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ABSTRACT OF THE DISSERTATION 

 

Framework for modeling and assessing anthropogenic influence on built and natural 

environments in a changing climate 

 
by 

Aneseh Alborzi 

Doctor of Philosophy in Civil and Environmental Engineering 

University of California, Irvine, 2021 

Professor Amir AghaKouckak, Chair 

 

Human-caused changes in water use, emissions, and land cover have increasingly impacted the 

natural and built environments. As a result, the natural hydrologic cycle has been disrupted, 

causing changes in the quantity and quality of water, extreme events (i.e., droughts and floods), 

and the ecosystem. Further, the warming climate has increased variability in the frequency and/or 

intensity of climatic hazards, elevating the complexity of water resources management and 

infrastructure systems planning and risk assessment. This study explores the human influence on 

extreme events and the resulting impacts on the built environment and infrastructure systems. 

Specifically, this dissertation addressed the following main objectives: (1) Evaluate compounding 

effects of meteorological drought and unsustainable water resource management contributing to 

catastrophic environmental degradation; (2) Investigate the notion of anthropogenic flood events 

where human disruptions have caused or intensified flood risk to unprecedented levels; and (3) 

Evaluate performance (i.e., factor of safety) of water infrastructure under anthropogenic climate 

change, and propose adaptive strategies toward climate-ready infrastructure systems. We 
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investigate major historical drought and flood events in which human activities have led to 

substantial regional impacts/losses. Then, we introduce frameworks for evaluating infrastructure 

performance under future climate projections and offer a path forward for climate-ready 

infrastructure planning and risk assessment. Finally, a conceptual iterative design framework is 

presented to show how the proposed adaptive design concept can be employed in practice. 
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Chapter 1        Introduction 
 

 

 

         

Population growth and industrial developments since the late 18th century have caused dramatic 

changes in the Earth system interactions (MEA, 2005; Steffen et al., 2007). During the 

urbanization and agricultural expansion, two primary drivers, including land cover change and 

resource use, have increasingly impacted the natural environments and the governing balances 

(Sala et al., 2000). As a result, the natural hydrologic cycle has been disrupted causing changes to 

the quantity, quality, and distribution of water. Further, land use changes have impacted runoff 

generation and groundwater replenishment (Vörösmarty et al., 2010; Mirchi et al., 2014; Nazemi 

and Wheater, 2014, 2015; Hassanzadeh et al., 2015; Mehran et al., 2017; Das et al., 2013; Milly 

et al., 2005; Pachauri et al., 2014; Wang et al., 2017). Change in water use often parallels change 

in land use, which leads to compounding hydrologic alterations on different spatial and temporal 

scales (Lee et al., 2011; Jarsjö et al., 2012; Destouni et al., 2013; Mehran et al., 2017). The surface 

and groundwater overdraft on the one hand and the massive human activities (e.g., deforestation, 

dam constructions) in river basins, on the other hand, have influenced extreme events (i.e., 

droughts and floods), natural environments, and ecosystem.  

 

          Further, due to the co-evolution of anthropogenic greenhouse gas emissions with land use 

and land cover changes, global warming has gradually emerged as a major challenge (Christidis 
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et al., 2011; Das et al., 2011; FEMA, 2016; Neumann et al., 2015a, 2015b; Reidmiller et al., 2018; 

Harvey, 2018). A warmer climate may increase evaporation and atmospheric moisture holding 

capacity, intensifying the hydrological cycle (Trenberth et al., 2007; O’Gorman & Muller, 2010; 

Scheff & Frierson, 2014). Over the past decades, human‐induced climate change has caused 

additional variabilities in the frequency and/or intensity of climatic, natural hazards such as 

droughts, heatwaves, floods, and hurricanes (e.g., Das et al., 2013; 72 Milly et al., 2005; Pachauri 

et al., 2015; Voss et al., 2002; Wang et al., 2017). The growing exposure of people and assets to 

extreme events has raised the impacts of related damages. For instance, several recent drought 

events in California, Spain, Brazil, China, and southern Africa (Jiang, 2009; Qiu, 2010; K. Xu et 

al., 2015; Silva et al., 2015; Van Loon et al., 2016a; Van Loon & Van Lanen, 2009; Diffenbaugh 

et al., 2015; Yuan et al., 2018) have resulted in costly events with the vast societal impacts (Di 

Baldassarre et al., 2018b; Etienne et al., 2016; Güneralp et al., 2015; Kreibich et al., 2019; Wilhite 

et al., 2007). On the other tail of extremes, more intense and frequent rainfall and flood events 

have been observed, leading to human disaster and substantial loss of assets and infrastructure 

(e.g., structural failure of Oroville Dam’s spillway, Vahedifard et al., 2017; Zhang et al., 

2007;  Westra, 2013, Cheng; 2014, Knutti, 2016, Mallakpour and Villarini, 2017). For example, 

in the United States, from 1980 until July 2020, inland floods have caused 617 deaths and over 

$150 billion of CPI-adjusted losses (NCEI, 2020). These observations highlight that the dramatic 

human influence is an important driver that has worsened the natural hazard’s impacts.   

           The compounding effects of human‐induced climate change with water and land use 

practices have elevated the complexity of resource (e.g., water, soil) management and 

infrastructure systems planning (Dale, 1997). Change in local water demand and reservoir 

management impacts water availability, leading to water scarcity and stress. However, hydrologic 
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and water resources studies have not adequately accounted for the human component in their 

hydrological and/or land-surface models (Barnett et al., 2006; Nazemi & Wheater, 2015; Mehran 

et al. 2015; Döll et al. 2012; Loucks 2015; Oki and Kanae 2006; Scanlon et al. 2012; 

Sivapalan 2015). More recently, a number of scholars have attempted to incorporate the impacts 

of human activities on local water availability (e.g., Alborzi et al., 2018; Ashraf et al., 2017, 2019; 

Castelletti et al., 2008; Garcia et al., 2019; Herman et al.,  2016; Srinivasan et al., 2018; You & 

Cai, 2008; Di Baldassarre et al., 2015; Montanari et al., 2013) and integrate infrastructure systems 

(e.g., irrigation and reservoirs) into hydrologic models (Mehran et al., 2016; Bertoni et al., 2019; 

Carmona et al., 2017; Castelletti et al., 2008; Draper et al., 2003; Gupta et al., 2020; Müller et 

al., 2016; Quinn et al., 2020; Rajsekhar & Gorelick, 2017). In an uncertain future with changing 

extreme patterns, compounding processes that involve feedback between humans and nature 

would be helpful to adaptive planning of infrastructure and extreme events management. 

          This study explores the human influence on extreme events and the resulting impacts on the 

local ecosystem and Infrastructure. Specifically, the focus is on modeling and assessing human 

activities in the natural and built environment. First, we study major historical drought and flood 

events, where human activities have led to massive regional losses/imapcts. We explore 

frameworks for quantifying human influence on the observed changes and societal impacts. Then, 

acknowledging the growing risk of climatic extremes, we introduce frameworks for evaluating 

infrastructure performance and risk assessment under future climate projections and offer a path 

forward for climate-ready infrastructure planning and management. This study strives explicitly 

to achieve three main objectives: 

(OB) 1- Evaluate compounding effects of meteorological drought and unsustainable water 

resource management contributing to catastrophic environmental degradation.    
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(OB) 2- Investigate the notion of anthropogenic flood events where human disruptions have caused 

or intensified flood risk to unprecedented levels. 

(OB) 3- Evaluate performance (i.e., factor of safety) of water infrastructure under anthropogenic 

climate change, and propose adaptive strategies toward climate-ready infrastructure systems. 

          In Chapter 2 (OB 1), we study the rapid shrinkage of Lake Urmia, one of the world’s largest 

saline lakes located in northwestern Iran, and its anthropogenic drivers. The objective is to set a 

framework for evaluating human impacts and deriving dynamic, climate-informed environmental 

inflows for drying lakes considering both meteorological/climatic and anthropogenic conditions. 

Using rich datasets of hydrologic attributes, water demands and withdrawals, as well as water 

management infrastructure (i.e., reservoir capacity and operating policies), we provide a 

quantitative assessment of the basin’s water resources including human activities. We explore a 

marked overshoot of the basin’s hydrologic capacity due to growing anthropogenic drought in the 

face of extreme climatological stressors. We offer a dynamic environmental inflow plan for 

different climate conditions (dry, wet, and near normal), combined with three representative water 

withdrawal scenarios. Finally, for different environmental inflow scenarios, we estimate the 

expected recovery time for re-establishing the ecological level of Lake Urmia.  

          In Chapter 3 (Ob 2), we investigate a number of flood events with an unprecedented spatial 

extent that hit different parts of Iran over the two weeks of March 17th to April 1st, 2019, causing 

a human disaster and substantial loss of assets and infrastructure. We investigate the natural (e.g., 

rainfall, snow accumulation/melt, soil moisture) and anthropogenic drivers (e.g., deforestation, 

urbanization, and management practices) of these events using a range of ground-based data and 

satellite observations. We evaluate the compounding impacts of natural drivers and anthropogenic 

triggers in escalating flood risks to unprecedented levels. We argue that a new form of floods, i.e., 
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anthropogenic floods, is becoming more common during the “Anthropocene”. This specific type 

of flood refers to events primarily caused or largely exacerbated by anthropogenic drivers. We 

demonstrate how the growing risk of anthropogenic floods can be assessed using a wide range of 

climatic and non-climatic satellite and in-situ data.                     

          Chapters 4 and 5 (Ob 3) study the reliability of water infrastructure (e.g., levees) subjected 

to the growing risk of future climatic extremes under future anthropogenic emissions. We use past 

and future projections to assess the exposure of infrastructure systems to investigate how 

engineering requirements are needed to adjust in a changing climate. The aim is to create 

frameworks that can help move toward achieving resilient infrastructure systems against natural 

hazards and climatic extremes. We develop a theoretical engineering risk models for considering 

the changing hazards and the impacts on infrastructure vulnerability and exposure, accounting for 

future uncertainties. The proposed framework will be used to evaluate adaptive approaches to 

infrastructure investment and management that account for strategic flexibility to promote 

robustness to many potential future challenges. 
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Chapter 2                      Anthropogenic drought     
 

 

 

 

 

 

Climate-Informed Environmental Inflows to Revive a Drying Lake Facing Meteorological 

and Anthropogenic Droughts 

 

 

Overview 

Global fresh water resources are under growing pressure due to over-allocation of surface water 

(Vörösmarty et al., 2000; Hoekstra et al., 2012) and groundwater resources (Wada et al., 2010; 

Gleeson et al., 2012; Ashraf et al., 2017). The compounding effects of human-centered water 

management and global environmental changes in the Anthropocene have altered the natural 

hydrologic cycle by changing the quantity and quality of water, as well as changing the time scale 

of the processes that replenish water resources (Vörösmarty et al., 2010; Mirchi et al., 2014; 

Nazemi and Wheater, 2014, 2015a, b; Hassanzadeh et al., 2015; Mehran et al., 2017). The 

disruption of regional water regimes around the globe due to increasing water stress is evident in 

the growing number of inland water bodies that are facing ecological degradation, especially in 

irrigated agricultural areas (e.g., Coe and Foley, 2001; Micklin, 2007; Ma et al., 2010; UNEP, 

2012; Hatchett et al., 2015; Barnum et al., 2017).  
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Prime examples of drying terminal lakes in endorheic basins include the Aral Sea in Central Asia 

(Micklin, 1988), Walker Lake and Great Salt Lake in the U.S. (Wurtsbaugh et al., 2017), Lake 

Chad in Africa (Gao et al., 2011), and Lake Urmia in northwestern Iran (AghaKouchak et al., 

2015). These alarming cases of lake level decline as well as other less dramatic incidents have 

been subjects of climate change scenario and impact assessments around the world (e.g., Coe and 

Foley, 2001; Schwartz et al., 2004; Ma et al., 2010; Mohammed and Tarboton, 2012; Shadkam et 

al., 2016). Water level serves as a key indicator of a lake’s stability (Ma et al., 2010). Lake level 

fluctuations depend on intra- and inter-annual hydrologic variability (Mei et al., 2015) and water 

management practices in the lake basin (Coe and Foley, 2001; Adrian et al., 2007; Ma et al., 2010). 

Determining whether the lake level change is primarily due to human factors or climate change 

bears important implications for lake restoration strategies. In theory, the chance of preserving 

lakes will be higher if human activities are the chief reason for the water level decline because of 

opportunities for taking real actions to improve water management in the lake basin.  

 

The shrinkage of Lake Urmia, to less than 20% of its average size (i.e., more than 5000 km2) over 

the last two decades (see AghaKouchak et al., 2015; Farzin et al., 2012; Pengra, 2012) is a recent 

exemplar of an emerging challenge related to unsustainable water management in the face of 

growing demand and climatic extremes. This designated UNESCO ecosystem and one of the 

largest saline lakes (Sima and Tajrishi, 2013; Karbassi et al., 2010) is located at the bottom of an 

approximately 52,000-km2 basin in northwestern Iran (Figure 1), which is home to about five 

million people close to international borders with Turkey, Iraq, and Azerbaijan (Iran’s Ministry of 

Energy (IME), 2013). With salinity levels ranging from six to approximately eight times higher 

than seawater, this shallow terminal lake is the largest natural habitat for brine shrimp Artemia 
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(Artemia Urmiana), which attracts diverse species of migratory birds (Barigozzi et al., 1987; 

Vahed et al., 2011; Ahmadi et al., 2011). Such massive decline in a lake area has been witnessed 

before in the Aral Sea Basin, where diverting Amu Darya and Syr Darya rivers during the Soviet 

era caused the lake to shrink to less than 10% of its original size (Micklin, 1988 and 2007; 

Gaybullaev et al., 2012). Remarkable parallels between unsustainable water resource management  

in the Lake Urmia and Aral Sea basins reinforce speculations of “the Aral Sea syndrome” being a 

key driver of Lake Urmia’s collapse (AghaKouchak et al., 2015), causing negative impacts on both 

wildlife and humans (Madani et al., 2016; Yamaguchi et al., 2012).  
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Figure 1 Lake Urmia Basin showing its 117 sub-basins, existing dams and the lake’s 

surface area. The white boundary displays the lake’s surface area in 1998 based on Landsat 

imagery. The dark blue area depicts the current boundary based on 2017 Landsat imagery (only 

showing area where water can be confidently detected from space).  

 

The contemporary environmental catastrophe in the Lake Urmia Basin is a tragic wake-up call to 

rethink the water resources management paradigm in water-scarce countries based on hard-learned 

lessons about the social, economic, and environmental dimensions of sustainability (Madani, 

2014). Since the onset of the lake’s shoreline recession around the turn of the 21st century, many 

researchers have investigated various aspects of the problem (Gholampour et al., 2015; Ghaheri et 

al., 1999; Ahmadzadeh Kokya et al., 2011; Barigozzi et al., 1987; Delju et al., 2013; Nikbakht et 

al., 2013; Farokhnia and Morid, 2014). The desiccation has been primarily attributed to climate 

change-induced meteorological droughts (e.g., Fathian et al., 2015; Vaheddoost & Aksoy, 2017; 

Arkian et al., 2018), as well as anthropogenic drought due to supply-oriented water management 

(e.g., Hassanzadeh et al., 2012; AghaKouchak et al., 2015; Shadkam et al., 2016; Zarghami et al., 

2017; Ghale et al., 2018). These studies have provided a high-level understanding of the problem, 

highlighting the need for and complexities of synergistic efforts to revive a drying lake that is 

effectively struggling with “water bankruptcy” (Madani et al, 2016). As shown in Figure 2, the 

drastic water level decrease after 1998 corresponds to a substantial increase (~25%) in surface 

water withdrawals to meet upstream potable and agricultural demands, which coincided with 48% 

decrease in runoff during the prolonged drought of 1998-2002. The largest water withdrawal of 

4.75 bcm/yr, of which 2.7 bcm/yr was supplied from surface water was triggered by rapid 

agricultural expansion (i.e., 14% increase in irrigation area; IME, 2014). The figure also illustrates 



10 

 

the basin’s recent wet (blue) and dry (red) periods as indicated by the standardized precipitation 

index (SPI; McKee et al., 1993) and the variability of naturalized runoff.  

 

 

Figure 2. Key attributes of the lake-basin system prior to restoration program in 2013, 

including observed lake level, standardized precipitation index (SPI), basin-scale naturalized 

runoff, and surface water withdrawal. The basin’s recent wet (blue) and dry (red) periods are 

illustrated in SPI and naturalized runoff curves. Post-1998 drop in lake level corresponds to a 

substantial increase (~25%) in surface water withdrawals during the prolonged drought of 

1998-2002. 

