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SEMICLASSICAL METHODS FOR NONSEPARABLE SYSTEMS

Bruce Campbell Garrett

ABSTRACT

Semiclassical techniques have been widely used for describing the
dynamics of molecular collisions. The calculation of discrete energy
eigenvalue spectra in bound systems has also employed semiclassical
methods, a well-known example being the Bohr-Sommerfeld quantum condition
for a one-dimensional potential well. Work has been done towards deve-
loping semiclassical theories for rate constants in reactive systems and
semiclassical eigenvalues in bound systems. Application of these
theories_ have been made to nonseparable multidimensional systems.

Transition state theory has played an important role in chemical
kinetics and is very useful for approximating reaction rate constants
for molecular systems. Many shortcomings of transition state theory can
be attributed to the assumption of separability of motion along the
reaction coordinate which is inherent in traditional formulations of the
theory. A quantum mechanical version of transition state theory for non-
separable systems has been given by Miller. Semiclassiéal approximations
havé been made to the quantum rate expression and the resulting semi-
clasSi;.ell theory has been applied to the reactive H + H, system.
Comparison of this nonseparable theory with quantum scattering calcula-

tions shows agreement which is quite good. This is marked improvement

-

over ‘traditional separable formulations of transition state theory.



vi
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Although the quantum condition for one-dimensional bound systems is
w'ell-known, generalization of these results to mul,tidim_ensional nonsepa-
" rable systenis is not obvious and has drawn the attentit;n of many authors. =~
- Work has been done towardsv a semiclassical quantum condition which is
clbs'es;c- to the approach of Born. The Hamiltoﬁ-.]acobi equation for the
systems is -solved in action-angle variables, allowing the classical
,Hanﬁlgonian to be expréssed as a function of action variables: which are
éonstants of motion for the system. Requiring the action variables to
be iﬁtegers provides the semiclassical eigenvalues, Numerical calcula-
tions have been p'ei'fomed on a two-dimensional coupled potential well
with good agreement with the quantum eigenvalues. Application of the
theory has also been made a two-dimens ional symmetric double-well
potential which mimic the inversion motion in ammonia. Effects of

coupling upon the enmergy level splittings have been studied.
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I. INTRODUCTION

Semicla.sical methods have proven to be a very powerful tool for
describing the dynamics of gas phase molecular.collisions. More recently,
considerable progres's has been made in applying semiclassical techniques
to the determination of the discrete energy eigenvalue spectra of bound
systems. The present work addresses itself to both these topics, the
emphasis being upon applications of the methods to systems in which a
simple separation of variables cannot be made. '

The _importani:e (th considering nonseparable systems is twofold.
First, separable systems are already solvable by existing semiclassical
methods. A separable system can be reduced to many one-dimensional
problems which in turn can be treated by the well-known method of
Jeffrey, Wentzel, Kramers, and Brillioun - the JWKB or WKB approximationl.
Ford and Wheeler’ have shown how the WKB solution to the Schrodinger
equation can be applied to the effective one-dimensional problem in the
elastic scattering of two atbms. For bound one-dimensional potentials,
the WKB approximation gives the Bohr-Sommerfeld quantization rules of
the old quantum theory.

Second, and most important, systems of physical importance are in
general nonseparable. Vibrational excitation in‘ atom-diatom collisions
arise solely from tﬁe coupling between the internal degree of freedom
and the relative tramslation of the two pgrticles.' The reactive case
is even more pathalogical since the coordinates ﬁeievant to the reactants
are différent from those relevant to the products‘\{ The vibrational

energy spectrum of a molecule is regular for the lowest eigenvalues
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where the viBrational modes are approximately harmonic and weakly coupled.
However the coupling of modes for higher eigenvalues eventually leads to
irregular spectra in which identification of mode exgitation becomes
meaningless. Although we will be dealing with the general case of non-
separable potentials, a useful tést of the methods presented here will

be their comparison with the correct separable semiclassical limit given
by the WKB approximation. o

An important contribution to the semiclassical description of
molecular scattering has been the development of methods by Millers and
M.'-xrc:us4 which use classical mechanics for all degrees of freedom of a
system to construct the pertinent parameters of quantum scattering
theory. The full dynamics of the system are obtained through classical
trajectories; however, instead of constructing the probabilities (or
cross sections) directly as in classical calculations, the scattering
amplitudes ere obtained. This effectively includes the quantum principle
pf superposition and allows for interference effects. This method also
allows for the description of tumneling in reactive systems.

The work presented in chapter I1 is concerned with the semiclassical
descriptiun of reactive collisions using approximate dynamics. This is
based upon rhe transition state theory5 of chemical kinetics, which is
:mherently a classmal method for approximating . reaction rates. Recent

» work by Mﬂler6 has given a -formulation of transition state theory based
'upon quantum dynanucs i. e., a full quantum mechanlcal trans1t10n state
theory. The sem1c1asslca1 approx1mat1ons to this. quantum theory' use clas-

: 51ca1 traJectones to construct the proper quantum mechanical functions—

- v1n th15 case the matnx elements of the Boltzman operator.
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The most common semiclassical approach to the eigenvalue problem
has been through the asymptotic solution to the Schrodinger equation
(the h + 0 limit), which leads to the Hamilton-Jacobi equation. The
multi-valued solutions to this classical equation parameterize the
semiclassical wavefunction. Restricting the wavefunction to be single
valued imposes the proper quantization condition. Another different
and interesting approach to semiclassical eigenvalues is based upon
the semiclassical approximation to the density of states. This semi-
classical approximation is parameterized by classical trajectories which
are periodic in nature. Singularities in this function of energy
specify the eigenvalues. Both of these methods are reviewed in chapter
IIT1 and a practical method of solving the Hamilton-Jacobi equation to
obtain the semiclassical eigenvalues is presented.

The semiclassical quantization condition can alsc be viewed as
finding "good" action variables for the system: action variables which
are constants of the motion. The eigenvalues are then specified by
requiring the action variables to be integers. However one is not
restricted to bound state systems when constructing '"good" action
variables. One can find '"good" action variables for scattering situa-
tions, in particular for the saddle point region of a potential surface
describing a reactive system. In chapter IV it is shown how one can use
these action variables to parameterize the reaction rate for such a

system.
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II. TRANSITION: STATE THEORY

a

The transition state theory5 of rate constants (also kr_xc;wn as
absolute rate’ thebry and activated complex theory) has been a very
useful tool :'m'chemical kir;etiés, being very s'gccess'ﬂil for parameteriz-
ing rate constants for chemical reactions with activation barriers.,

The reason for this success lies in the fact that the fimdamental
assumption of transir:ion state fheory is quite good in the enérgy regime
which is most important in determining the thermal rate constant—the
. threshold region of energies very-close to the'barrier height. Tradi-
tional formulations of transition state theory, however, contain other
approximations whlch tend to degrade the quantitative descrlptlon of
the rate constants ‘Recent ].nterest has been in examing these assump-
tions and their va11dity.6_13
' Transition state theory is inherently a classical model, using
approximate classical dynamics to estimate reaction rate constants. The
assumptions of the theory are therefore best couched in the language of
classical mechanics. Section A reviews classical transition state theory
and its _approximations #ith particular emphasis on the fundamental
assmrptio;n'. |

N For energles in the threshold region where transition state theory
would ‘be .expected to.be most accurate, quantum mechanical effects such
as tunnelmg become most pronomced Attempts to include quantum effects
1nt0 tradltlonal formulatlons of transition state theory have, for the

_‘most part, been in’ an ad hoc manner, mtroducmg guantum mechanics into



the classical equations after the simplifying assumptions have been made.
A rigorous formulation of quantum mechanical transition state theory has

been given by Miller®

and is briefly reviewed in section B.

The desire to obtain an easily calculable model which retains
quantum effects has lead to two different semiclassical approximations
to the quaﬁtum mechanical transition state rate expression. These
semiclassical models are presented in section C as well as applications
to model systems including the H + H, reactive system. A detailed

description of the calculations performed in this chapter is presented

in the appendix.

A. C(Classical Transition State Theory

Except for the simplest cases of elastic scattering of atoms,
classical rate constants are obtained from the computation of many
classical trajectories which entail kiowing the exact dynamics of the
system14. It is the aim of transition state theory to obviate the need
for this detailed information by introducing special assumptions. We
begin by first presenting an exact (within classical mechanics) rate
constant expression, then introduce the simplifying approximations and
examine their physical consequences.

It is initially assumed tP}at the dynamics of the systems we will be
treating can be adequately described by classical mechanics on a single
Born-Oppenheimer potential energy surface, and that reactants are in a

Boltzmann distribution of internal states and relative translation.

Given these assumptions, the “exact" rate expression is the Boltzmann
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. average of the flux of.reactive traJectorles through a surface Wthh

d1v1des reactants (arrangement a) from products (arrangement b)

R e Qa (T) h° fdP/d‘l HED PR w0 @D

-

where Qa is the partition functipn per unit volume for reactants;

= C('_I‘)'l; () = (;,9;) » i- 1,2,...,N, are the momenta and coordi-
'nates respectively for the N degrees of freedom; H(p,q) is the total

c1a551cal Hamlltonlan, F(p,q) is the flux through a surface; and

Xb a(p,q) is the ‘characteristic functlon for reaction. If f(q) is a yet
lmspec1f1e,d, functlon of 'coordinates which defines the d1v1d:mg surface

: _;_By,"f(q)"i =0, then

. ’f(@) p
' Fo.0 = 6 (£@) 5 & @.2)

- E ~

‘ 15 Just the flux normal to the. d1v1d1ng surface, where § is the Dirac

‘-t‘s,: and_ls-zero othemrse. An mlportant advantage



to this way of formnulating the rate expression is that all the dépen—
dence of the rate constant on trajectory i _nformatmn is contained in
the characteristic flmctmn xh._a(p,q) This fact will be used later in
making the fumdamental transition state theory approximation.

We have not yet specified where the dividing snﬁface defined by
f(q) = 0 should be placed. Howe;rer, it is a direct consequence of the
c1;ssical continuity equation that the classical rate expression is
independent of where the surface is 1ocz-1tedl,7 as long as it is specified
that all reactive trajectories pass through it. The classical continuity
equation states that for a closed surface, the steady state flux through
the surface must be Zgro: More precisely,

(@ p
dp/dq P, 8(E@) = - % @.3)

where f(q) = 0 defines the c.losed surface; p(p,q) is a distribution
fmction~whid1 is restricted to remain ;onsta;t~along a classical
trajectory determined by the phase space point (p,q). The rate
expression eq. (2.1) can be put into this form i;: ::e define p(p,q) =
BH\p,q) Xb+a(p q) and take the closed surface to be two different
choices -of dividing surface with segments joining them at infinity.
Along a trajectéry the Hamiltonian is a conserved quantity, the energy,
and the characteristic function is constant for any :given trajectory,

thus implying that the distribution fuinction is indeed constant along
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" a trajectory.” Since no flux 1:-eache_sr'the segment of the closed surface
"at infinity, the flux in either direction, reéctahtsto produets or
vice versa, must be exactly eqeal but opposite in sign through the
two sufaces. (Flme into the closed surface through one dividing surface
is flux out of the closed surface through the other dividing eu’rface.)
Since the reactive flux is equal through any ‘two- arbitrary dividing
surfaces, eq.{2.1) must be independent of the location of the surface.
As an illustrative example of a choice of dividing surface consider
the case where the surface is placed in the asymptotic region of channel
a (reéctants). If we choose coordinates in temms of a relative coordinate
‘between the centers of mass of the colliding-pair, R, and all other
internal coordinates g,{g}={qi},i=1,2,...,N-1 , then this choice of
surface is just f(R,q) = R -R= ;) The Hamiltonian can be expressed

max
as follows:

HP,R,p,a) = PY/2u + By (0,0) + VR, 2.4)

where P,p are the momentum conJugate to R,q respectlvel)', u is the
'—reduced mass for the relative translatmnal motion, h N- 1(p,q) is the

'vHamlltcnlan for the N-1- internal degrees of freedom of the isolated

’ 'reactants and V(R,q) is the coupling between the internal and relative

: "ytra.nslatlonal degrees of" freedom. For R=R_. in the asymptotlc
o ,'reglon of the reactant channel V(R,q) -+ 0, and eq. (2 1) becomes

L

SR




2
CL ooy o ol N -Bp"/2u ,-Bhy-1 (0,9 PR
kyea(® Qah ﬁ_’;ﬁﬂf“" P/ue e, ~'~ ¥pea (s '?.'3) Re

. (2.5)
- G [ [ f ICD 10 R 20

2

where Et = PZ/Zu is tht; translational energy. This is just a standard
expression used in Monte-Carlo trajectory calculationsl4. The internal
coordinates and momentum and translational energy are Monte-Carlo
selected from their distributions to determine the initial conditions
for a trajectory- starting at R =R —_— The rate constant is then the
sum of the characteristic fimction ¥peq OVET many such trajectories,
normalized by hQ,. |

Now we wish to make the fundamental approximation15 of transition
state theory to eliminate this need for the detailed trajectory informa-
tion contained in Ypea® This can be done by replacing x ., by some other
function which depends only on the phase space point (p,q) and not the
trajectory determined by it. The choice is a function which picks
out all trajectories which have flux headed towards products at the

¢

dividing surface. Mathematic’aily this can be expressed as a step function, -

1,x>0
hx) =
. 0, x <0
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f(@ p

- where x is the flux ~—aa-'— « = at the surface. (We imply that positive

flux is 1_:hat which is pointed twards products.) However if we replace

) f9f(q) P o
xb‘_a(p,q) by h{ —=- - = in eq. (2.1) the expression will no longer

a
be independent of t%e location of the dividing surface. If we choose
the dividing surface in the reactant region many trajectories which
start at the surface with flux headed towards products will not be
reactive but turn around and recross the surface. ‘Alternatively if
the dividing surface is placed in. the product région, many trajéctories
' vhich have pos_itve fiux at the surface wi.ll have actuzlly originated
from the products and not be reactive (running the trajectory backwards
in time would show such a trajectory to recross the dividing surface.)
The fundamental asgmrrption of transition stz;te theory is that all
trajectorjes which reach a dividing surface placed at the saddle point
for ‘t':hé reaction with flix headed towards products will indeed be

reactive ones. With this approximation eq. (2.1) becomes

; '. CL'ISI'V' 1. . -N -BH(p, 3f(q) i@
- kg M = MR fdgfdg OO o(e@) = En e ;E (2.6)

: Awbére it.is-.mderéfood that Vf(q) is chosen such that the dividing sur-

s y s ” o . DY
= face is” at the’saddle point.

s “rigorous for ation of transition state theory is given by
jonally adjusting thé dividing surface to give the best results.
This”is discussed in detail by other authors. :

v
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The case of an atom plus diatom reacting éollinearly is depicted
in fig. 1. Here the dividing surfaces 51,52,53 are actually lines in
the reactant region, the prbduct region, and at the saddle point respec-
tively.— For the transition state theory choice of surface, Sg, @
trajectory with energy infinitesimally above the barrier at the saddie
point started from the surface in either direction will move away from
the'saddle point region very slowly picking up velocity as it moves
down toward either reactants or products and will never return to the
surface. For energies low enough the;e will be no recrossing trajec-
tories and transition state theory will be exact. However. for higher
energies there will be trajectories which cross the surface towards
prnducts; rebound off the repulsive wall to recross the surface and be
nonreactive. Before giving a more quantitative assessment of the
validity of this assumption, it is convenient first to give a more
formal expression for the rate expression and to describe a microcano-
nical formulation of the rate constant.

If the classical phase space average is identified as a classical

trace,

r .

