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ABSTRACT: This study presents an analysis of daily temperature and precipitation extremes with return periods ranging

from 2 to 50 years in phase 6 of the CoupledModel Intercomparison Project (CMIP6) multimodel ensemble of simulations.

Judged by similarity with reanalyses, the new-generation models simulate the present-day temperature and precipitation

extremes reasonably well. In line with previous CMIP simulations, the new simulations continue to project a large-scale

picture of more frequent and more intense hot temperature extremes and precipitation extremes and vanishing cold ex-

tremes under continued global warming. Changes in temperature extremes outpace changes in global annual mean surface

air temperature (GSAT) overmost landmasses, while changes in precipitation extremes follow changes inGSAT globally at

roughly the Clausius–Clapeyron rate of ;7% 8C21. Changes in temperature and precipitation extremes normalized with

respect to GSAT do not depend strongly on the choice of forcing scenario or model climate sensitivity, and do not vary

strongly over time, but with notable regional variations. Over the majority of land regions, the projected intensity increases

and relative frequency increases tend to be larger for more extreme hot temperature and precipitation events than for

weaker events. To obtain robust estimates of these changes at local scales, large initial-condition ensemble simulations are

needed. Appropriate spatial pooling of data from neighboring grid cells within individual simulations can, to some extent,

reduce the needed ensemble size.

KEYWORDS: Extreme events; Temperature; Precipitation; Climate change

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC)

estimated in its Special Report on Global Warming of 1.58C
(SR15; IPCC 2018) that global mean temperature has in-

creased by about 1.08C since the beginning of the Industrial

Revolution. Simultaneously, changes in the frequency and in-

tensity of various weather and climate extremes have been

observed in many parts of the world (e.g., Alexander et al.

2006; Zwiers et al. 2011; Min et al. 2011; Zhang et al. 2013;

Coumou and Rahmstorf 2012, Donat et al. 2013; Fischer and

Knutti 2014; Kim et al. 2016; Li et al. 2017; Kharin et al. 2018; Li

et al. 2018; Lorenz et al. 2019, Li et al. 2020), as has also been

documented in the IPCC special report onManaging the Risks

of Extreme Events to Advance Climate Change Adaptation

(SREX; Seneviratne et al. 2012). Global warming is projected

to continue into the future, including ongoing changes in

weather and climate extremes (e.g., IPCC SR15).

Coordinated climate model intercomparison enabled by the

Coupled Model Intercomparison Project (CMIP) has been

central to international climate change assessments as well

as many assessments conducted nationally or by individual

groups. The first phase of CMIP was initiated 20 years ago

under the auspices of World Climate Research Programme’s

(WCRP) Working Group on Coupled Modeling (WGCM).

CMIP, which is now in its sixth phase, has helped to enable the

development and evaluation of models that provide increas-

ingly comprehensive representations of the climate system. It

has also served as the catalyst for the development of an open,

distributed, and heavily used archive of climate model simu-

lations that follow prescribed experimental protocols. Phase 6

of CMIP (CMIP6; Eyring et al. 2016) continues this develop-

ment, incorporating further improved Earth system models, a

collection of affiliated projects focused on specific science

questions, and a new suite of future forcing scenarios, that is,

the shared socioeconomic pathway (SSP) scenarios. CMIP6

will be a central element informing the physical science basis

for the upcoming 2021 IPCC Sixth Assessment Report (AR6).

The objective of this paper is to evaluate the performance of

this new-generation multimodel ensemble in simulating present-

day multiyear to multidecade return period extremes of daily

temperature and precipitation and to document their future

projections.
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Among various indices representing different features of

near surface temperature and precipitation extremes (such as

those studied in Alexander et al. 2006; Tebaldi et al. 2006;

Zhang et al. 2011; Sillmann et al. 2013a,b), the present study

in particular focuses on extreme events with return periods of

2–50 years as estimated from annual maximum daily maximum

temperature (TXx), annual minimum daily minimum tempera-

ture (TNn), annual maximum 1-day precipitation (Rx1day),

and annual maximum 5-day precipitation (Rx5day). It follows

on from previous studies, including Kharin et al. (2007), which

evaluated CMIP3 simulations (Meehl et al. 2007), and Kharin

et al. (2013, 2018), which evaluated CMIP5 simulations (Taylor

et al. 2012). Such extremes are chosen for a number of reasons.

First, these rare events often cause serious impacts on natural

and societal systems (Easterling et al. 2000; Zwiers et al. 2011;

IPCC SREX; IPCC SR15). Second, they are relevant to many

aspects of infrastructure design. One of many examples is the

National Building Code of Canada (National Research Council

of Canada 2015), which includes specifications of building de-

sign criteria that require consideration of the 50-yr 1-day pre-

cipitation event in the locationwhere the structure is to be built.

Third, anthropogenic warming can cause disproportionally

larger changes in the frequencies (e.g., Kharin et al. 2018) and

intensities (e.g., Li et al. 2019b) of these types of extremes than

for more moderate extremes that are expected to occur multi-

ple times per year.

In the following, we start by introducing the datasets and

methods used in this study (section 2). Turning to the results

(section 3), we address two major questions: 1) How well does

the CMIP6 multimodel ensemble reproduce present-day multi-

year to multidecade return period extremes of daily temperature

and precipitation? 2) How will the intensity and frequency of

these extremes change in future under different emissions sce-

narios and at different global warming levels? We also discuss

whether the rate of change of temperature and precipitation

extremes per degree global warming depends on the choice of

forcing scenario and model climate sensitivity, and demonstrate

the role of large initial-condition ensemble simulations in ro-

bustly projecting future changes in such extremes at local scales.

We summarize major findings in section 4. We focus on 50-yr

events on a global scale in the main text, and provide results for

relatively weaker events (e.g., 20-yr events) and for IPCC AR6

reference land regions (Iturbide et al. 2020; see Fig. S1 in the

online supplemental material for their geographic boundaries)

and the continents as online supporting information.

2. Datasets and methods

a. Datasets

We analyze TXx, TNn, Rx1day, Rx5day, and global annual

mean surface air temperature (GSAT) for the period 1851–

2100 calculated from daily output of the CMIP6 climate

models driven by the updated historical forcings through 2014

(Hoesly et al. 2018; van Marle et al. 2017; Meinshausen et al.