 

This study attempts to inform the ongoing debate about the causes of Lake Urmia’s shrinkage and 

the planned restoration efforts. It provides a quantitative assessment of the basin’s water resources 

and environmental water requirement as influenced by wet and dry periods, and anthropogenic 
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water withdrawals. Understanding the large-scale interplay of green water losses (i.e., consumptive 

water uses in the agricultural sector) and blue water availability (i.e., surface water and 

groundwater) (Allan, 1998; Hoekstra and Hung, 2002; Falkenmark and Rockström, 2004) 

superimposed by climate stressors in the basin is essential for effective restoration of Lake Urmia 

and preempting similar incidences in other areas. Re-establishing Lake Urmia’s ecological 

integrity provides a testbed to evaluate different lake restoration policies and action plans to curb 

and reverse the unfolding crisis. We examine the compounding effects of climate anomalies and 

anthropocentric water withdrawals in this highly regulated basin to restore the lake's designated 

ecological water level of 1274 meters above sea level (masl) used as a monthly and annual 

threshold based on water quality conditions (240 g/l of NaCl) required to preserve brine shrimp 

Artemia (Abbaspour and Nazaridoust, 2007). We develop an understanding of lake level changes 

using comprehensive datasets of water resources management infrastructure (i.e., reservoir 

capacity and operating policies), observed streamflow data, and agricultural and urban water 

demand data from 117 sub-basins. The chapter illustrates the need for developing a dynamic, 

climate informed environmental inflow plan to restore the lake’s ecological level. Furthermore, 

we investigate the lake’s expected recovery time under dynamic basin-scale water management 

scenarios compounded with a wide range of historical climatological conditions. 

 

Methodology and Data  

We divided the Lake Urmia Basin into 117 sub-basins (see Figure 1), ranging from 16 km2 to 3000 

km2 (average sub-basin size: 405 km2). The sub-basins were delineated based on the presence of 

streamflow gauges and/or dams as an outlet (i.e., Pour Point). For each sub-basin, we used 

observed streamflow data to represent the combined contribution of surface runoff and baseflow. 
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Instead of calculating irrigation water use through estimated soil moisture (i.e. from a hydrological 

or a land-surface model) implemented in previous basin-scale analyses of this lake (e.g., Shadkam 

et al., 2016), we used a sub-basin scale dataset of monthly agricultural water demands developed 

by local water authorities based on irrigated area and crop water requirement (IME, 2014). Thus, 

we accounted for green water losses over the basin and consequent reduction of the blue water 

flow to the lake. Likewise, the municipal and industrial demands at the sub-basin scale were 

obtained based on available monthly observational data (IME, 2013).  

MODSIM-DSS, a generalized network flow river basin model (Fredericks et al., 1998; Labadie 

and Larson, 2007) applied for this study, distributes the available water based on natural inflows, 

water demands, reservoir capacities and operating policies, and calculates the lake level based on 

excess water flow to the lake. This modeling tool has been widely used for basin-scale water 

resources planning (Graham et al., 1986;  Sprague and Carlson, 1982; Ahn et al., 2016; Berhe et 

al., 2013; Ashraf Vaghefi et al., 2017), and it is able to represent the supply/demand priorities. We 

coupled the sub-basin scale water resource system model with a monthly lake water balance model 

to better represent lake-basin interactions. Table 1 summarizes key input datasets and sources.   

The developed MODSIM-DSS model includes 17 large on-stream and off-stream operational 

reservoirs (i.e., capacity>5 mcm). These reservoirs collectively store up to 1,560 mcm of water, 

providing 97% of the total surface storage capacity in the basin (Figure 3). Physical characteristics 

and operating policies embedded in model inputs include: i) volume-area-elevation curves, ii) net 

evaporation rate, iii) maximum, minimum and initial reservoir capacities, and iv) reservoir water 

allocation priorities. Where cascaded reservoirs are present, the model is capable of simulating 

basin-scale coordinated operation of the reservoirs, i.e., upstream-downstream coordination to 

meet downstream demands. Without these reservoirs, upstream water could reach the lake quickly, 
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rendering an inaccurate representation of water availability in different parts of the basin. We used 

river discharge measurements and observed lake levels to validate the simulated basin-lake 

interactions. Simulated lake levels and lake inflows closely track the observational data (see 

Figures S1 through S3 in Appendix A), indicating reasonable model performance, also suggested 

by model efficiency coefficients (e.g., i) monthly lake inflow correlation coefficient (0.96), bias 

(15.5%), and Nash–Sutcliffe efficiency coefficient (0.9), and ii) monthly lake level correlation 

coefficient (0.96), bias (0.03%), and Nash–Sutcliffe efficiency coefficient (0.79)). Depending on 

the time of measurement, lake level elevation varies from 1270 m to 1278 masl with average 

elevation being 1275 masl (average depth: 5.4 m). 
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Figure 3. Detailed simulation of the water resources system in the Lake Urmia Basin 

using MODSIM-DSS. 
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For the lake scenario analyses (discussed below), a normal year is assumed to receive 350 mm of 

rainfall (IME, 2013; ULRP, 2016). Furthermore, we used monthly evaporation climatology with 

annual evaporation of 1100 mm/yr (ULRP, 2016) for the simulation period. This simplification 

was necessary due to unavailability of monthly evaporation time series for the entire simulation 

period. To validate this assumption, we compared the performance of the MODSIM-DSS model 

using both monthly evaporation climatology and available monthly evaporation time series for the 

period of 1982-2002 for which we had access to monthly lake evaporation. The comparison 

illustrates that lake levels are consistent with observations using monthly evaporation climatology 

(Figure S4 in Appendix A). Water demand is partially met using groundwater up to an observed 

rate of 2000 mcm/yr (IME, 2014). Given the lack of long-term records, we used different constant 

annual rates, but considering the monthly distributions for each sub-basin based on observations 

(IME, 2014). Under different water withdrawal scenarios, the annual groundwater withdrawals 

vary between 1650 mcm/yr to 2000 mcm/yr to supplement surface water supply. We acknowledge 

that lack of groundwater withdrawal time series introduces uncertainties in the simulations.  

Table 1 Datasets used for simulating the basin-lake interactions (Source: Various 

publications of IME) 

1 Dataset 
Spatial scale Temporal scale  

Lake level-volume-area curve -- -- 

Over-lake evaporation and 
precipitation 

Meteorological 
stations 

Monthly Average 
(1967–2012) 

Surface water supply Streamlines 
Monthly (1967–
2007) 

Surface water withdrawals 
and irrigated area             

Sub-basin 
 

Monthly (2012) 

Groundwater withdrawals 
Sub-basin 
 

Monthly Mean 
(2012) 
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We simulated the interactions between the upstream water resource system and Lake Urmia under 

scenarios that cover a wide range of climate conditions and water withdrawals combined (Figure 

4). The model uses naturalized runoff data to allocate water to different demand nodes. We 

estimated the naturalized runoff for each sub-basin by adding long-term upstream surface water 

withdrawals (including return flow) to streamflow gauge at the sub-basin outlet. The 

climatological scenarios are based on historic climate observations including baseline and near 

normal climatology and an observed historic drought (i.e., 48% decrease in runoff). The baseline 

period (1994-1998) is a relatively wet period that precedes the drastic decrease in the lake area. 

The most extreme drought condition corresponds to 1998-2002 (hereafter, referred to as drought 

of record scenario). We consider 2003-2007 a near normal period after the 1998-2002 drought 

because natural runoff during this period is close to long-term mean (1967-2012, 6500 mcm/yr). 

Water demand scenarios include historical baseline, maximum demand, and target demand 

reduction. Baseline demand refers to pre-drastic change in lake levels and water withdrawals (i.e., 

pre-1998). Maximum demand is associated with rapid increase in the overall water withdrawals 

(i.e., 2003-2012) and it is the most extreme case investigated in our analysis. Target demand is 

based on the recommendation of the Urmia Lake Restoration Program (ULRP, 2016) that calls for 

an aggressive 40% decrease in 2013 agricultural water use over a 5-year period (ULRP, 2016). 

The combination of these scenarios helps evaluate the compounding effects of climatic and 

anthropogenic conditions on the lake’s water level. 

For all nine coupled scenarios (i.e., permutations of three inflow scenarios and three demand 

scenarios) depicted in Figure 4, we investigated both basin-scale water stress and associated 

changes in the lake level. We used a modified version of the water resources vulnerability index 

(Raskin et al., 1997), in which Environmental Flow Allocations (EFA) are included in Water Stress 
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Index (WSI) calculations alongside Human Water Withdrawals (HWW; see Smakhtin et al., 2005; 

Averyt et al., 2013; Pastor et al., 2014). The dimensionless WSI characterizes the stress imposed 

on the Total Water Resources (TWR) defined as the summation of both available surface water 

and groundwater resources (Raskin et al. 1997; Vörösmarty et al., 2005).  

  ��� = ���� 	
�
��                                                         

(1) 

The modified water resources vulnerability index accounts for environmental withdrawals in the 

water stress index formulation. A WSI of 0.6 represents a moderately exploited basin and WSI 

values above this threshold indicate that the basin is heavily exploited (Smakhtin et al., 2005). 

Here, we consider the environmental inflow requirement of 3100 mcm/yr as Lake Urmia’s annual 

ecological demand in the historical scenarios (Abbaspour and Nazaridoust, 2007). The lake’s 

required ecological flows were not delivered reliably prior to the implementation of the restoration 

plan in 2013 due to lower priority of environmental flow compared to human water use. 

Furthermore, we evaluate the sensitivity of the minimum inflow requirement to lake level 

dynamics as a critical boundary condition for effective re-establishment of the target ecological 

level of the lake.  
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Figure 4. MODSIM-DSS model inputs and outputs along with climate and demand 

scenarios. 

 

Results and Discussion 

Assessment of climate-demand scenarios 

Figure 5 summarizes the WSI over the basin along with the percentage of change in the lake’s 

level relative to baseline under the combined climate-demand scenarios. The results show high 

water stress under all nine scenarios. The basin-wide WSI under an intentionally optimistic 

scenario of wet period combined with Urmia Lake Restoration Program (ULRP) target demand 

stands at an alarming level of 60% (i.e., moderately exploited basin). The WSI increases to about 

80% under maximum observed demand during wet period, indicating heightened vulnerability in 

a heavily exploited basin. A similar increasing trend is detected during the near normal period 
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when the WSI exceeds 80%. In an extremely dry period, in which the annual runoff reduces by 

48% (compared to the baseline wet period), the lake is gravely vulnerable to increases in 

anthropogenic water demands, elevating the WSI to a distressing level of 90%. Percentages of 

annual change in lake depth (relative to baseline) over the five-year simulation periods (1994-

1998, 1998-2002 and 2003-2007) show an increasingly divergent, declining trend of lake-basin 

interactions under near normal and dry period scenarios, compounded with larger water demand 

scenarios. The increasing range in boxplots corresponding to change in lake level (Figure 5) 

illustrates higher vulnerability of the lake to human water withdrawals in dry condition. 

In a wet climate and under the maximum demand scenario, the lake level drops by 10%, which 

highlights the significance of anthropogenic demand alone on the lake water depth. However due 

to ample surface runoff during a wet period, the lake level remains above the prescribed ecological 

threshold. Unlike the wet period, the lake is vulnerable to anthropogenic demand during a near 

normal condition and the lake-basin interactions under the ULRP target demand will be at a fragile 

hydrologic balance. This means that any rise in demand above the targeted values leads to lake 

level dropping below the ecological threshold. Notably, even a 5% increase in water demand 

during the near normal condition pushes the lake level below the ecological level. Expectedly, the 

largest decline in the lake level (i.e., 1.5m drop below the ecological threshold) occurs during the 

dry period with maximum observed demand, which is the most extreme case in our analysis. This 

result confirms the “double devil effect” of 25% increase in water withdrawal in the Lake Urmia 

Basin during the drought of 1998-2002 that pushed the lake water budget severely out of balance 

and caused a lasting, drastic drop in the lake level (Figure 5). 

 



20 

 

 

Figure 5. Water Stress Index (WSI) in percentage over the lake basin (green boxplot) and 

the percentage of change in the lake level relative to the baseline (gray boxplot) under different 

combinations of climate-demand scenarios. Shaded regions represent wet baseline (purple), near 

normal (yellow), and dry (pink) periods. Dashed vertical lines demarcate three demand 

scenarios (i.e., target reduction (40%), baseline, and maximum historical) in each period.  

 

Lake level departure from the ecological threshold 

Figure 6 illustrates the sensitivity of lake level to different combinations of total available water 

resources (including both surface water and groundwater) and total water withdrawal over the 

basin. The contours were derived from lake level as a model output under different simulation 

scenarios, which depends on water withdrawals (X axis) and available water resources (Y axis). It 

is important here to distinguish between basin-scale total water withdrawal and water demand; 

total water withdrawal depends on the water availability in the basin, and therefore, it may be 

smaller than the total water demand. With a low supply reliability of 55% to 80% (IME, 2013), 
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the Lake Urmia Basin faces water deficit, which necessitates water use restrictions. Sectoral water 

demands are met according to ordinal allocation priorities of domestic, industrial, agricultural, and 

finally environmental needs. Total water availability (5500 mcm) and water withdrawal (3500 

mcm) over the basin during the drought of 1998-2002 caused the lake level to fall to around the 

1273.5 contour line (Figure 6a), which is consistent with the observed lake level in the aftermath 

of this prolonged drought.  

We examined the sensitivity of the lake’s environmental inflow requirement to initial lake level as 

a boundary condition in order to quantify the implications for maintaining the lake’s ecological 

level. Figure 6b illustrates the results of lake level contours under coupled climate-withdrawal 

scenarios for initial lake levels of 1275 masl, 1274 masl, and 1273 masl, which represent water 

levels above, at, and below the ecological level, respectively. The lake’s ability to absorb water 

stresses while remaining above the critical threshold (i.e., safe ecological zone) declines 

significantly when the initial lake level decreases as indicated by dramatic decline of the estimated 

lake level. In the case of low initial water volume, a moderate withdrawal in a near normal climate 

condition may drive the lake level below the critical ecological threshold. This effect is seen in the 

post-drought scenario when low runoff for three consecutive years resulted in lake level decline 

(1373.5 masl) below the critical level. Although the region had near-normal precipitation and 

runoff immediately after the drought of record (i.e., during the 2003-2012 period), the lake levels 

continued to fall due to growing water withdrawal and failure to increase the lake’s environmental 

inflow. These results demonstrate the need to prescribe dynamic, climate-informed environmental 

inflow requirements to sustain the lake as opposed to the existing, static ecological water demand 

of 3100 mcm/yr.  
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Figure 6. Average lake level contours under different combinations of water availability 

and water withdrawals with the initial lake level fixed at 1274 masl (a), and when the initial lake 

level is changed as a variable boundary condition (b). 
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Lake Urmia’s tipping phase and recovery trajectory 

Lake Urmia reached a tipping point in the early 2000’s when the lake basin's hydrologic carrying 

capacity was significantly exceeded due to compounding pressures from climatological factors 

and unsustainable water management practices. Improved understanding of the compounding 

stressors will be critical to devise an effective restoration process for implementation within a 

realistic timeframe. The remarkable contrast between lake level simulations under natural (i.e., 

excluding anthropogenic withdrawals) and existing conditions reveals the critical role of 

anthropocentric water management in creating this environmental catastrophe. The lake’s severely 

disrupted water balance failed to rebound after the drought of record because the cumulative effect 

of the routine practice of increasing water diversions to keep up with growing upstream water 

demand acted as “the last straw that broke the camel’s back.” Our simulations show that by 1998, 

total water withdrawals in the basin had already overshot the basin’s hydrologic capacity to sustain 

the lake, although in reality, water withdrawals continued to increase beyond 1998 levels. Even 

water withdrawals 40% lower than 2012 withdrawals (i.e., target withdrawal reduction for 

restoration) would not have been sufficient to prevent a significant decline in the lake level below 

the ecological level immediately after the drought of record, although the reduction would have 

markedly ameliorated the situation. Simulation results show that maintaining the lake’s ecological 

level would have been attainable by keeping water withdrawals 55% lower than the 2012 levels. 
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Figure 7. Lake Urmia level under different water withdrawal scenarios. The natural 

system simulation (i.e., no anthropogenic withdrawals) and different withdrawal scenarios 

illustrate the overshoot of the basin’s hydrologic carrying capacity to sustain the lake due to 

anthropocentric water management after an extreme drought. 

The key structural and non-structural restoration measures set forth by the ULRP include re-

connecting the tributaries and the lake, major water transfers from trans-boundary river basins 

(e.g., Zab and Silveh Dam), limiting additional water withdrawal in the basin, and paying farmers 

to fallow the surrounding agricultural lands, among others (ULRP, 2016). Water conservation 

practices in various demand sectors across the lake basin will be crucial for moving in the direction 

of recovery and should be prioritized. This is particularly important based on the lessons learned 

from implementing various inter-basin water transfer projects to address water shortage problems 

in the central plateau of Iran, where the problems have persisted despite artificial increase of 

surface water supply (Gohari et al., 2013; Gohari et al., 2017). Adoption of low water consuming 

crops (e.g. grape) in the basin along with increasing irrigation efficiency with the ultimate goal of 

reducing net water consumption can facilitate the attainment of an ambitious 40% decrease in 

withdrawals as prescribed by the ULRP (ULRP, 2016). 
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Our analysis suggests that the Urmia Lake Restoration Program (ULRP) timeline is overambitious  

(Figure 8). Depending on climatic conditions and assuming effective implementation of the 

proposed 40% reduction in the current water withdrawal, the required environmental inflows range 

from 2900 mcm/yr (during dry conditions) to 5400 mcm/yr (during wet conditions) with the 

average being 4100 mcm/yr. Under a more realistic 20% water withdrawal reduction these values 

are estimated to range from 3100 mcm/yr (during dry conditions) to 4900 mcm/yr (during wet 

conditions) with the average being 4000 mcm/yr. Despite restoration efforts after 2013, the lake 

level in 2017 was more than 3m below the ecological threshold after reaching a post-collapse 

maximum of 1271.3 masl that has been attributed to implementation of a stabilization phase from 

2014 to 2016, and large precipitation events in a relatively normal hydroclimatic period. 

