Calculate the slope of line A connecting those two solutions in objective space. This is the estimated trade-off curve with

two points. Apply the absolute value of the slope as the weight for the objective on the x-axis and a weight of 1 to the y-axis objective (the total weighted

objectives for both solutions will be equal under the new weights). Weighting Suitability with 1, the weight for Perimeter would be 0.00088525. For

scaling, we multiplied both weights by 1,000 to find solution LgSP. With three solutions, the trade-off curve is estimated as dashed lines B and C. To find

additional solutions on the trade-off curve, the process is repeated for line B and C.
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643 within 0.01% of optimality before stopping. The remaining

644 problem was proven to be within 0.62% of optimal. Me-

645 dian solution time was slightly over 10 h. The Optimal

646 Suitability and Minimum Perimeter problems solved in 3

647 and 1.7 h, respectively, while the multiobjective problems

648 took longest. It is not immediately apparent why the larger

649 dataset should have had shorter solve times. Solution speed

650 of the branch-and-bound process (the process employed by

651 CPLEX) is dependent on problem characteristics and just

652 because a problem might be smaller or a subset of a larger

653 problem does not guarantee that solution times will be less

654 than that needed for the larger problem.

655 The quality of the best SITES solution for each of the

656 Sierra problems ranged from optimal (determined using

657 CPLEX) to 11% worse than optimal, depending on the

658 problem and SPF value used. The average gap for the best

659 solutions after 50 restarts was 4.5% for those problems

660 where SITES produced feasible solutions (solutions that

661 met all protection targets). For perspective, however, just

662 as we examine only the best solution in reporting SA

663 performance for a given problem, we must look at the

664 worst performance within a set of problems to give some

665 idea of how well SITES can be expected to perform on a

666 similar set of problems. Thus, when faced with problems

667 similar to those in the Sierra datasets, the best solutions

668 generated by the SITES solver after 50 restarts may vary

669 considerably from optimal.

670 One important question is whether it makes sense to run

671 a great many iterations of the heuristic. For the Sierra

672 datasets, running a problem for 500 restarts instead of 50

673 resulted in a mean decrease in the gap of 1.5 percentage

674 points. That reflects improvements in 21 of the 30 prob-

675 lems tested, and no feasible solutions returned in six cases.

676In the remaining three problems, the gap after 500 restarts

677was greater than the gap after a separate run of 50 restarts,

678illustrating the important point that SA works by probabil-

679ity, and that increasing the number of restarts only in-

680creases the probability of finding a near-optimal solution.

681Even using a large number of restarts provides no guar-

682antee of Bgetting lucky.^ In the minimum perimeter prob-

683lem, using the Small Sierra dataset, SITES found the

684optimal solution once in 50 restarts. Subsequently, in a run

685of 500 restarts, SA found the optimal solution again, only

686once. However, in a subsequent run of 1,000 restarts, the

687best solution that SA found was 1.7% worse than optimal.

688For both Sierra datasets, SITES performed very differ-

689ently depending on the SPF values used. With the recom-

690mended SPF value of 1, SITES failed to return any feasible

691solutions (i.e., solutions meeting all protection targets) in

692six of the ten problems. In all cases, the percentage of

693feasible solutions increased with increases in the SPF value

694used. The setting of SPF values is important to the solution

695process in SITES, with lower values allowing the heuristic

696more flexibility to explore infeasible solutions on the way

697to finding a good solution. Higher SPF values limit the

698heuristic’s flexibility, but ensure a greater number of fea-

699sible solutions from which to choose. Because the number

700of iterations is so important to SA, it is expected that the

701increased number of solutions from which to choose may

702be more important to solution quality than the reduced

703flexibility. We looked for a consistent pattern in solution

704quality as a function of SPF, but found none.

705An obvious point of comparison between the SITES

706heuristic and an optimal solver such as CPLEX is solution

707speed. Results presented above indicate that CPLEX takes

708longer to solve these problems (optimally) than SITES

t2.1 Table 2

Comparison of the three datasets, showing objective weights used for each problem.