2017) and extended respectively with the four tier-1 SSP future

forcing scenarios (i.e., SSP1–2.6, SSP2–4.5, SSP3–7.0, and

SSP5–8.5; O’Neill et al. 2016; Eyring et al. 2016; Meinshausen

et al. 2020). Twenty models with simulations needed for com-

puting TXx, TNn, Rx1day, and Rx5day for at least one of the

five considered simulation experiments were available as of

July 2020 (Fig. 1a). As only a few models have submitted

multiple members, especially for future projections, we con-

sider the first member for each model, except when illustrating

the role of initial-condition ensemble simulations in robustly

projecting changes of temperature and precipitation extremes

at local scales, for which we use five ensemble members from

four models (CanESM5, IPSL-CM6A-LR, MPI-ESM1–2-LR,

andUKESM1–0-LL) that provide at least that manymembers.

Table S1 lists the used simulation members from these models.

The new SSP-based scenarios for future forcing provide al-

ternative radiative forcing pathways that can be attained

through a collection of socioeconomic development pathways.

In particular, the four tier-1 scenarios analyzed in the present

study comprise four representative radiative forcing pathways

with year 2100 radiative forcing levels of 2.6, 4.5, 7.0, and 8.5

Wm22 respectively that are consistent with the emissions,

concentrations, and land use of four socioeconomic develop-

ment pathways as designated by SSP1, SSP2, SSP3, and SSP5.

These four pathways represent respectively a pathway of

sustainability-oriented growth and equality (SSP1), a ‘‘middle

of the road’’ pathway where socioeconomic development

trends roughly follow their historical patterns (SSP2), a rela-

tively pessimistic pathway with resurgent nationalism and in-

creasing inequalities (SSP3), and a pathway with unconstrained

economic growth and energy use (SSP5). A more thorough

introduction to the SSP scenarios can be found in O’Neill et al.

(2016) and Riahi et al. (2017).

The new-generation CMIP6 models appear to have notably

higher climate sensitivity than CMIP5 models (Fig. 1b), likely

due to changes in the representation of cloud and aerosol

processes (Wyser et al. 2019; Zelinka et al. 2020). Five of the

twenty analyzed models show an equilibrium climate sensi-

tivity above that of the highest model in CMIP5 (4.78C; e.g.,
Andrews et al. 2012), producing greater projected warming.

The warming of GSAT in 2071–2100 projected by the analyzed

models ranges from 3.38 to 6.58C relative to the 1851–1900

average under SSP5–8.5 and from 1.38 to 2.98C under SSP1–2.6

(Fig. 1c). The overall higher sensitivity of the CMIP6 models

points to the need to assess whether the rate of change of

temperature and precipitation extremes per degree global

warming depends on the sensitivities of climate models.

To evaluate the simulated present-day temperature and pre-

cipitation extremes, we rely on the latest European Centre for

Medium-RangeWeather Forecasts ERA5 reanalysis (Hersbach

et al. 2018) as well as other reference datasets such as the ERA-

Interim reanalysis (Dee et al. 2011), NCEP–Department of

Energy (DOE) reanalysis 2 (NCEP2;Kanamitsu et al. 2002), and

the recently updated Hadley Centre Global Climate Extremes

Index 3 (HadEX3) dataset of land-based gridded observations

(Dunn et al. 2020). Compared to the prior generation ERA-

Interim, ERA5 features enhanced spatial resolution (31km) and

improved model physics and core dynamics and assimilates

much more observational data, including precipitation infor-

mation from ground-based radar observations, although only for

2009 onward. It is therefore expected to be able to producemore
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realistic simulations of temperature and precipitation extremes.

We decided not to present evaluations against the HadEX3

observations in the main text as its spatial coverage for precipi-

tation extremes is still limited (Fig. S6).

b. Methods

We define multiyear return period daily temperature and

precipitation extremes as the upper or lower tail quantiles of

the corresponding annual extremes modeled by a generalized

extreme value (GEV) distribution. The use of the GEV dis-

tribution is motivated by the Fischer–Tippett theorem (Fisher

and Tippett 1928; Leadbetter et al. 1983), which suggests that

the distributions of block maxima, such as annual maxima, will

converge to the GEV distribution as blocks become large if

convergence occurs at all. Many previous studies have used the

GEV distribution to describe the distribution of TXx, the ne-

gation of TNn, Rx1day, and Rx5day (e.g., Kharin et al. 2007,

2013, 2018; Zwiers et al. 2011; Sillmann et al. 2011; Xu et al.

2018; Li et al. 2019a), finding generally adequate fits for these

indices calculated from climate model simulations as we

consider here.

The cumulative distribution function for a GEV distributed

random variable X is

F(x)5
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where m, s . 0, and j are the location, scale, and shape pa-

rameters, respectively. These parameters are estimated by the

method of probability weighted moments, which is found to be

more robust than maximum likelihood estimation for rela-

tively short samples (Hosking 1990). For TXx and TNn, we fit

individual GEV distributions at each grid cell of each model’s

native grid using data for that grid cell only. In contrast, we

consider data from a 3 3 3 grid cell region centered on each

grid cell for Rx1day or Rx5day unless otherwise clarified. The

weak spatial dependence of precipitation extremes means that

pooling data from neighboring grid cells can help reduce un-

certainty in the local estimates of GEV parameters caused by

high-frequency internal variability in Rx1day and Rx5day (Li

et al. 2019a,b). Spatial pooling is not used for TXx and TNn

because the stronger spatial dependence in temperature ex-

tremes limit the uncertainty reductions obtainable from spatial

pooling.

Unless otherwise noted, GEV estimation is implemented in

different 30-yr time windows such as 1985–2014 for a recent

past period and 2071–2100 for a long-term future period, thus

assuming that temperature or precipitation extremes remain

approximately stationary within 30-yr periods. This is a prag-

matic choice that is made necessary by the fact that nonsta-

tionary models cannot be fitted reliably to short records (Li

et al. 2019a). The resulting extreme quantile estimates can be

somewhat biased in opposite directions at the ends of time

windows when a secular trend is present (Kharin et al. 2013).