Enforcement of the 40% decrease in agricultural water withdrawals through purchasing water 

rights within a five-year period starting in 2015 is a key measure of the ULRP during the 

rehabilitation phase (i.e., 2017-2022). Using the observed lake level in 2017 as the initial condition, 

we investigated the sensitivity of the lake’s ecological level recovery timeline to reducing the 

agricultural water withdrawals by projecting lake level into the future under different climate 

scenarios. Figure 8 shows that under scenarios of increased aridity, when meeting the 

environmental inflow requirement of the lake will be difficult, restoring the ecological level can 

take up to 16 years, even if the proposed 40% reduction in agricultural water withdrawal is realized. 

Failing to reduce agricultural water withdrawals and/or providing the environmental inflows will 

result in delaying the attainment of the ecological level.  
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Figure 8. Environmental inflow along with estimated timeframe to restore to ecological 

level (1274 masl), considering 20% and 40% decrease in water withdrawals over the basin, 

given the initial lake level of 1270.7 masl. Long-term mean (i.e., 1967-2012) naturalized runoff 

in the Lake Urmia Basin is estimated at 6500 mcm/yr).  

 

The lake is currently in grave need of receiving adequate environmental inflows. The natural flow regime 

(Poff et al., 1997) provides a theoretical framework for implementing ecosystem-based water management 

in the Lake Urmia sub-basins to mitigate adverse socio-ecological impacts. To this end the ULRP includes 

radical proposals to revive the lake, e.g., operating the reservoirs exclusively for lake restoration purposes, 

as well as improving the monitoring and regulation of surface water and groundwater withdrawals (ULRP, 

2016). However, transitioning to an ecosystem-based water management paradigm by meeting dynamic 

environmental inflows in the Lake Urmia Basin is evidently difficult because of the presence of multi-

sectoral tradeoffs (e.g., financial losses to stakeholders and population redistribution) that put the 

agricultural economy and socio-ecological sustainability at odds. On the one hand, the water resources that 

are exploited beyond the basin’s natural supply capacity are supporting agrarian and urban livelihoods with 

significant green and blue water footprints (Hoekstra and Chapagain, 2006; Mekonnen and Hoekstra, 2011). 
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On the other hand, the loss of tourism (Maleki et al., 2018) and potential public health effects due to salt 

blowouts from the exposed lake bed (Griffin and Kellogg, 2004) are side-effects that have considerable 

socioeconomic implications. The high water stress even during wet periods underscores the prevalence of 

a chronic anthropogenic drought. To cope with this situation, investigating an “environmental hedging” 

approach guided by hydrologic and biologic forecasting (Adams et al., 2017) may offer a practical strategy 

to facilitate progress towards ecological recovery of the lake while meeting human demands within the 

constraints of basin scale water availability and ecological functions of Lake Urmia.  

 

Conclusions 

The Lake Urmia Basin in northwestern Iran is an exemplar of how unsustainable water 

management to meet growing water demand can create massive socio-ecological challenges. We 

developed a detailed water resources systems model of the basin to investigate the causes of Lake 

Urmia’s shrinkage based on a quantitative assessment of the water balance under wet and dry 

periods and water withdrawal scenarios. Furthermore, we evaluated potential effectiveness of the 

planned restoration measures. Our simulations include comprehensive datasets of water resources 

management infrastructure (i.e., reservoir capacity and operating policies), observed streamflow 

data, and agricultural and urban water demand data from 117 sub-basins. Results demonstrate that 

a growing anthropogenic drought combined with meteorological drought drove the lake toward a 

state of hydrological overshoot and collapse. The rapid water level decline after the drought of 

record (1998-2002) when annual runoff decreased by 48% is synchronous with an approximately 

25% increase in surface water withdrawals, especially in the agricultural sector, which continued 

long after signs of the lake’s tipping phase appeared. The lake level remained significantly below 

the designated ecological threshold (1274 m above sea level) even in a relatively normal period 
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immediately after the drought. In the absence of the unsustainable water resources development 

and growing anthropogenic water stress, the lake would have resisted the climatologic shock 

without collapsing.  

 

Re-establishing Lake Urmia’s ecological integrity requires aggressive restoration policies and 

action plans aimed at maintaining environmental inflows in the face of compounding climate 

anomalies and water withdrawals. A dynamic and climate-informed environmental inflow plan is 

critical for reviving the lake. Taking into account both climatic conditions and assuming the 

already proposed 40% reduction in the current water withdrawals, we estimate that the lake’s 

environmental inflow requirements range from 2900 mcm/yr (during dry conditions) to 5400 

mcm/yr (during wet conditions) with the average being 4100 mcm/yr. These estimates for a more 

realistic 20% water withdrawal reduction would be 3100 mcm/yr (during dry conditions) to 4900 

mcm/yr (during wet conditions) with the average being 4000 mcm/yr. Depending on the climatic 

condition, water withdrawal reduction plan, and environmental releases, Lake Urmia’s recovery 

time can range from 3 to 16 years.  
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Chapter 3                              Anthropogenic flood 
  

 

 

 

 

 

The Tale of Three Floods: From Extreme Events and Cascades of Highs to Anthropogenic 

Floods  

 

Overview 

 

Flood damages are increasing globally as growing anthropogenic activities in floodplains and 

changing rainfall extremes raise the exposure of people and assets to flooding (Jongman, 2018; 

Paprotny et al., 2018; Ragno et al., 2018; Solomon et al., 2007; Winsemius et al., 2015; Youssef 

et al., 2011). The observed upward trend in flood damages is more pronounced in developing 

countries (Jongman et al., 2012; Seyedin et al., 2017) such as Iran where increased flood risk is 

closely associated with rapid development (Heidari, 2009; Norouzi and Taslimi, 2012; Razavi et 

al., 2020). Iran experienced floods of unprecedented spatial extent over a two-week period (March 

17-April 1, 2019) when high precipitation occurred after a multi-year dry period in a vast area of 

the country (Dezfuli, 2020; Jaafari, 2019; Sharifi et al., 2012; Tabari et al., 2013), impacting 10 

million people and causing 76 casualties and damages to 3800 cities and villages (France-Presse, 

2019; Shahabi et al., 2020; Shokri et al., 2020; Yadollahie, 2019).  
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Similar to many other parts of the world, particularly in Africa and Asia (Chang et al., 2009; 

Jongman, 2018; Jongman et al., 2012; Smith, 2001; Youssef et al., 2011), flood damages in Iran 

have increased by about 250 percent during the past decades (Khosravi et al., 2016; Norouzi and 

Taslimi, 2012; Shabanikiya et al., 2014; Yari et al., 2019). The rising flood impacts are primarily 

attributed to anthropogenic activities such as increased exposure, urbanization, deforestation, and 

land use change (Alfieri et al., 2015; Alfredsen, 2017; Bronstert, 2003; Garner et al., 2015; 

Kjeldsen, 2010; Tehrany et al., 2015; Wheater and Evans, 2009), although increases in extreme 

rainfall events have also been reported globally (Change, 2012; Dettinger et al., 2016; Mallakpour 

et al., 2018; Pierce et al., 2013; Ragno et al., 2019; Read and Vogel, 2015; Swain et al., 2018; 

Vahedifard et al., 2017). In northern, western, and southern parts of Iran where the recent floods 

occurred, contributing river basins have undergone considerable urbanization, construction of 

dams and levees, land cover change (e.g., agricultural expansion), and deforestation, altering the 

basins’ natural drainage capacity and river channels significantly (Heidari, 2009; Razavi et al., 

2020).  

 

Herein, we examine the potential causes of three different floods, including one single extreme 

event, one cascade of high events, and a non-extreme rainfall event, all leading to significant 

damages. Since flood formation depends on the dynamics of precipitation, soil moisture, and snow 

accumulation/melt, we initially discuss the causes of these events based on statistical analyses of 

ground-based rainfall data and satellite-retrieved data of snow cover (from Moderate Resolution 

Imaging Spectroradiometer, MODIS) and soil moisture (from Soil Moisture Active Passive, 

SMAP mission) – see the Data and Methods Section. To explore the change in the return period 

of the extreme rainfalls, we employ Process-informed Nonstationary Extreme Value Analysis 
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(ProNEVA (Ragno et al., 2019) – see the Data and Methods Section) that allows incorporating 

changing extremes in frequency analysis. Further, we investigate potential climatic indicators 

including shifts in precipitation timing and a transition to rain-over-snow to investigate their 

possible impacts on the severity of the resulting flood. To understand how these events turned into 

a disaster, we highlight some of the anthropogenic factors that exacerbated the flood impacts. We 

estimate the increasing deforestation rate in the Golestam Province based on MODIS land cover 

dataset, and quantify urbanization in the city of Shiraz, through a comparative rural-urban 

settlement classification model (GHS-SMOD), which integrates the degree of urbanization 

(DEGURBA) into the Global Human Settlement Layer (GHSL). The study demonstrates a critical 

need to revisit floodplain planning and development policies, as well as flood protection 

infrastructure maintenance under an uncertain future climate. 

 

Results  

Golestan Flooding 

The first major flood event was caused by a series of frontal precipitation events (March 17-22, 

2019) that affected northern parts of Iran(“Floods Ravage Iran and Iraq,” 2019). Some parts of 

Golestan Province received as much as 50% of the local mean annual rainfall in three days, e.g., 

338 mm at TooskaChal Station; the largest daily (and even 3-day) rainfall accumulation on record 

in over 70 years of observations (Beitollahi et al., 2019b). Considering the Gorgan Gage Station 

data, while the 6-hourly annual rainfall maximum in 2019 was not an extreme event 

(approximately a 5-yr rainfall event), the daily annual rainfall maximum was significantly larger 

than the second most extreme observation (Figure 9). Using ProNEVA (Ragno et al., 2019), the 
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March 2019 extreme daily rainfall had a return period of 223 years (See Methods Section for 

details). If we exclude the March 2019 event from the rainfall frequency analysis, the event would 

have a return period of > 400 years. The March 2019 event increased the 100-year daily extreme 

rainfall from 117 mm/day to 127 mm/day (~ 8% increase in what was considered a 100-year event 

prior to March 2019). This highlights the significance of one single exceptional observation on the 

return period of extremes, which will have implications for flood protection infrastructure risk 

assessment (results from other gage stations with shorter records are presented in Appendix B, 

Figure S2).  
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Figure 9 (a) Annual maxima precipitation (24-hourly and 6-hourly) at Gorgan Station; 

(b) 24- hourly and (c) 6- hourly return levels for different return periods. The median (solid red), 

5th and 95th percentiles (dashed green) were derived based on the methodology described in 

Ragno et al. (2019).                  

 

On closer assessment, while the region’s annual rainfall exhibits a downward trend, the annual 

rainfall maxima have an upward trend (significant at 0.02, Figure 10a). This indicates the 

occurrence of fewer wet years with intensified extreme events in the past decades, possibly due to 

intensification of the hydrologic cycle (Das et al., 2013; Milly et al., 2005; Pachauri et al., 2014; 

Wang et al., 2017). This observation is consistent with evidence from other parts of the world, 

indicating that rainfall extremes have intensified most likely in response to atmospheric warming 
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(Feng et al., 2016; Fischer and Knutti, 2016; Kunkel et al., 2013; Marvel and Bonfils, 2013; Min 

et al., 2011; Zhang et al., 2007).   

 

A warming climate is also expected to have an impact on the timing of extreme precipitation 

(Blöschl et al., 2017; Change, 2012; Ficchì and Stephens, 2019; Merz and Blöschl, 2003; Parajka 

et al., 2010; Sarauskiene et al., 2015). Based on the long-term records at Gorgan Station, the annual 

maxima precipitation typically occurs between October to December (Figure 10b). However, the 

2019 extreme precipitation event happened in late March, when on average only 7 % of the 

extremes occurred in the past. Rain-over-snow in the case of spring extreme rainfall events can 

exacerbate flooding potential through significant snowmelt. However, in this particular case, the 

rain-over-snow phenomenon is unlikely to have had a major magnifying effect on flooding since 

the snow cover of the region increased significantly during the event (Figure 10c). Thus, the 

delayed extreme precipitation in March 2019 reflects a late winter storm, the likes of which have 

been reported in other parts of the world such as the North Sea and the Mediterranean coast 

(Blöschl et al., 2017). In terms of extreme streamflow timing, the March 2019 flood in Golestan 

differs from GorganRood’s damaging flash floods, which typically happen during summer (e.g., 

August 2001 causing 300 fatalities, August 2002, and August 2005 (Ardalan et al., 2009)).  
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Figure 10 (a) Annual cumulative precipitation and daily annual rainfall maxima over 

time at Gorgan Station;(b) the months in which the daily annual rainfall maxima occurred; c) 

snow cover before (left) and after (right) the March 2019 heavy precipitation in Golestan 

Province.  

Although the 2019 rainfall event was indeed an extreme (return period more than 200 years), we 

contend that the flooding in Golestan was exacerbated by anthropogenic activities, primarily 

deforestation and poor disaster management. Deforestation has intensified over the past decades 

in the northern parts of Iran, including Golestan, due to urbanization and agricultural expansion 

(Jaafari et al., 2014; Khosravi et al., 2016; Kiani et al., 2004). Using Moderate Resolution Imaging 

Spectroradiometer (MODIS) 500-meter satellite-based land cover data (Parker et al., 2003), we 

estimate Golestam Province’s deforestation between 2006 and 2016 to be about 11%, which is 

approximately 300 km2 (Figure 11). The effects of deforestation on intensification of floods have 
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been documented in numerous publications (Bronstert, 2003; Mahtab and Karim, 1992; Marengo 

and Espinoza, 2016; Sternberg, 1987; Tan-Soo et al., 2016).    

Some short-term management decisions may have also contributed to the severity of the Golestan 

flooding. The reservoirs in the region (e.g., Golestan Dam) were nearly full even two weeks prior 

to the flood event. Given the previous droughts, reservoir operation in the region primarily focused 

on storage conservation rather than making releases to increase flood storage capacity. In fact, at 

least three regulating dams in the GorganRood Basin (i.e., Voshmgir, Golestan, and Bostan) were 

operating higher than the flood control zone (up to 154% of the sum of dead, active, and flood 

storages) during the 2019 flood (Beitollahi et al., 2019b). We postulate that this may have 

intensified the effect of flooding downstream of the dams when large releases were finally made 

to accommodate the incoming flood. We note that the March 2019 flood in Golestan was quite 

vast in spatial scope (see Figure S1 in Appendix B). The water pools remained in the downstream 

inundated areas for weeks after the event. The Sentinel satellite images (Figure S1) show flood 

inundation 5 days after the event in AqQala; the most affected city. Incorporating rainfall and flood 

forecasts in reservoir management, could have partially reduced the inundation and associated 

impacts. 
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Figure 11. Land cover types in Golestan Province showing significant deforestation over 

a 10-year period. The dark and light green regions display the mixed and deciduous broadleaf 

forests’ surface area (canopy >2m) in 2006 (a) and 2016 (b) based on NASA’s MODIS data. The 

bar chart depicts deforestation percent change (orange bar) and deforestation area in km2 (blue 

bar) in 2016 relative to 2006.   

 

Shiraz Flooding  

A devastating flash flood (50 cubic meters per second (cms)) hit the fifth most populated city of 

Iran on March 25, 2019, leading to the highest flood-driven fatal loss in the city of Shiraz in the 

past decades ( 2019). Although the bare and steep mountain hills (slopes up to 60%) of the small-

scale Darvazeh Quran basin (24 km2) potentially triggered flash flooding during the short-duration 

intense rainfall, several man-made changes greatly altered the hydraulic behavior of this catchment 

(AbZangi) and the corresponding main water basin of Khoshk River (Beitollahi et al., 2019a; Zare 

and Talebbeydokhti, 2018). The Khoshk River in Shiraz experienced several major floods during 

Fall 1986, Winter 1993, and Spring 2002; however, no severe flood had been previously recorded 

in the small Darvazeh Quran Catchment with an ephemeral channel. Based on ProNEVA and the 

Generalized Extreme-Value (GEV) distribution, both daily and 6-hourly annual rainfall maxima 

in 2019 were not extreme events (approximately less than a 5-yr rainfall event, Figure 12). This 
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reinforces the hypothesis that human-induced changes in the basin caused a record flood event in 

Shiraz (with a long-term mean precipitation of 344.2 mm) despite the non-extreme nature of the 

March 2019 rainfall. To quantify the process of urbanization in the Darvazeh Quran Catchment, 

we further employed a comparative rural-urban settlement classification model (GHS-SMOD, 

Figure 13) (Englhardt et al., 2019; Melchiorri et al., 2018). The urban-rural area associated with 

the Darvazeh Quran Catchment increased about 8 km2 in the time span of 1975 to 2015, which 

accounts for almost one third of the entire basin creating favorable conditions for a flashy 

hydrograph, characteristic of severely urbanized catchments.  

