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Abstract  
This paper presents a formalisation and analysis method for 
the dynamics of a reasoning process in which multiple 
representations play a role. Dynamics of reasoning processes 
are described by reasoning traces consisting of sequences of 
reasoning states over time. Reasoning states have a 
compositional structure; they are composed of different parts, 
for example, for different representations. Transitions between 
two  reasoning states model reasoning steps. In relation to the 
compositional structure of the states, transitions are classified 
into a number of types. An example reasoning process 
involving multiple representations is used to illustrate how its 
dynamics can be formalised and analysed using the approach.  

Introduction 
Within Cognitive Science in recent years the dynamical 
perspective on cognitive phenomena has been emphasized 
and received much attention. In most literature focussing on 
the dynamics of cognition, the Dynamical Systems Theory 
(DST) is taken as a point of departure; e.g., (Port and 
Gelder, 1995). This theory assumes that, in contrast to the 
use of symbolic representations, modelling and analysis of 
dynamics of cognitive phenomena can be done more 
effectively by using representations based on real numbers 
and mathematical techniques, in particular difference and 
differential equations. The convincing examples illustrating 
the usefulness of this perspective often address lower level 
cognitive processes such as sensory or motor processing. 
Indeed one of the advantages of the Dynamical Systems 
Theory is that it is able to model the temporal aspects of 
events taking place on a continuous time scale, such as, for 
example, recognition time, response time, and time involved 
in motor patterns and locomotion. 
 Also some examples of higher level cognitive processes 
have been addressed using DST; for example the dynamic 
models for decision making developed by Busemeyer and 
Townsend (1993). Especially the continuous adaptive 
aspects of the decision making are covered nicely in this 
approach. Areas for which the quantitative approach based 
on DST is assumed to have less to offer are the dynamics of 
higher level processes with mainly a qualitative character, 
such as certain capabilities of language processing and 
reasoning. In the last two decades, within the areas of 
Computer Science and Artificial Intelligence alternative 
techniques have been developed to analyse the dynamics of 
phenomena using qualitative means. Examples are process 
algebra; transition systems; dynamic and temporal logic; 

event, situation and fluent calculus; e.g., (Eck, et al. 2001; 
Hölldobler and Tielscher, 1990; Kowalski and Sergot, 1986; 
Reiter, 2001). Just as difference or differential equations, 
these alternative techniques allow to consider and relate 
states of a process at different points in time. The form in 
which these relations are expressed can cover both 
quantitative and non-quantitative aspects. This paper 
illustrates the usefulness of such an approach for the 
analysis and formalisation of the dynamics of reasoning. 
Here a broad perspective is taken on reasoning, subsuming, 
for example, reasoning involving multiple representations.   
 A formal analysis method for the dynamics of reasoning 
is presented and illustrated by an example reasoning pattern 
involving geometric and arithmetic representations. This 
pattern is analysed and characterised in terms of a set of 
dynamic properties. The properties have been formalized, 
thus enabling automated support of analysis by an analysis 
environment that has been developed.  
 Below, first the dynamic perspective on reasoning is 
discussed in some more detail. Next, the example reasoning 
pattern is introduced, and the first steps of an analysis are 
made. Third, a number of dynamic properties identified for 
the example reasoning pattern are presented. Finally the 
analysis method is summarised and the contribution of the 
research presented in the paper is discussed. 

Reasoning Dynamics 
Analysis of the cognitive capability to perform reasoning 
has been addressed from different areas and angles. Within 
Cognitive Science, the two dominant streams are the 
syntactic approach (based on inference rules applied to 
syntactic expressions, as common in logic), e.g., (Rips, 
1994), and the semantic approach (based on construction of 
mental models); e.g., (Johnson-Laird, 1983; Yang and 
Johnson-Laird, 1999).  
 Reasoning steps in natural contexts are usually not 
restricted to the application of logical inference rules. For 
example, a step in a reasoning process may involve 
translation of information from one representation form 
(e.g., geometrical) into another one (e.g., arithmetical). Or, 
an additional assumption can be made, thus using a dynamic 
set of premises within the reasoning process. Decisions 
made at specific points in time during the process, for 
example, on which representations to use or which 
assumptions to make, are an inherent part of the reasoning. 
Such reasoning processes or their outcomes cannot be 