These biases could be reduced by using a shorter, 20-yr time

window, as used in the IPCC AR5 for assessing future changes

FIG. 1. Information describing the climate model simulations

used in this study. (a) Diagram showing the CMIP6 climate model

simulations. (b) Equilibrium climate sensitivities of the climate

models, with the black and gray horizontal lines marking respec-

tively the highest and mean value in the prior generation CMIP5

models. [These estimates are acquired from a Carbon Brief report

‘‘CMIP6: the next generation climate models explained’’ available

from https://www.carbonbrief.org/cmip6-the-next-generation-of-

climate-models-explained. Estimation is based on the method

used in IPCCAR5 as described inGregory et al. (2004)]. (c) Global

annual mean surface air temperature anomalies relative to the

1851–1900 average simulated by the climatemodels. The thick lines

(with symbols marked for future projections) show the multimodel

median anomalies, and the thin lines show anomalies from indi-

vidual models. Only anomalies under SSP1–2.6 and SSP5–8.5 are

shown for individual models for clarity. The anomalies are smoothed

by applying a 31-yr moving average. The horizontal line marks the

1.08C anomaly line.
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in climate variables, including temperature and precipitation

extremes with return periods up to 20 years (e.g., Kharin et al.

2007). Estimating rarer extremes (e.g., 50-yr event) based on a

short sample (e.g., 20 years) needs more aggressive extrapo-

lation into the upper tail of the fitted GEV distribution, how-

ever, leading tomore uncertain estimates for extreme quantiles

and potential biases (Ben Alaya et al. 2020). We chose 30-yr

time windows to balance estimation uncertainty fromGEV tail

extrapolation with that induced by secular trends.

Having fitted the GEV distribution, the temperature or

precipitation extremes of interest can be defined, and their

changes can be evaluated. The intensity (or return value) of an

event with occurrence frequency p (or return period T 5 1/p)

can be estimated by the 1 2 p quantile of the fitted GEV dis-

tribution, while the occurrence frequency of an event with in-

tensity x can be estimated by the probability of exceeding x in

the fittedGEV distribution. Changes in the intensities of extreme

events with a given frequency or changes in the frequencies of

extreme events with a given intensity can accordingly be esti-

mated for different future periods or warming levels. Changes in

future periods are expressedwith respect to the recent past period

1985–2014, while changes at different warming levels are ex-

pressed relative to their intensity or frequency in a climate that is

18C warmer above preindustrial. It is noted that most of the cli-

mate models considered in this paper simulate the present-day

climate as being roughly 18C warmer than their preindustrial

climates (gray line in Fig. 1).

Although multiple methods have been used to define global

warming levels (e.g., James et al. 2017 and references therein),

we follow the definition used in the IPCC SR15 (IPCC 2018),

by which a 18C warmer world, for example, is taken as the first

31-yr period with average GSAT exceeding 18C relative to the

1851–1900 average. To have as many lines of evidence as

possible, we use projections under all of the SSP scenarios to

obtain multiple (#4) plausible climates for a given warming

level from each climate model. Figure S2 presents the identi-

fied time windows for different global warming levels. The

GEV fitting is conducted individually for each plausible time

window for a given warming level.

To estimate the rate of change in the intensity of tempera-

ture and precipitation extremes with GSAT, we rely on future

projections only, although including historical simulations does

not qualitatively affect the estimates (not shown). For a given

occurrence frequency, or equivalently, for a given return pe-

riod, we estimate at each grid cell the corresponding intensity

of the event of interest and the averageGSAT in each of the six

overlapping 30-yr periods (i.e., 2021–50, 2031–60, . . . , 2071–

2100). We then compute changes in the estimated intensities

from one period to a later period and the corresponding GSAT

changes, which are then used to estimate the scaling rate for the

intensity of extreme temperature or precipitation events that

have the given return period by quantile regression for the

median (Koenker 2005).We perform the estimation separately

for eachmodel and each SSP scenario so as to evaluate whether

the estimated scaling rate depends on forcing scenarios and/or

sensitivities of climate models.

To summarizemultimodel ensemble statistics, we first regrid

the estimated extremes and their changes to a common 2.58 3

2.58 grid using bilinear interpolation, and then take the multi-

model median values for each 2.58 3 2.58 grid cell. Medians are

used because they are more robust to unusually large or small

values from individual ensemble members than the multi-

model mean values. Grid cells are stippled if at least 80%of the

availablemodels or warming level windows agree on the sign of

the corresponding ensemble median changes. Global, conti-

nental, and regional statistics are likewise obtained by com-

puting the corresponding spatial medians.

3. Results

a. The ability of CMIP6models to simulate temperature and
precipitation extremes

Figure 2 compares the CMIP6 multimodel median estimates

of 50-yr return values of TXx and TNn in 1985–2014 and the

corresponding ERA5 estimates. Models reproduce quite well

the spatial patterns of both hot and cold temperature extremes

including the large-scale latitudinal gradients, land–sea contrast,

as well as topography-induced regional patterns over the Tibetan

Plateau, theAndesmountain range, and theRockies (Figs. 2a–d),

with an overall spatial pattern correlation being as high as 0.99 for

both hot and cold extremes. For hot extremes over Eurasia, the

358–458C contours appear to be displaced a bit farther north in

models, perhaps due to different land surface representations in

ERA5 and the models or a manifestation of unforced multi-

decadal (.30 years) internal climate variability.

Models also reproduce well the magnitude of temperature

extremes. For hot extremes, models tend to have a slight warm

bias over most land areas (Fig. 2e), with a warm bias of 0.48Con

average over the globe. The largest biases of 58–108C are found

mainly in central Asia, parts of South America, and inland

Antarctica. In contrast, relative to ERA5, models tend to

produce cold extremes that are too cold almost everywhere

over land except north Asia, and over the ice-covered Arctic

and Southern Oceans (Fig. 2f). The global average bias in cold

extremes is21.48C, but cold biases below2108C can be seen in

the Arctic Ocean and at high elevations over the Tibetan

Plateau and RockyMountains. Overall, models perform better

for hot extremes than for cold extremes over land areas.