 

Figure 12. (a) Annual maxima precipitation (24-hourly and 6-hourly) at Shiraz Station. 

(b) 24- hourly and (c) 6- hourly return levels for different return periods. The median (solid red), 

5th and 95th percentiles (dashed green) were derived from ProNEVA (Ragno et al., 2019).             
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The most significant change in the basin, however, occurred in the 1980s, when the ephemeral 

river canyon was filled and replaced with a 1.5 m diameter concrete pipeline to construct a road 

project (Beitollahi et al., 2019a). Draining the stormwater is critical because of the basin’s 

collecting pool is located about 300 m upstream of the Darvazeh Quran Monument (Beitollahi et 

al., 2019a) – one of the main entrances of the city and a tourist attraction on a major transportation 

route. The 2019 flood discharge surpassed the 12-cms maximum capacity of the pipeline and 

created a catastrophe. Flood losses due to substituting natural river canyons with much smaller 

artificial conduits had happened previously in the 2002’s Shiraz flood over the main basin of 

Khoshk River (Zare and Talebbeydokhti, 2018). The 2019 incident provides a clear evidence for 

the need to re-evaluate flood hazard in development projects in these flood-prone areas, and 

possibly modify the flood protection infrastructure in Shiraz and similar areas, especially in 

environments where the natural landscape has been drastically altered. 

 

 

Figure 13. Degree of urbanization in the city of Shiraz for reference epochs: (a) 1975 

and (b) 2015 based on comparative rural-urban Settlement classification MODel (GHS-SMOD). 

Red solid line shows the Darvazeh Quran Catchment where the March 2019 flood occurred 

before the basin outlet.  
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Lorestan Flooding  

In the western-southern region of Iran, a frontal precipitation system caused extreme flood events 

on April 1, 2019 in two important river basins (Karkheh and Karoon Basins). The severe flooding 

occurred soon after a prior heavy rainfall event in the same region on March 25 (the same event 

that caused significant damages in Shiraz discussed in the previous section). The most significant 

impacts were observed in KhorramAbad, PolDokhtar, and Mamulan located in the Lorestan 

Province upstream of the strategic Karkheh Dam.         
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Figure 14. (a) Annual maxima precipitation (10-day, 24-hourly, and 6-hourly) at 

KhorramAbad Station; (b) Surface  soil moisture (mm) during 2016 and 2019 heavy 

precipitation events from the NASA-USDA SMAP Global soil moisture dataset at 0.25°x0.25° 

spatial resolution; (c & d) 24-hourly (left) and 10-day (right) return levels for different return 

periods. The median (solid red), 5th and 95th percentiles (dashed green) were derived from 

Ragno et al. (2019).                              
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To identify the main natural drivers of the flood, we explored long-term hourly to 10-daily extreme 

precipitation and the influence of 2019 precipitation events on snow cover and soil moisture 

change in the region. The 6-hourly annual rainfall maximum in 2019 at the KhorramAbad Station 

(Figure 14) was not an extreme event (approximately a 5-yr rainfall event) based on the extreme 

value theory (see the Methods Section). The daily annual rainfall maximum (approximately a 60-

yr event), however, was the largest on the historical record (1951-2019). It is worth noting that 

similar rainfall magnitudes were previously recorded at the KhorramAbad Station. For example, 

the daily annual rainfall maximum back in 2016 was almost the same as that of 2019. However, 

the 10-daily annual rainfall maximum in 2019 appears to be a 142-year event – significantly larger 

than the second most extreme 10-day observation (April of 2016). Nearly saturated antecedent soil 

moisture condition due to the extreme rainfall (e.g., 108 mm in PolDokhtar City) five days prior 

to the April 1st flooding is deemed to have resulted in a much larger runoff volume in the latter 

flood event. NASA Soil Moisture Active and Passive (SMAP (Brown et al., 2013; Entekhabi et 

al., 2010; Massari et al., 2018)) soil moisture observations (Figure 14b) confirm elevated levels of 

soil moisture prior to the April 1 flood in Lorestan. Figure 14 highlights the cascading effect of 

two back-to-back rainfall events with an approximate return period of 60-yr (5 days apart) leading 

to the region’s most significant flood on record (Figure S2).    
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Figure 15. (a) Annual cumulative precipitation and daily annual rainfall maxima over 

time at KhorramAbad Station; (b) The months in which the daily annual rainfall maxima 

occurred. (c) Snow cover before (left) and after (right) the late March 2019 heavy precipitation 

in Lorestan (2019/03/22-2019/03/30 and 2019/03/31-2019/04/05).  

 

The upward trend detected in the annual rainfall maxima at the KhorramAbad Station (significant 

at 0.04, Figure 15a) indicates intensification of extreme precipitation events in the past decades. 

With respect to the timing of the annual rainfall maxima, the late March 2019 extreme precipitation 

event happened within the period (February to April) annual maxima typically occurs (Figure 15b). 

We further explore the snow cover change obtained from the NASA’s MOD10A1 V6 daily global 

snow cover dataset at 500-m spatial resolution (Figure 7c) because rapid loss of snow (e.g., due to 

rain-over-snow or rapid warming) can be a major flood driver in snow dominated regions like 
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Lorestan. Substantial decrease in the snow cover before and after the flood suggests that rain-over-

snow likely led to rapid snowmelt, which intensified the flood (PolDokhtar: 5000 cms 

(MohebZade Fattahi, 2019)) (Figure 15c). This may reflect the rise in earlier spring snowmelt 

floods that have been observed in other regions such as northeastern Europe (Blöschl et al., 2017), 

central US (Smith and Schwartz, 2019), and California (Pierce et al., 2018; Vahedifard et al., 2017) 

due to either an earlier snowfall-to-rain transition or higher spring temperatures. 

 

Discussion 

Iran’s spatially-unprecedented floods of 2019 demonstrate the critical importance of periodic 

updating of flood hazard assessments (e.g., changes in 100-yr rainfall/flood return levels) and flood 

mapping based on improved understanding of the biophysical determinants of runoff generation 

coupled with analysis of human impacts on the floodplain. Flood frequency analyses will benefit 

from including new extreme rainfall and flow data as they become available to support flood-

resilient infrastructure development and management. Following a multi-year dry period, a series 

of severe flood events in the course of two weeks (late March and early April 2019) devastated 

several urban and rural areas across Iran, in some cases strictly due to poor floodplain 

development.  

Although intense storms and prolonged dry spells are not unusual because of the semi-arid nature 

of the region (Melville, 1984), changing climatic conditions may have contributed to the observed 

extremes (Jaafari, 2019). Furthermore, the human footprint is a major factor in the recent floods 

(e.g., deforestation, urbanization). Our analysis of hydro-climatological factors (e.g., precipitation, 
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snow cover, and soil moisture) and anthropogenic drivers (e.g., land cover change) shows that 

statistically different precipitation events (from a 5-yr to a 223-yr event) resulted in the most 

extreme impacts (with respect to damage and loss of life) associated with the least extreme event 

in a place where man-made changes played the most significant role (Table 2). We broadly define 

such events as Anthropogenic Floods to underscore the role of humans in addition to climatic and 

meteorological drivers.  

Other than the exceptional magnitude of the 2019 Golestan rainfall (223-year event), this flood 

differs from the previous damaging floods in terms of the spatial extent and timing of the flood. 

The recent event covered almost the entire GorganRood Basin (~11380 km2), exhibiting a delayed 

precipitation timing compared to the recorded historical midsummer flash floods. Because of the 

delayed rainfall timing from fall to late March, the extreme rainfall happened when the reservoirs 

in the region (e.g., the Golestan Dam) were nearly full prior to the flood event (Jalili and Fekri, 

2020). In the luxury of hindsight and based on the recorded historical flood discharges in Golestan 

(e.g., 3017 cms in 2001 (Sharifi et al., 2012)), we postulate that the 2019 flood peak of 830 cms 

(Beitollahi et al., 2019b) would have been partially manageable if the reservoir operation policy 

had been shifted in a timely manner to handle an extreme rainfall event after a prolonged dry spell. 

The flood damages could have been reduced with forecast-informed reservoir management. The 

extent of human footprint in influencing the flood severity is also remarkable. Flood water pools 

in the area did not drain even weeks after the disaster, causing a long-lasting, wide-spread 

inundation downstream of the reservoir. Using land cover satellite observations, we estimated 11% 

deforestation in the flood-affected areas from 2006 to 2016, indicating that anthropogenic 

deforestation and construction along rivers intensified the flood impacts in the Golestan Province.      
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Table 2 Anthropogenic and hydro-climatic drivers contributing to the devastating floods 

of 2019 in Iran. 

Location Date Return period of 

precipitation* 

(years) 

Anthropogenic drivers Hydro-climatic drivers 

Golestan  March 17 to 22 223 

- Deforestation (about 11%) 
between 2006 and 2016. 

- Nearly full reservoirs prior to 
the 2019 flood for storage 
conservation after the previous 
droughts. 

- Poor disaster management by 
diverting the river overflow to a 
place that caused vast inundation 
downstream. 

- Extreme precipitation 
event. 

- Late winter storm as 
compared to previous 
summer flash floods. 

Shiraz  March 25 5 

- Replacing river canyon with a 
1.5 m diameter concrete pipeline 
to construct a road project. 

- The bare and steep 
mountain hills (slopes up 
to 60%). 

Lorestan  April 1 
60 years for daily 

142 years for 10-daily 
- Flood zone urbanization. 

- Cascade of high 
precipitation events. 

- Rain-over-snow causing 
earlier spring snowmelt. 

* Return period of daily annual rainfall maximum derived from ProNEVA (Ragno et al., 2019).   

In March 2019, a non-extreme rainfall event over a short period of time became the deadliest flood 

of Shiraz, creating chaos at one of the main entrances of the city (Darvazeh Quran). Utilizing 

ProNEVA for frequency analysis, we show that the 2019 flood was caused by approximately a 5-

yr rainfall event. Flash floods are to be expected in this small watershed because of the lack of 

vegetation cover and relatively high slope. However, drastic alternations to the river canyon caused 

a considerable decline in the natural flood conveyance capacity of the basin outlet. The 

catastrophic flood damage and fatalities were caused by the failure of a severely undersized 

pipeline (12-cms maximum capacity), which could not pass the 2019 flood peak discharge (50 

cms). Replacing the natural open channel in the 1980s for road-widening purposes is an 

unequivocal evidence of human encroachment of the natural floodplain. Consequently, the risk of 
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flooding rose because of anthropogenic factors where a non-extreme rainfall caused an extreme 

flood.  

The largest observed discharges on record in Lorestan Province, were experienced at various river 

reaches during the 2019 flood upstream of the Karkheh Basin. Our investigation of the interplay 

of precipitation, snow cover and soil moisture illustrates that the cascading effect of immediate 

drivers intensified the resulting flood. The 10-daily annual rainfall maximum in 2019 was 

significantly higher than the second most extreme observation (return period of 142-year). Five 

days prior to the destructive flood event in Lorestan, the region received an intense precipitation 

on March 25, which reduced infiltration by saturating the soils (from NASA SMAP), ultimately 

leading to a cataclysmic flood. The substantial decrease in snow cover in the region after the flood 

indicates rapid snowmelt triggered by rain-over-snow likely intensified the flood. The two back-

to-back rainfall events with an approximate return period of 60-yr exposed the vulnerability of 

human settlements to flooding under cascading hydro-climatologic effects. Further, the flooding 

was worsened by significant man-made changes along the rivers in urban areas, creating 

constrictions (e.g., dykes and buildings) that reduce flood conveyance capacity of the natural 

channel cross-sections. The combination of these adverse impacts should be taken into account to 

improve understanding and characterization of flood risks to inform infrastructure development 

and maintenance, and disaster management.       

Our analysis reveals several takeaways pertinent to the interlinked hydro-climatic drivers and 

anthropogenic catalyzers of flooding. The upward trend detected in the annual rainfall maxima 

dataset suggests that extreme precipitation events have intensified in Lorestan and Golestan 

Provinces. In Lorestan, the cascading effect of two intense rainfalls (5 days apart) and early rain-
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over-snow resulted in a massive flood. Shifts in rainfall timing resulted in an unseasonably large 

rainfall that was not expected. These incidents urge revisiting development planning policies for 

flood management based on the changing characteristics of extremes and associated vulnerability 

implications. The risk of flooding for loss of life and assets has been remarkably raised by man-

made changes to river basins to the point that some urban areas are particularly vulnerable to 

anthropogenic floods (e.g., Darvazeh Quran Catchment in Shiraz, Fars Province, Iran). We 

illustrated how spring 2019 flood impacts in Iran were exacerbated by various human-induced 

changes, including construction along rivers, deforestation, aggradation, natural channel 

constriction, and poorly sized water conveyance structures. It is necessary to rethink urban 

planning and floodplain management in light of increased flood risks due to changing extreme 

events and cascading hydro-climatological effects compounded with growing exposure and 

severity of flood incidents in urbanizing areas. 

Data and Method 

The three study areas include Golestan Province, city of Shiraz, and Lorestan Province. We 

assessed ground-based data on precipitation and satellite observations on snow cover, soil moisture 

level, land cover type, and degree of urbanization. The 3-hourly precipitation datasets were 

obtained from synoptic stations of Iran Meteorological Organization with nearly 70 years of 

records, allowing us to evaluate the climatologic patterns of the extremes. The post-processed 

satellite imageries are derived from the Google Earth Engine (GEE) platform, which provides 

global-scale and web-based remote sensing products (Gorelick et al., 2017). A brief description of 

the satellite imagery used in this study along with the Nonstationarity Extreme Value Analysis 

employed for precipitation frequency analysis are shown below. 
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Satellite observations  

Land cover data: Extensive land use changes have transformed the natural landscapes to other land 

use/cover types (e.g., agricultural, urbanization (Kasperson et al., 1995)). The MODIS collection 

6 land cover type product (MCD12Q1 V6) classifies land use type at a 500-m spatial resolution 

(Friedl et al., 2010). To assess land cover change (deforestation) in Golestan Province, we used 

the IGBP (International Geosphere–Biosphere Programme) land cover classification scheme 

which has 17 cover classes. On the Google Earth Engine (GEE) platform, MODIS MCD12Q1 V6 

product provides land use/cover data from 2001 to 2016 at annual time steps (Belward et al., 1999; 

Loveland and Belward, 1997). 

 

Comparative rural-urban settlement: To estimate the degree of urbanized/industrialized landscapes 

in Shiraz, we employed the JRC’s Global Human Settlement Layer (GHSL), which is available in 

GEE (Corbane et al., 2020). This rural-urban settlement classification MODel integrates the degree 

of urbanization (DEGURBA) concept into the GHSL. Using a clustering algorithm, each grid has 

been generated for reference epochs of 1975, 1990, 2000, 2015 at a resolution of 1 km². The three 

main classes include 'high density clusters (HDC)', 'low density clusters (LDC)', and 'rural grid 

cells (RUR)'. 

Soil moisture: We used surface  soil moisture data from the NASA-USDA SMAP Global soil 

moisture dataset at 0.25°x0.25° spatial resolution (Bolten et al., 2009; O’Neill et al., 2016). This 

global soil moisture dataset provides the surface and subsurface soil moisture (mm), soil moisture 

profile (%), and surface and subsurface soil moisture anomalies. Available on GEE, this product 
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integrates satellite-derived Soil Moisture Active Passive (SMAP) Level 3 soil moisture 

observations into the modified two-layer Palmer model using a 1-D Ensemble Kalman Filter 

(EnKF) data assimilation approach.  

 

Snow cover: To estimate the change in snow cover in Lorestan, we used the MOD10A1 V6 Snow 

Cover Daily Global 500m product (Hall et al., 2006). The dataset contains snow cover data which 

is based on a snow mapping algorithm that employs a Normalized Difference Snow Index (NDSI). 

The available snow information includes snow cover, snow albedo, fractional snow cover, and 

quality assessment (QA) data.  

 

Nonstationarity Extreme Value Analysis using ProNEVA 

We first utilized the annual block maximum sampling technique to extract the maximum 6-hourly, 

daily, and 10-day rainfall for each year in a number of rain gage stations. Then, we fit the GEV 

distribution to estimate the rainfall frequency distribution using Process-informed Nonstationary 

Extreme Value Analysis (ProNEVA (Cheng et al., 2014; Ragno et al., 2019)). ProNEVA employs 

a generalized framework for considering nonstationarity assumption in the analysis of climatic 

extremes, including potential changes in the frequency and variability of extreme events. This 

framework allows nonstationary analyses employing user-defined covariates, which could be 

temporal or process-based (i.e., a physical driver such as urbanization or CO2 emission). ProNEVA 

offers parameter estimation, uncertainty quantification, and a comprehensive assessment of the 

goodness of fit. In the study, based on statistical significance trend test, either stationary or 

nonstationary GEV distributions were fit to each block maxima series.  
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Generalized Extreme Value (GEV)   

The GEV distribution is widely used to model time series of block maxima, such as deriving 

precipitation Intensity-Duration-Frequency (IDF) curves (The National Oceanic and Atmospheric 

Administration (NOAA)). The GEV cumulative distribution function is (Coles et al., 2001): 

                Ψ�	���� = ���{− �1 + � ⋅ ��� 
! "#�$

%
                                                                                     (1) 

 

The GEV distribution has the location parameter (&), the scale parameter ('), and the shape 

parameter (�) to specify the center of the distribution, the deviation around the center, and the tail 

behavior of the GEV distribution, respectively (Renard et al., 2013). 