  

understood, justified or explained without taking into 
account these dynamic aspects. 
 To formalise the dynamics of a reasoning process, traces 
are used. Reasoning traces are time-indexed sequences of 
reasoning states over a time frame; for stepwise reasoning 
processes the set of natural numbers as a time frame is an 
appropriate choice. The set of all possible reasoning states 
defines the space where the reasoning takes place. 
Reasoning traces can be viewed as trajectories in this space, 
for which every (reasoning) step from one reasoning state to 
the next one is based on an allowed transition. If the 
possible reasoning states and the allowed reasoning steps or 
transitions are characterised, the set of proper reasoning 
traces can be defined as the set of all possible sequences of 
reasoning states consisting only of allowed transitions.  

Reasoning States 
A reasoning state formalises an intermediate state of a 
reasoning process. The content of such a reasoning state 
usually can be analysed according to different aspects or 
dimensions. For example part of the state may contain a 
geometric representation, another part an arithmetic 
representation. Accordingly, the reasoning state is structured 
as a composition of (i.e., a tuple of) a number of parts, 
indexed by some set I. This index set includes different 
aspects or views taken on the state, e.g., I = {geometric, 
arithmetic}. The set of reasoning states RS can be characterised 
as a Cartesian product RS =  ∏i ∈ I  RSi where RSi is the set of 
all states for the aspect indicated by i. For example, RSgeometric 
may denote the set of all possible geometric representations; 
note, however, that is also possible to use more dimensions, 
e.g., different types of geometric representations can be 
formalised. This Cartesian product formalises the multi-
dimensional space where the reasoning takes place. For a 
reasoning state, which is a vector  S =  (Si)i ∈ I  ∈ RS in this 
space, the Si are called its components. 

Reasoning Steps: Transitions of Reasoning States 
A transition from one reasoning state to another reasoning 
state, i.e., an element  < S, S’ > of  RS x RS, formalises one 
reasoning step; sometimes also denoted by S → S’. A 
reasoning transition relation is a relation on RS x RS. Such a 
relation can be used to specify the allowed transitions. 
Transitions differ in the set of components that are involved. 
The most complex transitions change all components of the 
state in one step. However, within stepwise reasoning 
processes, usually transitions only involve a limited number 
of components of the state, e.g., only one or two. Transitions 
can be classified according to which set of components is 
involved. The most simple types of transition involve a 
single component transition. Next come transition types 
where two components are involved. In the current approach 
we concentrate on these two classes of transition types. 
 

Single component transition types 
For example, when a modification in the reasoning state is 
made solely within a geometric representation, only the 
geometric component of the state changes (geometric 

reasoning step). Or, if a calculation (arithmetic reasoning) 
step is performed, only the aritmetic component is changing. 
These single component transitions involve only that 
component and can be defined within one component only:  

  geometric →   geometric 
  arithmetic →   arithmetic 

It is also possible that one component of a state is changed 
by information acquisition, importing information from an 
external source in the reasoning process.  
 

Transitions involving two components of a reasoning state 
Other types of transitions involve more than one component. 
For example, if information from a geometric representation 
is translated into an arithmetic form, thereby extending the 
arithmetic representation, then two components of the state 
are involved: the arithmetic component and the geometric 
component. Examples of transition types involving two 
components are: 

 geometric  x arithmetic   →   geometric 
(e.g., the geometric representation is extended or modified 
with results from the arithmetical representation) 

 arithmetic x geometric   →   arithmetic 
(e.g., the arithmetic representation is extended or modified 
with results from the geometrical representation) 

Reasoning Traces 
Reasoning dynamics results from successive reasoning 
steps, i.e., successive transitions from one reasoning state to 
another. Thus a reasoning trace is constructed: a time-
indexed sequence of reasoning states (γt)t∈T, where T is the 
time frame used (the natural numbers). A reasoning trace 
can be viewed as a trajectory in the multi-dimensional 
space RS = ∏i ∈ I  RSi of reasoning states. An example of such 
a reasoning trace will be discussed in Section 3; see also 
Figure 1. Reasoning traces are sequences of reasoning states 
subject to the constraint that each pair of successive 
reasoning states in this trace forms an allowed transition. A 
trace formalises one specific line of reasoning.  