Figure 3 shows the corresponding comparison for the 50-yr

return values of Rx1day and Rx5day. Models also do a rea-

sonable job in capturing typical large-scale features of these

precipitation extremes, such as intense precipitation extremes

in the intertropical convergence zone (ITCZ) and weak pre-

cipitation extremes in dry areas over the eastern subtropical

basins of the South Pacific and South Atlantic and in northern

Africa (Figs. 3a–d). Nevertheless, a double-ITCZ bias over the

equatorial central and eastern Pacific is evident in estimates of

50-yr Rx1day and Rx5day return values. A spurious double-

ITCZ can appear as a result of different interacting factors such

as biased sea surface temperatures, surface winds, and erro-

neous cloud microphysics over the equatorial Pacific (e.g., Dai

2006; Zhang et al. 2015;Woelfle et al. 2019). Overall, the spatial

pattern agreement between models and ERA5 looks slightly

better for Rx5day than for Rx1day, with pattern correlation

being 0.91 for the latter and 0.88 for the former.
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Despite the reasonable reproduction of large-scale spatial

features, there are biases in the magnitude of precipitation

extremes relative to ERA5, particularly in the tropics and

subtropics (Figs. 3e–3f) that were also seen in previous versions

of CMIP, although evaluated with respect to different rean-

alyses (Kharin et al. 2007, 2013). These include precipitation

extremes that are too weak in the intertropical convergence

zone and too intense in the subtropical dry areas of northern

Africa and the eastern subtropical basins of the South Pacific

and South Atlantic. In the extratropics, models show better

agreement with ERA5, consistent with previous phases of

CMIP. The multimodel median estimates of the 50-yr Rx1day

and Rx5day return values range from 80% to 170% of ERA5

values over the extratropics (north of 308N and south of 308S),
with a regional mean value of about 115% for both event

durations.

For both temperature and precipitation extremes, models

show similar skill in simulating extreme events of different

rarity levels on a global scale (bottom panels in Figs. S3 and

S4). Nevertheless, notably better performance can be seen for

FIG. 2. Estimates of 50-yr return values of TXx and TNn (8C) in 1985–2014. (a)–(d) The CMIP6 multimodel

median estimates of 50-yr return values of TXx andTNn in 1985–2014 and the corresponding estimates usingERA5

reanalysis. (e),(f) Differences between the CMIP6 multimodel median estimates of 50-yr return values of TXx and

TNn in 1985–2014 and the corresponding ERA5 estimates.
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less extreme events in some regions (top two panels in Figs. S3

and S4). Comparing spatial patterns of the multimodel median

biases (bottom panels in Figs. 2 and 3) and the standard devi-

ations of return values estimated from individual models

(which measure model agreement; Fig. S5), it is evident that

regions with relatively large model biases generally coincide

with regions with relatively low model agreement for all con-

sidered temperature and precipitation extremes. In line with

previous studies, these findings are sensitive to the choice of

reference dataset (Table 1), particularly over land and ice-

covered regions for temperature extremes and in tropical and

subtropical regions for precipitation extremes, as indicated by

the differentmagnitudes and even signs ofmodel biases (Fig. S6).

b. The projected changes in the intensity of temperature and

precipitation extremes

Figures 4a–d present the CMIP6 multimodel median changes

in 50-yr return values of TXx and TNn in 2071–2100 relative to

1985–2014 for the SSP1–2.6 and SSP5–8.5 scenarios (see Fig. S7

for changes in 20-yr return values). In line with evidence from

CMIP3/5 models (Kharin et al. 2007, 2013), temperature ex-

tremes exhibit widespread warming across the entire globe

FIG. 3. As in Fig. 2, but for Rx1day and Rx5day [units in (a)–(d) are mmday21 and in (e) and (f) are dimen-

sionless]. Note that the differences between models and ERA5 are expressed as the ratios of the model estimates

over the ERA5 estimates.
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during the century regardless of the choice of forcing scenario,

with several known large-scale features, such as the larger

warming over land than over ice-free ocean areas, pronounced

polar amplification, and more rapid warming in cold extremes

than in hot extremes. Over land, the 50-yr return value of TXx is

projected to increase 5.38C on average (3.78–7.38C for the central

90% range of individual model estimates) by the end of this

century under SSP5–8.5, while the corresponding warming for

TNn is 5.08C (4.0–8.28C). Choosing a socioeconomic pathway

with lower emissions such as SSP1–2.6 would reduce the warm-

ing in 50-yr return values of land TXx and TNn over the century

to 1.38C (0.88–2.18C) and 1.78C (1.28–3.28C), respectively, indi-
cating the dramatic impacts of societal decisions on future in-

creases in temperature extremes. We note that over 80% of the

models agree on the sign of the presented multimodel median

warming almost everywhere across the globe for both hot and

cold extremes under all considered emissions scenarios (stippling

in Figs. 4a–d).

Although globally cold extremes warm more than hot ex-

tremes, there are regional exceptions. For example, models

tend to project somewhat larger warming in hot extremes over

the tropical belt land and sea area, the northern oceans except

the Arctic, and the central Asia, and they tend to project

comparable warming in hot and cold extremes over the

Southern Oceans except along the edges of Antarctic ice

shelves and sea ice, as also documented in previous studies

(Kharin et al. 2007, 2013).

Precipitation extremes are projected to intensify over most

of Earth’s surface, with the largest percentage increases oc-

curring in the tropics followed by the high latitudes (see

Figs. 5a–d for the multimodel median relative changes in the

50-yr return values of Rx1day and Rx5day from the period of

1985–2014 to 2071–2100; also see Fig. S8 for relative changes in

20-yr return values). Decreases in extreme precipitation return

values are confined to regions close to the descending branches

of the Hadley circulation. It should be noted that these regions

are also where climate models show the largest biases relative

to ERA5 (Figs. 3e,f), indicating that the projected changes in

these regions might be subject to high model uncertainty. On

average over land, the projected intensification in the 50-yr

Rx1day and Rx5day events by the end of this century relative

to 1984–2015 are, respectively, 27.9% (17.6%–44.9% for the

central 90% range of individual model estimates) and 23.1%

(15.1%–39.6%) under SSP5–8.5, and 8.4% (4.7%–13.6%) and

7.7% (4.6%–12.6%) under SSP1–2.6, suggesting that societal

decisions also play an important role in future intensification of

precipitation extremes.

There is high model agreement under SSP5–8.5 on the di-

rection of multimode median change in areas with increasing

precipitation extremes (stippling in Figs. 5c,d). Areas where at

least 80% of the climate models agree on the direction of

multimodel median change in 2071–2100 cover 90% and 80%

of Earth’s surface for Rx1day and Rx5day, respectively. Under

SSP1–2.6, however, the same level of model agreement occurs

over less than half Earth’s surface because the response to

external forcing is smaller relative to unforced internal vari-

ability than in SSP5–8.5 (stippling in Figs. 5a,b). Projected

near-term 2021–50 changes show similarly low model agree-

ment even under the SSP5–8.5 scenario (not shown) as the

signal of change is weak relative to unforced internal variability

in near-term future. These results are consistent with the pre-

vious findings (e.g., Fischer et al. 2014; Zhang et al. 2017; Li

et al. 2019a), indicating that it is hard to robustly estimate long-

term changes of rare precipitation extremes at small spatial

scales with short data records, especially when the external

forcing is not strong.