 

Under a nonstationary assumption, however, the parameters of the underlying distribution function 

are time-dependent, and the properties of the distribution would therefore vary with time. This 

means, we let the parameters of the distribution be a function of a general covariate xc, i.e., & (xc), 

' (xc), � (xc) (Coles et al., 2001). Hence, the nonstationary form of eq. 1 is: 

 

        Ψ�	���|�)� = ���{− *1 + ���)� ⋅ ��� ��+�
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%�-+�

                                                             (2) 

' (xc) functions in the log scale for the positivity of the scale parameter (Coles et al., 2001; Katz, 

2013). As a result, the exponential function is not available for ' (xc). For the shape parameter � 

(xc), a linear function is considered (Coles et al., 2001).  
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Parameter estimation: Bayesian analysis and Markov chain Monte Carlo sampling 

 A Bayesian approach is integrated into the nonstationary GEV for uncertainty assessment 

(Stephenson and Tawn, 2004). This approach combines the knowledge brought by a prior 

distribution and the observation vector of annual maxima into the posterior distribution of 

parameters (Cheng et al., 2014; Luke et al., 2017; Sadegh et al., 2018, 2017; Thiemann et al., 

2001). Assuming independence between observations, the Bayes theorem for estimation of GEV 

parameters under the nonstationary assumption can be expressed as: 

 

                             p/θ1Y34 ∝ ∏ p�θ�789: . ��<=|>�                                                                     (3) 

Where θ is the parameter of a given distribution and let Y3= {y@:, …, y@A:} be the set of n observations. 

Following Bayes theorem, the probability of θ given Y3 (posterior) is proportional to the product of 

the probability of θ (prior) and the probability of Y3 given θ (likelihood function). The posterior 

distribution is then delineated using a hybrid-evolution MCMC approach proposed by Sadegh et 

al. (2017). The MCMC simulation searches for the region of interest with multiple chains running 

in parallel, which share information on the y. 

Model diagnostics and selection 

The goodness of fit (GOF) assessment in ProNEVA includes: quantile and probability plots for a 

graphical assessment, two-sample Kolmogorov-Smirnov (KS) test, Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC), and Maximum Likelihood (ML). The hybrid-

evolution MCMC approach (Sadegh et al., 2017) within the Bayesian framework provides an 

ensemble of solutions for the (non)stationary statistical model fitted to the data. ProNEVA uses 
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the best set of parameters which maximizes the posterior distribution. Marginal posteriors will 

then provide uncertainty estimates of the parameters. 

 

Return level curves under nonstationarity 

 

Extreme event intensity is expressed as a function of the return period (i.e., the average length of 

time between events of a given depth/intensity and duration). The Return Level (RL) expresses 

the quantile Qi for which the probability of an annual maximum exceeding the selected quantile is 

qi (Cooley, 2013). The quantile Qi is the value of intensity such that Pr(P ≥ Qi) = 1−FP(Qi), where 

FP is the probability distribution of the annual maxima of intensities. In the stationary analysis, the 

probability qi of the quantile Qi does not change on a yearly basis. The Return Period (RP) of the 

quantile Qi is defined as the inverse of its exceedance probability, Ti = 1/qi in years. The RL curves 

are defined by the following points under the stationary assumption: 

 

                         � � Ti;  Qi�,  Ti >  1  yr,  i =  1, ⋯ )                                                                        (4) 

  

In a nonstationary assumption, ProNEVA integrates two different proposed concepts to account 

for ambiguous terms of RP and RL (Cooley, 2013): the expected waiting time (Salas and 

Obeysekera, 2014), and the effective RL curves (Katz et al., 2002). 

 

 Explanatory Analysis: Mann-Kendall and White Tests 
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ProNEVA utilizes the Mann-Kendall (MK) monotonic trend test and the White Test (WT) for 

evaluating homoscedasticity in the datasets. Based on the statistical significance trend test, then 

the user can decide whether to incorporate a trend function in one or more of the model parameters 

or not. 
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Chapter 4                Anthropogenic Climate Change  
 

 
Integrating Future Climate Information into Engineering Design Concepts  

 

Overview 

 
Extreme weather events have posed a major threat to engineering practices operating in the energy, 

transportation, and construction systems (NCA4, 2018; FEMA, 2016; Neumann et al., 2015; 

Aghakouchak et al., 2017; CACC, 2018; Moftakhari et al., 2017). The variability in magnitude 

and frequency of climatic hazards (i.e., floods, droughts, and hurricanes) has undermined the 

integrity of critical infrastructure such as power transmission lines, regional road networks, and 

levees (e.g., Das et al., 2013; 72 Milly et al., 2005; Pachauri et al., 2015; Voss et al., 2002; Wang 

et al., 2017 ; Friedman & Schwartz, 2017; McGrath, 2019; Mooallem, 2019; Otto et al., 2020). For 

example, in 2017, a series of extreme precipitation events, following a prolonged drought, in 

northern and central California caused a structural failure of Oroville Dam’s spillway, forcing vast 

evacuations (National Climate Data Center, 2017; Vahedifard et al., 2017). More recently, extreme 

events resulted in vast flooding in the Midwest during the spring of 2019, which caused damages 

of approximately $20 billion. The ongoing sea level rise along with the intensified precipitation 

extremes have elevated the coastal and inland flooding risk. (Hallegatte et al., 2013; Neumann et 

al., 2015; Willis et al., 2016; Buchanan et al., 2017; Jongman et al., 2012; Vitousek et al., 2017; 
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IPCC 2012; Read and Vogel, 2015, Dettinger et al., 2016; Jasim et al., 2017; Mallakpour et al., 

2015, Peirce das, 2013; Groisman et al., 2005). Additionally, human activities (e.g., land use 

changes) have magnified flooding events in many regions, increasing the impact of flood-related 

damage (Pielke et al., 2002; Hirsch & Ryberg, 2012; Villarini et al., 2009; Yang & Hill, 2012; 

Vogel et al., 2011; NCEI, 2020).    

 

Consistent with the observed increasing trend, climate models also project increases in the 

intensity and/or frequency of climatic extremes, attributed in part to the co-evolution of 

anthropogenic emissions with land use and land cover changes (e.g., 30–90% increase in 

streamflow in Northern Sierra Nevada Das, Peirce, 2013; Zbigniew, 2014; Seneviratne et al. 

2012; Trenberth, 1999, Milly et al., 2002, Kunkel et al., 2013). A number of studies have examined 

the changing patterns of extremes to predict the expected changes in the their likelihood and return 

intervals in the future (ASCE, 2015; Forzierli et al., 2018; Grmany, 2017; Hagenlocher, 2018; 

DFID, 2005; World Bank, 2006; EEA,2007; UNDP, 2007; WRI, 2007). However, infrastructure 

design, maintenance, operation, and regulatory standards currently do not account for the new 

patterns of extremes under a changing climate (CACC, 2018; Hu, 2018). Any changes in the 

statistics of extreme events will directly impact the overall stability and reliability of the 

infrastructure. This study’s overarching goal is to combine climate information with structural 

performance to argue that infrastructure should be designed to withstand the growing risk of 

extreme events. As the future unfolds, decision-makers must adapt their plans and respond to new 

conditions (e.g., extremes that have never happened before). This direction would help evolve the 

infrastructure risk management conversation from understanding future hazards to discovering and 

acting on decision-relevant consequences and adaptive decision pathways.  
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We propose a theoretical framework (Figure 16) for integrating future climate information and the 

underlying uncertainty into the planning of flood protection infrastructure such as a levee. 

Specifically, the proposed study strives to achieve two main objectives: (a) Advance how 

engineering requirements and design constraints are determined in a rapidly changing climate. 

This includes identifying current and future climate hazards and estimating their likelihood of 

occurrence (b) Quantify engineering infrastructure vulnerability and exposure to changing hazards, 

accounting for future uncertainties; This includes infrastructure performance objectives (e.g., 

withstanding historical or future 100-yr floods).  

 

Flood risk analysis has long relied on hazard-centric approaches (Hershfield, 1961; White, 1973), 

which either fail to account the structural reliability (Phoon, 2008) or at best consider empirical 

levee-failure functions (e.g., probable failure point (PFP) formulate based on geometry, USACE, 

1999). Here, we integrate hydrologic failures (risk of flood exceeding the design height, left panel) 

with structural/geotechnical failures (middle panel). Levee physical modeling is simulated by a set 

of transient coupled finite-element seepage and limit equilibrium slope stability analyses. 

Variability in hydraulic and mechanical properties of soils was addressed using a Monte Carlo 

sampling method to evaluate the probability of failure of the levee against three individual modes 

of failure (under seepage, uplift, and slope stability) along with lower and upper bounds for the 

combined mode. 

 

For a riverine levee, we face a challenge projecting future streamflow, for which the associated 

uncertainties are significant due to application of hydrological modeling with several variables 
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(Dankers & Feyen, 2008; Kundzewicz et al., 2010; USACE, 2009c; IPET, 2009b; Wilby, 2012; 

Pierce et al., 2016; Wilby & Keenan, 2012). That is the main reason some proxies such as a 

hypothetical increase in the distribution of current peak flood have been employed in the literature 

(e.g., Hui et al., 2018, Kundzewicz et al., 2014; Wobus et al., 2014). However, we take advantage 

of the daily streamflow projections (1950-2099) developed for the 4th California Climate Change 

Assessment (in 59 locations across Northern California, Scripps Institution of Oceanography, 

Pierce et al., 2014, 2015, 2018). For the levee’s physical modeling, the streamflow loading is 

represented by flood water level behind the levee for different flood return periods (past (1950 – 

2000, left panel) and future (2049 – 2099), right panel).  

 

Finally, the risks of structural failure over an n-year timespan due to the projected and historical 

floods can then be evaluated. We present the final product that could serve as a measure of 

reliability, including both projected changes in flood hazards and the potential change in the 

structural performance of the levee system. With this methodology, we can adjust the potential 

add-on design variable by comparing the baseline scenario and future simulations. We discuss to 

see if this framework can integrate future climate projections into current design concepts. 
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Figure 16 Conceptual pathway to integrate future climate information and the underlying 

uncertainty into a flood infrastructure planning such as a levee, comparing past climate (left 

panel: hydrologic design) to future projections (right panel). Hazard transfer pathway (middle 

panel) exhibits the physical modeling which provides fragility curves (levee failure analysis). Hb 

and Hc represent the design variable in the baseline scenario and the potential future add-on 

under a changing climate, respectively. F.B. represents the considered freeboard for the levee 

safety in the design height. 

 
 
Local Levee performance implementing the proposed pathway  

 

Levees, which play a fundamental role in the current flood protection systems (NRC, 2012, CACC, 

2018), are working under marginal conditions with an average age of 56 years (e.g., NRC, 2012; 

ASCE, 2017; US National Levee Database (NLD), 2020). Within the USACE levee portfolio, 

approximately 13% of the levees work under marginal conditions: moderate to high risk with an 

estimated $21 billion improvements and maintenance cost (LSAC I, II or III, Army Corps, 2018, 
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ASCE, 2017). Expected changes in the future flood’s frequency and severity would add some 

degree of uncertainty into breaching risk of such levees. We investigate the impacts of future flood 

projections on the structural integrity of current and future levee systems as an application of our 

proposed methodology. The framework is applied to the Elkhorn Levee, which lists as an earthen 

levee located within a high-risk flooding zone (Reclamation District No. 1000) in Sacramento, 

California. Over 21,000 kilometers of levees protect land and infrastructure from floods in 

California (CDWR, 2011), where any possible structural failures could lead to unprecedent 

impacts (CDWR 2011, Independent Review Panel, 2007, Florsheim and Dettinger, 2007).  

 

Results 

Streamflow projections  

 

Daily streamflow projections (1950-2099) across Northern California were developed by the 

Scripps Institution of Oceanography for the 4th California Climate Assessment (Pierce et al., 2014, 

2015, 2018). The Variable Infiltration Capacity (VIC) hydrological model (Lohmann et al., 1996, 

1998) that simulates surface and subsurface processes was forced with downscaled global climate 

model (GCM) simulations to route streamflow at a daily temporal scale. The bias-corrected inputs 

to the hydrologic model (VIC) were based on ten GCMs from the Fifth Coupled Model 

Intercomparing Project (CMIP5) and two representative concentration pathways (RCPs): RCP4.5 

and RCP8.5. For impact studies purposes, the Climate Action Team Research Working Group 

introduced those ten GCMs, as they covered a wide range of possible conditions in California’s 

future climate (CDWR, 2015).  
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The Elkhorn Levee is adjacent to Camp Far West , one of the 59 locations across Northern 

California where daily streamflow projections are available (Pierce et al., 2014, 2015, 2018). For 

flood frequency analysis, we explore the streamflow projections from all ten climate models for 

this site (Figure 17a). To fit a distribution and estimate the flood return levels for different return 

periods (Groves et al. 2006), we use Process-Informed Nonstationary Extreme Value Analysis 

(ProNEVA, Ragno, et al., 2019; Cheng et al., 2014). ProNEVA employs a generalized framework 

for considering nonstationarity assumptions in analyzing climatic extremes, including potential 

changes in the frequency and variability of extreme events (e.g., based on GEV distribution, the 

methodology is presented in Appendix B). Figure 17a shows the variability in streamflow 

projections for ten climate models in RCP 8.5 at the Elkhorn Levee location (1950-2099). 

Comparing the future flood events (2049-2099) into past flood events (1950-2000) demonstrates 

that the climate models mostly predict higher streamflow in the future. However, model 1 and 

model 7 project lower streamflow for the future compared to the past as they consider other 

possible conditions in California’s future climate. 

 

For flood risk analysis in Elkhorn Levee, we employ the most extreme projected streamflow 

scenario, which belongs to model MICRO5, RCP8.5, one of California's four representative 

climate models (Pierce et al., 2014, 2018). The flood frequency analysis runs based on daily annual 

maxima streamflow as it is a key design variable for flood risk assessment when instantaneous 

observations are not available (e.g., England et al., 2019). The levee’s loading is represented by 

flood water level behind the levee for different recurrence intervals (e.g., 10-yr, 25-yr, 50-yr flood 

events). Applying the rating curve concept (i.e., river stage and discharge relationship at the 
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gauging station), we estimate the flood water level corresponding to the streamflow from each 

recurrence interval. 

 

Figure 17b illustrates the streamflow projections for the selected CanESM2 model (RCP 8.5) and 

the corresponding flood levels derived from the rating curve in different recurrence intervals. Our 

preliminary results projected higher future peak water levels (2049-2099) compared to the 

corresponding flood levels in the baseline (1950-2000) simulations, implying higher flood risk in 

the future. Specifically, the water level corresponding to the future 50-year flood event is expected 

to be 1.34 m higher-6.5% increase relative to the current condition (21.9 m and 20.6 m for future 

and past, respectively). Notably, 1.34 m higher flood level corresponds to a 34.9% increase in 

streamflow (1478.5 m3/s and 1095.6 m3/s for future and past, respectively). This indicates the 

possibility of more intense floods in the future and hence, a higher chance of failure from a 

hydrologic perspective consistent with the findings of Mallakpour et al. (2018). These changes in 

future flood levels can have a significant impact on the failure probability of the levee. In the 

following, we describe how the proposed framework can translate the projected change in 

extremes to change in physical failure probability as our key objective. 
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Figure 17. a) Streamflow projections at Elkhorn Levee location (1950-2099) for 10 

climate models derived from the 4th California Climate Assessment, RCP 8.5; b) Streamflow and 

c) Corresponding flood levels for different recurrence intervals using baseline and projected 

future data (CanESM2 model, RCP 8.5) at Elkhorn Levee location. 

 
 
Structural Failure:  

A wide range of phenomena such as slope stability, uplift, piping, and internal erosion due to under 

seepage and/or through seepage can adversely affect the structural integrity of an earthen levee 

leading to failure. In most cases, the failure occurs because of more than one failure mode. The 

overall likelihood of a levee failure is often based on a combination of different individual modes 

of failure. Thus, it is prudent to perform the levee risk analysis under both individual and multiple 

b c

Future 

Past 

a
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modes of failure. The probability of failure-load relationship, commonly referred to as the fragility 

curve (or system response curve), offers an effective tool for levee risk analysis (e.g., Schultz et 

al., 2010; USBR, 2019). Among others, an analytical approach based on quantitative models of 

load and resistance is shown to be a robust framework for risk analysis (e.g., Lanzafame and Sitar, 

2019; USBR, 2019; Zimmaro et al., 2019). In this proposed procedure, the levee’s probability of 

failure for each failure mode (JK,=� is determined by considering the uncertainty in one or more 

variables (e.g., response threshold, loading, soil types, soil properties, levee geometry and 

dimensions, and water level) that affect load or resistance of the system capacity (See Appendix 

B). After determining the probability of failure for each mode, the combined probability of failure 

can be calculated. The upper and lower bounds of the combined probability of failure can be 

determined by assuming mutually exclusive (upper bound) or complete dependence (lower bound) 

between n modes of failure as follows (Lendering et al., 2018): 

Max �PP,8� ≤ PP,R ≤ ∑ PP,8789: = 1 − ∏ �1 − PP,T�789:                                                               (1) 

where PP,U is the combined (aggregate) probability of failure. Most previous studies (e.g., Wolff, 

2008; Rice & Polanco, 2012; Jongejan et al., 2013; Bogárdi & Balogh, 2014; Schultz et al., 2018; 

Lendering et al., 2018) determine the combined probability of failure of earthen levees by 

assuming independence among failure modes. However, different failure modes can somewhat 

dependent because they share common triggering and resisting factors. To properly represent the 

range of possible PP,U values, we consider both lower and upper bounds in this study (Vahedifard 

et al. 2020). 