‘hm]& dg A(p,a) = trglA(p,9)]

then the rate expression takes the form
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* where Q, = trCL[e'mO(E’ﬂ?], H, is the Hamiltonian in the reactant
channel, and Fp(p,q) = F(P,4) X,,,(®@,q) is the reactive flux. The
transition state approximation gives. '

-

) . of(@) P
KL BTm = Gl trg |9 £, h( = -ﬁ) (2.8)

A microcanonical formulation of the rate constant can be given by
use of the microcanonical distribution function, §(e-H), in place of
the canonical distribution function, e'SH. The two distribution

_-functions are related by
B . de e PE §(E-H) (2.9)

If a dimensionless functionNCYE). is defined by

s ."'NCL(E) = 2mh troy [d(E-H(P,Q)) FR(p’q)] g (2.10)

~ then it is related to the rate constant by
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& m o= gl e f & e FE N @Ay

The transition state approximation can be made for the microcanonical
version of the rate constant exactly as it was for the canonical case

to give

3f(¢l) P
NCL BTy = oy trey G(E-H(E,g)) F(p,a) h\—5- aq - = (2.12)

An interesting form for NCL 5T

(E) can be obtained by further reducing
eq. (2.12). If the coordinates are chosen such that q; measures
distance normal to the dividing surface then f (ql) = 0 defines the

surface at the saddle point and

@ p 2y s
F(a,p) h - "Z)= 8(a) Fhpp) - (2.13)

vwhich is equivalent to

P . \
F(p,q) h(gg ;\) = &(a) |p/2m| " (2.14)
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ISP |

S]che Plh(Pl) = 'Z'[Pl + ‘Pll]; and tI‘CL[D(P,Q) 3(('{1) P1] = 0! for either
o,q) = e PR or p(p,q) =5(E-H(g,g)= Using eq. (2.14) in
“eq. (2.12) gives '

*

NE STy = m nN ﬁp qu G(E-H(p,q)) 6(q1)% Y

(2.15)

h(ND delquN- EHNI)

_where aN-1°BN-1 are all coordinates and momentum. except (ql,pl') and
HN-l is thé ‘claésical Hamiltonian for all degrees of freedom except
(ql-,pl) e\/alﬁated for q1=0. This has the interpretation of the classical
at)proximation to the numbér of quantum states for the N-1 degrees of
freedom (q1=0) with energy less than E, or the microcanonical partition
function. This.is just the form of the flux integral N(E) thét is used
in statistical theories for complex formation.16-18

* As a quantitative test of the validity of the transition state

approx:.matmn in c1a551ca1 mechanics, comparison should be made between

D the tranSJ.tlon state theory rate expressmn and exact classical dynamical

calculatlons (1 e. traJectones) -Pechukas and M:Lafferty showed by
' eometrlcal argmnents that the m1crocanon1ca1 transition state rate

: ‘essmn was exact for energles up to about 0 1 eV above the

,_'

Y 1'7 helght for the collmear H+ H2 reactlon Calculatmns by -

*Chapman et. a1 1A comparing m;crocanomcal rate constants of tramnsition
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state theury with dynamically exact trajectory calculations for both the
collinear and full three-dimensional H + HZ reaction have given similar
results which are shown on figs. 1 and 2 respectively. It.is seen

that for energies up to 0.2 eV for the collinear case and to {}.4 eV for
the three-dimensional calculation that the tramsition state results are
essentially exact. These are energies that are well abbve the barrier
height which indicétes that the transition state assumption is a good
one for energies near the threshold region of a reaction.

If the coordinates are chosen so that 9 is normal to the dividing
surface at the saddle point and measures progress 'aiong thé reactioﬁ
coordinate then the transition state approximation to the reactive flux
is given by eq. 2.13. We assume that motion in the other N-1 degrees
of freedom is bound and can be treated independently from q;- More

precisely,
H(p,q) =h;(py,qp) + hb(pN_l,qN_l) (2.16)

where CEN-I“EN-I) = (pi,qi),'i=2,..'.N; hl(pl,ql)A is the Hamiltonian for
motion éloﬁg 'ql and by (py_1,9y.1) is the Hamiltonian for motion in the

N-1 bound degrees of freedom. For this case eq. (2.6) Teduces to



k&‘ ) - glm e f"Pl f aa, ctmena) 20 ' fdi'l fdﬂﬂ_l o B By 8P
- 3‘; oo (2.17)

where Q* = (D) dpy_q quN_l e'B(hb(B\l-l’ﬂN‘l) B Vo) is the
partition function of the activated complex, Q = Qa/Qti_ is the partition
function for the internal dEgljees of freedom of the reactants, where Qtr
is the translationalbpartition function of the reactants, and ‘.[0 i§ the
ﬁlue of the potential at the saddle point. This is the sﬁndard form
of transitiph state theory. found elsewhere.>»1° It is in general possible
to define these coordinates such that they diagonalize the kinetic

energy, therefore coupling between motion along the reaction path and

the bound N-1 degrees of freedom arises soley through the potential.
However sincevthe délta function in 9 restricts evaluations of the
potential on the surface, the potential effectively depends only on Ay.1°
and !:he motion in‘ql is effectively separated from the other N-1 deg;ees

of freedom. This is exemplified in the collinear A + BA reaction for

vhich the potential energy surface is shown in fig. 1. The choice of

o ‘coordinates s and u shown on the figure diagonalize the kinetic energy

; givings

H(pgsp»5,u) = pﬁ/Zms + plz,/Zmu +V(s,w) , (2.18)
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where V(s,u) is the potential surface and p 5P, are the momentum conju-

gate to s,u respectively. For this system eq. (2.6) gives eq. (2.17) where
- 2/om.
Q¢ = f du f dp, e B(p,2/2n; + V(v,0)) (2.19)

It is interesting to note that we have arrived at the standard
transition state rate expression with no recourse to arguments of equi-
1librium between reactants and the activated complex, the distribution
of states at the dividing surface, or vibrational adiabacity of the
reaction which are often found in textbook descriptions of transition
state theory. The approximations used here are 1) Boltzmann distribution
of reactant intemal states and relative translation, 2) the use of
classical mechanics to describe the dynamics of the system, and 3)

the dynamical approximation termed the fundamental assumption.

B. Quantum Mechanical Transition State Theory -

Although approximations used to derive the classical transition
state rate expression may be valid for classical mechanics, it is not
clear they will remain valid if a ri'gc‘>rous quantum mechanical treatment
of the theory is used. However the usual method of including quantum
effects into the traditional transition state : éxpression,
eq. (2.17), is to assume the partition functic. .0 be quantum mechanical

-ones and to include a tumnelling correction factor, I'(T),
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; +
km = Koy L0 8V - (2.20)
" QM

This met’ .:.’ Jf introducing quantu;n‘mechanics into eq. (2..17) contains
two cr.cical assumptions: the fundamental assumption and a separability
approximation. The separability approximation arises through the intro-
rduction of the tunneliné correction factor which is assumed to be one-
dimensional. Detailed comparison of this tj'pe of expression with exact
quantum scattering calculations have shown very poor agreement in some
situétions suggesting that the validity of these assumptions should be ~
tested. ) ‘

‘ Evidence that:the .fundamental assumption may still be valid is
shown in the work of Kuppennann, Adams, and Tx'uhlar.20 Streamlines of
flux plotted as a function of coordinate for the collinear H + H2 system
—'shdw ‘tj'1_at at low energies the flux is- a well-behaved furiction moving
monotonically through the saddie point region. Only at higher energies
: " do whirlpodl effects iﬁj:he flux contours begin to appear analagous to
recrossing t;ajectoriés in the cla$sica1 system. The semiclassical
callq;ll,ations‘of Geor'gg _and Miller?! for collinear H + HZ show tunneling
tréjééfories m complex-time which move monotonically throﬁgh the saddle
- pomt ;ij.é.gion wi_tﬁ no recrossings of the dividing surface sugéesting that

the fundamental assumption should be good quantum mechanically.
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These same two previous works also indicate that the separability
approximation may not be valid. In both these works it was shown that
the dynamics took the system through the dividing surface in classical
forbidden regions away from the saddle point.- It is in just these
regions away from the saddle point that one expects the separatibn of
the Hamiltonian nic longer to be valid. This was realized by Johnston
and Rapp22 in work which tried to account for this nonseparability.

Still, a more quantifative assessment of the applicability-of
these assumptions is needed. An important coﬁtribution towards this
end was given through Miller's formulation of a quantum mechanical A
version of transition state theory which does not include the separa-
bility approximation.6 A brief review of this work is given below
which treats the collinear atom plus diatom explicitly.

An exact expression for the thermal rate constant for the collinear

reaction of A + BC(arrangement a) going to AB + C (arrangement b) is

, |
Snb’na(Et)‘ @.21)

where B = (]dT)'l, n, and ny are vibrational quantum numbers in channels
a and b respectively, E is the initial translational energy,
Snb'na(-Et) is the S-matrix element for react;on from 1n;t1a1 state ny
to final state n, and Q, is the total partition function per umit

volume for reactants,
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N v:’ Qa-. QBC (21\1’1) 1 fdP Bp /Zu
A S . - o 2.22)
Q. = ¥ efen '

is the vibrational partition function of molecule BC. The goal is to -

transform this expression i.\'lto"one which is amenable to the fimdamental

; sumptlon of tra1151t10n state theory, that is, to express the Tate

constant as a reactlve flux through a surface which d1v1des products

- and‘reactants The problem arises then to express the quantum flux in
L tems of the quantlty -which contams the dynamlcal information, the S

. ;na'trlx 'e,lementsv. *The flux through a surface can be defined as

: ; ‘ [ dS Re (‘J-’ kT zl,b) . (2.23)

If one takes for example surface Sl in
@' eq (2 23) becomes :

t

(2.24)



-21-

One can introduce the S-matrix into this expression for the flux by using

the asymptotic form of the scattering wavefunction in the reactant channel
n,:

g’ I ',
-8 € [ '
Y, TR = LT %, T (v“_n- ) Sngom, Ep)

(2.25)

where E,_ = PZ/ZIJ; kn =2pE /‘l2 s vy =hig /v is the asymptotic velocity
t a t a a
in channel n,; and {¢na(r)} are the internal state wavefunctions for

vibration. The flux then reduces to

n
a

)
v. @ml 1-2 Sn'im. (E)) (2.26)
ﬁ:'i a a

using the orthonamality of the internal state wavefunctions.
The flux through a surface in the product arrangement can be similarly

defined as

2
(Et) 2.27)
a

-1
v S
n, (2mh) HZE Smpn

(the absence of the one in this form arises from the fact that there is
" no incident plahe wave contribution to the wavefunction in the product

channels.) From the unitarity of the S-matrix one knows that
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2 2

- - Isnb’na:(Et) (2.28)

' Sn; R a(Et)

indicating that equations (2.26) and (2.27) are identical, the flux
through the two surfaces are equal. This can also be seen from the
quantum ‘mechanical continuity equation23 which states that for time

independent wavefunction, the flux through a close suface is zero:

~

) . Reygds °(lp*-2%i- 7 =o) ) ’ (2.29)

As in the classical case two surfaces can be joined with segments at '

infinity to give a closed surface for which eq. (2.29) holds proving

that the reactive flux tﬁrough any two dividing surfaces.mist be the same.
By introducing a function of coordinates f(q) such that f(q) = 0

defines the dividing surface the flux can be expressed as a volume

= ot N (@) _ 4
qurlé‘(fr(q))..y(q) g VY@ = Rey[Fplvr - (2.50)

X aq

~




»

= af - C Wi , = L _L v =
and “S(f(‘i))'aﬁ Vowith vy = g ogen i K= L2, N for the N
degrees of freedom. Substituting eq. (2.27) and (2.30) into (2.21)

gives

T -1
-1 -BH .
Ham - glm X Jdﬁt Y, U pyle Flip ) 2.31)
a

where use has been made of the fact that ¥ is an eigenfunction of the

Hamiltonian and thus e W p = e B(Et+ena) "’P,na. This can be put into

the fbrm of a quantum mechanicgl trace by changing variable of integra-
» tion from Et to P and then introducing a projection qperatof to change

the limits of integration on P,

: 0
M = ¢lm b fdp Wp 1Pl
ng v a ’“a

]

) 3 -BH .
glm 2 fdepn le "FPlw, 2.32)
. s’ a ’ . -

g % a

d;l (T) tr [e_BH F.?] '

ot

where
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P = EfdP }‘xf-P) ¥ . 2.33
&) My >BEPY< by | (2.33)

This is very similar to eq. (2.7) from sec.tion'A,' where the classical

- ﬁméfions H(p,q) and €(p,q) have been replaced by their quanfmn mechanical
_ operators, t;e~trace is~a~qlxantmn mechanical one, and the characteristic

functionx(p,q) is replaced by a_pmjéci:ion operator&”. The projection
A'c'lperator p;c;s out those states which have negative relative momentum

P in the -réactant arrangement. More precisely it is an operator which
Aproj_ec’ts onto those states which evolved from reactants in the infinite’

= past, B

& = lin h-p) o f2.38)

tr-w

‘ust as 1n the classu:al ‘case with x (p,q) ,gcontams a11 the dynamical

:mformatlon through the propagator e]'Ht . We now w1sh to make an

x1mat1on analagous to. ftmdamental assumptmn of classical transi-

state ﬂleory, to;obv1ate this neeq for exact dynamical information.
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Equation (2.32) is.an exact expression for the rate constant assuming -
only a Boltzmamn distribution of reactant internal states and relative
translation. lInfonnation concerning the location.of the dividing surface
is contained in the expression Fop through £ (g) . As in the classical
expression the exact quantum rate expression is independéht of the
location of the surface. The transition state approximation for the
quantum mechanical rate expression parallels that of classical transition

. f(q)
- state theory, G+ h

+ v )and we now defme the surface to be at
the saddle point reglon Thus the exact projection operator is replaced
by an approximate one which projects.onto those states which have flux
in the produce direction at the dividing surface. Since the approximate
rate expression is no longer independent of the location of the dividing

surface, the classical transition state choice is used. For the collinear

A + BC reaction this corresponds to surface 53 of fig. 1 and

h <gf . l’) = hipy ' (2.35)

- where Py is the momentum conjugate to the coordinate s at the saddle
point.

Finally the transition state rate constant can be written

~

a

M TSy Glm e L. v h(%ﬁ- . V) (2.36)
¥ ~
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However one ambiguity arises from the introduction of the transition

.state _approximation. For the exact projection operator,&®, F and.9?

commute within the trace,

tr[e'BH F] = tr[e-BH.é'F] (2.37)

3“; . v) though,

" This is not true for h(

e ™ rn (% -\L> + trle®™n <§—f . v) F (2.38)

This. can be viewed alternatiirely as not knowing the proper transition
state approxi.mation to the exact reactive flux operator, F, = E9%= GF.

Classically the exact reactive flux is FR(p q) = F(p q)x(p,q) and its

subsequent tra:151t1on state approximation is F{ST F(p,q) h —f . v

An approxmate method . of 1dent1fy1ng the tran51t10n state reactive flux

24

' operator is through the Weyl correspondence Tule®” which gives a

prescnptlon for’ f1nd.1ng an approxlmte quantum operator that corresponds

"'to the class1ca1 flmctlon. For the case that the classical function is

'a' functlon of coordmates only or momenta only, the Weyl prescription

"v'becomes exact. 'In"the 51tuat10n that the classical function is a non-
% add1t1ve' flmctlon of- coordmates and momenta, the quantum operator is

not well defmed smce q and P operators do not commute, however, the
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Weyl prescription supplies a wnique operator. The use of the
Weyl approximation to the reactive flux in equation (2.36) is mathemati-
cally equivalent to replacing the quantum mechanical trace by a Classiéal
_phase space average and replacing the Boltzmann operator o BH by the

Wigner distribution fumction W(p,q) ,YZS
Wip,q) = h’N_/:iq' e 1p'g’ <q+%q'le'BH|q—%q'$ (2.39) ..

to give

e m = glm fep [aq we) Fpw) h<§§-

R
ﬁ) (240

This will be denoted the Weyl prescription to quantum mechanical transi-
tion state theory. It should be noted that besides the fundamental
transition state app_rbxinntion it has become necessary to introduce
another approximation of a semiclassical nature to identify the reactive
flux operator within thé transition state approximation. i

A microcanonical version of the exact quantum mechanical rate

expression is given by

NME) = 2m tr [a(E-H) Fp (2.41)
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V which is related to the canonical formulation by

®m - gl em? f dE e BE N\M(g) (2.42)
‘ 0

The dimensionless quantity N(E) can also be expressed as

gy = D 15n,_,n, ®)1° (2.43)

Ny ,0h

thus reproducing equation (2.21). The probability of going from state
(E)|%. The

n, in arrangemenfi Aa to state n, in arrangement b is |Sna
sum over all initial and final states of these probabilities is N(E),

lnb

the cumlative reaction probability. The transition state approximation

' to eq. ‘(2.41) is straightforward, although the same ambiquity arises in
~ the "6rdering of the ‘oper'ators. This can be dealt with by using the Weyl
.. correspondence rule to identify the reactive flux operator for the tran-

' ',Asitiqn state theory.