Dataset Problem name Weightst2.2

Name Description Area Suitability Perimetert2.3

Small Sierra dataset SmArea 1 0 0t2.4
Sites = 663 SmSuit 0 1 0t2.5
Spp. = 36 SmPerim 0 0 1t2.6

Edges = 1834 SmSP 0 1,000 0.5052t2.7
SmASP 1 733 0.4732t2.8

Large Sierra dataset LgArea 1 0 0t2.9
Sites = 776 LgSuit 0 1 0t2.10
Spp. = 55 LgPerim 0 0 1t2.11

Edges = 2148 LgSP 0 1,000 0.8853t2.12
LgASP 1 2,004 0.4194t2.13

Santa Barbara dataset SB25/P 1 0 0/0.01t2.14
Sites = 1906 SB40/P 1 0 0/0.01t2.15
Spp. = 57 SB50/P 1 0 0/0.01t2.16

Edges = 5709 SB60/P 1 0 0/0.01t2.17
SB75/P 1 0 0/0.01t2.18

t2.19 The description of each dataset includes the number of sites, the number of conservation elements (species), and the number of shared edges. Five

problems were solved for each Sierra dataset. The weights used for minimizing each of the three objectives (the sums of area, suitability index, and

perimeter) are given in the right three columns. Zero weights indicate the objective was not considered in that problem. For the Santa Barbara dataset, we

solved ten problems, five just minimizing area (area weight = 1, suitability and perimeter weights = 0), and then five more with a small additional weight

on minimizing perimeter (0.01).
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709 takes to find a solution of unknown quality. In many cases,

710 even the longest of these run times would be acceptable

711 given the scope of large planning efforts. However, in

712 cases where rapidity of results is paramount (e.g., an

713 interactive planning exercise), a key question is the quality

714 of solutions that can be produced without taking much

715 computer time. Table 4 shows the quality of CPLEX

716 solutions after the first 2 min. The first column shows the

717 gap at 2 min; this is the percentage difference between the

718 best solution (after 2 min) and the bound known at that

719time (i.e., how good was the solution known to be at 2

720min?). The second column shows the difference between

721that solution and the final bound proven by CPLEX at

722termination (i.e., how good did the 2-min solution turn out

723to be?). The third column lists the final gap CPLEX

724produced at termination. The fourth column lists the gap

725for the best SITES solution after running 50 restarts at each

726of the three SPF values (compared to the final bound

727proven by CPLEX). The SITES solutions represent 5Y18

728times more processing time on the faster SITES computer

t3.1 Table 3

Comparison of results from CPLEX and SITES Simulated Annealing (SA) heuristic for solutions actually meeting all element protection goals.

Problem name CPLEX SA50 SA500t3.2

Bound Time Gap (%) SPF Gap (%) Gap (%) %Feast3.3

A B C D E F G Ht3.4

SmArea 78308 0.10 0.01 10 10.82 6.61 49.4t3.5
5 7.80 7.60 19.6t3.6
1 Y Y 0.0t3.7

SmSuit 95.40 0.00 0.00 10 7.97 5.03 45.8t3.8
5 8.18 2.31 24.0t3.9
1 0.00 0.00 1.0t3.10

SmPerim 444255 94.79 0.01 10 0.01 0.01 82.0t3.11
5 8.79 3.72 67.8t3.12
1 1.67 4.24 4.2t3.13

SmSP 428477 98.87 0.01 10 4.07 2.83 67.4t3.14
5 2.69 2.00 48.4t3.15
1 Y 0.01 1.0t3.16

SmASP 467085 38.69 0.01 10 7.57 5.65 62.4t3.17
5 10.41 2.92 39.2t3.18
1 Y Y 0.0t3.19

LgArea 1040988 10.44 0.62 10 3.29 3.55 14.0t3.20
5 3.81 2.92 2.8t3.21
1 Y Y 0.0t3.22

LgSuit 1199.20 3.02 0.01 10 7.18 5.51 11.6t3.23
5 6.10 7.36 0.4t3.24
1 Y Y 0.0t3.25

LgPerim 1079734 1.69 0.01 10 0.56 0.25 96.0t3.26
5 1.28 0.25 86.8t3.27
1 1.05 0.05 53.4t3.28

LgSP 3442077 26.52 0.01 10 1.52 0.73 52.6t3.29
5 1.44 0.83 26.8t3.30
1 Y Y 0.0t3.31

LgASP 5066718 12.31 0.01 10 3.58 2.88 34.6t3.32
5 4.39 2.71 8.4t3.33
1 Y Y 0.0t3.34