Numerical simulations are performed using two codes, SEEP2D-COUPLED-HPC and SLOPE2D-

HPC (Tracy et al., 2020). The former is a two-dimensional coupled transient finite-element 
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seepage/structural plane strain program designed to run on a high-performance computing facticity 

belongs to the US Army Engineer Research and Development Center (ERDC). The latter is a limit 

equilibrium slope stability code that uses the simplified Bishop method. The pore-water pressures 

obtained from the coupled finite element seepage are incorporated into the limit equilibrium slope 

stability analysis (Vahedifard et al. 2020). A total of 11 random variables (including sampled and 

derived variables) for each soil type were considered covering mechanical and hydraulic properties 

of the soil layers in saturated and unsaturated conditions. 

 

Risk imposed by climatic stressors 

Hydrologic failure corresponds to the probability of flood exceeding the design level (e.g., Bras, 

1990; Rootzén and Katz, 2013; Serinaldi and Kilsby, 2015; Read and Vogel, 2016). Flood level 

may exceed the design level indicating hydrologic failure, but the structure may not necessarily 

fail (Phoon, 2008). Contrary to hydrologic failure, structural failure may occur in levels lower than 

the design height that accounts for the common breach prior to overtopping (likely in 80% of high- 

or very high-risk levees, U.S. Army Corps of Engineers, 2018; Phoon, 2008; Kuijper & Vrijling, 

1998). A comprehensive risk assessment in leveed areas is a function of three components, hazard, 

exposure, and vulnerability. Herein, we specifically focus on two components of risk: hazard (i.e., 

hydrologic failure) and vulnerability (structural failure). Based on this definition, the annualized 

failure probability (AFP, Kuijper & Vrijling, 1998), or the risk of levee failure occurring in any 

given year can be calculated as: 

  



66 

 

Annualized failure probability = hazard prob.�structural failure prob. (levee 

performance)   (2) 

 

where hazard prob. is the annual exceedance probability function of the flood hazard (corresponds 

to hydrological failure probability). We first utilize the annual block maximum sampling technique 

to extract the maximum daily streamflow for each year. Then, we fit the Generalized Extreme 

Value (GEV) distribution to annual maxima data using ProNEVA; Ragno et al., 2018. The 

structural failure prob. shows the probability of unsatisfactory performance (PUP) under a range 

of loads (e.g., Schultz et al., 2010). In the proposed framework, design criteria, including the factor 

of safety and probability of failure, represent the levee's structural performance (detailed 

methodology in Supplementary Material). We then calculate the risk of failure over the lifetime 

based on annualized failure probability for a given design lifetime n: 

     Risk of failure over lifetime =  1 − �1 − p�7                                                                            (3) 

where p is annualized failure probability, which is equal to product of flood exceeding prob. and 

structural failure prob. 

 

Results 

 

Structural failure and risks: To illustrate our methodology, we present the results of applying 

the framework to Elkhorn Levee. Figure 18 shows the probability of failure in combined failure 

modes for historical and future flood events in different recurrence intervals using the Monte Carlo 

sampling method. The upper and lower bounds for the combined probability of failure are 
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determined by employing the individual probabilities of failure along with the equation (1). 

Considering the combined probability of failure provides an effective measure to assess the overall 

performance of the levee properly. The probability of failure significantly increases towards higher 

recurrence intervals with the high water level. For all cases, the results from the lower and upper 

bounds were close, leading to a narrow band. Considering the combined mode of failure, the 

probability of failure quickly approached 1.0 for 25- and 50-year projected future floods.  

Figure 18b displays the probability of failure versus time (during 30 days) for under seepage, uplift, 

and slope stability modes of failure using 50-year past and future flood events. The future events, 

for all modes, exhibit a higher failure probability than the corresponding past scenario. In other 

words, a 1.34 m higher flood level in the future would result in a 26% increase in the probability 

of failure against slope instability. Incorporating future climate predictions (higher flood stage) 

rather than relying on the past dataset can undermine the levee stability. 
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Figure 18 a) Upper and lower bounds for combined probability of failure versus time 

using the historical (1950-2000) and future (2049-2099) flood scenarios for different recurrence 

intervals: 10 years, 25 years, and 50 years in Elkhorn Levee. b) Probability of failure versus 

time for under seepage, uplift, and slope stability modes of failure in recurrence intervals of 50 

years. 

 

 

 

Figure 19 shows the risk of failure (hazard-performance basis, slope stability) for Elkhorn Levee 

due to 50-year past and future flood events for a design horizon of 50 years. The slope instability 

results suggest that a 1.3 m higher flood level in the future leads to a 27% increase in the probability 

of failure. The probability of failure of the levee would increase up to 27% when considering future 

streamflow projections (failure probabilities of 0.77 and 0.98 under past and future climate, 

respectively, RCP8.5, CanESM2 model). The predicted increase in the probability of failure 
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indicates the importance of considering future climate scenarios to understand better the current 

infrastructure in a warming climate.  

 

  

 
Figure 19 a) Levee’s probability of physical failure for different flood return periods and 

their corresponding exceeding probabilities, Elkhorn Levee. b) Risk of failure due to a 50-year 

flood event for a temporal horizon of 50 years. The solid purple and green curves show the 

estimated failure probabilities for the future (RCP8.5, CanESM2) and the past hazard-

performance scenarios, respectively. 

 
 

 

Required Factor of Safety as design criteria 

 

A factor of safety, which is the ratio of the capacity to resist a demand (i.e., load), serves as the 

design criteria in engineering practices. A factor of safety accounts for the uncertainties which are 

because of the interactions between the hydrologic loading and hydraulic resistance of the structure 

(Ebeling & White, 2021). When the factor of safety is less than the pre-defined performance 

criteria, the levee's performance is considered unsatisfactory. In this case study, for each mode and 

at each specified time, factors of safety corresponding to 6,000 realizations were averaged to 

determine the mean factor of safety. In the guidelines, the minimum required FOS is mainly used 

a b) 
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for design purposes. However, for risk analysis, the standards mainly consider the limit state, 

where the levee is on the verge of failure (FOS = 1.0, USACE, 2000) 

 

For this levee modeling, the minimum threshold for the factor of safety (or load carrying capacity 

of the system) is 3 for under seepage, 1.5 for uplift, and 1.1 for slope stability. As shown in Figure 

20, the factor of safety for slope stability mode varies in safe and acceptable ranges for a design 

based on past climate, whereas the factor of safety would drop below the minimum threshold (1.1) 

employing projected future climate. For instance, in slope instability failure mode, employing 

projected future flood results in a drop in factor of safety from 1.03 to 0.89 for a 50-year event. 

The highest reduction in the mean factor of safety is 54.2% for under seepage for the 10-year flood 

scenario. This highlights that incorporating the future climate (i.e., higher flood stage) rather than 

relying on the historical dataset resulted in a further decrease in the factor of safety. 
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Figure 20 Contour lines of factor of safety (design criteria) for past and future in 

comparison with the required acceptable factor of safety. a) Slope stability mode of failure (in 

this levee case study minimum threshold of 1.1). b) Uplift mode of failure. c) Under seepage 

mode of failure. 

 

 

Discussion and Conclusion    

 

Climatic extreme events are projected to continue to change in the future, threatening critical 

infrastructure. Variability in the frequency and magnitude of precipitation extremes is anticipated 
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to result in future changes in the flood characteristics and, consequently higher risk of 

infrastructure failure. This study argues that current frequency analysis methods, design 

guidelines, and operation procedures do not consider changes in statistics of extreme events. We 

develop integrated and risk-based probabilistic and numerical (process-based) investigations of 

the underlying hazards and their impacts, including multiple modes of hydrologic and structural 

failures. As an example, we investigate the effects of changes in the projected flood hazard on the 

performance of an earthen levee, Elkhorn Levee, in Sacramento, California.  

 

Toward achieving a climate-ready levee system, we first identify the new patterns of the natural 

hazard (i.e., flood) that affects the levee in the future. The daily streamflow projections (1950-

2099) are used for flood frequency analysis at the Elkhorn Levee location using ProNEVA. Our 

results based on the most extreme climate model (CanESM2 model, RCP 8.5) projected higher 

future peak water levels in the future (2049-2099) compared to the corresponding flood levels in 

the baseline (1950-2000) period, implying higher flood risk in the future. The water level 

corresponding to the future 50-year flood event is expected to be a 1.34 m higher-6.5% increase 

relative to the current condition. 

We translate the information on changing streamflow extremes to actual physical levee response 

(e.g., failure probability). In the levee’s physical modeling, the flood level for different return 

periods represents the hydraulic load which is applied into a set of transient coupled finite-element 

seepage and limit equilibrium slope stability analyses. The failure probability of the levee would 

increase up to 27% when considering future streamflow projections (failure probabilities of 0.77 

and 0.98 under past and future climate, respectively). These results indicate that a 1.3 m higher 

flood level in the future would lead to a 27% higher risk of levee failure, which is considerable in 
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risk assessment. Our method allows translating the change in hazard to change in performance. 

Currently, these evaluations are not available, and we achieve our main goal by generating this 

information.   

 

 

     

 

Method 

Levee numerical modeling 

 

The probability of failure-load relationship is commonly referred to as a fragility curve (or system 

response curve), which offers an effective tool for levee risk analysis (e.g., Schultz et al., 2010; 

USBR, 2019). Among others, the analytical method, which is based on quantitative models of load 

and resistance, is shown to be best suited for robust risk analysis purposes (e.g., Schultz et al., 

2018; Lanzafame & Sitar, 2019; USBR, 2019; Zimmaro et al., 2019). In this approach, the levee’s 

probability of failure is determined by considering the uncertainty in one or more variables (e.g., 

soil types, soil properties, levee geometry and dimensions, and water level) that affect load or 

resistance. The probability of unsatisfactory performance, referred to as the probability of failure, 

could be calculated by treating the soils’ hydro-mechanical properties as random variables. The 

performance function, G�b�, can be defined as: 

G�b� = G�R, S� = de�b�
df�b�                                                                                                (3) 
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where b is the vector of random variables, S = Gg�b� is the load imposed on the levee, and R =
Gh�b� is the capacity of levee to resist the load. In this equation, G�R, S� represents the factor of 

safety, which is the ratio of the capacity to resist a demand (i.e., load) placed on the levee. When 

G�b� is less than the pre-defined performance criteria (Gijg8k7�b�), the performance of the levee 

is considered unsatisfactory. The probability of failure for ith mode of failure (PP,8) is determined 

by integrating the multivariate density function, fl�b�, for the n-dimensional vector of random 

variables over the unsatisfactory performance domain (e.g., Schultz et al., 2018): 

JK,= = Jmn�o� < 1q = r … r tu�o�vo 
��o�wdxyzT{|�u�                                              (4) 

 

The historical and future flood levels were applied in a set of coupled transient finite 

element seepage and limit equilibrium slope stability analyses to simulate the levee subjected to 

extreme streamflow. Monte-Carlo method with 6,000 realizations of soil properties (treated as 

random variables) were used to estimate the probability of failure for each mode at each water 

level. Input data sets needed for the Monte Carlo simulation were from sampling the probability 

distributions of uncertain mechanical and hydraulic properties of each soil type (based on its USCS 

classification) in the levee embankment and foundation. Eleven random variables (including 

sampled and derived variables) for each soil type were considered covering mechanical and 

hydraulic properties of the soil layers in saturated and unsaturated conditions. Each realization was 

examined to see if the levee met performance criteria defined for under seepage, uplift, and slope 

stability. The probability of failure at selected times during the simulation was calculated as the 
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fraction of 6,000 realizations that failed to satisfy the performance criteria for that failure mode. 

The following performance functions were used for different modes of failure: 

 

n�}, ��~A < 0.33�)���  
(5) 

n�}, ��~� < 0.667 ���~  
(6) 

n�}, ���� < 0.909 * �
�K,

�=A
 

(7) 

 

where G�R, S��7, G�R, S���, and G�R, S�g� represent the performance functions for under seepage, 

uplift, and slope stability modes of failure, respectively, i�� is the critical vertical exit gradient at 

the landside toe of the levee,  i� is the vertical exit gradient at the landside toe of the levee, uU is 

the pressure applied by the weight of the saturated soil at the toe beneath the confining layer of the 

levee, u� is the uplift pressure at the same location, τ is the shear stress, and τP is the shear strength 

of soil along the most critical failure surface sought in the limit equilibrium slope stability analysis 

of the landside levee slope. The above performance functions embody the following factors of 

safety: 3 for under seepage, 1.5 for uplift, and 1.1 for slope stability. These values were selected 

within the range of recommended values by guidelines for design and risk analysis of earthen 

levees (e.g., USACE, 2000; USBR, 2019).  

After estimating the probability of failure for each mode, the combined probability of 

failure can be calculated. As discussed by Lendering et al (2018), the upper and lower bounds of 
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the combined probability of failure can be determined by assuming mutually exclusive (upper 

bound) or complete dependence (lower bound) between n modes of failure as follows: 

Max �PP,8� ≤ PP,R ≤ ∑ PP,8789: = 1 − ∏ �1 − PP,T�789:                                                (8) 

 

where PP,U is the combined (aggregate) probability of failure. Most previous studies (e.g., Wolff, 

2008; Rice & Polanco, 2012; Jongejan et al., 2013; Bogárdi & Balogh, 2014; Schultz et al., 

2018; Lendering et al., 2018) determine the combined probability of failure of earthen levees by 

assuming independence among failure modes. However, different failure modes can somewhat 

dependent, because they share common triggering and resisting factors. To properly represent the 

range of possible PP,U values, we considered and presented both lower and upper bounds in this 

study. Other possible uncertainties not considered in this study include uncertainties in the 

response threshold, model error, and flood scenarios. The latter itself includes uncertainties from 

inter-model variability when multiple models are used, and uncertainties from future RCPs. 

 

Nonstationarity Extreme Value Analysis using ProNEVA 

We fit the GEV distribution to estimate the flood frequency distribution using Process-informed 

Nonstationary Extreme Value Analysis (ProNEVA (Cheng et al., 2014; Ragno et al., 2019)). 

ProNEVA employs a generalized framework for considering nonstationarity assumption in the 

analysis of climatic extremes, including potential changes in the frequency and variability of 

extreme events. This framework allows nonstationary analyses employing user-defined covariates, 

which could be temporal or process-based (i.e., a physical driver such as urbanization or CO2 
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emission). ProNEVA offers parameter estimation, uncertainty quantification, and a comprehensive 

assessment of the goodness of fit. In the study, based on statistical significance trend test, either 

stationary or nonstationary GEV distributions were fit to each block maxima series.  

Generalized Extreme Value (GEV)   

The GEV distribution is widely used to model time series of block maxima, such as deriving 

precipitation Intensity-Duration-Frequency (IDF) curves (The National Oceanic and Atmospheric 

Administration (NOAA)). The GEV cumulative distribution function is (Coles et al., 2001): 

                Ψ�	���� = ���{− �1 + � ⋅ ��� 
! "#�$

%
                                                                                     (1) 

 

The GEV distribution has the location parameter (&), the scale parameter ('), and the shape 

parameter (�) to specify the center of the distribution, the deviation around the center, and the tail 

behavior of the GEV distribution, respectively (Renard et al., 2013). 

 

Under a nonstationary assumption, however, the parameters of the underlying distribution function 

are time-dependent, and the properties of the distribution would therefore vary with time. This 

means, we let the parameters of the distribution be a function of a general covariate xc, i.e., & (xc), 

' (xc), � (xc) (Coles et al., 2001). Hence, the nonstationary form of eq. 1 is: 

 

        Ψ�	���|�)� = ���{− *1 + ���)� ⋅ ��� ��+�
!��+� ",

� $
%�-+�

                                                             (2) 
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' (xc) functions in the log scale for the positivity of the scale parameter (Coles et al., 2001; Katz, 

2013). As a result, the exponential function is not available for ' (xc). For the shape parameter � 

(xc), a linear function is considered (Coles et al., 2001).  

Parameter estimation: Bayesian analysis and Markov chain Monte Carlo sampling 

 A Bayesian approach is integrated into the nonstationary GEV for uncertainty assessment 

(Stephenson and Tawn, 2004). This approach combines the knowledge brought by a prior 

distribution and the observation vector of annual maxima into the posterior distribution of 

parameters (Cheng et al., 2014; Luke et al., 2017; Sadegh et al., 2018, 2017; Thiemann et al., 

2001). Assuming independence between observations, the Bayes theorem for estimation of GEV 

parameters under the nonstationary assumption can be expressed as: 

 

                             p/θ1Y34 ∝ ∏ p�θ�789: . ��<=|>�                                                                     (3) 

Where θ is the parameter of a given distribution and let Y3= {y@:, …, y@A:} be the set of n observations. 