The transition state rate expression (2.36) is free of auxiliary

"\ approximations that are common in conventional forms of tramsition

el :‘sfa;tg( .theql}{._ LIt .:,i.s-interesting to see that by making a separability

"'f,-}éépbfgj:dgnation'xve can arrive at the conventional form of the théory. We
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assume that we can define a set of coordinate q with conjugate momenta
P such that q = 0 defines the dividing surfac; at the saddle point ‘
;egion.  Furthermore, it is assumed that a separétion_éf variables can
be perfoﬁm;d on :}t_he Hamiltonian as in eq. (2.16) where the momenta are
now the quantum mechanical operators. The traditional expression of

transition state theory is easily derived:

3 .
KoM = (1) 1}119—@—6‘% , (2.44)
Q, (M)

where

+ _ -gh
M = ty, [e b] (2.45)
is the partition function of the activated complex,and
- 2 I 1 2.6
T(T) = 2whB tr) |e 6(q1) T“—h(pl)] (2.46)

is a one-dimensional tunneling probability. The tunneling probability
can be evaluated easily for two sample potentials, the free particle

h1 = pi/Zml, and the harmonic barrier h1 = pi/Zm1 - mlmlqi/z.

- -
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- - - (2.47)
T = znaﬁpl' /dq1 = qu; elga /i 8(a;) Eml- hip) ta, + %qi |eBhy q - %qi)

and
. todpm/m PL o1 v Bhy) 1t
(1) aoﬁpl_!«riql e P 1L m 7% le ™) -7 ap (2.48)

For the free particle Hamiltonian

’ -m 2
- hig 9 .
Gl zap = \/2—;7; A (2.49)

vhich gives T = 1, the expected result since there should be no tmmeling.

_‘Fc')r the harmonic barrier Hamiltonian

R A | ol m : -mo huB 2
Stz le Tz = \/msme G D e"*’[Tmt "f_ql] (2.50)
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which gives

r = B8 sm(%) (2.51)

’

which is the correct result - the Wigner correction factor.26

As a more rigorous test of the quantitative validity of the funda-
mental assumption of transition state theory and the separability
approxi:nation; it was desired to appiy eq. (2.36) to a multidimensional
system in whiéh the separation of the Hamiltonian is not rigorous. The
‘collinear H + HZ system is an excellent candidate for this purpose for
several reasons: it is one Qf the smallest multidiJﬁensional systems
(two mathematical dimensions), thus reducing effort in the calculation;.
there are many exact quantum scattering caiculations with which to
compare; the atoms are sufficiently light so that quantum effects should
be prominent necessitating a quantum mechanical description of the
system; and previous work by Kupperman and Truhlar27 has compared
conventional forms of transition state theory with exéct results and
shown poor agreement.

A straighforward method of evaluating eq. (2.36) for the qbllinear
- H + H, system by expanding the trace in a discrete basis set using the
Weyl form for the reacti've‘ flux was attempted. Progressively larger
basis sets of finife size were used checking for convergence 6f the

trace with respect to the basis size. This approach was wnsuccessful
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due to the ill b_ehaired nature of the matrix elements of the Weyl
'Vreactive flux ope‘i"ator. ‘To further test thlS basis set approach
calculatlons were carred out by McCurdy and Miller on a sample one- '

dimensinonal .ttmnellng problem: the symmetric Eckart potential

ROEERA sech? (x/a) . (2.52)

L

Exact quantum calculatlons have been tabulated by Johnston for the

two dJ.mensmnless parameters

— /2
u = .‘1.8_ (&) Q@ = E (va )1/2
a m ? h o ’

g

vhere u isu proportional to 8, and a, which is proportional to aml/ z is

. a measure of how quantum-llke the system is (lower o nnphes a more

' ;quantmn—llke system.) The results were similar to those for the '

colhnear H + H2 system in. that they never comrerged with respect to
;‘,:b351s size due to the i1n- behaved nature of the Weyl ﬂux operator.

' Purther calculatlons by McCurdy and M111er seem to indicate that

the Weyl prescrlptlon to transition state theory may not be valld A

S ~path mtegral approach to evaluating eq. (2.47) for the Ekhart

ba)prier'was used resulti.‘ng; in very poor results for- the cases in which
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_tunneling was important. This is not a totally unexpected }esult ’ however..
The Weyl prescription for operators is infrinsically_ tied in with the
Wigner distribution function in that ‘éne can be rigorous-iy derived from
the other,.‘ It is known that. the Wigner distriﬁution finction is not
guaranteed to be a positive number. If one tries to interpret the 7
"distribution function as the probability of a system being at the pha§e
space point (p,q) a negative number makes no Aph‘ysical sense. This is‘
because a que;t;m is being asked (what is the probability of a system
:having position q and momenta p?) which is not a'legitiméte one to ask
quahtum mechanically. V 4 .
Other methods of t_;ﬁeafing the anbiquity of the ordering of the
operators in eq. (2.36) ﬁhich j"t.stain a full quantum mechanical treatment .
of the problem are not obvious. However, it seems that semiclassical
methods should be very useful in obtaining a workable form of transition
étate theory which retains quahtum_ effects. The semiclassical limit of

eq. (2.36) is presented in the next section.

C. Semiclassical Limit of Quantum Mechanical Transition State Theory

i

31 can be used to obtain a

The classical S-matrix theory of Miller
semiclassiéa_l approxirmvationvto eq. (2.21). The use of complex valued
' trajectories to describe tunneling has been successful although difficult
_to carry out due to the necessity to know the full dynamics of the
system. The rate expression of quantum mechahical transition state

theory avails itself to a different type of semiclassical approximation

which one would expect to be easier to apply since the full dynamics are
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needed - Two- dlfferent types of 5emc1a551ca1 models are

ewed here; both based upon the c1ass1ca1 path approxmatlon for

mtnx elements of the Boltzma:m operator, BH whlch is br1ef1y

- descr1bed below. _
33

¢

As Feynnan noted"'the B-oitzméh* ' operator can be viewed as' the
~quantum mechamcal propagator, elH(Fz'tl)/ h, for an’ imaginary time incre-
‘:nleht, tz-t1 = -1138. Since the propagator is dependent. onthe time.

riri{,(differeﬁce, Tty 2 and not the absolute values of t;,t,, we ‘take ty) = 0

' ‘and. t, = t. The semlclassn:al approximation to the coordinate matrix

:elements of the propagator is well ]cnown,3
-z
3q2 1 i } )
(2mh) = 1 Je* & ¢(az.49;) . (2.53)
.El 9| - T~ ,

-
w -

- 8ag9p) = f at'*‘[p‘(t') * qt') - Hp(t"); g(t'))l ,  (2.59)

'g the 111_1t1a1 condltlons problem

l'assi‘calf,tra;;ector}es:, we now have a boundary

tial and final coordinates and the time
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increment determine the initial momenta (and final momenta), i.e.

qz(pl,ql) =0qy is the equation to be solved for 131 given %597 and the
:in; i;tervaI 't,_ where q, is the value of q(t') ;t t' = t~fo: a trajec-
tory with momenta and c;ordinates (pl,ql) ;t t=0. The determinate of
the Jacobian ('an/apl)- ed £

9 . :
substitution of T=ihg into eq.- (2.53) gives the semiclassical

is evaluated for this trajectory. The formal.

approximation to the Boltzmann density matrix in terms of a trajectory
in purely imaginary time. This can be reduced to dynamics in purely
real time by introducing T = itand p=m (Bq/a'r) = -jm dg/dt = —iE.
This change of variables has an inte:esting ;ffect oh the ;qmtiom of
motion, é = -3H/3q=3p/3t = —BE/BT = -E', which implies'that E=+8V(B)/ag
for Cartesian coordinates. This has the effect of replacing V(q) by
-V(q) in the equations of motion. Therefore rumning a trajectory in
purgly imaginary time is equivalent to running trajéctories in real time

but on the inverted potential. If H(t) is defined as

=2
P (T) ) - 1
1 = = .. = P\T 9 ('[')
H(7) o * V(S(T)) Bt +V(a ), @59

it is no longer a conserved quantity, and the Boltzmann density matrix

becomes
_ s -1/2 hg
-BH| ' - 11 4
. A PN ;

where the bar notation has been dropped. . ‘ : -
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. 1. Semiclassical Phase Space Distribution

The Weyl Rrgécription for rhe quantum mechanical ;:'ransitioxr state
raté conétant €q. (2. 46) ,' identifies the rate constant as a _classical
phase space average over an approxlmate distribution functlon' Wigner's
functlon W(p,q) However, ngner s distribution still contains a quantum
mechamcal matruc element of the Boltzmann operator. ‘The semiclassical
ggproéch described here is to replace the Wigner distribution function

~ in eq. (2.40) by a semiclassical function - i.e., one which is construc-
ted from classical mechahics but still contains quantum effects.

A .sgm‘iclassicai: distribution function, pg:(p,) can be identified

by examining the partition function -

og = 1™ fdgfdg e @) - (2.57)

Es

The exact quantum mechanical partition function is

e f skl

(2.58)
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Inserting the classical path approximation to0 the Boltzmann density

matrix into eq. (2.58) gives

1 hg/2

exp %—fd‘t H(1)
0

Qe

%
quo qul @) =,
h'NdeO -/:igo exp f-r H('r)]

(2.59)

where the Jacobian (BE c)/:51:{'1) a4 has been used to make the change in
variables of integration. The independent variables are now the initial
coordinates and momenta (p(1=0),' Q(T=0)) with the time increment
determining the final congitions.~

One ambiquity inherent in eq (2.59) is thét a change of integration
variables to any p('ro) ’ q("co)) along the trajectory leaves the partition
finction invariant (Liouvglle's theorem implies that dp(7) dq(y) = dpodqo

for any ©) This change of variable is equivalent to replacing

hp /2 hy/2 -1
exp _—hz—fd-pH(-r) by exp[ f dr H(1)
0

in eq. :(2.59) while leaving dp()'aq'() as the integration varigbles, thus

placing the ambiquity in the distribution function.
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‘Comparison of eq. (2.57) and (2:59) identifies P 25

R o, M2 v
0gcPy 9y = ew | [ar HE) (2.60)
. T

‘The classical high temperature limit (8+0) gives

. -BH
» pge(P,q) —>e Filtzg)

for-T_ =0 Vthis-;giives e'SH(EO’ﬂO) which is the classical Boltzmann
distributi‘on'- function. :

_ C1ass1ca11y one used information just at the phase space point to

. . calculate the d15tr1but1on probabilities. However, quantum mechanically
1t 1s J.mposs1b1e to have a phase space distribution since simultaneous

knowledge of- cooramates and momenta is not possible. The semiclassical

onprmnlse" 1s to-average over the phase space around the phase space



hB /2- Ty

R kicfa(T) = " fdg f dq Fpp,a) exp[ fH( ) (2.61)

where we must still specify Ty* The partition fimction was independent
of the choice of T.o’ however this is nqt true for eq. (2.61). A change
of T, Will change the weighting function psc(p,q) for each phase space
point.- To help deterhﬁfxe a good choice o:f r°~i; is instructive to
examine a separable system, i.e., the Hamiltonian is given by eq. (2.16)

and the reactive flux is given by eq. (2.13). Thus eq. (2.61) becomes

. | ,
% € m = Krm B (2.62)

where the partition function for the activated complex is
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. - hB/Z T, .
¢ - h—CN-l)‘ dEN-ifdf}N—l _exp[ fd'rh @, (2.63)

"and the tunmeling correction factor is

- . (. P -2 P _
I(T) = 2mg fdp, [ dg; By h(p;) exp|% [ h (r) (2.64)
. cw -m Ty
The partition finction for the activated complex is independent of the
... choice'of Tg however I'(T) is not. For a harmonic barrier, h1 =

2, 2 ‘ .
.pl/‘Zm_l - mlm]Z_qI/Z, T, = hB/4 gives the exact result,

S o huB ha, B
e ™ /m( 1)

A more rea115t1c barrler is the previously described symmetrlc Eckhart
‘ ) The semiclassical expressmn for T, T hB/4 is
ohnston s results‘g in f1g. 4, for two values of a.
20 but tends to deviate for o« = 4. The

the'H +YH system corresponds to o = 10-12, mdlcatmg that
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Appllcatlon of eq. (2. 61) was made to the collinear H + H, system
using the Tmhlar—Kuppeman potential surface for H (a Wall- Porter35
fit to the scaled Shavitt-Stevens- Mum -Karplus 36 potentlal surfacg) and

also the Porter- Karplus 57

potential surface. The results for the two -
potentials are shown on figs. 5 and 6 respectively. The semiclassical
results are the points which are compared with exact quantum scattering
resul’cs38 (upper solid line) as well as the rate constant of .conventional

transition state theory (lower solid line),

. o
k@ = ¢mi [2 sinh (28 (2.65)

where o is the symmetric stretch frequency at the saddle point. No
tunneling correction factor was used as Truhlar and I(uppermann27 found
that use of any type of one-dimensional corrections tended to degrade
the results. One can see that the semiclassical theory is a marked
improvement over traditional forms of tramsition state theory. At 200 K
for example, the conventional ‘theory is about a facfor of 30 and 70 too
small for the two surfaces, while the semi-classical theory is corres-
pondingly 1 6 and 2.3 too small.
4 Application to the full three- dlmensmnal D+ H, > DH +H for the

40

Yates-Lester 39 fit to Liu's "~ potential surface was also made. Results

for 300 K and 1000 K agree well with the experimental measurements of

Mitchell and LeRo);41: log k(cm/molecule-sec) = 8.2 + 0.2 at 300 K
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- 'icdqpaiéd to the e)_cpe,i'i..mental results of 3.v26,‘ and log k = 12.1 + 0.2 at
v iOOO K compared to. the experimental results of 12.04, the error estimates
) ;'Péing the residual error in the _Fbrife—Cai‘lo integration of the phase
spgcé integra}.
' The quality of the results for both the collinear and three-dimensional
calcuiafiohs se,em' to indicate that the ftmda’gngntal assumption is a good
approximeﬁ:ion. Thé'marked improvement over conventional transition
state theory which assumes separability seems td ‘indicate that the separa-

bility. approximation may not be valid.

© N

2. Periodic Orbit Theory -

Another type of semiclassical approximation to the quantum mechanical

rate expression can be made by first introducing a local type approximation:

e - i 1155

[}
= ququ tqle® |y (g | Fgla? - (2.66)
. ~ ~ ; o~ ~ - ~ -~ . .

~

fdﬂ. Fop,q) . e e-BHI )
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where it is understood that FR(p,q) is the classical fimction coﬁe‘spond-
ing to the quantum operator, FR: ;nd that we want to use the classical
path approximation to the Boltzmann density matrix. (This is derived

by Miller42 using the classical path approximation in the Weyl prescrip-
tion to the transition state rate expression eq. (2.40), with the
integrals over p and q, being gvali:ated by stationary phase43: ) Using
eq. (2.13) for :.he flﬁulx eq. (2.66) becomes

QG Kpeg = /d.q ---'quN %—lflll 8(q;) <gle'BH|g> (2.67)

" where 9 is the corrdinate orthogonal to the dividing surface. Stationary
phase evaluation of the integrals over q in eq. (2.67) gives the stationary
phase condition that P = Dy» the initial and final momenta are equal.