The projected changes in temperature and precipitation

extremes at different warming levels bear spatial patterns

similar to those seen for changes in the 2071–2100 period

under different forcing scenarios, as can be seen from the

multimodel median changes in 50-yr return values of these

extremes for global warming of 28 and 48C above preindus-

trial levels (Figs. 4e–h and 5e–h). The available collection of

CMIP6 models project that warming of 48C above prein-

dustrial levels would on average produce 50-yr TXx and TNn

events over land that are, respectively, 4.18C (3.58–4.58C for

the central 90% range of estimates from the corresponding

warming level windows) and 4.28C (3.68–4.98C) hotter rela-
tive to the 18C warming world, and 50-yr Rx1day and Rx5day

events over land that are 22.8% (18.2%–30.3%) and 20.0%

(16.3%–25.9%) more intense compared to the 18C warming

world. The projected corresponding changes would be re-

duced to 1.38C (1.18–1.68C), 1.58C (1.08–1.78C), 7.2% (5.7%–

9.1%), and 6.3% (4.3%–8.4%) for 28C global warming, and

TABLE 1. Average differences between the CMIP6 multimodel median estimates of 50-yr return values of TXx, TNn, Rx1day, and

Rx5day in 1985–2014 and the corresponding estimates based on different reference datasets over the globe and the global land area. For

Rx1day and Rx5day, the differences are expressed as ratios of the model estimates over the reference estimates. The average absolute

differences between models and observations for temperature extremes are also shown by numbers in parentheses. Rx1day and Rx5day

units are dimensionless.

Reference dataset Region TXx (8C) TNn (8C) Rx1day Rx5day

ERA5 Globe 0.4 (1.4) 21.4 (2.7) 1.1 1.2

Land 0.5 (2.2) 21.0 (2.8) 1.2 1.3

ERA-Interim Globe 0.3 (1.1) 21.2 (2.5) 1.2 1.3

Land 1.0 (1.6) 21.8 (2.7) 1.2 1.4

NCEP2 Globe 20.5 (1.4) 4.4 (5.4) 1.1 1.1

Land 21.1 (2.4) 7.8 (8.0) 1.1 1.1

HadEX3 Land 20.3 (3.1) 23.8 (5.8) 1.0 1.3
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FIG. 4. Projected changes in 50-yr return values of TXx and TNn (8C). (a)–(d) The CMIP6 multimodel median

changes in the 50-yr return values of TXx and TNn in 2071–2100 under the lower SSP1–2.6 and higher SSP5–8.5

scenarios relative to 1985–2014. (e),(f) The corresponding changes at 2.08 and 4.08C global warming above pre-

industrial relative to the 1.08C global warming. Stipplingmarks grid cells where at least 80%of the availablemodels

or warming level windows agree on the sign of the corresponding ensemble median changes.
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FIG. 5. As in Fig. 4, but for Rx1day and Rx5day (%).
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further reduced to 0.68C (0.48–0.98C), 0.78C (048–1.08C), 3.7%
(2.2%–4.3%), and 3.0% (2.0%–4.3%) for 1.58C global warming.

See Tables S2–S5 for the projected intensity changes at differ-

ent global warming levels for the IPCC AR6 land regions, the

continents, and the globe. A point worth of noting is that hot

temperature and precipitation extremes are projected to ex-

hibit an ‘‘intense gets intenser’’ tendency in most of the IPCC

AR6 land regions (Fig. S9).

c. The rates of change in temperature and precipitation
extremes with warming

We next consider whether the projected rates of change in

the intensity of extreme temperature and precipitation events

per 18C of global warming depend on the choice of forcing

scenario and the sensitivity of climate models. Figures 6a, 6b

and 7a, 7b display the global land median changes in the 50-yr

return values of TXx and TNn and percentage changes in the

50-yr return values of Rx1day and Rx5day as a function of

GSAT change. Generally, increases in temperature extremes

outpace warming in GSAT (Figs. 6a,b), while changes in pre-

cipitation extremes follow changes in GSAT at roughly the

Clausius–Clapeyron rate of ;7% 8C21 (Figs. 7a,b).

Globally, the rates of change of temperature and precipita-

tion extremes do not appear to vary strongly across emissions

scenarios (color bars in Figs. 6c, 6d and 7c, 7d). For TXx

and Rx5day, the multimodel median rates of change under

SSP1–2.6 appear to be markedly lower than those under other

scenarios (blue bars in Figs. 6c and 7d). The range of the es-

timated rates of change among models, however, is particu-

larly wide under this scenario (blue whiskers in Figs. 6c and

7d) due to the relatively weak signal of change compared to

unforced internal climate variability. The high variation among

models impedes a reliable evaluation of whether the rates of

change in these two extreme variables with global warming

under SSP1–2.6 really differ from those under other scenarios.

Previous evaluations based on CMIP3/5 simulations showed

overall independence of emissions scenarios of changes in

temperature and precipitation extremes normalized by GSAT

(Kharin et al. 2007, 2013; Pendergrass et al. 2015; Seneviratne

et al. 2016).

The rates of change in temperature and precipitation ex-

tremes also tend not to vary strongly with the sensitivity of

climate models (gray bars in Figs. 6c,d and 7c,d). In fact,

CanESM5, which has the highest climate sensitivity among the

20 models considered (Fig. 1b), shows intermediate rates of

change in temperature and precipitation extremes, and INM-

CM4–8, which has the lowest climate sensitivity, shows inter-

mediate rates of change for hot temperature and precipitation

extremes and the second highest rate of change in cold ex-

tremes. We speculate that the differences in the response rates

of temperature and precipitation extremes between climate

models are more likely due to different representations of the

relevant physical processes. Moreover, the global rate of

change relative to GSAT change does not vary systematically

over time for either temperature or precipitation extremes, as

indicated by the linearly aligned scatter of changes in the

corresponding extremes versus changes in GSAT (Figs. 6a,b

and 7a,b).