Following Bayes theorem, the probability of θ given Y3 (posterior) is proportional to the product of 

the probability of θ (prior) and the probability of Y3 given θ (likelihood function). The posterior 

distribution is then delineated using a hybrid-evolution MCMC approach proposed by Sadegh et 

al. (2017). The MCMC simulation searches for the region of interest with multiple chains running 

in parallel, which share information on the y. 

Model diagnostics and selection 

The goodness of fit (GOF) assessment in ProNEVA includes: quantile and probability plots for a 

graphical assessment, two-sample Kolmogorov-Smirnov (KS) test, Akaike Information Criterion 
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(AIC), Bayesian Information Criterion (BIC), and Maximum Likelihood (ML). The hybrid-

evolution MCMC approach (Sadegh et al., 2017) within the Bayesian framework provides an 

ensemble of solutions for the (non)stationary statistical model fitted to the data. ProNEVA uses 

the best set of parameters which maximizes the posterior distribution. Marginal posteriors will 

then provide uncertainty estimates of the parameters. 

 

Return level curves under nonstationarity 

 

Extreme event intensity is expressed as a function of the return period (i.e., the average length of 

time between events of a given depth/intensity and duration). The Return Level (RL) expresses 

the quantile Qi for which the probability of an annual maximum exceeding the selected quantile is 

qi (Cooley, 2013). The quantile Qi is the value of intensity such that Pr(P ≥ Qi) = 1−FP(Qi), where 

FP is the probability distribution of the annual maxima of intensities. In the stationary analysis, the 

probability qi of the quantile Qi does not change on a yearly basis. The Return Period (RP) of the 

quantile Qi is defined as the inverse of its exceedance probability, Ti = 1/qi in years. The RL curves 

are defined by the following points under the stationary assumption: 

 

                         � � Ti;  Qi�,  Ti >  1  yr,  i =  1, ⋯ )                                                                        (4) 

  

In a nonstationary assumption, ProNEVA integrates two different proposed concepts to account 

for ambiguous terms of RP and RL (Cooley, 2013): the expected waiting time (Salas and 

Obeysekera, 2014), and the effective RL curves (Katz et al., 2002). 

 

 Explanatory Analysis: Mann-Kendall and White Tests 
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ProNEVA utilizes the Mann-Kendall (MK) monotonic trend test and the White Test (WT) for 

evaluating homoscedasticity in the datasets. Based on the statistical significance trend test, then 

the user can decide whether to incorporate a trend function in one or more of the model parameters 

or not. 
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Chapter 5                   Adaptive Design  
 

 

 

 

 

 

Framework for Adaptive Design of Infrastructure under a Changing Climate 

 

 

Overview 

 

Current infrastructure design concepts rely on historical events assuming temporal stationarity 

(i.e., statistics of past extremes do not change significantly over time) (e.g., Cheng et al., 2014; 

Dittrich et al., 2016; Ragno et al., 2018; Sadegh et al., 2015; Salas & Obeysekera, 2014; Shortridge 

et al., 2017). However, global warming and land use changes have increased the risk of climatic 

extreme events, and the associated damage to critical infrastructure (Hallegatte et al., 2013; 

Neumann et al., 2015a; Willis et al., 2016; Vahedifard et al., 2017, 2020). The observed increasing 

trend in severity and frequency of extreme events (Lall et al., 2018; Kundzewicz et al. 2014; Wilby 

& Keenan, 2012; Fischer & Knutti, 2015; IPCC, 2013; Patricola & Wehner, 2018; Scoccimarro et 

al., 2013; Trenberth, 2001, 2008) introduces a new level of challenge and uncertainty that should 

be included in planning, risk assessment, design, and operation of infrastructure systems.  

Consistent with the observed increasing trends, climate models project increases in intensity and 

frequency of climatic extreme events, attributed in part to anthropogenic climate change (IPCC 
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2007, 2012, 2013). Historical records show that the number of billion-dollar disasters is on the rise 

due to changing climate and increasing exposure to hazards. From 1980 to 2020, natural disasters 

and climatic extremes resulted in $1876 billion CPI-adjusted losses and 14,485 deaths in the 

United States (NCDC, 2021). The 1980–2020 annual average of weather/climate disaster events 

with losses exceeding $1 billion each is 7 events (CPI-adjusted), whereas this annual average for 

the most recent 5 years (2016–2020) has reached to 16.2 events (NCDC, 2021).  The observed 

increase in the impacts of extreme events offers a direct reflection of the vulnerability of existing 

infrastructure systems, and a glimpse of what to expect in a warming world (IPCC, 2012; Neumann 

et al., 2015b; Willis et al., 2016). 

To enhance safety of life, our infrastructure systems must be resilient against the growing 

frequency and severity of extremes (CACC, 2018; Vahedifard and AghaKouchak, 2020). 

Mitigating the adverse consequences of future extreme events on infrastructure will directly 

contribute to community resilience which asserts the need to stablish adaptive capacity (Babovic 

et al., 2018). Adaption warrants an “adjustment in natural or human systems in response to actual 

or expected climatic stimuli or their effects, which moderates harm or exploits beneficial 

opportunities” (IPCC, 2007). Realistic models of short and long-term loading patterns imposed by 

climatic extremes will be needed for design of future adaptive infrastructure systems. The 

uncertainty and inter-model variability in future projections is particularly pronounced for extreme 

events (e.g., extreme precipitation, floods), which drive the design of critical infrastructure systems 

such as levees and seawalls. Failure to account for changes in future climate extremes in 

infrastructure design elevates the risk of under-designing infrastructure systems. Thus, integration 

of climate data analysis in resilient design methodologies has become an active area in a number 

of fields (Choate et al., 2017; DFID, 2005; Vahedifard et al., 2017; CACC, 2018).  
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The current approaches for adaptive planning can be summarized in following main steps:  

accounting for a wide variety of relevant changes and uncertainties, identifying short-term and 

long-term actions (e.g., decisions) and targets (e.g., performance), and continuously monitoring 

the world and taking actions as necessary (Walker et al., 2015; Stephens et al., 2018; Kapetas & 

Fenner, 2020). In an anti-fragile strategy, the design of possible adaptation pathways can offer 

multiple alternatives for future planning to improve structural performance. 

The main objective of this chapter is to present a framework for adaptive infrastructure design that 

can properly account for variability and uncertainties associated with projected future climatic 

extremes (e.g., sea level rise, extreme precipitation). We aim to provide insight into how to revisit 

the existing design codes with a vision toward embracing climate adaptive methods in engineering 

practice. Recent efforts on integrating future climate simulations have mainly focused on the so-

called robust infrastructure concept. The robust infrastructure concept evaluates risk based upon 

current climate projections and offers a single design load (i.e., a critical threshold) based on a 

single acceptable risk (e.g., deterministic hazard-centric or economy perspectives (Wisner et al., 

2004; Groves et al. 2015). The adaptive design concept, on the other hand, relies on a base design 

considering a critical threshold that can be modified in the future (Hui et al., 2018, Ayyub and 

Wright, 2016) provided that the adjusted costs are significantly lower than if the system is built 

completely anew (Rosner et al., 2014). Given the uncertainty in the current climate projections, 

the robust infrastructure can potentially lead to an over-designed infrastructure with a very high 

upfront cost. Our proposed adaptive concept allows designing for a certain acceptable load at a 

lower upfront cost but with the option of more investment and monitoring during the project 

lifetime. A risk-based adaptive platform identifies the possible hazards and their likelihood of 

occurrence, and what conditions might arise in the structure in future. A conceptual iterative design 
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example is presented to show how the proposed framework can be employed for adaptive design 

of a seawall. Using satisfactory performance concepts, we estimate the performance function of 

the seawall facing sea level rise to identify adaptation-threshold. Finally, the alternative adaption 

pathways, such as increasing seawall height, are presented and discussed. 

        

Background and Concept for Adaptive Design 

 

The adaptive design methods lead to a base design (based on current or future risk) that can be 

modified in the future as the climate evolves, instead of offering a fixed single design for the future. 

We develop and promote a new adaptive design framework by extending the existing so-called 

observational method for infrastructure design. The observational method was originally 

developed for geotechnical engineering applications (Peck, 1969; Terzaghi et al., 1996) but has 

been used in several fields as a strategy to address uncertainty. The goal would be to offer a flexible 

design, which is not based on the worst-case scenario, and involves observing a structure’s 

behavior to adjust it in the future as needed (Hallegatte 2009; Ayyub & Wright, 2016; CACC, 

2018). For infrastructure design, the method historically relies on the construction of an initial 

design, followed by observation of selected performance variables or site conditions. The critical 

design threshold may change over time, and the changing risk can be integrated into an adaptive 

design concept. The observational method may not be suitable for projects that cannot be modified 

during or after construction and for structures that can exhibit brittle or sudden failure (Špačková 

& Straub, 2017; CACC, 2018; Dittes et al., 2018). 
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Proposed Framework 

 

Figure 21 presents a flowchart outlining the proposed framework toward a climate adaptive 

infrastructure design for flood protection purposes. The flowchart consists of four main phases: 

initial design, construction, observation, and adaptation. Prior to the design, identification of 

pertinent climate hazards and the consequences of exceedance is critical. The entire process may 

be broken into a series of steps presented below. Steps 1 to 6 correspond to the initial design phase 

presented in Figure 21: 

1. Selection of Design Climate Hazards. An ensemble of most probable hazards based on 

climate model outputs is used to determine the distribution of future hazards (Moss 

et al., 2010; Kilgore et al., 2019). Defining the most probable scenario requires a case-

by-case assessment and cannot be simply generalized. Alternatively, an intermediate 

level of emissions or the corresponding representative concentration pathway (RCP) 

can be considered as the most probable scenario for the initial design (e.g., RCP 4.5). 

The historic baseline case is then identified along with an upper bound based on the 

ensemble outputs (e.g., upper bound or 95th percentile of the future climate model 

simulations as a conservative extreme condition). This upper bound may be selected 

based on percentiles or maximum feasible conditions from a constructability 

standpoint. 

2. Selection of Non-Climatic Design Inputs. These include various parameters and loads 

such as material properties, loads not influenced by climatic conditions, and project 

limits. The number and extent of these inputs will vary based on the type of project.  
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3. Identification of Consequences and Evaluation of Risk. This evaluation is based on the 

probability of failure and the consequences of that failure. The level of acceptable risk 

must be defined or selected depending on the type of infrastructure.  

4. Base Design. A base design case (“risk-based initial design” in Figure 21) would then 

be completed. This design is based on a hazard condition that falls between the 

historic and upper bound cases, and should be based on the acceptable risk level for 

the project.  

 

 

Figure 21 Adaptive design concept. 

 

5. Evaluation of Adaptation Capacity. Before the design is finalized, the designer needs 



87 

 

to evaluate the need to implement a portion of the upper bound design into the base 

design for ease of adaptation. This approach ensures that the proposed design has the 

built-in capabilities for future modifications as necessary. Specific examples of these 

considerations as they pertain to some common problems are provided in the 

following subsection (e.g., ensuring sufficient space is available for future expansions, 

preemptively placing material in areas that may be difficult to access after 

construction due to inundation or site use, or overdesigning foundations for a more 

severe future case). 

6. Adaptive Design. The adaptive design is should then be what is potentially possible 

based on future climate information (referred to as “design with adaptation capacity” 

in Figure 21). This design is based on future climate information used for the baseline 

design, but has the capacity to be adapted should a preidentified tipping point be 

observed. Such tipping points should be identified as part of the design and may be 

based on observed information or directly tied to changes in the computed risk of 

exceedance based on updated climate projections (e.g., water reaching above a 

certain threshold, freeboard below a certain threshold).  

7. Observation and adaptation thresholds. Following the completion of construction, 

evaluating changes in hazards and the corresponding adaption pathways and/or 

adaption tipping point would then rely on continuous monitoring and reevaluation of 

extremes in a changing climate (Haasnoot et al., 2019; Walker et al., 2013). We 

introduce two thresholds for recognizing the tipping point. Here, adaptation-thresholds 

are associated with both changes in extreme events and the performance of the 

system of concern. Once the most probable emission scenario is exceeded (or relevant 
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hazards changed significantly), the hazard occurrence probabilities will need to be 

updated (e.g., deriving hazards based on a higher emissions scenario relative to that 

of the initial design (e.g., RCP 8.5 relative to RCP 4.5 or RCP 8.5 relative to an older 

version of the same RCP). The updated information on statistics of hazards defines 

the acceptable risk and the corresponding design variables influencing the 

probability of unsatisfactory performance of the structure. Once the performance 

function is less than the pre-defined performance criteria, the structural performance 

is considered unsatisfactory; thus, adaptation modification is needed. 

8. Adaptation. Once a predetermined tipping point has been exceeded, a modification 

must be made to the structure. The extent of the modification may be predetermined 

during the adaptive design or may be selected based on the anticipated change in risk 

for the proposed structure. Once the extent of modification is determined and 

evaluated, implementation/construction of the modification may be carried out.  

 

Adaptation Considerations  

 

Proper implementation of an adaptive design requires evaluation of a structures capacity to be 

adapted should a tipping point be reached. For different infrastructure systems, the relevant 

considerations and potential areas of concern vary significantly. Three common types of 

considerations for geotechnical structures are provided as examples: 

1. Capacity of Permanent Embedded Features. Retrofitting foundation systems, and 

other similar structure, may be cost prohibitive. Therefore, it may be more effective 
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to overdesign the foundation of the base design to the upper design level. For 

example, a T-Wall foundation could be sized to provide adequate factors of safety for 

the upper design level, but the protection level of the initial wall built to the based 

design level. A similar consideration should also be taken for geosynthetic 

reinforcement for earthen structures.  

2. Future Inundation. For some flood protection structures, climate change may 

inundate one side of the structure making adaptation difficult (e.g., coastal levees). In 

this case the adaptive design may preemptively install any necessary components 

where future inundation may occur. An example of this is the construction of a flood 

side berm similar to the example shown in Figure 21.  

3. Project Extent. Future structures may require a larger footprint than the base design 

(such as a future levee adaptation requiring larger stability berms, or a wider channel 

excavation for future precipitation levels). It should be confirmed that future 

modification fit within the project right of way and will not require additional land 

acquisition to simplify the modification.  

This list is not comprehensive, and a variety of project specific considerations may be required 

depending on the infrastructure type and location. 

 

Sea level rise projections 

In this section, we present an illustrative design example for a seawall to showcase how the 

proposed framework can be employed for adaptive design purposes. Sea level rise (SLR) affects 

flood risk in coastal regions (Nicholls et al., 1999; Penland & Ramsey, 1990). Recent studies have 



90 

 

provided updated SLR projections by developing probabilistic SLR projections for California 

based on the most current methods, which incorporate new dynamics to an ice sheet model (Cayan 

et al., 2016). The probabilistic SLR projections were developed based on a time‐dependent 

probability distribution of the different components and used a sampling method to sample the 

different components times 10,000 to calculate the SLR probabilities (Kopp et al., 2014). Figure 

22 provides the probabilistic SLR projections to be used for adaptive seawall design to mitigate 

coastal flood risk. The SLR projections are in cm above 2000 levels for San Francisco for the two 

different RCP scenarios from 2010 to 2100 at decadal time steps.  

 

 

 

Figure 22 The probabilistic SLR projections for seawall design in San Francisco, CA 

using two different RCPs from 2010 to 2100. The solid lines show the 50th percentile values and 

the dash lines represent the 1st and 99th percentiles.  
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 The local SLR projections are provided under CMIP phase 5 simulations (RCP 4.5 and 

RCP 8.5). These values suggest that by 2100 under the high emission scenario (RCP 8.5), the 

maximum SLR of what is physically possible is 288 cm which corresponds to the 99.9th percentile. 

As a first step toward implementing an adaptive seawall design, the contributing future climatic 

hazards need to be identified over time. Here, SLR projections represent the climatic load and 

random variable (sea water level) behind the seawall. Our hypothetical example design is based 

on sea level in the year 2100 in which, the corresponding SLR projections are 75.6 cm and 288 cm 

for moderate (RCP 4.5) and upper bound of the high (RCP 8.5) emission scenarios, respectively.  

 

Design freeboard: Here, we assess the integrity of a seawall in terms of change in freeboard and 

the associated performance under a changing climate. Code of Federal Regulations (CFR) for the 

National Flood Insurance Program defines the freeboard as a factor of safety above a flood level 

(FEMA, 2000). Freeboard aims to account for the many unknown factors that could contribute to 

flood heights. The Federal Emergency Management Agency (FEMA) requires seawall systems 

to have a required “Freeboard” of at least two feet above the base flood (FEMA, 2000).  

 

Unsatisfactory Performance function 

To determine the capacity of a structural system, the loads and resistances of the system need to 

be examined to find where the system will exceed the limitations (Ebeling & White, 2021). 