This together with q = q2~= q defines a periodic orbit on the inverted
surface (the dynamiZS de;?ined~by the classical path approximation to
(q]e_BH|q) can be viewed as real time trajectories on the inverted sur-
f;ce.) ;more exact evaluation of eq. (2.6?) is désired however and we
refer to the previous work of Gutzwiller.44

Gutzwiller was interested in the semiclas&ical evaluation of the

trace of the Green's function. For q defined as motions along the
periodic trajectory and a; 1 =2,...,N defined as displacements orthogonal

' to . Gutzwiller evaluated the integral over Ap.--ay by .stationary

phase to give
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; : 1 "
quz... quN e@la ) = EAT2 epk @A T (2.68)

EAERS B =1 2sinh _Z_I
~

where G(E) = (E-H)'I, $(E) is the classical act;ion around one period

" of the periodic trajectory, T(E) is the period of the trajectéry,
{u },i=1,...,N-1 are étability parameters which characterize the periodic
orbit, and the sum over k is over miltiple passés around the periodic
trajeétory.. This expreéssion can be related to the rate constant
g—ixpression eq. '(2.67) by noting the‘ reiationship betwéen the propagator

in time and the Green's function

e "2%{_/‘“3 B GE 26

“and using the relationship between the propagator and the Boltzmann

; oiierator

L e e -m-fdﬁ" ePEam . (2.70)
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Evaluatioﬂ of the integral over Q in eq. (2.67) by virtue of the delta
fimction and use of equztions (2.70) and (2.68) gives

K a(M Q (1) = (znt) ! f d& ¢ " nGE) (?,71)
where
- N1
e - o coRlee®a ] ,r (2.72)
k=1 i=1 (E
2 sinh ;

We have arrived at a microcanonical formulation of "semiclassical
transition state theory" which is characterized by a periodic trajectory
going from q back to q in an energy dependent time T(E). The initial—
conditions ;re picked~so that they will determine a periodic trajectory
for the given energy E. For the canonical case we showed that the time
increment was proportional to B and was purely imaginary, t = -ihg,
leading to the interpretation of real trajectori’e_s' on the inverted sur-
face. In the nﬁcrocandnical case it is mclea; that T(E) should
necessarily be purely imaginary as in the canonical case. This ambiguity

can be resolved by a closer examination of Gutzwiller's work,
In obtaining a semiclassical approximation to ¢q|G(E)|q?, Gutzwiller

essentially used the inverse Fourier transform of the semiclassical approxi-

mation to the propagator,
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evaluatmg the t1me mtegral by stationary phase. However to 6btain a

R mcrocanomcal versmn of the rate constant we want to use the inverse

<" " Laplace transform of eq (2.70):
B +jo .
(|G(E)|)'= ds <|BH|>.
q q e qle q (2.78)
i

.

Inserting the classical path approximation to (q]e'Bﬂlq) and evaluating

45

. the 8 contour integral by‘steepest descent givés the steepest descent

- condltmn, E - aq; = h1ch defmes ‘the relat1onsh1p between B and E.

kV.V'l‘he phzse then becomes R

BRI R (p(t) ~am )

e T " 16

- L fa e - dw
0

2

4

el wef‘cmhd{r'idenjcify,. this to be the proper phase to use in eq. (2.72).

.
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This analysis could be done equivalent by using éq_. (2.73) but .
realizing that the time increment is purely. lmaglnary and-doing the.
integral by steepest descent. Thu§ Gutzwiller's results are straight-
forward for our purposes with the periodic trajectory now ‘being one i_n. '
purely mag'mary time. Changing to real time trajectories on the upside

dmunj.)btential surface gives fhe following results for the phase.

Te(B)
-io(E) = 28(B) = h_ljd'r (D * q'(D
‘ ' - (2.76) .
() = iTE) = HB(E)

For the case of the coliinear reaction of an atom with a diatom as
depicted in fig. 1, the potential surface at the saddle point is a barrier
in the s direcfion and bound in the u motion. Iﬁverting the surface
gives a well in the s degree of freedom and u becomeé unbound. In
general, for an inverted potential surface of N degrees of freedom,
. thefé w111 be one Ib01md degree of freedom g1vmg rise to the periodic
' “motion and N-1 degrees of freedom unbound making the perlodlc motion
unstable. The measure of this mstablllty, the stab111ty parameters,
are directly related to j:he Jacobian, 27(3—:%; which a;'lses from the;v
classical path approximation and the stationary phase integrations.
More pfedsely, the stability pérameters are the natural logarithms of
the eigénvalues of the 2N x.2N Jacobian matrix. '

It is useful to expand the sinh functions in their geometric series

representation and resume the k index in eq. (2.72) to give
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1 1 N-1 9
1+ emf20) + Y (peg) 0@ em
: - i=l . ory .

[++] .

> )

- 0 ©
=0 nl=0 . 0 nN_ 1=0

n = {ni},i= 1,...,N-1; and
T ) T¥

 'The peridd qf the. tféjé&ory is related to the action int‘e'gralvby

Tf(E) = an 8'(E) . . (2.78)

and defining the. frequency u; (E) as

e

',= ul(E)/Tf(E) " e
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gives
w0 . an ‘ N_l ' -l ’ '
N(E) = Z 1+ exp [29(}3) - 28" (E) Z (ﬂ-%)ﬁw'i(ﬁ)] (2.80)
n=0 . N i=1 )

-In the limit that the# system is separable the periodic trajecj:ory
moves only in the bound degree of freedom for the inverted surface.
Thus etE) becomés a one-dimensional barrier penetration integral, and the
frequencies-become the energy independent harmonic frequencies for the
wells on the upright surface. However eq. (2.80) is not tﬁe correct

separable limit. The WKB approximation to the tunneling probability is

PE,) = [ + e20(Ee) 1 (2.81)

where B(Etj is the barrier pene;ration integral for translational energy Et‘

"The separable limit of N(E) should then be

‘- -1 .
N(E) = Z [1 + eze(ﬁn)] (2.82)
- .

where



-50~

and . En is the translatlon energy for a system with total energy E and

mtemal state n, If we recognize

. e ~ N-1

| 2(E) - 267 (E). 3 oy ¢ L) mey
. Ci=l '

—

.. as the first two terms in a Taylor series expansion, then "unexpanding"

the series gives 20 (E.n) , where

o o , | B, =E-Tw@) - (2 +%) . (2.83)

,:mndlfled«expressmn for per10d1c orbit theory is then given by
J’82) w1th the translatmnal energy, E n? g1ven by eq. (2.83).

the correct semlclass1ca1 separable limit if the bound

freedom are harmumc, i.e, it''is the multi-dimensional

of the WKB turmelmg probability in one-dimension.
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This semiclassical model was alsd applied to thé’ collinéar H + H2
' syétem for fhe saine two poténtial surface described earlier. Figﬁre 7.
shows the vp'ériodic trajectory-for two differént.energies E, one just
below the barrier and one far below it. So lgﬂg as ]5<Vs p 1;.he trajectories
are all real valued and relatively easy to find because of their high
symnetry. There is only one such trajectory for a given energy. As
E—rvsp the trajectory becomes infinitesimally short in length and moves
to the saddle point of the potential surface; for lower energies the
periodic trajectory cuts the corner of the potential surface, the more
so the lower the energy. '

Figures 8 and 9 show the action integral 6(E) and the stability
parameter w(E) as a funcﬂon of tﬁe total energy for the Truhlar-Kuppermann

potential surface. One notes that

lim 6@ = 0 (2.84)

B,

lim E) = ' (2.85)

o w(E), ugn bl
sp

_ where ®sp is the symmetric stretch frequency at the saddle point, the

quantity which appeafs' in conventional transition state theory. It is
temptmg to suspect that the zero energy limit of w(E) might be
the vibrational frequency of the isolated H2 molecule.

&
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limvm(E) = qu . (2.86)

; 'A;though this is clearly the trend seen in fig. 8, it does not appear to
_be quantitatively true. V
- The cunulative treaction probability for the two potential surfaces
is shown in figs,.10 and 11. The solid lines are the exact quantum

38 and the dashed lines are the semiclassical transi-

: - ;mechamcal values,
t'io‘n state theory approximation given by eq. (2.82). The agreement
betweep' the two is seen to be reasonably good. ;Ihe accuracy of this
semiclassical transition state theory is, in fact, almost as good as

. ?
the results of classical S-matrix theory.“l
D. Summary

The results of both types of semclassmal approximations to the

quantum tran51t10n state Tate expressmn are in good agreement with the

'iexac“ quantum scattermg calculatmn, mdlcatmg that the fundamental

on of tra1151t10n state theory is va11d quantum mechanically as

el as classn:ally The marked improvement of these semiclassical

‘trad1t1ona1 formulatlons of tran51t10n state theory which

separablhty seems to mdlcate that the separablllty approxima-
t va11d It is not p0551ble however to determine whether the

ining’ dlscrepanc1es betWeen the exact quantum and semlclassmal
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results are a result of the transition state approximation or the semi-
classical approximation. There are obvious shortcomings of the
semiclassical methods however.
Recent work of Stratt and M.iller46 has shown that the semiclassical
phase space distribution as described in this work is not a rigorous
" result of semiclassical mechanics. We wish to know the semiclassical

appronti.mation to the Boltzmann average of an operator F:
(Fy = Q;l tr [e-BH F] (2.87)

however, we only know how to take the semiclassical approximation to the

Boltzmann density matrix < _q]e-BHLg). The Boltzmann average of F can be

rigorously defined as

-1 .. d -B(H+AF)
(F) = z iﬂa{tr [e ]} (?-88)

The semiclassical approp_cimation can 'bg made to eq. (q.88) by treating

H + AF as an effective Haﬁxiltonién and using the classical path approxi-
mation. By taking the A derivative of the semiclassical expression
followed by the .A + 0 limit gives the correct semiclassical approximation.

Tor the rate constant the result is:
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' ng/2 ng/2 ‘ _ :
g & iim.—h,’" /“3 /df EZE. [ /pn(,)d,] exp[-'nl ﬁr (n + 2 FR('I'))] (2.89)
- g 0 0 _

The ambiQuity‘ in eq. (2.61) of the correct weighing (how to choose 7o)
is no longer present. This ambiguity was equivalent to the problem of
where to evalua:te the classical function F(p,q) along thé semiclassical
trajectory. This has been replaced by aver;g;ng F(p,a) over the entire
trajectory. Work is in progress46 ‘to.find the prope; ;»0 limit of eq. (2.88).
One 'obvio;gsk error inherent in periodic orbit theory is the hamonic
1 approjﬁmation"fdr the internal state energies. This arises from the
.‘stationary‘phase,éygluation of the q integrals in eq. (2.67) which assumes
that mtipn.,brthog'bnal ‘to the perioEiE:'orbit is harmonic. This can be
circmnVénted by doing the q intégra]s numerically. 'A microcanonical

‘ersion of the local approximation eq. (2.66), is

NE) = o [aq s(a) L& 1¢al 9G# [@> (2.90)
S B
(qleEH [q = 2r f a8 e ( qle™M|q,
. ‘ ";Bo‘im | A | (2.91)
_ -1/2
- A w22 E o/
i : 3p; A .
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thé phase is given in eti‘. (2.75), and the Jacobian, 5%%3)_’ arises from

the steepest descent evaluation of the B integral. Thus,

s

-1
NE) = -ih f dg slap) g, | [(zm)N‘ 2 ey e/t (2.92)

(stationary phase evaluation of the q integrals in eq. (2.92) gives

- periodic orbit th:e'ory.) Numerical integration of eq. (2.92) was carried
out for the collinear H + H, system and comparison was made to ]Jeriodic
orbit theory without the modification of unexpandi.r{g the Taylor series.
The results shown in fig. 12 indicate that the hémmriic approximation
has very little effect in the H + H, system. However; comparison of

the modified periodic orbit theory results with these indicate that

the "unexpansion”" of the Taylor series is necessafy. The fact that a
modification to the original theory is needed to give the correct
separable limit is a‘ litt1e> unsettling and a derivation of the thqory
which gives the correct separable limit is desirable although unavailable
at thls time. ' ' ’

Fmally it is mterestmg to note that all attempts to use ‘the Weyl
prescription for quantum mechamcal _transition state theory have failed,
but the semiclassical method usmg the local app*‘oxmatlon, eq. (2.67), which
.1dent1fy the reactlve flux by the classu:al function have been very
successful. To further test the validity of the Weyl prescr;ptlon for
“transition state theory, a semiclassical model using the Weyl i)rescrip-

tion for the reactive flux operator was examined. The Weyl prescription
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to the’ i‘ga(:f.ive“flwc for a one-dimensional system can be written (see

ref. 6):

'+x) h -1
(x'|Fy|x) = (% > — , (2.93)
R ( 2 2mm (x'-x)z

: giﬁng for the onejdijnensional tunneling correction factor, eq. (2.47),

rm - Znthdx'zhﬁ (2—12> (xle 1|0 (2.98)
, A X ’

. Integration by parts gives:

(2.95)

mg functﬁmof x as compared to the exponential of the phase so

that, thé ‘déﬁvativ_e is taken only of the exponential, gives the semi-
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a

| ‘ o \-1/2
rm = efVo %BE[ dx'fp_z;i (zﬁhax_z‘) o-o/m (2.96)

vhere ¢ = f H(t)dr is the classical action for a trajectory which goes
' from X to -x in time hB on the upside down potential surface and

8x <I>(x1,x2) = -p2 Py » pz(pl) is the final (initial) momentum of the
trajectory. This expression can be evaluated analytically for the
harmonic barrier. The inverted barrier becomes a harmonic well for

which the equations of motions are known:

P .
x() = X, €os (wt) + = sin(wT)
(2.97)
p(79 = Ppycoswr) + mx; sinfur)
The initial and final momenta for the desired trajectory are
1 2 | -s1ny 1 sirrlz—' ’
the Jacqbian becomes
x, sinu ) [
mw (2.99)

'dpl
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o
and the phase is

: u
co 2 (1tcosu) _ 2 %7
¢ = lTlNKl (W) = mu.\xl o 0 (2.100)
in.
) Z
ax2
AV°=0, and u = hg. For 0<‘u§rr, p1<'0,¢>0, and sﬁ >0. This corresponds to

a trajectory which goes directly from x to -x. Evaluation of the inte-
gral in eq. (2 96) gives the correct results = -2- sm . For
1r<u<21r,p1>0 %<0 and ai: < 0. Th1s corresponds to a traJectory which
starts with momentum moving away from -x (positive momentum), reflects
off the repulsive wall, goes past -x and is reflected a second time
before gettmg ‘to -x in time hR. In this case the integrand has a
negatlve Jacobian under the square root giving a complex number while

- the argument of the exponential is positive. However, the integral can
still be eﬁlmte& by changing integration variables from X to ix, where

) is= 1. The contour mtegratmn is then rotated back on the real axis

'.'j\hlle the _Pieces, at mfmlty are thrown away ., Th15 in effect analyt1ca11y

-continues the result from the mterval 0<u<1r to the mterval m<u<zm,

”glvmgI‘—i-smz ’

If one tr1es to do the same anal)'51s on a more general potent1al
such as the syrmletrlc Eckhart barrler, one is faced with a difficulty.
- The harnnmc osc¢illator has the property that the period of a traJec-

: :"tory gomg from x back to x is 2m/w which is independent of the energy.