Regional relations between changes in the intensity of

temperature and precipitation extremes and changes in GSAT

can differ substantially from those at the global scale, partic-

ularly for cold extremes and precipitation extremes. For ex-

ample, cold extremes exhibit divergent rates of change with

global warming across models and scenarios in northern high-

latitude regions such as northwest North America and north-

ern Europe (Figs. S10 and S11), and in dry regions such as

central Asia (Fig. S12). Changes of precipitation extremes in

the tropics usually do not scale well with changes in GSAT,

particularly in some regions where the prevailing atmospheric

circulations are subsiding such as the Sahara (Fig. S13), or

where dynamical factors such as the expansion of the tropics

may cause temporally nonuniform precipitation change such as

Central America (Figs. S14; e.g., Pfahl et al. 2017).

d. The projected changes in the frequency of temperature
and precipitation extremes

The top two panels in Figs. 8 and 9 present the CMIP6

multimodel median ratios of the frequencies of 50-yr TXx,

TNn, Rx1day, and Rx5day events (defined in the reference

period 1985–2014) in 2071–2100 compared to the reference

frequency in the reference period (which is 1/505 0.02; also see

Figs. S15, S16 for the frequency ratios for 20-yr events). As

expected, the frequency ratios for hot extremes are projected

to exceed 1 everywhere (Figs. 8a,c), indicating that extremely

hot days become more frequent everywhere. Despite the

pronounced polar amplification of intensities (Fig. 4), larger

relative frequency increases are found in lower latitudes, with

the largest increases over the tropical oceans and in the

Arabian Peninsula, due to the lower interannual variability of

temperatures in these regions (e.g., Mahlstein et al. 2011;

Hawkins and Sutton 2012). The projected global land median

frequency ratio is 6.9 (3.8–14.1 for the central 90% range of

individual model estimates) by the end of the century under

SSP1–2.6, indicating that days as hot as those expected with an

annual probability of 1/50 in the reference period 1985–2014

may be about 7 times as likely on average over land (Fig. 8a).

The frequency ratios saturate to a constant level of 50 over

many parts of Earth’s surface under SSP5–8.5 (Fig. 8c). This

means that the annual hottest day at the end of the century is

projected to be at least as hot under SSP5–8.5 as the 50-yr hot

event in the 1985–2014 climate in these regions.

For cold extremes, the projected frequency ratios are less

than 1 everywhere, indicating a reduction in the frequency of

cold nights (Figs. 8b,d). Again, owing to the lower interannual

variability, the largest relative frequency decreases are found

over low-latitude oceans. Northern high-latitude decreases are

also quite large because of the strong Arctic amplification ef-

fect on nighttime temperatures. The models project that there

may not be a night at the end of this century (,1/1000 chance)

that is as cold as the 50-yr TNn event in the 1985–2014 climate

over about half of the global surface even under the SSP1–2.6

scenario (Fig. 8b) and over almost the entire globe under

SSP5–8.5 (Fig. 8d).

Extreme precipitation events are projected to become more

frequent over most areas, except in some subtropical regions

where their intensities are projected to decline (Figs. 9a–d).
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The tropics and high latitudes are projected to see the strongest

relative frequency increases. On average over land, daily pre-

cipitation events as extreme as the 1-in-50-yr event in 1985–

2014may be 3.9 (2.6–7.0 for the central 90% ensemble range of

individual model estimates) times as likely by the end of the

century under SSP5–8.5 (Fig. 9c), and 5-day precipitation

events may be 3.4 (2.5–6.3) times as likely (Fig. 9d). That is, a

50-yr event in the reference climate may become a 13-yr event

or so in the climate of 2071–2100. Due to the relatively weaker

external forcing of SSP1–2.6, the projected relative frequency

FIG. 6. The scaling of the global land median increases in the 50-yr return values of TXx and TNn with global

warming. (a),(b) Scatterplots of the global land median changes in the 50-yr return values of TXx and TNn vs

changes in GSAT (8C) in the CMIP6 multimodel ensemble simulations under different forcing scenarios. Each dot

represents themedian change in the intensity of 50-yr events over the global land area between two 30-yr periods in

a CMIP6 simulation under a given SSP scenario (colors). The black solid lines show the quantile regression lines for

themedian through the scatter of points and the gray envelopes are bounded the corresponding quantile regression

lines for the 5th and 95th quantiles of the scatter of points. The dashed lines show the 1-to-1 reference line. (c),(d)

Estimates of the corresponding scaling rates (8C 8C21) based on simulations under different forcing scenarios (color

bars) and from different climate models (gray bars). Climate models from left to right exhibit increasing equilib-

rium climate sensitivity (see Fig. 1b). For scaling rate estimates under a given forcing scenario, the whiskers indicate

the 5%–95% uncertainty range of the estimates from individual models, while for scaling rate estimates from a

givenmodel, simulations under different forcing scenarios were pooled together. Scenario uncertainty is not shown

for estimates from individual models because most models have simulations only under the SSP1–2.6 and SSP5–8.5

scenarios (Fig. 1a).
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changes are contaminated more by internal variability, par-

ticularly at small spatial scales, as indicated by the scattered

patches with decreasing or increasing extreme precipitation

frequency (Figs. 9a,b). Nevertheless, 1-in-50-yr Rx1day and

Rx5day events in the reference climate are projected to be-

come about 1.7 times as likely on average over land under

SSP1–2.6 by 2071–2100.

The patterns of increasing and decreasing frequencies of ex-

treme temperature and precipitation events at global warming

levels are similar to those for changes in the 2071–2100 period,

but with different magnitudes of frequency ratios (bottom two

panels in Figs. 8 and 9; see also Tables S2-S5 for the projected

changes at different global warming levels for the IPCC AR6

land regions and the continents). A 48C warming may result in

land median frequency ratios of 25.4 (22.1–30.3 for the central

90% range of estimates from the corresponding warming level

windows), 1/221 (1/1150–1/38.7), 3.1 (2.4–4.5), and 2.7 (2.4–

4.3), respectively, for the 50-yr TXx, TNn, Rx1day, and

Rx5day events compared to a 18C warmer world, while in a

28C warmer world, the corresponding frequency ratios are 5.4

(3.8–7.1), 1/4.6 (1/8.3–1/2.9), 1.6 (1.3–1.7), and 1.4 (1.3–1.7),

respectively (orange boxplots in Fig. 10). If further limiting

global warming to 1.58C, these frequency ratios would be 2.6

(1.9–3.5), 1/2 (1/3–1/1.5), 1.3 (1.2–1.4), and 1.2 (1.1, 1.3).