Example Reasoning Process 
An example multi-representation reasoning process is used 
to illustrate the approach put forward: interaction between 
arithmetical reasoning and geometrical reasoning. The 
example focuses on how to determine the outcome of 
multiplications such as 23 x 36. Experiences on using such 
processes with children (8-9 years old) in class rooms have 
been reported, e.g., by Dekker et al. (1982), see also 
(Hutton, 1977). The example can also be extended to an 
example for children of 13 or 14 years to support algebra by 
geometric visualisations, e.g., the algebraic identity (a + b)2 = 
a2 + 2ab + b2 interpreted as the area of a partitioned square of 
(a + b) x (a + b) in relation to areas of its parts: a square of a x 
a, a square of b x b, and two rectangles of a x b. Also 
teaching quadratic equations can be supported by such 
visualisations as discussed, e.g., by Bruner (1968), pp. 59-
63. The example pattern shows two types of one component 
transitions of reasoning states, and two transition types 
involving two components: 



  

geometric 

arithmetic ag1 

ag2 

gg1 

ga1 

aa1 

ag3 

gg2 

ga2 aa2 

aa3 

• an arithmetical reasoning step: arithmetic  →   arithmetic 
• a geometrical reasoning step: geometric  →   geometric 
• a translation of an arithmetical representation into a 

geometrical representation: geometric  x arithmetic  →  geometric 
• a translation of a geometrical representation into an 

arithmetical representation: arithmetic x geometric →   arithmetic 
 

The idea is that only simple arithmetical steps are required. 
The more complicated steps are performed via the 
geometrical representation. A number of skills are assumed. 
These skills can be defined in the form of transitions. 
 

A. Assumed arithmetic skills  arithmetic  →   arithmetic 
aa1. splitting a number in ‘tens’ and single digits: 28 = 20 + 8 
aa2. addition of a list of numbers of up to 4 digits, such as 1200 + 340 + 

120 + 6 
aa3. multiplication of two numbers starting with a nonzero digit, followed 

by zero or more zeros, such as 20 x 8, 60 x 30. 
 

B.  Assumed geometric skills  geometric → geometric 
gg1. partitioning a rectangle in non-overlapping areas based on 

partitionings of its sides 
gg2. determining the area of a figure from the areas of a (non-

overlapping) partition  
 

C.  Assumed translation skills 
geometric  x arithmetic  →   geometric: 
ag1. drawing a rectangle with arithmetically given dimensions  
ag2. partitioning a line segment according to a splitting of its length 
ag3. determining the area of a rectangle from the multiplication of the 

lengths of its sides  
arithmetic x geometric →   arithmetic: 
ga1. translating the area of a rectangle into the multiplication of the 

lengths of its sides 
ga2. translating the area of a combination of nonoverlapping areas into 

the sum of the areas 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 1: Reasoning trace as a trajectory in a two-

dimensional reasoning state space. 
 
The example reasoning trace, based on class room 
observation (cf. Dekker et al., 1982), forms a trajectory in 
the two-dimensional reasoning state space  
 

  RS =  RSarithmetic x RSgeometric 
 

This trajectory is depicted in Figure 1. Note that in this 
Figure only the changing component is visualised by an 
arrow, not what component affected this change. Therefore, 
e.g., both a geometric reasoning step and a translation of an 
arithmetic into a geometric representation are depicted by a 
vertical arrow. The detailed trace is presented below. 

 
 
Starting problem   What is the outcome of the multiplication 23 x 36 ? 