SB25 118552 13.81 0.02 * 9.07 8.19 54.0t3.35
SB40 203165 2.40 0.01 * 5.39 5.22 40.0t3.36
SB50 261672 1.42 0.01 * 4.12 3.90 49.4t3.37
SB60 321340 0.29 0.01 * 3.12 3.16 40.8t3.38
SB75 412543 0.09 0.01 * 2.08 1.86 32.6t3.39
SB25P 149321 12.00 1.75 * 25.34 20.06 18.2t3.40
SB40P 240383 12.00 1.55 * 15.17 14.06 25.6t3.41
SB50P 301493 12.00 1.39 * 11.91 11.19 39.6t3.42
SB60P 363019 12.00 1.12 * 8.56 7.85 44.4t3.43
SB75P 456677 12.00 0.85 * 5.86 5.34 17.4t3.44

t3.45 Problem name (A) is the same as in table 2. Column B is the lower bound below which CPLEX has proven that no solutions exist. Time (C) is the

number of hours before CPLEX reached a stopping rule. Gap (D) is the difference between the best-known solution and the bound (B), expressed as a

percentage of the bound. SPF (E) is a weight used in SITES SA. Columns F and G show the gap of the best known SITES solution after 50 and 500

restarts, respectively (expressed as a percentage of the bound in Column B). Column H is the percentage of 500 restarts that met all element protection

goals. For a time comparison, the SA heuristic required 0.6Y0.8 h to run 500 restarts on the Small Sierra dataset, 1.1Y1.2 h for the Large Sierra dataset,

and 1.8Y2.0 h for the Santa Barbara dataset.

Q1 Q1
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729 (or 8Y31 times more computational effort). After only 2

730 min of CPLEX processing time, the known gaps were still

731 reasonably large for many of the problems, but, impor-

732 tantly, the actual solutions were generally quite good.

733 For nine of the ten Sierra problems, CPLEX identified at

734 least one solution in the first 2 min that eventually proved

735 to be within 11% (median 1.9%) of optimal. [Only the

736 minimum perimeter problem for the Small Sierra dataset

737 had a worse solution after the first 2 min (47% above

738 optimal), but, with CPLEX reporting a gap of 138%, there

739 was no question that more solution effort was indicated.]

740 These 2-min solutions compare favorably to the best so-

741 lutions returned by SITES after significantly longer times

742 (with 50 restarts for each SPF value), which had median

743 solution quality of 3.0% above optimal.

744 7. Santa Barbara dataset

745 The third dataset was originally prepared for Santa

746 Barbara County in connection with a land-use planning

747 project [39]. County-administered land was divided into

748 1,906 sites, based largely on watershed boundaries. These

749 sites have 5,709 edges that are shared between adjacent

750 sites. Habitat ranges for 57 species of regulatory concern

751 were mapped based on known ranges and wildlifeY habitat

752relationship models. Each species was assigned a species

753penalty factor between zero and one based on regulatory

754status, degree of endemicity, and threats to local habitat.

755In addition to having significantly more sites than either

756Sierra dataset (see table 2), the Santa Barbara dataset has

757elements that are more widely distributed, with each el-

758ement occupying an average of 639 sites, compared to 135

759for the Large Sierra dataset and 57 for the Small Sierra

760dataset. For this dataset, we explored a trade-off curve of

761how much total land would be required to protect increas-

762ingly large percentages of each species range. We estab-

763lished five different conservation targets (25, 40, 50, 60,

764and 75% of each species range), and attempted to find the

765minimum amount of land that might be required to meet

766these protection targets for all 57 species. For the current

767study, we used the existing species-specific SPF values; we

768opted against performing additional SPF sensitivity testing.

769After solving these five problems, we solved a second prob-

770lem for each of the five protection levels where we included

771a small weight for minimizing perimeter (to increase clus-

772tering and compactness of the reserve system).

773For the perimeter problems, we also decided in advance

774to limit the amount of computing time to 12 h per run. That

775is, we used the solver to find some solutions of known

776quality (whether they qualify as Bgood^ depends on stan-

777dards) in a reasonable amount of time. With the relatively

t4.1 Table 4

Solution quality comparison between CPLEX after 2 min, final CPLEX solution, and best SA solution from a run of 50 restarts.