.','Ihls'has the subtle coneeqqence that for a given time increment hg the
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~initial momentum will have the same sign for trajectories going f_rorﬁ
x to -x for all x. For p; = 0 any x g’ilves_ a trajectofy which goes to
-X in the time hg = m/w. This is just‘a trajectory which starts at the-
classical turning point with zero momentum and rolls down the §ide of
the well to end up at -x with zero momentum in half of one period 7/w.
For the time interval to be longer, the initial momentum must be positivé
for all x and for the time interval to be shorter tham m/w the initial
momentum must be negative for all x. For a general potential such as
the Eckart barrier this will not be true. For a given time increment
one can find a value for x, x;:r, such that pp = 0 gives the desired
trajectory and for X<X.,.;p; must be negative and for x>x..,p; must be
postive. Thus we have both types of trajectories for one value of 8.
This makes the integrand real and imaginary for different regions of
the x axis, making it impossible for the change of variable and contour
rotation that we performed for the harmonic case. This type of behaviour
strongly argues that the Weyl prescription for transition state theory
" is not valid. Since no alfemative means for a rigorous quantum
mechanical ihtefpretation of the transition state approximation to the
reactive flux is obvious, semiclassical methods were useél for verifying
the validity of thé transition state approximation in quantum mechanics.
The weakness of the separability approximation necessitated the develop-
ment of nonseparable semiclassical techniques for transitioh state

theory.
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APPENDIX .
DETATLS OF NUMERICAL CALCULATIONS

The details of the calculations using semiclassical tramsition
state theory to evaluate reaction rate constants, for the collinear
H+ H, reacti:'m.as well as the three-dimensional D.+ Hz reaction are
contained in this appendix; The collinear system is treated first with
both periodic o‘rbi’t theory and the semiclassical phase space distribution.
Details of the numerical evaluation of the thermal rate constant for the
threeedjnensiénal system using the semiclassical phase space distribution
cmicludé this section. ' ‘

In all of the calculations detailed here Elassical trajectories are

computed by integratidn of Hamilton's equations of motion;

o . aH(Brﬂ)
g(t) = "% q(t) = % (A2.1)

-~ -~

. Equation (AZ.1) represents 2N coupled first order differential

_equations. Their solution is mmerically cbtained by use of a fifth

order A@_zms-.}bulton predictor-corrector variable step size integration

algorithn.?’ By specifying the initial conditions and the derivatives

of the Hamiltonian given in eq. (A2.1), the trajectory, is unambiguously
specified.

Invariébly the classical action along the trajectory is also desired
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ot
(1) = fdt' pt") - q(t") (A2.2)
0 .

This can be easily computed by adding one further equation to those given

in eq. (A2.1), that is,
$(t) = p(r) - qt) ) (A2.3)

Numerical integration of eq. (A2.3) with (p(tj ,q(t)) specified by
eq. (A2.1) and with the initial condition that ¢(t=0) = 0 gives the
desired result, a solution to eq. (AZ.2).

Since transition state theory requlres calculatlons done in the
sadme point reg1on of the potentlal it is convenlent to use the
coordlnates that dlagonallze the kinetic energy in- that region. These ’
are the (s,u) coordinates specified on fig. 1. If (r,R) are the internai ,
coordinate for H, vibration and the distance between the atom and the
center of mass of the H, molecule, respectively, then s and u can be

expressed in terms.of r and R as

s = R - 7 T
(AZ.4)
_ 15,1
u = 3 R+ T
for the collinear H + H, system.
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*_ The Hamiltonian in these héw coordinates is ' . b

H(s,u,p5,0) = pl/2m +plm +V(s,w) . (A2.5)

where m mH/6 m, = ZmH, and m, is the mass of hydrogen.

‘ .To apply the penod.lc orbit theory of reactlon rates to this system
requ1res traJectorles whlch begin at a phase pomt (s,u,p PesPyy p,) -and
return to thlS phase point in a t].me T(E). The equatlons of !IlOthl'l

govemmg thls traJectory are g1ven by eq..(A2.1), except the potentlal

1s' mverted V +V.. The equat1ons of motlon are then given by -

For. thé ﬁpside-dmm petential' motion in the u degree of freedom

.is unbound whereas motion m s .is bound in the nmnedlate v1c1n1ty of
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the same sign, the trajectory must go through at least two turning
points in s. For two tuming points in s, then, a trajectory ﬁould
cross the line S5 twice. _

The motion in u has ét most one turning point on the inverted
surface. If the initial value of u is greater than the saddle point .
value, usp’ the turning point will be for some u lgss than usp" There-
for if a trajectory starts with the initial momentum in u, pui, greater
than zero it will encowunter rio turning point in u and would never retum
to u. anversely if the inmitial mrnenﬁ:m pui is less than zero, for
the trajectory to be periodic a second turning point must be encountered
for Somé u outside the j.nitial value of u. Since this cannot happen,
we can infér tiiat the -initial value of the momentum in u must be zero.

The proceduré for finding the periodic trajectory for a given
total emergy is to specify the coordinates (s=0, u=u;) and calculate the
initial momeﬁtwn from energy conservation (ps=psi, pu'=0) . The trajectory
is rin (eq. (A2.6) afe mumerically integrated) umtil it crosses the
line 5 twice or appears to be in a‘fegion of the potential where it
will never return to 53. One varies Uy systemmatically until U; =,

Due to the high symmetry of the potential this ensures that p final is
also iem. The result is then a periodic trajectory.

" Once the periodic trajectory is found for a given energy, we need
to evaluate the action integral, 6(E), and the stability parameter, w(E).
The action :'mtegr.;il is calculatéd_ by numerical integration of the

. equation
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5\

- MY = pg(H S(Y + Py ) (Y (A2.7)

a;iong the trajectory; ©(E) is given by
o(®) = 1o(T®) T (A

=

where T(E) .is the penod of the traJectory

The collmear H # H, ststem has two degrees of freedom therefore

there will be only one spgbility parameter, and eq. (2.82) becomes

-

- e = (12 @7 (2.9)

+%) l -."‘:(AZ.‘IOj




-65-

The stability parameter is defmed in terms of the eigenvalues, of the

3(S £5U,,0s 4Py )
Jacoblan matrix, a(f,uf’pSf'p f) '
sUsilg

conditions and subscript f éenotes final ccmdltlons This is a 4 x 4

where subs«:npt i indicates initial

matrix and therefore will have four eigenvalues, However the eigenvalues-
come in pairs, A = St ,» 1 =1,2, where X are the eigenvalues and u; are
the two'.stability parameters. Two eigenvalues are guaran_teed to be unity,

48

therefore one stabiiity parameter will be zero. The stability frequency,

w(E), is.given in terms of the nonzero stability parameter as -
w(E) = U(E)Y/T(E) . © (A2.11)

Evaluation of the matrix elements is carried out using the methed out-

lined by Miller.*8

If one defines a time dependent matrix R(t) as

follows:

1(A2.12)

R(D)



http://A2.ll

-66-

5(1:) is glven by :

+ E(®) RO

-where
1
0 T
. s
0 0
E() =
A,
- _9sdu
A
2

‘then g(t T(E)) 1s the desired. Jacoblan matrlx. The time evolution of

(AZ.iZ)
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R(t=0) = (A2.14)

o o o -
- .
o
o

-The final.values of the sixteen varisbles form the Jacobian matrix which
can be‘ diagonalized by standard methods. It should be noted that the:
matrix is nonsymmetric and therefore can have complex eigenvalués. A
subroutine -SPCIRM- is available at the Lawrence Berkeley L@ofatow

Compﬁting Center for this purpose. In practice thé complex components
of the eigenvalues were found to be negligible, however the accuracy of
the eigenvalues was diminished due to the large diffei'ence in the magni-
tudes of the eigenvalues -- five orders of magnitude in the worst cases.
However, the largest eigenvalue was computed to enough accuracy to be

useful, and this was the only eigenvalue needed to determine tﬁe stability

‘ frequen'cy.A g A . ‘
One ft‘;rthér note concemiﬁg the evaluation of the force constants

l need‘ed*in eq. (A2.13). Although derivatives of the potential, 3V/3s

-and’ 8V/3u, are anaiyticaﬂy obtained by Ad'ifferentiation of the poten_r.iai

. ﬁmﬁs~(1jef. 34 and 37), thé fofée constants-were obtained nmnerically.by

finite difference methods.
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L

. . The procedure at this pomt 1s quite smple. For a giveﬁ energy
..on'e has. evaluates 6. and . If we ca11 thls energy E then eq. (AZ. 10)
‘can be ea511y inverted to give E. Since 8(E ) is already computed

eq. (A2.9) g1ves N(E) The results of this calculatlon can be found
._m Chapter 11 section C. 2. )

' : The' sem1c1a551cal phase space distribution method uses eq. (2.61)
with T 0= hg/4. For the collinear H + H2 System in s and u coordinates

* this becomes

fig/4

. “Qak - (znh] [ [d"‘l [dps[dpu‘(sﬂ m_l_ '%[d‘rﬂ("] (1,‘\2_-15)

-hB/4

) where the Ham11ton1an is given in eq (A2.5) and the equations of motion
- dre given m eq (AZ 6) The var1ab1es Y;,S 1,pul,pSl are the initial

CDndlthIlS for a traJectory Tin on the 1nverted surface. Actually two

traJectones are computed one which starts at th1s initial phase point

" and proceeds forward in: t1me unt11 T = hB/4 the other proceedmg back-

e

4
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P30 /2y + Bl /2, - V(s,u) =’p§1/2m5 + P12]1/2H\l - Vis,uy)

and
' _ 2 2, 2 2
H(t) = pg()/2mg + p,(T)/2m, + V(s;,uy) - p51/2ms - pullzmu
. (A2.16)
- . ' . 2 2
= pg(M) s(T) p,(M u(f) * V(spoy) - psl(st- Pu1/2mu
and
hg/4 .
2 2
_hi' dtH@E) = ¢ + B (V(sl,ul) - p’si /2ms -pui /an) (A2'17)A
-hp/a ' 3 '
where
hg/4 .
¢ =, Fl- dT(ps(T) §(‘£) + pu(T) ﬁ(T)) . . (A2.18)

-hB/4
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ra

’ The quantlty ¢ can be calculated by the lfleﬂlod previously given.for
'numencal integration of the c1a551ca1 actlon. ) ‘
The pmcedm'e is to mtegrate numencally over the ﬁlitial conditions
' u1 ,psl,pul where s1 0 by virtue of the delta function. For evety phase
point determined by these 1n1t1a1 conditions the integration can be easily
taiculated by computing the classical trajectofy o obtain ¢, all other
functions in the mtegrand are then just simple algebralc functions of
" the 1n1tlal conditions.
~ The behavior of the integrand upon the phase space point is strongly
' dependent upon the}_ temperature at which the calculation is being evaluated.
. As the' tempetatln'e gets lower B becomes larger and the tih1e 4for Tunning
) the traJectorles becomes longer. In general the longer a trajectory is
allowed to Tum, the more actlon it w111 accmmlate, and therefore the
- phase - space point w111 be exponentlally damped in the integral. For
" this reason very few regions of phase space give non- neg11g1b1e contri-
butions to the integra'nd‘, these regions becoming smaller for lower
temperatures.. This pathology in the ihtegrand made the numerical inte-
, gratlon of eq (AZ 15) d1ff1cu1t. ’l‘he method used for the three dimensional

:mtegratlon was fll‘St to mp out contours of the mteg'rand for (u,ps)
‘p"Ianes for.a f1xed value of Py- From these maps limits of mtegratlon
fcould be put upon the :mteg'rals. ‘The mtegrals in Pg and Py were

evaluated by Gaussmn Legendre quadratu:re. It was found that the patho-

of the ‘mtegrand could be adequately treated by using an adaptlve
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until the integrand in that Tegion has converged to within a 4gsi£ed
accuracy. Results from these‘ calcuiations can be féimd in Chapter II
section C.1. '

The partition function Qa is given in eq. (2.22), where the energyl
levels for the H, vibration are easily obtained by the Morse oscillator
fit to the H, vibrational motion.
| Application of the semiclassical phase space distribution to the
three-dimensional D + H, system begins with eq. (2.61) also. However

for this system the phase space average is o;iginally 12-dimensional :

he/4

-6 + + * - ] _% dt H(T)
Q K, = (2n fdsr d3'ﬁ dp- f d.p Fn(r.R.p,P) e '°ha/4 . (A2.19)

where T is the vector between the two H atoms and R is the vector
between D and the center of mass of H,. The momentum 'ﬁ} are those

> .
conjugate to r,_ﬁ respectively. In these coordinates the Hamiltonian

is given by

H = p’/zm+P2/2u + V (A2.20)

where p'= |p|, P = I_ISI, m=%mH,‘ W = My, and my is the mass of
hydrogen (this assumes that the mass of deuterium is just twice that of '
hydrogen.) Since the relative spatial configuration of the three atoms

can be specified by just three coordinates, the potential can be
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expressed in terms of just three variables.
for this calculation are the three internuclear distances T],T5,T5.

'mesg can i:ae defined in terms of r and R as follows:

b |

and cosYy

. s -
L

T

Tm;ectones on the mverted surface for the calculation of the
: semiclassical phase space distribution were carried out in the *, R

) coord:mates by numencal integration of the 12 dlfferentlal equatlons,

i a‘V(yl,rz,rs) ..

ar

The pertinent coordinates

. r2/4 - 1R cosy

J;+r2,/4+chos '



T

' ' -7%-

It is convenient to express the vectors in both Cartesian and polar

coordinates:
/ x sing_ sing,. N : singy singy
T= 1y = 1 |sing cosp s R = = R §ineR cospy
z cosB_ Z cosey
(A2.23)
Py sinal; sing p . Px sinep sinpp
; = py = ] sinap t:os:pp » P = Py = P si.m)p cosgp
P, cosgy ) P, cosép

The trajectories are integrated in the Cartesian components, therefore

_one needs % , % , etc. These are evaluated in terms of chain rule

d1fferentlat10n in terms of 2L y A 3y , and A

The integrals of eq. (A2. 19) are best expressed in the polar
coordinates. Since space is isotropic and we need only three coordinates
to specify the orientation of the three atoms, we may replace the integrals
over er’q’r"bk by 81r2 and set the three angles equal to zero. This also
allows the identification of eR as vy.

The ‘now nine-dimensional integral can be further reduced by use of

, the delta functlon contamed 1n the flux function FR The dividing

surface is defmed by

e > > > 5

£(r,R) = rf(r,R) - r2(r,R) - RE- 34 r? - tRcosy = 0. (A2.24)



., - normal to it as

Pl

-74-

With the dividing surface defined we can identify the reactive flux

-

l'-'R = s(f(r R)

(-2-r+R) E+ (ZR- r)

(A2.25)

1=|"U +

Using the delta function to eliminate the R integral restricts r to be
B R = I ‘, 2 A2
, = x \cosy + 3+ cos’y (A2.26)

and gives for eq. (A2.19)

@ 1
2 ‘r 2. |
Qa.b*n - 81 /d“,z /d(msy) ;'_ osy + 3 cosv)z
(@S 2 A ‘ "_,” o052y
E ' ae/4 (A2.27)
- ® 1 1 T m [d .
TH(T

x[dp pz fdl’l’2 d(cos6p) j:l(cosep) d”p [d@l,%lﬂml 5. B
. .0 0 -1 -1 0 0

Equatlon (AZ 28) is an 8-dimensional integral which is most efficiently
evaluated by Monte-Carlo methods.}? Two further modifications were

" 'made to eq. (A2.27) to give more convenient integration variables.