Step 9  ga2  representation translation  
Identify the corresponding arithmetical relation:  600 + 120 +  90 + 18 
 
Step 10  aa2  arithmetic reasoning  
Calculate the sum:  600 + 120 +  90 + 18 = 828 
 

Dynamic Properties 
To specify properties on the dynamics of a reasoning 
process, the temporal trace language TTL used by Herlea et 
al. (1999), and Jonker and Treur (1998) is adopted. This is a 
language in the family of languages to which also situation 
calculus (Reiter, 2001), event calculus (Kowalski and 
Sergot, 1986), and fluent calculus (Hölldobler and Tielscher, 
1990) belong. In short, in TTL it is possible to express that 
in a given trace at a certain point in time the reasoning state 
has a certain (state) property. Moreover, it is possible to 
relate such state properties at different points in time. As an 
example, the following (global) property of a reasoning 
trace γ is considered, which expresses that all multiplication 
problems in two digits eventually will be solved. 
 
GP1 

at any point in time t 
if  in the reasoning state in trace γ at t an arithmetic representation of 

a multiplication problem for numbers x and y < 100 is present, 
then  a time point t’≥t exists such that in the reasoning state in γ at t’ an 

arithmetic representation of a solution z of this multiplication 
problem with z = x*y is included. 
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Step 1  ag1  representation translation  
Create a rectangle of 23 x 36. 
 

Step 2  aa1  arithmetic reasoning  
Split the numbers into the ‘tens’ and  
single digits: 23 = 20 + 3; 36 = 30 + 6 
 

Step 3  ag2  representation translation  
Translation of the arithmetical splitting of 
the numbers into partitions of the sides 
within the geometrical representation. 
Step 4  gg1  geometric reasoning  
Partition the area of the rectangle  
according to the partitioning of the sides. 

 

Step 5  ga1  representation translation  
For each part identify the correspond-ing 
arithmetical expression for its area: 20 x 30, 
20 x 6,  3 x 30, 3 x 6 
 

Step 6  aa3  arithmetic reasoning  
Determine the outcomes of the four 
multiplications 20 x 30  =  600; 20 x 6  =  
120; 3 x 30  =  90; 3 x 6 = 18 
 

Step 7  ag3  representation translation  
Identify the areas of the parts of the 
rectangle based on the outcomes of the 
multiplications. 

 

Step 8  gg2  geometric reasoning  
Assert that the area of the rectangle as a 
whole is the combination of the areas of the 
parts 
 



  

 

The formalisation of this property in TTL is as follows. 
∀t ∀x, y < 100  state(γ, t, arithmetic) |== multiplication_problem(x, y)  

        ⇒  ∃t’≥t  ∃z    z = x*y   & 
               state(γ, t’, arithmetic) |== is_solution_for_multiplication_of(z, x, y) 
 

Note that for simplicity no maximal allowed response time 
has been specified. If desired, this can be simply added by 
putting a condition t’≤r in the consequent with r the maximal 
response time. 

Milestone Properties 
Within the overall reasoning process a number of milestones 
can be defined, and properties can be identified that express 
whether the process from one milestone to another one has 
been performed properly. Apart from the start and the finish, 
two intermediate milestones were defined: a reasoning state 
in which the problem has been represented in a geometric 
representation and it has been decomposed geometrically 
(after step 4 in the example trace), and a reasoning state in 
which a geometric representation with numbers in the areas 
occurs, i.e., in which the subproblems have been solved 
(after step 7 in the example trace). Accordingly, the 
following milestone properties have been formulated. 
 
MP1 

at any point in time t 
if  in the reasoning state in trace γ at t an arithmetic representation of 

a multiplication problem for numbers x and y < 100 is present, 
then  a time point t’≥t exists such that in the reasoning state in γ at t’ a 

geometric representation of a rectangle ABCD is included with 
points P on AB and Q on AD, with |AB| = x and |AD| = y  

  and  this rectangle is partitioned into four areas A11, A12, A21, A22 by 
two lines PP’//AD and QQ’//AB with P’ on CD and Q’ on BC with 
|AP| = x1, |PB| = x2, |AQ| = y1, and |QD| = y2, where x1, y1 is the 
10-part of x, resp. y, and x2, y2 is the digit part of x, resp. y. 