Apparently, limiting global warming below 1.58C would sub-

stantially reduce the occurrence of hot extremes and precipita-

tion extremes, and substantially slowdown the disappearance of

cold extremes, in line with findings on temperature and precip-

itation extremes from the SREX and SR15, the Benefits of

Reduced Anthropogenic Climate Change projects analyzing

FIG. 7. As in Fig. 6, but for Rx1day andRx5day [changes in precipitation extremes andGSAT in (a) and (b) are in

% and 8C, respectively; the scaling rate estimates for precipitation extremes in (c) and (d) are in % 8C21]. The

dashed line in (a) and (b) shows the 7% 8C21 reference line.
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FIG. 8. Projected relative frequency changes of 50-yr TXx and TNn events. (a)–(d) The CMIP6 multimodel

median ratios of the frequencies in 2071–2100 under the lower SSP1–2.6 and higher SSP5–8.5 scenarios for the 50-

yr TXx and TNn events defined in the reference period 1985–2014 compared to the reference event frequency in

1985–2014 (which is 1/50 5 0.02). (e),(f) The corresponding ratios at 2.08 and 4.08C global warming above pre-

industrial compared to 1.08Cglobal warming. Stipplingmarks grid cells where at least 80%of the availablemodels

or warming level windows agree on the direction of the corresponding ensemble median relative frequency

changes. Units are dimensionless.
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FIG. 9. As in Fig. 8, but for Rx1day and Rx5day. Units are dimensionless.
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CMIP5 simulations (e.g., Tebaldi and Wehner 2018) and simu-

lations stabilizing at 1.58 and 2.08C above preindustrial levels by

the end of the century (Aerenson et al. 2018).

The projected frequency changes for 50-yr events are sub-

stantially larger than those for weaker events. For example, the

land median frequency ratios for less intense 10-yr events in a

28Cwarmer world are projected to be 3.0 (2.6–3.6), 1/3.4 (1/5.5–

1/2.7), 1.4 (1.2–1.5), and 1.3 (1.2–1.4), respectively (purple

boxplots in Fig. 10), which are remarkably smaller than the

corresponding ratios for 50-yr events. The contrast in relative

frequency changes between more extreme and weaker events

is projected to become larger as climate warms (orange vs

purple boxplots in Fig. 10). Furthermore, the larger relative

frequency changes in more extreme hot temperature and

precipitation events than weaker events are projected to occur

in almost all IPCC AR6 land regions (Fig. S17).

The dependence of relative frequency changes in tempera-

ture and precipitation extremes on rarity has previously been

reported by Kharin et al. (2018), who analyzed the same tem-

perature and precipitation extremes in CMIP5 simulations

but used a transient nonstationary GEV distribution with both

location and scale parameters varying with GSAT to estimate

the relative frequency changes of these extremes. The consis-

tent results obtained here using a time-slice GEV estimation

method that does not require assumptions on how the GEV

parameters change with warming indicate that the larger rel-

ative frequency changes ofmore extreme events are unlikely to

be due to the use of a particular analysis method. In fact, im-

plementing an empirical analysis approach that does not re-

quire any distributional assumptions on simulations from

models with five initial-condition ensemble members also

produces qualitatively consistent results (Fig. S18).

e. The role of large ensemble initial-condition simulations in
small-scale projections

Estimating long-term changes of climate extremes in the

presence of internal climate variability is challenging, partic-

ularly when the extreme event of interest is truly rare and at

small spatial scales, data records are short, and the response

to external forcing is weak relative to internal variability

(e.g., Li et al. 2019a), as is also confirmed by the reported

results. Large ensemble initial-condition simulations enable

FIG. 10. Global land median changes in the frequency of temperature and precipitation extremes as function of

global warming and event frequency. Panels show the global land median ratios of the frequencies at 1.58, 2.08, 3.08,
and 4.08C global warming above preindustrial levels compared to their frequency in the 1.08C global warming level

climate above preindustrial levels for 10-yr and 50-yr (a) TXx, (b) TNn, (c) Rx1day, and (d) Rx5day events defined

in the 1.08Cwarming level climate.Annual chances of occurrence of the events corresponding to frequency ratios of

the events are marked on the right side of the plots. The horizontal line and the box represent the median and

central 66% uncertainty range of the frequency ratios estimated from plausible warming level windows, and the

whisker extends to the full range of these frequency ratios.
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increased sampling of internal climate variability (magnitude

and phase), thus leading to improved estimates of long-term

changes in climate extremes with reduced sampling uncer-

tainty. We here highlight the role that large ensemble initial-

condition simulations can play in robustly projecting future

changes in temperature and precipitation extremes at small

spatial scales. As the influence of internal variability on

precipitation extremes is substantially larger than for tem-

perature extremes, we take the former as an illustrative

example.

Due to the very high computational cost, truly large initial-

condition ensemble simulations with, for example, 50 or more

ensemble members, are very limited. We therefore implement

spatial pooling ofRx1day data from 33 3 grid cell regions on 5-

member initial-condition simulations from four CMIP6models

(Table S1). Doing so creates Rx1day samples that are effec-

tively multiple times (,5 3 9 5 45) the size of the samples

obtained from a single simulation without spatial pooling,

provided that the variations of Rx1day between neighboring

grid cells are mainly due to high-frequency internal variability

(Li et al. 2019a). This enlarged dataset is used to mimic the

availability of larger initial-condition ensemble simulations.

The top two panels in Fig. 11 contrast the estimated changes

in 50-yr Rx1day events in 2071–2100 relative to 1985–2014

under SSP1–2.6 and SSP5–8.5 based on the first CanESM5

simulation without spatial pooling and those obtained by

pooling Rx1day data from 3 3 3 grid cells from all five simu-

lations. The estimated changes from the first simulation show

fragmented spatial patterns of increasing and decreasing pre-

cipitation extremes, with isolated patches showing extremely

high or low changes, especially under the relatively weaker

SSP1–2.6 scenario (Figs. 11a,c), whereas geographically orga-

nized spatial patterns that are potentially physically interpret-

able emerge when using the pooled simulations (Figs. 11b,d).