Problem name 2 min Gap Final CPLEX Gap Best SA50t4.2

Known Actualt4.3

A B (%) C (%) D (%) E (%)t4.4

SmArea 1.05 0.08 0.01 7.80t4.5
SmSuit 0.00 0.00 0.00 0.00t4.6
SmPerim 138.87 46.53 0.01 0.01t4.7
SmSP 35.63 10.46 0.01 2.69t4.8
SmASP 21.77 6.77 0.01 7.57t4.9
LgArea 1.23 1.18 0.62 3.29t4.10
LgSuit 1.20 0.45 0.01 6.10t4.11
LgPerim 16.76 4.65 0.00 0.56t4.12
LgSP 9.36 2.68 0.01 1.44t4.13
LgASP 3.22 1.20 0.01 3.58t4.14
SB25 0.21 0.20 0.02 9.07t4.15
SB40 0.07 0.06 0.01 5.39t4.16
SB50 0.06 0.05 0.01 4.12t4.17
SB60 0.10 0.10 0.01 3.12t4.18
SB75 0.03 0.03 0.01 2.08t4.19
SB25/P 13.17 12.36 1.75 25.34t4.20
SB40/P 12.75 12.23 1.55 15.17t4.21
SB50/P 13.91 13.49 1.39 11.91t4.22
SB60/P 8.28 7.98 1.12 8.56t4.23
SB75/P 14.02 13.83 0.85 5.86t4.24

t4.25 Problem name (A) is the same as in table 2. Column B lists the difference between the best solution known after 2 min and the bound known at 2 min

(expressed as a percentage of the 2-min bound). Column C shows the gap between the best 2-min solution and the final bound (expressed as a percentage

of the final bound). Column D is the difference between the best CPLEX solution and the final bound, and replicates table 3 Column D. Column E shows

the gap between the best SITES SA solution (of the three SPF levels used) after 50 restarts, and the final CPLEX bound. Note that for SmSP the 2-

min solution was known to be within 36% of optimal. As CPLEX proceeded, the lower bound rose 25 percentage points, so this solution eventually

proved to be within 10% of optimal. Meanwhile the best known solution improved by 10 percentage points. For the SB problems, most of the

improvement after 2 min was due to finding improved solutions, with relatively small changes in the lower bound.

D.T. Fischer and R. Church / SITES Critique

JrnlID 10666_ArtID 9005_Proof# 1 - 15/07/2005



U
N
C
O
R
R
EC

TED
PR

O
O
F

778 large areas being selected, a certain amount of clustering

779 was inevitable. Analyzing a tradeoff curve for perimeter

780 weights was therefore deemed unnecessary; we simply

781 chose an arbitrarily small, nonzero weight for perimeter to

782 somewhat further encourage compactness in our test data.

783 Solution times for the zero-perimeter problems were

784 generally shorter for the Santa Barbara dataset than for the

785 smaller, but relatively sparser Sierra datasets (see table 3).

786 In all but one case, CPLEX proved the optimality of the

787 solution Y that problem terminated on reaching the tree size

788 limit, with a remaining gap of 0.02%. While some of the

789 solution times may still appear long, most of that time was

790 spent improving solutions that were already very close to

791 optimal, or in proving their optimality.

792 For each of the first five Santa Barbara problems,

793 CPLEX found at least two solutions, with a proven gap of

794 less than 0.5%, within the first 8 s of solution time. The

795 remaining hours often revealed a number of slightly better

796 solutions, but had we used a stopping rule of 0.25% instead

797 of 0.01%, only one problem would have run longer than 9

798 s. This illustrates the utility of having a lower bound, and

799 the importance of looking at solution quality as well as

800 total solution time.