 
Here, |AB| is the length of AB, and // is ‘in parallel with’. 
 
MP2 

at any point in time t 
if  in the reasoning state in trace γ at t a geometric representation of a 

rectangle ABCD is included with points P on AB and Q on AD, 
with |AB| = x and |AD| = y,  

  and  this rectangle is partitioned into four areas A11, A12, A21, A22 by 
two lines PP’//AD and QQ’//AB with P’ on CD and Q’ on BC with 
|AP| = x1, |PB| = x2, |AQ| = y1, and |QD| = y2, where x1, y1 is the 
10-part of x, resp. y, and x2, y2 is the digit part of x, resp. y, 

then  a time point t’≥t exists such that in the reasoning state in γ at t’ in 
each of these areas Aij a number zij is represented which equals 
xi*yj.  

 
MP3 

at any point in time t 
if  in the reasoning state in trace γ at t a geometric representation of a 

rectangle ABCD is included with |AB| = x and |AD| = y  
  and  this rectangle is partitioned into four nonoverlapping rectangle 

areas A11, A12, A21, A22, 
  and in each of these areas Aij a number zij is represented which equals 

xi*yj, where x = x1 + x2, and y = y1 + y2, 
then a time point t’≥t exists such that in the reasoning state in γ at t’ an 

arithmetic representation of a solution z with z = x*y of the 
multiplication problem (x, y) is included. 

Local Properties 
In this section a number of properties are identified that 
characterise the reasoning in a more local manner: each 
property characterises one reasoning step. For the sake of 
simplicity,  for the example reasoning process persistence of 
representations in reasoning states over time is assumed, so 
that persistence does not need to be formulated within each 
of the properties.  
 
LP1  (arithmetic-geometric) 

at any point in time t 
if  in the reasoning state in trace γ at t an arithmetic representation of 

a multiplication problem for numbers x and y < 100 is present, 
then  a time point t’≥t exists such that in the reasoning state in γ at t’ a 

geometric representation of a rectangle ABCD with |AB| = x and 
|AD| = y is included.  

 

This dynamic property expresses that in reasoning trace γ, if 
an arithmetically represented multiplication problem occurs, 
this eventually is translated into a geometric representation. 
The formalisation of this property in TTL is as follows. 
 
∀t ∀x, y < 100  state(γ, t, arithmetic) |== multiplication_problem(x, y)   

 ⇒   ∃t’≥t ∃A, B, C, D   
          state(γ, t’, geometric) |== rectangle(A, B, C, D) & |AB| = x & |AD| = y 

 
 

Further local properties are the following (not in any 
particular order). 
 
LP2  (arithmetic-arithmetic) 

at any point in time t 
if  in the reasoning state in trace γ at t an arithmetic representation of 

a multiplication problem for numbers x and y < 100 is present, 
then  a time point t’≥t exists such that in the reasoning state in γ at t’ an 

arithmetic representation of a splitting of the numbers x and y in 
‘tens’ and digits occurs, i.e., x = x1 + x2, y = y1 + y2 with x1, y1 
multiples of 10 and x2, y2 <10. 

 
LP3  (arithmetic-arithmetic) 

at any point in time t 
if  the reasoning state in trace γ at t contains an arithmetic 

representation of a multiplication problem for (x, y), with x, y 
multiple of 10 or less than 10, 

then  a time point t'≥t exists such that in the reasoning state in γ at t' an 
arithmetic representation of a solution z with z = x*y for this 
multiplication problem for (x, y) is included. 

 
LP4  (arithmetic-arithmetic) 

at any point in time t 
if  in the reasoning state in trace γ at t an arithmetic representation of 

an addition problem for a finite list z1 ,..., zn of numbers of up to 4 
digits is included, 

then  a time point t'≥t exists such that in the reasoning state in γ at t' a 
solution z = Σ1≤ i ≤ n zi of the addition problem is included. 