_ First, define p,a such that
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o

p = pVm cos%’- , P = pvu sin

(£2.28)

,dde = J/mrp dp do

and p is then just the total initial kinetic energy and a gives the
partitioning between p ar P, It ié also desirable to repléce-the p-
integral by a total & - s integral. This is déne by Boltzmann averaging
the existing expressicdt.over the 'total-éﬁergy with the function »
6(E-H)e+BH'inc1uded- inside the other eight integrals. Clearly evaluaf,ing
the énergy integral by virtue of the delta function will give back

eq. (A2.27), therefore this does not alter the expression. However we
wish to keep the E integral and use the deita function to evaluate the

p integral. This is done to givé

. 1/2 ' :
p.= (E-V) ‘ (A2.29)

and eq. (A2.27) bécomes




; ST , 410 (m) - 2
S oK ) deeBEfdrT d(cost) cosy +¥3 v eos’y g2
2 P ' 43 + cos?y ‘
| = ‘
. . .
ﬁ(mss) sing ﬁ(coss ) f d(cosp) f dé qu, fm(El-r.Y.B. p.ﬂ » '¢p)
<=1 -1 -1 0
where .
‘ . : - . ) /‘,". '/_Vlf
“gn = M2 sin8 Z RS
) a, b1\ 7 jlcosy + . 3.+ cos“y jcosy cv::sap + siny smep cos¢P)- cosel,}
(42.30)
%JZ- cos ¥ {(cosy +‘JS + c0527Xcosv c056p+suty sme cosd ) + 3 cosh P}|

S b [i
Cxex [ ¢ f‘dmm + ee] :

. s . . - " 26/
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> > > >
One integrates over the 8 variables and constructs the vectors r,R,p,P

from eq. (A2.23) with § = 6,0y = 0, and R given by eq. (A2.26). The
vectors then specify the initial conditions for the trajectc;ries needed
to evaluate exp|-2/h f Bcﬁﬂ('r)]. This exactly parallels the collinéar'
calculation. -he/4 '
The introduction of the energy variable into the integrétioh does
present a complication. This is that one must specify the variables T
and vy such that the poténtial is less than or equal to E ~This is
effectively done by sampling the r and y variable by a rejection te;hnique.
The motivation beﬁind using the energy variable is that classical
calculation of the. energy dependent cross section showed a Eae'ﬂE
dependence in this function. This argues that for high enough énergies
the semiclassical microcanonical rate should also exhibit this dependsnce.
For ‘this reason the Monte-Carlo sampling of the energy variable was
weighted by E'e BE. Other weighting finctions used were r7, sin?(8) for
r and 8 respectively. This method worked quite well for temperatures
of 300K and 1000K, the results being given in section C.1 of this chapter.
However the patholdgy of the semiclassical phase space 'distribution
function for lower temperatures as mentioned in the collinear case made
ﬂ1e calculations impossible. No efficient Monte-Carlo method - i.e.,
no set of weighi:ing functions - could be found to improve convergence
“of the integration with respect to quadrafure points.
Finally it should be mentioned that the partition fimction Q, now

is for the three-dimensional H, molecule:



Al -
&

Qa = Qin%otr
vihere

(A2.31)

+ 2
2m)™® fap B 2y

) -2
23 %ﬁp p? B,

-

" and we have assumed that the vibrational and rotational motion is sepa-
" rable. The vibrational partition function is exactly the same as in the
- collinear case. In general one need not include the nuclear partition

. function into the total partition function as it remains the same in the

transition state region and is cancelled out. However for H, the nuclear

‘and rot‘afional contributions are coupled by symmetry considerations which

give rise to ortho and para hydrogen. The effect upon the rotational

partition function is to add a degeneracy factor to the sum, . thus th

is given by '

Qgy = £5@+)) PO =174 for even 3 (A2.32)

= 3/4. for odd J

e

an d B=h 2/ZI, I is themoment of inertia for the diatom.
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II1. SEMICLASSICAL EIGENVALUES

Semiclassical methoés have been very uséﬁﬂ in describing quénttﬁn
effects -in reactive systems.s’49 Indeed, in the last section it was .
shown how semiclassical mdels could be used to describe tunneling.
effects in chemical reactions near the 'thre'shoxl_‘d energy. The discreti-
zation of energy ievels in bound systems is a purely quaﬁtﬁn mechanical
consequence, however recently much progress has‘ been made towards
developing methods for quantization of the energy levels using classical
mechanics.

For a one-dimensional system, the semiclassical results come from

the ""01d Quantum Theory" and is the Bohr-Sommerfeld quantization

condition: 1

X>
m+1/2)7 = fdx {Za[E-V() 1/m 52, (3.1)
X

<

for n = 0,1,..., which defines the eignevalues E(n) implicitly for

the potential. This is only applicable to one-dimensional systems or
nmultidimensional systems which can be separated into many 6ne-di_mensiona1
systems. However there is a need for semiclassical quantization condi-
tions for multidimensional systems which are nonseparable. For most
systems of interest the lowest few eigenenergies can Be obtained

fairly easily b); diagonalizing the Hamiltonian in a basis set. For the

higher eigenstates this quantum mechanical procedure becomes increasingly
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d1ff1cu1t due*to the size of- the b351s set requ1red But it is just

: A_.Afor these hlgher bcnmd states that sem1c1ass1cal approximations such .as.

4

‘ WKB are the hest-. Sem1c1a551ca1 methods should be useful for finding
‘ “the’ energy levels for these hlgher e1genstates where the motion of the '
-system becomes coupled : _7"
The first progress made towards obtainfng a semiclassical quantiza-
tion ccmd1t1_0n ~=for multidimensional nonseparable systems was by Emstem50
' .in 1917 before the advent of quantum mechanics. Other work on thlS
-problem done within the "01d antmn Theory' is described in Born's book.51
W1th the formulation of quantum mechanics this semiclassical approach
saw little de\relopment until the more tecent work of l(eller.52 Using

the semiclassical wave function approach of Kramer53 54

and Brillouin
‘Keller modified the results of Einstein to give the proper half—mteger
quantum numbers- for simple osc111ators. This result is the Emstem—
Brillouin-Keller (EBK) quantization rule and is briefly described in
section A with further modifications and improvements made by other
authors 'beiﬁg nientioned. ‘
Andther different approach to the problem of semiclassical quantiza-

tion is that taken by Gutzwiller.44

Gutzwiller developed a semiclassical
expressmn for the trace of the Green's function, G(E), usmg the semi-.
--;classmal apprommatmn to the propagator which is based upon’ perlodlc

‘traJectorles of the bound system. Energy elgenvalues are obtained by
f1nd1ng s1ngular1t1es in the trace of G(E) as a function of erergy.

- Because of- the appllcab}hty of Gutzwiller's results to transition state

:‘-theory, 1t 15 felt that a br1ef review of the work is worthwhile. This

+is g1ven in sectlon B.
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 Pechukas®® tas also presented a',,'diffel‘e’nt' approach to-the problem °
using:a generalized Miller-Good transformation ,td'v map the nonseparable g

potential onto a separable one.

B A method for semiclassical quant1zat1on has been given by Chapman, - |
Garrett and M111er whlch follows the approach of Born. The Hamilton- ’ “
Jacobi equatlon is solved in actmn-angle variables to construct "good"
act1on—ang1e variables such that the action vanables are constants of
the motion. Imposing the quantum condition is done simply by requi:'in'g
_ the action‘ variables to be haif-integers-. Th.is‘method is detailed in
section C. Apphcatmn of this method to a model two- d1men51onal non- -
separable system 1s made in sectlon D.- F1na11y the problem of sem1c1a551- =

cal eigenvalues for degenerate systems 1is discussed in section E.

A. Trajectory Methods

The EBK quantization rule can best be desribed.usingb Keller's

approach. The semiclassical wavefunction is given by

¥ = A eS@M (3.2)

vhere q is the vector of Cartesian coordinates. Requiring ¥(q) to obey

the Schriddinger equation in Cartesian coordinates to lowest order in h

is equivalent to S(q) obeying the Hamilton-Jacobi equation57
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Bl@ : (B3

vhere .

A
s - f 34

is Hanﬁltohfs characterisf_ic function, and (p,q) = (pi,qi), i-1,2,...,N.
"The function S(q) is multivalued; its value determined by the path from
q, to q. Two topologically distinct paths, C1 and CZ’ can be joined to

v give one closed path, C = C2 -‘Cl, where the minus sign indicates motion

in a backwards sense along path C If S f p-dq and S2 f p-

are the two values of S(q) for these two paths then 2
. 85 = §,-5 = —(éng-dﬂ (3.4)

-is the-change in S(q) in going around the closed path- C . Requiring ‘P(q)

to be a smgle valued function of q then restricts AS to be an integer

~

mult1p1e of 2rh plus any contribution to the phase of ‘P(q) from the
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pre-exponential. factor A(q) 'l‘hq fact taht A(q) changes sign for every

turning pomt crossed gives half integers or.

AS =2h (n+3) (3.5)

for n = 0,1,....

The intergral over closed path Cz in eq. (3.4) is a line integral
and therefore independet of tﬁe path. | In order to use this method to
evaluate the energy eigenﬁlues , it is necessary to specify N such
relationships as given by eq. (3.5) for N topologically independent
closed paths, G i-1,2,...,N. (One tol;ologically independent path
cannot be deformed into another one without a change in the value of

the integral.) In terms of these paths the EBK quantization condition is

~

2t (n; +1/2) 5£p ,i=1,2,...N . (3.6)
C

The problem in application of eq. (3.6) then is to identify the proper
line integrals, that is, one must know the topology of the system.
Ein’stein realized that eq. (3.6) waé not applicable to systems in
general, but that it was required of the system that for a given point in
g-space a finite number of branches of the p(q) function existed. There-

fore although p is a multivalued function of q it is not infinitely so
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and thu; ‘the closed patk.ls C1 can be defined. . Work by -Kolomogorov,

Ainoi'd, a.nd. l‘-bsefss(KAM t_héory) has shown> that nonseparable s&stems can

. display such behavior and that such béﬁavipr is equivalent to a trajectory
Ffilling only”a_ portion of the total allowable phase space, this region
being conta}ined vyi_thin 2N well defined caustié curves (turning points in
N-dimensions). For behavior of the t;ajecfori_es that is more disordered
-so ﬁhat the caustic curves are no longer well défi.ned, the region of
ph?Se space is called "ifregular." The methods reviewed here are con-
cerned with the "regular” region and its energy spectrum.

The existénce of N i'eléti'onships given by eq. (3.6) restricts motion
of .the system to an N-dimensional surface, called invariant toroids by
others, embedded "in the 2N-dimensional phase space. .. A method due to
Percival and Pomphreysg. uses. a Avariational approach to construct the

, .. invariant toroids directly.

" The'work of Marcus and coworkf;:.rs60 has also been along these lines,
so.lviné the Hamilton-Jacobi equation in Cartesian coordinates for the
multivalued soitions 5(q). Of particular interest is the method using

. Poincare's surfaces of section.’®®) For simplicity this is exemplified

» .Au.‘siné"a two-dimens:;iohalr system (fhus a foui4dimensiona1,pha5e space.) A

_ f.iurféce of section is consfrtxcted by defining a phase plane such as
‘(x,px)A for a fixed value of Y. A qUasipt?riodic trajectory cuts this
phé.s'e plane_and creates a smooth curve for all passes of the trajectory

' thfoﬁgh the pha"sj;e’plane with by > 0. Two surfaces of section, one for
each phase plaﬁe '(;(,Px) and (y,_py) , will generate two closed curves which
can be used to evaluate the line integrals of eq. (3.6). Variation of
"the initial cdnditio’ns (including energy) until eq. (3.6) is satisfied

yields the semicla'ssic;'-il energy eigenvalues.
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A modification of Marcus' results by Sorb_ie61 has yielded a method
which is much more versatile in its applicability. The action integrals
: f pida; - MJss i ='1,...,N, are integrated along the actual trajectory
miil the trajectory has closed one itself to-a desired accuracy.
Requiring Ji - (ni + 1/2) 2why; i -.1,2,...,N, is equivalent to Marcus'
result, where N; is one half of the numb‘er of turning points in the
i direction. One further modification of this semiclassical quantization

condition by Sorbie and Handy5?

has enabled this method to treat the
troublesome case of degeneracy. A discussion of this aspect is delayed

until section E.-

B. Periodic Orbit Theory

6 44

Miller 3 has reviewed Gutzwiller's

semiclassical quantization

condition as well as making an important modification to it. For details
the interested reader is referred to this previous work, as only the
results of the derivation are described here.

Gutzwiller's results are based upon the semiclassical approximation

to the response function, g(E), defined by

g(E) = Tr [G(E)]

/dq G(q,a;E)

(3.7
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" The response function is related to the, density of states, p(E), defined by

o(B) = Tr [§(E-H)]

(3.8

2’;5(E-En) :

" by the relationship Im G(E) = -m §(E-H).. Miller expressed Gutzwiller's

- results in temms of the demsity of states as

e Fha(E)o" (E)}

. P N-1 |
o(E) = E'Zgl Re Z exp '{inlME) - Mr/ZlT[ = sinI ! } (3.9)
. j= '

vhere the quantities #E), A, and {mj(E)} are: all defined by a periodic
classical trajectory (one that starts at a phase point (p,q) and returns
‘to that; phase point in a time T(E), the period of the orbit.) The

' éiassi;:'al action ®(E) is defined by

T(E)
°(E) = h'l,Jdt Pq ‘ (3.10)

~ o~
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A is the number of turning points encountered along the trajectory, and
{mj_(E)} are the set of N-1 stability frequencies characterizing the
periodic orbit. The modification due to Miller is to express the sin.

functions as sums of exponentials,

. o } - .
) S 1 ol s LA exp i (m1/2)x. (3.11)
];ll- zisini-zl“) ;I-I 1-e % m;o ,z-; ] ! ,

"where

m=0 , ml=0 mz=0 ) mN_1=O

Use of the Poisson sum formuila

mz X - zﬂi: §(x-2mm) | (3.12)
n=-e =-c0

gives

p(E) =" ¢'(E) Z Z & [m—:) -Z(mju/zmjo'(s) - 2w(n+x/4)] . (3.13)
i

m=0 n=0
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“The quantlzatlon condition is spec1f1ed by comparison of equatlons

(3.8) with (3.13),

-N-1
e(E) - Z(m +1/2) hw, (E) #"(B) = 2n(n+)/4) (3.19)
-i=0

whlch 1mp11c1t1y detemunes the energy eigenvalues E(n,ml,mz,.. - oMy 1),
N for integer values of n and m; i i-1,2,... N 1.
For the one- d1mens1onal case (N=1), there are two turning points

along the periodic trajectory (A = 2), and eq. (3.14) reduces to

X>
Zfd” P (3.15)
x(

2n(n+1/2)

®(E) = h_lfd'r-‘p %

whlch is the Bohr-Sommerfeld "quantization conditions, eq. (3.1). However
for the case of a nmfltidimensicnai but -separable system, eq. (3.14) does
nnt in general give the correct semiclassical result. For example consi-
der a two—dimensional system with coordinates (x,y) and conjugate momentum

(Dx,py

) where these two deg'rees of freedom are uncoupled. For a non-
degenerate system there are two possible periodic trajectories obtained
. by. putting all the energy in one degree of freedom. Because the two

modes are uncoupled the energy will remain in only one of the modes and
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and motion will be in that degree of f;eedom only. TFor the case of one
harmonic potential and 6ne anharmonic potential (Nbrsé oscillator) in
which the motion is in the anharmonic degree of freedom the results can
be aniyticauy, obtained, '

and w(E) = w = harmonic frequency
for
_ -ax, 2
Viorse® = D (1-¢™) . (3.16)

Use of these expressions in eq. (3.14) does not give the correct’ semi- '
classical éigenvalues. However a -simple modification‘ can ~b§ made to
eq. (3.14) to give the correct result for this case. This is analogous

- to the modification made in the application of the theory to transition
state theory. Recognizing eq. (3.14) as the first two tems in a

Taylor series expansion and "unexpanding" it gives
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AR '
o|E - 2, @p/Dma,(®)) = 2n(uersa) . (3.17)

It is easy to show that using the expressions give by eq. (3.16) in this

equation does give the correct separable quantization condition for this

exanple,

21
E(n,rfl) = D|1- (1 - %) + ho(m+l/2) (3.18)

It is mterestmg to examine this same system with the penodlc

trajectory taken to be in the harmonic deg'ree of freedom. For this case

€

-Zh—“g , w(E) = a/ZD/m

(n+1/ 2) hw + (m¥1/2)hav2D/m
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.4

the derivation of eq. (3.9) from the response function in eq. (3. 7)
'I‘he mtegrals over the coordlnates in eq. (3 7) were evaluated by the
method of statlonary phase, which mherently builds in thlS harmonic
approximation to the theory. This is a rather unsetthng aspect of the
theory in that it treats the degrees of: freedom in an Lmsymetric way,
hendling_i:he' periodic motion'e:'cacﬂy but treating all other motion within
a' harmonic approximatibn. ‘

This nonsymmetric treatment of the degrees of freedom was not a
problem 1n the application” of the theory to transition state theory since

one degree of freedom, that of motion along the reaction path, is quite

‘ different from the other bound degrees of freedom in the scattering situ-

ation.‘ The periodic orbit pertinent to the transition state was along
the reacfibn path and it was shown that treating the bound degrees of
freedom within .a harmonic approximation was qui*]:e good.