Performance function or a factor of safety, which is the ratio of the capacity to resist a demand 

(i.e., load), serves as the design criteria in engineering practices. When the performance function 

is less than the pre-defined performance criteria, the structural performance is considered 
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unsatisfactory (e.g., Schultz et al., 2018). The probability for the exceedance of limitations is called 

the Probability of Unsatisfactory Performance (PUP). In fact, the structural failure probability 

shows the probability of unsatisfactory performance (PUP) under a range of loads (e.g., Schultz et 

al., 2010). This terminology recognizes that a structure may not fail, but the integrity may be 

threatened, thus needing repair or adaptation. For the seawall example, we characterize the 

performance function without conducting physical modeling:  

 

J� =  
���∆���

����                                                                                                                         (1) 

 

where J� represents the performance function of the seawall, ∆���represents the SLR projection 

above 2000 level, ���=A is the minimum required freeboard for safe operation (to be decided by 

the designer), and ��= stands for the freeboard in base design (Figure 23). We consider three 

common initial freeboards of 66 cm, 100 cm, and 150 cm and three different min F.B. of 20 cm, 

30 cm, and 40 cm to demonstrate performance of the seawall. The performance function larger 

than 1 represents a satisfactory performance, and a performance function less than 1 indicates an 

unsatisfactory performance. Here we estimate the probability of performance empirically by 

investigating each individual climate model relative to the total possible outcomes. For simplicity, 

we use 8 percentiles of SLR projections provided by the 4th California Climate Change Assessment 

Report. Then, the probability of unsatisfactory performance (PUP) for each RCPs with its 

uncertainty bounds is defined as follows: 
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J�J =  � ¡¢�+
��¡�+                                                                                                                         (2) 

 

where PUP is the probability of unsatisfactory performance, £¤¥��) shows the number of SLR 

percentiles for which the performance function is less than 1, and ¦£¥�) represents the total 

number of SLR percentiles (here, 8 for RCP 8.5 and RCP 4.5 and 16 for combined RCPs scenario). 

 

  

 

Figure 23. Seawall schematic presenting initial freeboard (��=), SLR projections (∆����, 

and minimum freeboard (���=A�. 

 

For each SLR percentile, we estimate the seawall’s performance function over time at the decadal 

scale. Figure 24 presents the performance function for a seawall in San Francisco. Over time, the 

performance of the seawall tends to decrease due to the projected SLR. The seawall’s performance 

is shown for the 50th percentile of the RCP 8.5 SLR projections (dots) and the 99th percentile and 
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1st percentile uncertainty bounds (dashed lines). The differences in performances between the high-

end and 1st percentile scenarios become evident after the mid-century. If future projections follow 

the upper bound (RCP 8.5, 99th percentile), the seawall’s performance will drop below 1 

(performance threshold) in the year 2052, indicating unsatisfactory performance and thus, adaption 

is needed. Under RCP 8.5, 50th percentile scenario, the seawall would perform desirably based on 

the selected minimum freeboard until 2070, before falling into unsatisfactory performance.  

 

 

 

Figure 24. Performance function for a seawall facing sea level rise in San Francisco at 

the decadal time steps. The dots show the seawall’s performance based on the 50th percentile of 

the RCP 8.5 SLR projections. Dashed lines represent the uncertainty bounds for RCP 8.5 based 

on 99th percentile and 1st percentile. Initial and minimum freeboard are assumed to be 100 cm 

and 30 cm, respectively. 
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In the following, we show how considering different initial freeboards and minimum freeboards 

would affect the performance function and adaptation threshold. Figure 25 illustrates the 

performance function for a seawall in San Francisco under 50th percentile of RCP8.5 SLR 

projections with three different minimum freeboard values. In all three cases, initial freeboard is 

assumed 100 cm. The blue, yellow, and gray dots show the seawall’s performance based on 

minimum freeboard of 20 cm, 30 cm, and 40 cm, respectively. For both minimum freeboard of 40 

cm and 30 cm, the seawall’s performance drops below 1 (performance threshold) in the 2070s. If 

we assume a minimum freeboard of 20 cm, the seawall will perform satisfactorily until the 2080s 

(i.e., almost the entire lifetime). However, the risk of overtopping would be more significant 

assuming a minimum freeboard of 40 cm or 30 cm. The proposed adaptation indicator informs 

seawall’s unsatisfactory performance in advance, enabling implementing timely modifications 

(e.g., increasing seawall’s height) in the future.   
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Figure 25. Performance function for a seawall facing sea level rise in San Francisco 

under 50th percentile of RCP8.5 SLR projections with 3 different Min F.B. values. The gray, blue, 

and yellow dots show the seawall’s performance for min F.B. of 20 cm, 30 cm, and 40 cm, 

respectively. In all three cases the initial freeboard is assumed 100 cm.  

 

 

Figure 26 shows the performance function for a seawall facing sea level rise in San Francisco 

under 50th percentile of RCP8.5 SLR projections assuming 3 different initial freeboards at the 

design stage. The gray, blue, and yellow dots show the seawall’s performance for three initial 

freeboards of 66 cm, 100 cm, and 150 cm, respectively. In all three cases, the minimum freeboard 

is assumed to be 20 cm. For the commonly used freeboard of 66 cm, the seawall’s performance 

will drop below 1 (performance threshold) in the year 2060, indicating adaption is needed before 

then. However, if we design for a larger freeboard (e.g., 150 cm) at the design stage, the seawall 

will perform desirably in the gray area until almost the end of its lifetime (i.e., 2090s).  
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Figure 26. Performance function for a seawall facing sea level rise in San Francisco 

under 50th percentile of RCP8.5 SLR projections with 3 different initial F.B.. The gray, blue, and 

yellow dots show the seawall’s performance for three initial freeboards of 66 cm, 100 cm, and 

150 cm, respectively. Minimum freeboard is assumed 20 cm. 

 

Figure 27 illustrates the probability of unsatisfactory performance for a seawall facing sea level 

rise in San Francisco. The seawall’s PUP values are presented for RCP 4.5, RCP 8.5, and combined 

RCPs. In this case, initial and minimum freeboards are assumed to be 100 cm and 30 cm, 

respectively. In our methodology, SLR is the random variable; thus, PUP values represent the 

probability of unsatisfactory performance under the projected SLR distribution (e.g., RCP 8.5 with 

its uncertainty bounds) in each year. These PUP values are proportional to the number of events 

(here, SLR percentiles) that their performance functions are not satisfactory (performance less than 
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1). In the year 2100, if we consider the RCP 8.5 scenario, including its uncertainty bounds (e.g., 

1st to 99th percentiles), the PUP of the seawall will increase up to 0.9, which is considerable for 

design and planning. Under a moderate future climate scenario (RCP 4.5), the PUP of the seawall 

could elevate up to 0.63 in the year 2100.  

 

 

 

 

Figure 27. Probability of unsatisfactory performance for a seawall facing sea level rise 

in San Francisco. Gray, orange, and blue lines show the seawall’s PUP values under RCP 4.5, 

RCP 8.5, and combined RCPs SLR scenarios.  Initial and minimum freeboard are assumed to be 

100 cm and 30 cm, respectively. 

  

In the following, we show how the seawall adaptive design can be used in practice considering 

different sea level rise projections and RCPs. Figure 28 depicts the proposed adaptive and flexible 

design over lifetime. Let’s assume that the initial design is based on the moderate SLR scenario 

(50th percentile of RCP 4.5 projections) in 2100 (i.e., 74 cm). This initial design is case specific 
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and depends on the sensitivity of the project and acceptable risk. Following the completion of the 

initial construction, the design will be adjusted if new observed information indicates changes in 

projected extremes toward a more extreme RCP scenario (e.g., RCP 8.5). By continuously 

evaluating future changes, risk managers need to compare the observed sea level rise (yellow 

asteroids, Figure 28) with the projected sea level rise used in the initial design. Upon observing a 

shift toward RCP8.5 (e.g., in the 2040s as shown in Figure 28), a new design height should be 

determined based on the most updated ensemble and the accepted risk (e.g., 83rd percentile of RCP 

8.5 – 216 cm). Without any adaptive measure, the probability of unsatisfactory performance of the 

structure increases over time and may exceed the acceptable threshold (i.e., 1) before the end of 

its lifetime (see the yellow line reaching the red zone in Figure 28). In this example, after observing 

a shift from what was initially considered for the initial design (RCP 4.5), the seawall will be 

adopted (see the gray dots and line if Figure 28). In the revised version (gray line), the performance 

remains well above 1 during the life of the project.  
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Figure 28. An example adaptive seawall design concept in San Francisco. Initial design 

is based on a moderate SLR scenario (here, 50th percentile of RCP 4.5) in 2100 (74 cm) – blue 

line. Observations over the life of the project shows that sea levels follow the RCP8.5 and 

without adaptation, performance function will go below 1 before the end of the project (yellow 

line reaching the red zone). By updating the design based on the 83rd percentile of the RCP 8.5 

in 2100 (216 cm), for example, one can ensure the performance will remain well above one over 

the life of the project (gray line). The y axis shows the performance function at the decadal time 

steps. The Initial and minimum freeboards are assumed 100 cm and 30 cm, respectively. 

 

Summary 

Climatic extremes pose disruption to infrastructure systems. To ensure the safety and durability of 

infrastructure systems in the future, we propose a framework for infrastructure desing in a 

changing climate. This framework aims to quantify the impacts of natural hazards and climatic 

extremes (e.g., floods) on the structural integrity of current and future infrastructure systems at 

component and system levels. The proposed adaptive iteration includes selection of a most 

probable, but not inherently most conservative base design case with the ability to adjust if new 

observed information (or climate projections) indicates increases in future extremes. The choice 
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of most probable condition for design cannot be generalized and depends on the specifics of the 

project and acceptable risk in the study area.  

Offering an applicable approach, we implement the proposed adaptive design on a conceptual 

seawall system for the planning horizon of year 2100, under different sea level rise (SLR) 

scenarios. In this example, after observing a shift from the most probable SLR to high SLR 

scenario in the year 2070, the design height would be adjusted based on the most credible SLR 

scenario at the time of re-design (here, 2 m: 0.4 m higher than the initial design). After 

implementing the adaptive design modification (increasing seawall height), the risk of failure 

decreases over the lifetime. Adaptive design methodology will require further refinements for 

region-specific and structure-specific applications before it can be fully implemented in the 

practice. However, this approach provides a broad definition and general steps leading toward 

climate-ready infrastructure designs. Such a method has the potential to prevent overinvestment 

that would be incurred if extremely robust designs are implemented, while providing a way 

forward to deal with uncertainty in climate projections and changing extremes.  
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Chapter 6             Summary and Conclusion 
 

 

 

 

Human activities have altered the natural hydrologic cycle, leading to changes to the quantity, 

quality, and distribution of water. Over the past decades, human‐induced climate change has 

caused additional variability in the frequency and/or intensity of climatic hazards such as drought 

and flood. The compounding effects of human‐induced climate change with water and land use 

practices have elevated the complexity of water resources management and infrastructure systems 

planning.  In this dissertation, we develop frameworks for modeling and assessing human activities 

in the natural and built environment. The objectives include: 

  

(OB) 1- Evaluate compounding effects of meteorological drought and unsustainable water 

resource management contributing to catastrophic environmental degradation.    

(OB) 2- Investigate the notion of anthropogenic flood events where human disruptions have 

caused or intensified flood risk to unprecedented levels. 

(OB) 3- Evaluate performance (i.e., factor of safety) of water infrastructure under anthropogenic 

climate change, and propose adaptive strategies toward climate-ready infrastructure systems. 
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This Chapter summarized our conclusions for the objectives listed above.  

 

 

(OB) 1: We explored frameworks for quantifying human influence on the observed changes in 

Lake Urmia. Located in northwestern Iran, Lake Urmia is an exemplar of how unsustainable water 

management to meet growing water demand can worsen meteorologic drought and create massive 

socio-ecological challenges. We developed a detailed water resources systems model of the basin 

and lake interactions, including datasets of infrastructure (i.e., reservoir capacity and operating 

policies), observed streamflow, and agricultural and urban water demand. Results demonstrate that 

a growing anthropogenic drought combined with meteorological drought drove the lake toward a 

state of hydrological overshoot and collapse. The rapid water level decline after the drought of 

record (1998-2002) when annual runoff decreased by 48% is synchronous with an approximately 

25% increase in surface water withdrawals, especially in the agricultural sector. The lake level 

remained significantly below the designated ecological threshold (1274 m above sea level) even 

in a relatively normal period immediately after the drought.  

  

We develop a dynamic and climate-informed environmental inflow plan, which is critical for 

reviving the lake. We estimate that the lake’s environmental inflow requirements range from 2900 

mcm/yr (during dry conditions) to 5400 mcm/yr (during wet conditions), with the average being 

4100 mcm/yr. Depending on the climatic condition, water withdrawal reduction plan, and 

environmental releases, Lake Urmia’s recovery time can range from 3 to 16 years.  
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(OB) 2: To explore the notion of anthropogenic floods, we investigate a series of severe flood 

events over two weeks (late March and early April 2019) that devastated several areas across Iran 

following a multi-year dry period. Our analysis reveals several takeaways pertinent to the 

interlinked hydro-climatic drivers and anthropogenic catalyzers of flooding. The risk of flooding 

for loss of life and assets has been remarkably raised by man-made changes to river basins to the 

point that some urban areas are particularly vulnerable to anthropogenic floods (e.g., Darvazeh 

Quran Catchment in Shiraz, Fars Province, Iran). We illustrate how spring 2019 flood impacts in 

Iran were exacerbated by various human-induced changes, including construction along rivers, 

deforestation, aggradation, natural channel constriction, and poorly sized water conveyance 

structures. It is necessary to rethink urban planning and floodplain management in light of 

increased flood risks due to changing extreme events and cascading hydro-climatological effects 

compounded with growing exposure and severity of flood incidents in urbanizing areas. 

 

(OB) 3: To evaluate the impacts of climatic extremes on infrastructure, we study a levee that is 

subjected to past and future streamflow projections. Toward achieving a climate-ready levee 

system, we first identify the new patterns of the natural hazard (i.e., flood) that affects the levee in 

the future. The daily streamflow projections (1950-2099) are used for flood frequency analysis at 

the Elkhorn Levee location (Sacramento, California) using ProNEVA. Our results based on the 

most extreme climate model (CanESM2 model, RCP 8.5) projected higher future peak water levels 

in the future (2049-2099) compared to the corresponding flood levels in the baseline (1950-2000) 

period, implying higher flood risk in the future. The water level corresponding to the future 50-

year flood event is expected to be a 1.34 m higher-6.5% increase relative to the current condition. 
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We translate the information on changing streamflow extremes to actual physical levee response 

(e.g., failure probability). In the levee’s physical modeling, the flood level for different return 

periods represents the hydraulic load which is applied into a set of transient coupled finite-element 

seepage and limit equilibrium slope stability analyses. The failure probability of the levee would 

increase up to 27% when considering future streamflow projections (failure probabilities of 0.77 

and 0.98 under past and future climate, respectively). These results indicate that a 1.3 m higher 

flood level in the future would lead to a 27% higher risk of levee failure, which is considerable in 

risk assessment. Our method allows translating the change in hazard to change in performance. 

Currently, these evaluations are not available, and we achieve our main goal by generating this 

information.   

Finally, to ensure the safety and durability of infrastructure systems in the future, we define a 

framework for adapting to climatic changes. The proposed adaptive iteration includes the selection 

of a moderate climate scenario but not inherently conservative base design case with the ability to 

adjust if new observed information (or even climate projections) admits exceeding the initial 

acceptable risk. We implement the proposed adaptive design on a conceptual seawall system for 

the planning horizon of the year 2100 under different sea level rise (SLR) scenarios. In this 

hypothetical example, after observing a shift from the moderate SLR (RCP 4.5) to the high SLR 

scenario in 2040, the adjusted design height after the modification stage would be based on the 

most credible SLR scenario (RCP 8.5). Adaptive design methodology will require further 

refinements for region-specific and structure-specific applications before it can be fully 

implemented in practice. However, this approach provides a broad definition and general steps 

leading toward climate-ready infrastructure design. Such a method has the potential to minimize 

overinvestment that would be incurred if extremely robust designs are implemented while 
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providing a means to deal with uncertainty in climate projections. However, this approach would 

require careful consideration and planning to provide resources for observation and potential 

modification of the structure during the life of the project. 
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Appendix A 

MODSIM modeling                                                                                                           

 

 

Figure S1. Monthly observed and simulated lake levels during the evaluation period (1967-
2007). 
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Figure S2. Monthly observed and simulated lake inflows during the evaluation period (1967-
2007). 

 

 

 

Figure S3. Annual observed and simulated lake inflows during the evaluation period (1967-
2007). 
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Figure S4. Comparison of model performance using monthly evaporation climatology with the 
total evaporation of 1100 mcm/yr and available observed monthly evaporation time series for the 
period of 1982-2002. 
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Appendix B 

 

Flooding events                                                                                                                 

 

 

 

Figure S1. Combined Sentinel’s satellite shortwave and infrared, near infared and blue band 

images show flood inundation a) before and b) after the event in AqQala, the most affected city. 

 



150 

 

 

 

Figure S2. Comparing a similar large precipitation event in 2016 to 2019 flood event, a) 2016 6-

hr precipitation, b) 2019 6-hr precipitation.  It is noticeable that 5 days before the main flood. We 

only have one large precipitation event in 2016 although the intensity of 24-hr precipitation is the 

same as 2019 (100 mm). It provides further evidence that 2 following cascading high precipitation 

events resulted in an extreme flood. 
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Figure S3. Annual maxima precipitation in MaraveTappe Gage Station. 
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