 
LP5  (arithmetic-geometric) 

at any point in time t 
if  in the reasoning state in trace γ at t an arithmetic representation of 

a splitting of the numbers x and y occurs, i.e.,  
 x = x1 + x2, y = y1 + y2, 
then  a time point t'≥t exists such that in the reasoning state in γ at t' a 

geometric representation of a rectangle ABCD with |AB| = x and 
|AD| = y is included with points P on AB and Q on AD such that 
|AP| = x1, |PB| = x2, |AQ| = y1, and |QD| = y2. 

 



  

 
LP6   (geometric-geometric) 

at any point in time t 
if  in the reasoning state in trace γ at t a geometric representation of a 

rectangle ABCD is included with points P on AB and Q on AD, 
then  a time point t’≥t exists such that in the reasoning state in γ at t’ the 

rectangle ABCD is partitioned into four areas A11, A12, A21, A22 
by two lines PP’//AD and QQ’//AB with P’ on CD and Q’ on BC. 

 
LP7  (geometric-geometric) 

at any point in time t 
if  in the reasoning state in trace γ at t a geometric representation of a 

rectangle ABCD is included that is partioned into a number of 
nonoverlapping areas A1, …, An, 

then  a time point t'≥t exists such that in the reasoning state in γ at t' it is 
asserted that the area of ABCD is the combination of the areas  
A1, …, An.  

 
LP8  (geometric-arithmetic) 

at any point in time t 
if  in the reasoning state in trace γ at t a geometric representation of a 

rectangle ABCD with |AB| = x and |AD| = y is included with 
points P on AB and Q on AD such that |AP| = x1, |PB| = x2,  
|AQ| = y1, and |QD| = y2,  

  and this rectangle is partioned into four areas A11, A12, A21, A22 by 
two lines PP'//AD and QQ'//AB with P' on CD and Q' on BC, 

then  a time point t'≥t exists such that in the reasoning state in γ at t' 
arithmetic representations of multiplication problems for (x1, y1), 
(x1, y2), (x2, y1), and (x2, y2) are included. 

 
LP9   (geometric&arithmetic-geometric) 

at any point in time t 
if  in the reasoning state in trace γ at t a geometric representation of a 

rectangle ABCD is included with points P on AB and Q on AD,  
  and  this rectangle is partioned into four areas A11, A12, A21, A22 by 

two lines PP'//AD and QQ'//AB with P' on CD and Q' on BC, 
  and  arithmetic representations of solutions z11, z12, z21, z22 for the 

multiplication problems for (|AP|, |AQ|), (|AP|, |QD|), (|PB|, |AQ|), 
and (|PB|, |QD|) are included. 

then  a time point t'≥t exists such that in the reasoning state in γ at t' 
within the geometric representation in each area Aij, the number zij 
is represented. 

 
LP10   (geometric-arithmetic) 

at any point in time t 
if  in the reasoning state in trace γ at t a geometric representation of a 

rectangle ABCD is included which is partioned into a number of 
areas A1, …, An,  

  and within each of these areas Ai a number zi is represented, 
then  a time point t'≥t exists such that in the reasoning state in γ at t' an 

arithmetic representation of an addition problem for z1, …, zn is 
included. 

 
LP11   (geometric& arithmetic-arithmetic) 

at any point in time t 
if  in the reasoning state in trace γ at t a geometric representation of a 

rectangle ABCD is included with |AB| = x and |AD| = y that is 
partitioned into a number of nonoverlapping areas A1, …, An, 

  and within each of these areas Ai the number zi is represented, 
  and an arithmetic representation of a solution z of the addition problem 

for z1, …, zn is included, 
then  a time point t'≥t exists such that in the reasoning state in γ at t' an 

arithmetic representation of a solution z with z = x*y of the 
multiplication problem (x, y) is included. 