The major similarity between Gutzwillet's zwork and the semiclassical

60 2nd that of Sorbie &1

is the use of
classical trajectories to generate an action integral which is then
quantized. In the methods of Marcus and Sorbie a quasiperiodic trajectory

is used to determine the topology of the problem and enable the construc-

t10n of N topologically independent phase mtegrals for an N-dimensional

system Quantization of these phase mtegrals determmes the energy

eigenvalue implicitly. "’I'he maJor drawback of this method is the

3 restriction to the regular spectrum of systems. The method of Gutzwiller

calculates only one phase integral along a perlodlc traJectory, treating

Can motion orthogonal to the periodic motion as harmonic. Although

Gutzwiller's method ‘is not restricted to the regular part of the

7
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¥

spectrum (as “leng as a periodic trajectory can still be found-in. the

‘ "i'ri'egﬁ.iar ré‘gioﬁs‘bf phase space), motion-in the irregular regions is
expécted to be highly anhammonic; ‘thus giving poor results for this

o~ method.

:;, C. Solution on to the Hanﬁlton-Jacobi'Equétion in Action—Anéle‘ Variables

The method of obtaining semiclassical eigenvalues presented here is

based upon the work of Born.’!

As'in the previously reviewed semiclassical
~ quantization conditions of section A, Born's method is based upon the

solution to the -Hamiltori-Jacobi equa'tion, the différence being the

equaﬁon is solved in action-angle variables instead of Cartesian

coordinates. (For a review of action-angle variables for simple one-

dimensional potentials see the apperidix.) Action-angle variables are

.. introduced by assuming the Hamiltonian to be of the form

H(p,x) = Hy (p,X) + H;(p,x) (3.20) -

~ where' @®,%) =“('v15i,)gi),'Ai 1,2,...,f are the Cartesian momenta and

. " coordinates for an f-dimensional system. The zeroth order Hamiltonian,

- H0 p,x) 'is -assumed 'Eo"bg"‘separable and of the form

» -}"5’ ‘ ’ f ' "
:'l‘Ho(B’i,O = E ‘(Piz/lm + V(xi))

=l

(3.21)
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A canomcal transfomatmn can be made from Carte51an coordmates to -

+
"

act1on-ang1e variables (n,q) “for the f one-dlmensmnal potentlals » Vx5 e

In these varlables eq. (3 20) becomes
H(E’S) = HO(E)# Hl(f’ﬂ) v , < - (3.22)

where H; is now a function of only n. In the limit that H, becomes zero

the system is separable and n are constants of the motion:

o o My (3.23)
dr %  aq - . a@

In the separable case semiclassical eigenvalues are obtainéd by requiring -
theset of action variables {n;}, i-1,...f to be half-integers. Examination
of eq. (A3.6) shows the similarity t. the Bohr-Sommerfeld quantization
condition. ,

A form for the Hamilﬁonian'has been chosen, eq. (3.20), such that
the zeroth order part is separable and all nonseparability is in the
perturbation, Hi' Therefore I-l1 will be a ﬁmctionof both E and g and 2
will not_be constants of the motion for the full Hamiltonian. It is
desired t(; fmd "pood" action-angle yariables (N,Q for the full Hamiltonian

such that the new actio’. variables N are constants of the motion. That is




' The new action variables can be defined by a canonical transformation

generated by a function F(q,N) of the F,-type as descfibed by Goldstg:i.n.64
. The transicrmztion is defined by '
n(q,N) - = F(q,N)/3q (3.253)
Q(q.N) = F(q,N)/oN . (3.25b)

Inserting eq. (3.25a) into eq. (3.22) gives the Hamilton-Jacobi equation

. in action-angle vafiat;les for the generating ﬁnlctiun_E(q,N) 7

G o @My [ @) o
5 )‘_i_ Ho (—a—“ H(q .T)_ BV . G20

-~
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n(q,N) = N y
Qq,N) = q , - (3.27)
therefore ' F(q,N) = q N .

Thus the generator for the full Hamiiltonian can be taken to be of the

form
F(@,N) = q-N+G(@N . - (3.28)

The quantum condition for F(q,N) can be clearly seen by examining the:

semiclassical approximation to the wavefunction in q¥space, llfN(q) . The

~

"phase of ‘PN(Q) is the generating function,

(@~ exp [iF(q,N)/h]

~ o~ ~ o~
- P

(3.29)

~ exp [i eNA] emli G@M/M] -
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'where the angle var1ab1es q have inits of h. ‘(I‘t is conyenient to use
: -"'~.'i5i:atom1c units 1n wh1ch he= 1 1. -This will be assumed throughout the remain-
~:'flder of this sectlon ) Requ.u'mg the waveflmctmn to be single valued on
the 1nte1:val 0 to 2m restr1cts the act1on vanables N to be mtegers and:
G(q,N) to be a per1od1c function of q »Contnbutmn; t0-the phase from
= the pre;exponent1al modifies th1s result to N being half integers or
B v,equ1valent1y, N is replaced by (N +1/ Z) w1th N now taken integér values.
At th1s point the method presented here dlffers fmm that of Born, who
s used class1cal perturbation theory to solve eq. (3.26) for the generatmg
. .’functmn F(q,N)
The method presented here is a nonperturbatlve approach to the

. solutlon of eq. (3 .26) . Smce G(q,N) is a periodic funct10n of q it can

‘be expanded in a Fourier series,

L Ga,N) = i Z BOD € ek d (3.30)

~

v- Yk ek B v (3.31)
k= ~




-97-

- where ' implles that the constant term k = (0 0,...,0) = 0 is om1tted

from the sun. Using eq. (3.31) in equatlon (3.26) gives

H<q,N -2 kB, eiaﬁ']) = EM) (3.32)
k "“' - i ~ .

which must be solved for the Yourier coefficients Bk (The N dependence
of B is omitted for notational convenience.) Mﬂtiﬁlying €q. (3.32) by

exp(-ik+q) and integrating over the angles q gives the results

~ o~

_(Zn)‘f qu e kg H(g,n) = 0 . (3.33)
o~ - ~
2n .
et fequEen = B (3.39)
0

where n is given by eq. (3.31).

E;uation (3.33) is solved for the Fourier coefficients for a given
set of action variableS' (.the N's are parameters in the calculation) and
substitution into egq. (3.34) gives the energy e1genva1ue.

Equatmn (3.33) represents an equation for the Four1er coefficients,
Bk' through n. .Although eq. (3.33) cannot be solved directly for Bk’
iterative schemes can be devised for its solution. By casting eq. (3 33)

into the form




Bk = fumction (Bk) ’ . (3.35)

solution is gained by a direct interative substitution method,

(2+1) § (€3]
. = function By . (3.36)

~ ~

(@) ‘
Bk being an initial guess which subsequently generates the. sequence

B, i =1,2,...,m. |
A method for casting eq. (3.33) into the form of eq. (3.35) for a
general zeroth order Hamiltonian H 0 is supgested in the case that H_ is

0
hammonic,

L N o f
Hym) = w- (2+1/2) = Z w;(n;+1/2) . (3.37)

s.case the total Hamiltonian becomes

HEgm = o -(N IS W ST 1/2) +Hy(qn)  (3.38)
. K ~ . ~ k ~ . ~ o~

~
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which gives for eq. (3.33)

wek Bk (zm” qu eqh (g (3.39)

for k # 0.
Introducing Ak = wk Bk gives

- -f kg ~C ~~ (3.40)
A = @D ‘[dge~~nl<g,§-§w Ak>
and
EN) = -f ket
N = ue Me12) @0 qu i, N - ); e (3.41)
; uox
= we (N+1/2) + Ao

-~

For a general zeroth order Hamiltonian the same procedure can be
applied by adding and subtracting the first two terms of a Taylor series

expansion of Hy to the Hamiltonian inside of the integral in eq. (3.33):




an'f fds ika H(q, k ""“ n,.()+ By

(3.42)

( ZK' ""qn_) H(N) - wQ) - ( Z K e ’{“Sn) =0
[: PO k ~

n

Th1s in effect adds and substracts harmonic terms of H, to the equation,

H () 0
where the frequencies are given by w(N) = —-gﬂm— . Equation (3.42)
rearranges to '
27

~ o

wo kB ks @ qu g , © G

vhere n is given by eq (3.31),0r in temms of the Ak's:

, . k' eK'S .
T Sl qu “ikea ( R DA Ak). (3.44)
L k' o~~~

L ' . 4

Equatlcm (3 44) 1s solved by a d1rect jterative substitution method

as g1ven by eq. (3 36), the final solution being A (m) In practice one

2',..: 1terates eq (3 44] until the desired quantity, E(N) glven by eq. (3.34)

comrerges with respect to the iteration.) If one takes AkO) 0 for the

~

1n1t1a1 guess the f1rst iterate is :



-101-

Algl) = enf ﬁq % HigN , (3-45)

~ o~

which is equivalent to the result of first order perturbation theory as
obtained by Born.51 The results from s second iteration will not be the
same as second order perturbation theory, however, since eq. (3.44) is
not linear in A . Iteration through order infinity is equivalent to
infinite order ;erturbation theory though, giving the exact result.
However, this result is dependent upon the convergence of the iteration
series, Al((o), A]EI) s seey A](:’). Similar to the perturbation series, this
series is not guaranteed to converge, which is evident for the case that
eq. (3.44) has no solution. For the irregular region of the spectrum
there will not be f constants of the motion given by the good action
variables N, and eq. (3.44) will have no solution.

There may exist cases in which solutions to eq. (3.44) do exist but
the iteration scneme given by eq. (3.36) is not convergent. For these
situations an alternate iteration scheme which has better convergence
properties is Newton's method. For a one-dimensional system the

equation ’

Fx) = 0 (3.46)




-102-

- " can be solved by -the iteration scheme

L) "x(l) %ﬁ)) l.pl(x(’?)) . - (3.47) '.

-

This is easily extended to a mltidimensional system of:equations

Fx) = 0 (3.48)
‘__byv
‘ ; aF/x(")) 1 (3.49)
- x(D) _x(z) B it . £(x®)
L2 R - Flx .
: L]3F(x)
wher_g the matrix |—e=—1 is defined by
LT /e © (3.50)

S
-

tion’] 3. 48) is of the form g1ven by eq. (3. 33). Application of this

(3 ,33) gives: .
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. S
B]((:z+1) B BSL) . % i WL R 5.512)
2n v
' [} o N
Mk,k' = (Z.TT)-f qu el q(__l( )-E k' . (9' B) , (3.51b)
- 0 - on n=n(q)
21
W o= (2w f qu e ka yegm (3.51c)
~ 4 ~~ |n=n(q)

0 ~ o~

and n is ‘g‘iven by eq. (3.31}. Comparison of equations (3.34) and (3.51)

gives the eigenvalue condition

EN) = W, ‘ (3.52)

The major similarity of this methéd for obtaining semiclassical
eigenvalues with the trajectory methods of Section A is that both are
concerned with the solution of the Haﬁ_xiltoh-Jacobi equation. The
trajeétéry methoas solve the Hamilton-Jacobi equation m Cartesian
coordinates and as a result have to deal with the multivaluedness of

_the solution. . The, solufion in action-angle variables obviate§ the

need to know the multivalued nature of the solution by introducing the
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J

topology of the System thrcugh the zeroth order act1on-a.ng1e -variables

(2’5.)‘ ‘Solutions to eq. (3.33) exist then if the -perturbation H; is not
sbffiuently large_ to alter the topelogy to where f constants of the
motion no longer exist. This is no more rigorous of a restriction than>
_in the trajectory methods since in these approaches one assumes the
system is close enough to separability so_that quasiperiodic ﬁrajectories
exist - i.e., one must be in the KAM regi.me.,58

The major advantage of the method presented here over the trajectory
methods is in the fact that the topology is easily dealt with through
tbe action-angle variables. Also the rhs of eq, (3.44) can be easily
cobfpute@ due to the eicistence of fast Fourier transform algorithms.
Howev&,-the number of Fourier coefficiénts needed to expand the
generator G(S,E) i;}éreases with the dimensionality of the system while
trajectories pose no problem for higher dimensions. This seems to indi-
catje thét traje‘ctory methods may prove to be more prectical in application
for systems of high mathematical dimensioné. Finally, a metbod which
‘_blendsi‘the "appreach of trajectory methods to solve the Hamilton-Jacobi
equation in action-angle variables has been proposed by Sorbie and Handy62
and is discussed in section E.
. Apb}‘icatidns
flbe"‘}lélﬁilton~ Jacobi method ef obtainings’emiclessical eigenvalues
: bed m Sectlon C has been apphed to a simple two-dimensional
60 61_ The

‘ch has 'also been treated by ‘trajectory methods.

3

Ho, is harmonic and for a particle of mass 1:

e
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p 2 p 2
_ 1 -, F2 1 2_.2.1 2_2
HypX) = -+ + 70" "+ 70" 5" . (3.53)
"I‘he nonseparable, perturbation H1 is
Ho(X) = a2 +nx2) (3.54)
1Y 142 1 . :

From the appendix the action-angle variables for H, are given by

2n,+1

: 3 .‘55a
x = 3)1 ~cosqy ) ( )
x. = 2"2"'1 cosq, {3.55b)
2 wy .

where we have made the replacement of n by (n + 1/2).
For this harnnnic. example the Fourier coefficients Ak can be solved
for by Eq. (3.40), the energy eigenvalues are given by eq: (3.41).

© Written out-éxplicity these are
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2w

Hak, T (2 qul quz' 10 ,%) | (q),0,m0)  (5.56)
. . B 0 -

. . ‘ (3.57)
(Nl,NZ) W (N1+1/2) * wZ(N2+1/.2) + Ao,0
k. e2(9+kpap)
n.(q,,q,) = N. - 1 — A ,i=1,2 . (3.58)
A2 i kpk wikrogky  Tkpskp T

- The "good" action variables, N, are fixed parameters in the calculation.
‘The perturbation Hl is ,depend;nt upon q and n through the relations given
in eq.(3.55)‘. - The range of the i.ndice; k1 k; should be from -= to +=,

: Ahowever, m practlcal -applications these-are truncated, mcludmg enough

uuer coeffluents to insure convergence of ‘the solution. It should

: o be noted that since n as appears in H; is a function of the Fourier

:Ef1c1ents Ak kz an 1terat1ve solution of eq. (3.56) is desired.

easy and éff1c1ent means of carrymg out the calculation,

(3 56) (3 58) are. cast into'a form amenable to Fourier transform

ges already avallable. ThlS is done by first discretizing the q
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G = L o LLesltly =12 (3.59)

The sums over kl’kZ in eq. (3.58) must have upper and lower limits such

that their differences are (Ll-l)' and (Lz-l) , Tespectively. This is done .
. . -I; L -L L

'by having the sums go frqm —zl-»—zl— -1 for ky and from ZL"' —22— - 1»

for k It is convenient to have all sums go from 0 to L;-1, ‘and have

the indices of the coefficients Ak -k be in the same range. This is

done by Shlft].l‘lg the sums up by L. /7 and replacing k; by k; Li/Z in

the sums. - Using these modifications equations (3.56)-(3.58) become

REDUCE & INSERT (3. 60) -

E(N,,N;) = w, (N;+1/2) + w,(N,+1/2) + A ’ © (3.61

1772 '1 1 . 2V72 ]'1/2’1‘1/2 ( .61)
and - |

L -1 L,-1
R
= N, - * 1 w k%,
n; (9.1.9.2) N - 1)17%2 =i W “‘1("1'11/2) . "’2“‘2"‘2/2) (3'6_’2)
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. for i =1,2, vhere
W = exp [21'_1] (3.63)
J Lj .