801 For the first five Santa Barbara problems, CPLEX re-

802 turned solutions within 0.2% of optimal (median 0.06%) in

803 the first 2 min (table 4), comparing favorably to solutions

804 ranging 2Y9% (median 4.1%) for SITES SA after 50 re-

805 starts. The perimeter problems had CPLEX solutions

806 ranging 8Y14% above the final bound (median 12.4%)

807 compared to SITES SA, which ranged 6Y25% (median

808 11.9%). For the perimeter problems, CPLEX returned so-

809 lutions within 1.75% of optimality after 12 h, with decreas-

810 ing gaps as the targets increased. By contrast, gaps of the

811 SITES solutions varied from 5% to 25%.

812 8. Conclusion

813 Optimal solvers offer the significant advantage of

814 revealing the quality of the present solution. At each step

815 in a branch-and-bound process, the solver can display the

816 lower bound, below which it has proven no integer so-

817 lutions exist, as well as displaying the value of the current

818 solution, and the gap between the two. With this informa-

819 tion, a planner can watch the rate of closure between lower

820 bound and current solution to forecast the longest the

821 solver is likely to run (this is a worst-case estimate, as-

822 suming no new, better solutions are found). The planner

823 can also choose to abandon the analysis at any point with a

824 clear understanding that no new solutions exist that can

825 beat the current solution by more than the reported gap. By

826 contrast, most heuristics provide little or no information on

827 the quality of the solutions they generate. Due to the ran-

828 dom seed used in SA, it is very difficult to answer the

829 question of how many restarts are needed to offer a high

830 probability of finding a near-optimal solution. As seen with

831 the SmPerim problem, 50 restarts may be sufficient to find

832an optimal solution, while the next 1,000 restarts may fail

833to find as good a solution again. Based on our analysis, the

834user’s best approach with SITES is to use the highest

835number of restarts possible, explore a range of SPF values,

836apply weights efficiently (see figure 2), and carefully screen

837out solutions based on objective values and success at

838meeting protection targets. The Bsummed solution^ feature,

839erroneously reported to reflect a measure of robustness, is

840not informative.

841Performance of SA heuristics has been discussed by nu-

842merous authors, as reviewed by Murray and Church [30].

843The particular SA process used by SITES has a very nar-

844row search neighborhood, and, echoing Underhill’s [2] call

845for greater interaction between the mathematical and bio-

846logical research communities, might be readily improved

847[e.g., by allowing the heuristic to randomly swap two (or

848more) sites at each iteration as well as randomly adding or

849dropping sites [30,36]]. SA processes in general do

850statistically converge on optimal solutions if the cooling

851rate is very slow and the number of restarts is very high.

852Statistically speaking, computer-based SA processes are

853more like Bsimulated quenching^ since the computation req-

854uired for true Bannealing^ is well beyond realistic design [30],

855and far greater than for other, superior solvers. Because of

856this limitation, SA heuristics may not find optimal

857solutions with any regularity for complex problems like

858SITES, in any reasonable amount of computer time. In

859essence, a heuristic such as SITES SA provides predict-

860able solution times, but inconsistent and unpredictable so-

861lution quality, whereas an optimal solver such as CPLEX

862provides solution times that can only be predicted once

863started [17], but precise information about solution quality.

864Rodrigues and Gaston [3] offer compelling evidence

865that the hardware and software limitations that in the past

866have prevented optimal solvers from being used on rea-

867listically large reserve selection problems have now been

868largely overcome. Our results support that argument, with

869CPLEX outperforming the SITES SA heuristic by larger

870margins on larger problems. More research could profitably

871be directed at increasing the use of optimal solvers for

872existing and future reserve models.

873Andelman et al. [1] claim as an advantage the multiple

874solutions returned by SA. Rather than relying on chance to

875produce a diversity of solutions of variable quality, another

876area ripe for further research is to incorporate into reserve

877selection models the existing literature in Bmodeling to

878generate alternatives^ (e.g., [40]). Having used existing

879models to develop trade-off curves for a given application,

880planners might then use related reserve selection models to

881generate a number of optimally different alternate solutions

882that all lie on or near the optimal trade-off curve. These

883deliberately different alternatives are likely to offer rad-

884ically different performance toward the sorts of unmodeled

885objectives that are often important in reserve selection

886problems. This is a systematic approach toward addressing

887those concerns raised by Pressey et al. [18] that have not

888already been answered by Rodrigues and Gaston [3].
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889 9. Data policy

890 The Large Sierra datasets are available with the SITES

891 software distribution at http://www.biogeog.ucsb.edu/

892 projects/tnc/toolbox.html. The Small Sierra dataset is avail-

893 able at http://www.geog.ucsb.edu/~fischer. Use of the

894 small dataset should reference Davis et al. [34]. The Santa

895 Barbara dataset may be available in the future, depending

896 on county Policy (contact fischer@geog.ucsb.edu).
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