Relationships Between the Dynamic Properties 
A number of logical relationships have been established 
between the properties above. First of all, the three 
milestone properties together imply the global property: 
 
                 MP1 & MP2 & MP3     GP1  (0) 
 

Next, each of these milestone properties is implied by a 
number of local properties: 
 
         LP1 & LP2 & LP5 & LP6      MP1  (1) 
                   LP3 & LP8 & LP9     MP2   (2) 
      LP4 & LP7 & LP10 & LP11      MP3  (3) 
 

These logical relationships, which can be depicted as an 
AND-tree, are helpful in the analysis of errors within a 
given reasoning trace. First it can be checked whether GP1 
holds. If this global property does not hold, the three 
properties MP1, MP2, MP3 can be checked. Given the logical 
relationship (0), at least one of them will be found not to 
hold. This pinpoints the cause of the error in part of the 
process, say MP3. Next, (only) the local properties relating 
to MP3 are checked, i.e, LP4, LP7, LP10, LP11. Again, due to 
(3) one of them will be found not to hold. This localises the 
error. 

The Dynamic Analysis Method 
The analysis method for the dynamics of reasoning 
processes as presented here is summarised as follows. 
1. Identify the different dimensions or components of 

reasoning states. 
2. Determine the different types of transitions. 
3. Identify relevant dynamic properties for the reasoning 

a. for the process as a whole (global properties) 
b. for milestones within the process  
c. for reasoning steps (local properties) 

4. Determine logical relationships between the different 
dynamic properties, in an AND-tree form; e.g., 
a. local properties imply a milestone property, and  
b. milestone properties imply a global property. 

5. For a given reasoning trace, check which of the dynamic 
properties hold and which do not hold. This can take the 
form of a diagnosis following the tree structure of the 
relationships between the dynamic properties. A 
software environment is available to support this  
checking process. 

The dynamic properties identified can be of different types. 
Some may be assumed to hold for all proper reasoning 
traces, others may be used to distinguish different types of 
reasoning traces or reasoners.  

Discussion 
The analysis method for the dynamics of reasoning 
processes put forward and illustrated in this paper was 
validated on the basis of reports from experiments with 8-9 
year old children in classrooms in the Netherlands (Dekker 
et al., 1982); a similar report has been made by Hutton 



  

(1977). This paper shows how an analysis of these dynamics 
can be made using traces consisting of sequences of 
reasoning states over time to describe reasoning processes. It 
is shown for the example reasoning pattern, how 
characterising dynamic properties can be identified.  
 The language used to express dynamic allows for precise 
specification of these dynamic properties, covering both 
qualitative and quantitative aspects of states and their 
temporal relations. Moreover, software tools have been 
developed to (1) support specification of dynamic 
properties, and (2) automatically check specified dynamic 
properties against example traces to find out whether the 
properties hold for the traces. This provides a useful 
supporting software environment to evaluate empirical data 
on the dynamics of reasoning processes.  
 The same analytic method and software tools can also be 
applied to reasoning traces produced by software simulation 
models. This applicability supports the comparison of 
human reasoning with simulated reasoning. 
 Further experiments will be conducted, in which also a 
focus is on the control of the reasoning. For example, at 
what point in time a translation to a geometric representation 
is made, and why at that point in time? In the analysis the 
notion of reasoning strategy will be addressed. Due to the 
compositional structure of reasoning state a reasoning state 
can be extended with a component for control information.  
 Future research will also address the analysis of the 
dynamics of other types of practical reasoning, both from 
the syntactical and semantical stream, or their combination; 
e.g., (Johnson-Laird, 1983; Yang and Johnson-Laird, 1999; 
Yang and Bringsjord, 2001); see also (Stenning and 
Lambalgen, 2001). One component of the reasoning state 
may contain a syntactic formula structure, and another 
component a mental model or set of mental models. For 
example, a single component transition can be defined 
within a syntactic component including A and A → B, for 
the derivation of B (and hence adding it to the component) 
based on the inference rule modus ponens. Yet another 
example, within a semantic component is a transition of a 
set of mental models, thus providing a formalisation of the 
dynamics of reasoning based on mental models.  
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