A simple measure of the uncertainty of an estimated change

is the absolute value of the ratio between the estimate and its

standard error (which is inferred using a spatiotemporal block

bootstrap procedure with a spatial block that is the 3 3 3 grid

cell region and a temporal block of consecutive 5 years; see a

detailed treatment in Li et al. 2019b). An estimated change D̂
for which this ratio is greater than 5 indicates that the 95%

confidence interval of this estimated change is robustly con-

strained by D̂6 0:5D̂.
If just one simulation is available and the spatial pooling is

not implemented, the absolute value of this ratio for the esti-

mated changes in the intensity of 50-yr Rx1day events is un-

likely to exceed 5 almost everywhere across the globe (green

lines within solid red bars in Fig. 11e). Implementing 3 3 3

spatial pooling can improve this result, but to a limited extent

(white lines within solid red bars in Fig. 11e). This is because

spatial pooling is unable to sample low-frequency internal

variability at multidecadal time scales (Li et al. 2019a). The five

initial-condition simulations together with 33 3 spatial pooling

can produce such robust estimates over 60% of the global

surface under SSP5–8.5 in all models with ensembles of this

size except MPI-ESM1–2-LR (solid red bars in Fig. 11e).

Overall, these results suggest that large ensemble initial-

condition simulations are needed for robust projections of

future precipitation extremes at local scales that are often

impact relevant. This is particularly so when projecting very

rare extremes (hatched bars for 2-yr events vs solid bars for 50-

yr events in Fig. 11e) under relatively weaker forcing scenarios

(blue bars for SSP1–2.6 vs red bars for SSP5–8.5). Spatial

pooling can, to some extent, reduce the ensemble size needed

for projecting climate variables with weak spatial dependence,

such as precipitation extremes.

4. Conclusions

We have presented an evaluation of the new-generation

CMIP6 multimodel ensemble in simulating present-day ex-

tremes of near surface daily temperature and precipitation that

are expected once every 2–50 years on average, and their

projected changes under the four CMIP6 tier-1 future forcing

scenarios. The following summarizes the main conclusions,

which are primarily focused on large spatial scales:

d Judged by their similarity to ERA5, the new-generation

CMIP6 models simulate reasonably well large-scale spatial

patterns of the present-day near surface temperature and

precipitation extremes with a broad range of return periods

from 2 to 50 years, with pattern correlations for these ex-

tremes being larger than 0.88.
d For temperature extremes, models perform better for hot

extremes than for cold extremes and better over ice-free

oceans than elsewhere. Models tend to underestimate pre-

cipitation extremes in the tropics and overestimate them in

subtropical dry areas relative to ERA5. On average over

land, the multimodel median return value estimate is about

0.58C warmer for the 50-yr TXx events compared to ERA5,

while it is 1.08C colder for the 50-yr TNn events. The mul-

timodel median estimates of the 50-yr land Rx1day and

Rx5day return values are 120% and 130% of ERA5 values,

respectively.
d Models consistently project increases in the frequency and

intensity of hot extremes and decreases in cold extremes

everywhere across the globe, with more rapid change in cold

extremes than in hot extremes. The 50-yr TXx and TNn

events over land are projected to warm 1.38C (1.08–1.68C for

the central 90% range of estimates from warming level

windows as simulated in the considered climate models) and

1.58C (1.08–1.78C), respectively, when global warming increases

from18 to 28Cabove preindustrial levels. Consequently, days as

hot as those expected with an annual probability of 1/50 in the

reference 18C warming world as measured by TXx would be

about 5 times as likely on average over land in the 28Cwarming

world. While regional changes can differ substantially from

these global-scale values, increases in warm extremes and de-

creases in cold extremes are projected in all regions.
d A large majority (.80%) of models agree on increases in the

frequency and intensity of precipitation extremes over most

of Earth’s surface, except some subtropical regions with

prevailing downwelling atmospheric circulations. Over land,

50-yr Rx1day and Rx5day events are projected to intensify

7.2% (5.7%–9.1% for the central 90% range of estimates

from warming level windows as simulated in the considered
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climate models), and 6.3% (4.3%–8.4%)when global warming

increases from 18 to 28C above preindustrial. Correspondingly,

these reference climate events are projected to become ap-

proximately 1.5 times as likely. Again, markedly regional

variations exist.
d Changes in temperature extremes outpace changes in global

annual mean surface air temperature (GSAT) over the

majority of landmasses, while, globally, changes in precipi-

tation extremes follow changes in GSAT at roughly the

Clausius–Clapeyron rate of ;7% 8C21. Changes in temper-

ature and precipitation extremes normalized with respect to

GSAT do not depend sensitively on forcing scenarios or

climate model sensitivity and do not vary strongly over time,

but with notable regional variations.
d In most land regions, there exists an ‘‘intense gets intenser’’

tendency in hot temperature and precipitation extremes. In

almost all land regions, the relative frequency changes are

larger for more extreme such events than for weaker events.
d Limiting global warming to no more than 28C above prein-

dustrial levels can substantially suppress the intensification

of hot extremes and precipitation extremes and slowdown

the disappearance of cold extremes.

FIG. 11. (a)–(d) Estimated relative changes in the 50-yr return values of Rx1day in 2071–2100 under the lower

SSP1–2.6 and higher SSP5–8.5 scenarios relative to 1985–2014 using a single simulation without spatial pooling and

an ensemble of five simulations fromCanESM5with a 33 3 spatial pooling. Stipplingmarks grid cells with robustly

constrained estimates, that is, for which the absolute ratio of an estimated change and its standard error is greater

than 5. (e) The fractions of the global surface with robustly constrained estimates of relative changes in 50-yr (solid

bars) and 2-yr (hatched bars) return values ofRx1day in 2071–2100 under the lower SSP1–2.6 (blue bars) and higher

SSP5–8.5 (red bars) scenarios relative to 1985–2014 using an ensemble of five simulations with spatial pooling. The

corresponding fractions obtained using a single simulation without and with spatial pooling are marked by green

and white lines, respectively.
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d To obtain robust projections of impact-relevant local tem-

perature and precipitation extremes, large initial-condition

ensemble simulations are needed. Appropriate spatial pooling

data of neighboring grid cells can, to some extent, reduce the

required ensemble size for climate extreme variable with weak

spatial dependence, such as precipitation extremes.

Overall, these conclusions based on new CMIP6 simulations

are in line with those from previous CMIP simulations, paint-

ing the same large-scale picture of more frequent and more

intense hot temperature and precipitation extremes if climate

warming is not limited. To obtain more robust estimates for the

rare 50-yr extreme events, we chose to analyze 30-yr time

windows rather than 20-yr windows as used in IPCC assess-

ment reports. For reference, we provide projected changes in

the intensity and frequency of temperature and precipitation

extremes in 2081–2100 relative to 1995–2014 in Figs. S19 and

S20, but caution that these results are somewhat more uncer-

tain because they are more strongly affected by internal cli-

mate variability.
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