The.primé in eq.. (3.62) indicates that _the (k L1/2 k, = LZ/Z) term
, is omitted from the sum.
A packaged subroutme for finding the discrete Fourier transform of
""( 1)¢ 1”’2 By (%45 g. 2) and the inverse Fourier transform of
(k T) Akl’kz/ <°i( - T) “2( 5 - ;Z) is available at the
. Lawrence Berkeley Laboratory (complex fast Fourier transform - CFFT).
The procedure is first to specify the parameters N sN, which are set
to 'intéée;s, then nf,nz' are calculated by an inverse Fourier transform
using the initial guess of Aki k.- The matrix H (11,12) is constructed
usmg ‘these values of n with equations (3.55) and (3.54). The Fourier
transfom of (-1) 1 2 H (2.1,22) then gives the new iterate of Ak oy
Iteratlon is contimued until eq. (3.61) converges to the energy eigen-
value w1th respect to the number of iterations.

PR

..-5‘3' For a vanety of, potentlal parameters (ml,mz,)\,n) convergence to

- four decml places was obtained for 64 Fourier coefficients (L 17L,78).
Typ1ca11y 10-15 iterations also pmduced the same accuracy in the eigen-
:;kvalue. c ‘

Fn'st a comparison of these results are made with the trajectory

} __Tf Eastes and Nhrcus()o(a) and Noid and Malrcus60 (b)f One would
'.ect that the results of the method of Sorb1e should be identical
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to those of Marchus since they both construct solutions to the Hamilton-
Jacobi equation in Cartesian coordinates. This is shown to be true in
Sorbie's paper to within numerical accuracy of the éigenvalues. It 1s
"also argued that the trajectdry_ methods shouid agreé' well with the
result§ presented here since the pre:sent method also seeks a solution to
the Hamilton-Jacobi equation although it is in action-angle variables.
This is shown to be the case to within numerical accuracy by the results
in Table I. .

Comparison with exact quantum mechanical results is also made in
Tgb}e' I, however, the coupli;lgparameter is sufficiently small-so that
the eigenvalue'svare only perturbed slightly from the separable limit.

As a more rigorous test of the semiclassical eigenvalue condition a study
was made of the e‘igenvalues for a range of coupling parameter, A. The
semiclassical eigenvalues are compared with the quantum results in

Table II for w = .7, w, = 1.3 and A = -n, with) =0~+-.2. The

potential for the problem is given by

2. 2.1 2

1 2 2 2
VO = gyt et BT v oY), (3.69)

2
. W
which has a relative maximm (saddle point) at X = 1/3 (-xl—) » %70,
of Vmax = Wy / 54}\4. F9r energies above Vm,elgenv_alues no longer exist.
The semiclassical eigenvalues are displayed in figure 13 as a function

of A with Vma,x()\) also indicated. The semiclassical values are seen to »

approach .V, fairly closely before breaking off.
max .

T
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R JAs a more graphlc d1splay of the agreement between the quantum and
sem1c1a551cal results, the percent error in the semiclassical level

shlft ‘A, is graphed. in flgure 14. The level shift is defined by
QN = BN - (41/2) + wy(Np*1/2) - (3-65)
vwhere QM denotes quantum mechanical and SC denotes semiclassical. The

,‘percent error bei:"ng given by

Aqm - Agc
A

(3.66)
x 100 . .

As is expected, the lower eigenvalues show a larger error while the

higher eipenvalues (here this means all those above the ground state)

are within a few percent of the quantum result. This is just the accuracy
] A.-one expects from the one-dimensional quant1zat10n of Bohr-Sommerfeld,
eq;.(3-1).
: "Ij'he 'Neifton iferafion scheme, eq. (3. 51)‘,V‘was also applied to this

eq.

~%pqﬁehtial. The results were identical to four decimal places for

A‘r'nﬁﬂ')er of-"Fourier coefficients, L = L2'= 8. Although the

J.x' at each 1terat1on.
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. Finally, it is noted that the Hamilton-Jacobi method (using the
simple iterative scheme) has been successfully applied to the vibrational

spectra of triatomic molecules by Handy, Colwell'énd Miller,%

Agreement
- with the quantum results was again within 10 percent, this being the

worst case of the ground state.
E. Degeneracies

The semiclassical eigenvalue conditions become difficult to apply

in the case that the zeroth order Hamiltonian H0

perturbation Hl is small but 1lifts the degeneracy. In a classical system,

is degenerate and the

degenaracy can be easily described in terms ‘of the action-sngle variables.
If (n,q) are thg action-angle variables for the Hamiltonian of a boumd

system, HO’ the frequency of the periodicity of each mode is given by

M gln) (3.67)
an ’

~

e
[}
I -TH

vhich is a constant in time since n is a constant of the motion. The

system 1ssa1d to be m- fold.degenerate if there exist m rclationships of

the form

£ ,

Zmijki =0, k=1,2,...,m (3.68)
» .

=1




P , S -12-

where jk-, i iS~'an integer and £ is the dimensionality of the system. If
m = f-1 the system is called completely degenerate.

For an f-dimensional system in the regular region of the 2f-dimensional
phase space, there are f-topologlcally mdependent mtegrals of the motion
whlch restrict the system to move on a f-dimensional mvanant toriod.

" . When the system is m-fold degenerate the motion of the system is further
restricted to a (f-m)-dimensional toroid in phase space. In terms of the
trajectory methods for quantization, only f-m topologically independent
integrals of the type found in:eq. (3.6) can be found, therefore only
f-m quantum nunbers are reouired to define the energy eigenvalue.” This
is 'equivalent to there only being f-m good constants of the _motion which
are linearly ~i.ﬁ&epen&ent. ‘I'lus is true since a canonical transformation
can be made from the action-angle var1ab1es (n,q) to a new set (n q )
such that the Hamiltonian is a function of onIy~f—m of the new action

‘variables, n':

Hy(n') = Hy(ny'smy',...onf ) (3.69)

'I'he topology of a degenerate system is very different from a nondegenerate
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In the trajectory methods of section A the degenaracy problem
manifests itself through thé distoﬁion of the caustic curves. This can
be seen for the systém studied i: section D,_.gi\fen by equations (3. ?3)
and (3.54). If nil Wy = My wy the zeroth order system described by H0 is
totally degenerate and confined to motion along a single closed curve in
phase space. The rapidity with which the trajectory closes on itself
depends upon the ratio “’1/“’2' if ml/m2 = 1 the trajectory will close on
itself after one oscillation, whereas if "’1/"’2 = 4/3 it will in general
take 12 oscillations for the motion to close on itself. The latter case
would cover much more phase space before closing than the fofmer, _i.;e.;
it would be a closer approximation-to a 2-dimensional toroid in the
4-dimensional phase space. Thus perturbing this degenerate motion fo
a nondegenerate motion will give a caustic pattern resembling a more
normal system in which the zeroth order system is nondegenerate. Howevei‘,
perturbation of the mllmz = 1 case to nondegeneracy is expected to give
more complex caustic curves ;ince the zeroth order motion is very different
from a 2-dimensiona! toroid. For the wl/m2 = 4/3 case it is expected
that the previously described method of Sorbie61 might suffice, whereas
for ml/m2 =1 th:a probleﬁl will be 1n identifying 2 topologically indepen-
dent paths for the path integration. These are .exéctly the results
obtained by Sorbie and Ham:iy.62 The inferested reader is referred to
this work for furthe;description and helpful illustrations.

Sorbie and’Hand)"62 have alsv given a quant  “on condition which
is capable of handling these more complicated ca. ic curves. -The method
is to_transform coordinates to the action-angle variables of the zeroth

order Hamiltonian Hy, (n,q). The quantum condition is given. by

~ o~




-114-

%Illtqlxqz) dql = Ml““i" 1/2) 2n
. ) (3.70)
fnz(ql,qz) da, = My(m, +1/2) 21 ,

where ml,mz' are integers. The mumbér of circuits around the two topolo-

gically independent pafhs <are Ml’MZ’ which are given by

a4 - g _
Moo= i, 51,2, (3.71)

where q; q:f are the initial and final angle variables. The path chosen

for the both integrals ig the same, being the trajectory itself which is
;1 combination of the two topologically fiidspendent paths. This method
includes the topology of the total system correctly through the action-
angle variables (n,q). In the limit that the perturbation goes to zero,

~ o~

the system becomes separable and degenerate. Although n,,n, are no

~-longer linearly independent, they both are constants of the motion and

deséribé the zeroth order system.

U m Bom‘§5_1 .pérj;ulfbati\'re‘methdd the degeneracy manifgsts itself

o .-througl; thesmall divisor problem. This is equivalent to the problem
encountered in éppl&mé eq. (3.40) to degenerate system. The u-k term

~ o~

o hpj:éarii;g&.n the demominator will be zero for some k vector other than

~

A _the"“zero one ( k = 0), due to equation (3.68).  Attempts to apply the
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the Newton iteration method, given by eq. (3.51), to degenerai:e systems
gave very disappointing results, indicating further that the method does
not deal properly. with the topology of the degenefate systems.

At present a method for including the proper topology into the
semi-classical quantization condition given in section C ‘is not obvious.
However, an alternate method of fornulating the quantization condition
which treats degeneracies differently has been given by Miller.67 The
previous approach sought the solution to the Hamilton-Jacobi equat%on,
it being the generator F(E,E), by expansion of the generator in a fourier
series and iterative solution for the Fourier coefficients. The alternate
‘method of Miller derives from the Hamilton-Jacobi equation a Schrodinger-
‘like equation in action-angle variables for the‘semiclassical wavefunction,

¥y(a):

E‘DN(S) = - ~-iw a_aq. + v(q,n)‘ ‘J)N(S) , (3.72)

~

where the reference Hamiltonian Hy has been assumed to be ﬁarmonic, and

V(q,n) is equal to Hl(q,n) in section C. This is a classical equation,

quantization of the energy resulting from the restriction that wN(q)

be a single valued function of'q._ The single valuedness of wN(qT can be

imposed by its Fourier series expansion:

’ W@ =Yg (v)eEe (3.73)
~ k ~ i

~
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Manipul_gtiéns similar to those in section C give eqﬁations for the
iterative solution for th:é"Fourier coefficients.~ Practical application
of thls method is :uupeded by the nece551ty to solve an eigenvalue
problem at each iteration. - :
- - "This method of semiclassical quantlzatlon is very useful in the
exammatmn of the degeneracy problem. Quantum mechanical degeneracies
" are manifested in the equality of energies of two distinct eigenfunctions.

- N .
For a zeroth order degeneracies in our problem we have

Ncw = N-w (3.74)

’ y,theré'fore the zeroth order wavefunction must be a linear combination of

. the two stétes: :

(3.75)

(3.76)
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In the case of no c}_égene.racy 62_ +.0 and Fo(g) ~ gﬁl In the degenerate.
case it is obvious that the expansion given by equation (3.28) is not
correct. The altemate method is not faced with this problem since a
solution for the wavefunction is desifed, not the solution o!f the
generator. )

‘ Finally it is noted that the fo.malism given by Miller no longer
contains the need to define "good" action variables which are then set
to integers. Quantization arises solely from requiring the wavefunction
to be single valued. For this reason it seems very possible that this

méthod should be extendable to the irregular region of _the energy spectrum. ..
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s . APPRNDIX - :
e - ACTION-ANGLE VARIABLES FOR ONE-DIMENSIONAL:SYSTEMS

-

‘ Acti&ﬁfangle variables are very useful for Qe;;:ribing periodic
'§y>st>e’ms,Afhe action variables being constants of the motion and the angles
varying linearly with time. The a_ction’-angl'e_var’iables can be defined by
a canonical frahsfoﬁnation from Caﬁesim coordinates (p,%) to (n,q) by

'a generating function S(x,n) (F,-type of Goldstein) :68

" 3Si

p o= — ' (A.3.1a)
3.8 (x,n) .
Qs ——— . . (A3.1b)

an

Replacing p byl eq. (A3.1a) in the Hamiltonian gives the Hamilton-Jacobi

equation for S(x,n):

X

H.»(?F B‘S(_L]a(nl) - B h (33.2) -

In:Cartesian coordinates this is

(A3.3)

A3
\
(]
S~
Q
177]
arf
)
(.8 )
+
<
~~~
&
g
tm
-
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which gives for the generator
S(x,n) f &' Vam (Bvex! )) (A3.4)

The action variable is defined by

-1 95
_-—Tlif (x n) | (A3.5)

X,
the integral being over one period. The angle is defined by eq. (A3.1b).

In explicit notation these are given by
X
n o= ko2 _[ dx \IZm(E-V(x)), (A3.6)
0 .

where x , X are the classical turning points, and

o Ve - vee)
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where E(n) is defmed 1mp11c1t1y by eq. (A3.6). The momenta is defmed
Lin terms of the actlon-angle variables by eq. (A3. la) where x(q,n) is
obtamed by inversion. of eq (AS 7). These equations can be solved
analytlcally for a few s:mple one-dJ.mensmnal potentlals Three examples

are g1ven ‘below:

Hamonlc oscilleter: V(x) .='. 1(2 m mz x2 , E=>0
n = -E/hq . o (A3.8)
- o q = f‘:°°S'-1 (x 5“—,&) | (n3.9)
which implies that ~ ) .
e:‘= nhw o ' (A3.10)'

(A3.11)



http://A3.ll
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P = \}Zmnhm‘ sin(q/m) . - (A3.12)

In all these examples X, in eq. (A3.7) is chosen conveniently to give

a cosine dependence upon q.

Morse oscillator: Vix) = D (e 71)2 -D , -DSE<O0
n = fa0 [1 - JED D] ' (A3.13) - -
q = heos ! | —1 (1 + E/D eax) (A3.14)
JTFED . .
which implies
E=-m5 , = -2/
(3.15)
_ 2. 2w
k = 2 of &
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X =

%m 1- 4171 , cos(q/n) |- : (A3.16) -

P

the: momenta is given by

- g AV sina/m)

o \Z ‘ " (A3.17)
(1 - 41-)\2 cos(q/h))

Inverted Eckart barrier: V(x) - -D sechz(ax) , ~D<E<0
n = 20 . /ED : (A3.18)
a
: , S el A ‘ 19
: q = h cos  Sinh(ax) == (A3.19)

1-A
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which implies

E ™= -D - (A3.20)

1. W1z

1-2% 2 : '
o) =55~ cos (q/n)+ ;2—— cos“(q/h) + 1 (A3.21)

the momernta is-given by

(2-1) sin®(q/n)

2 (A3.22)
1-2

1+ — cos2 (q/h)
A
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IV. "GOOD" ACTION VARIABLES FOR REACTIVE SYSTEMS

In the .previous two chapters .it was seen how semiclassical methods

could be used for‘the description of quantum mechanical phenomena :

tunnelmg in molecular collisions and the quantization of bound systems.

A umfymg aspect of these different semiclassical methods is, the appll- '

cab111ty of Gutzw111er s periodic orbit thec. ,44 to obtain a semiclassical

Tate constant expression as well as a semiclassical quantizatior
condition.

"It was noted earlier in this work that the periodic orbit theory
for semiclassical eigenvalues contained dynamical approximation as well
as the semiclassical ‘éssumptions. However, the Hamilton-Jacobi method
for constructi.ng "good"” ‘action variables for bound systems provided a
more rigorous approach to the semiclassical quantization of nonseparable

- systems.

The dynamical approximations of periodic orbit theory are also present

in the semiclassical rate expressmn In an attempt to derive a theory

" for reactive systems wh1ch no longer contains these dynamical approxima-
t10ns l\!h_‘ller69 has presented a theory for reaction rates which is based
'upon the "good" actlon varlables in the saddle point region separating

4 -:f'freactants from products._ The theory is reviewed in section A, applica-

7;:‘;1:101'15 to the -collmear H+ HZ' systen being presented in section B.

Another system for wh1ch this theory is potentlally apphcable is

X0 ".t.he sp11tt1ng of energy e1genva1ues in a two-dimensional nonseparable

dtmble well pofentlal The e1genvalue sp11tt1ng is a consequence of

L the dynam1ca1 effect of tunnelmg through the barrier separating the two

L
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wells. The "good" action variables in the barrier are used to describe
this tunneling and its ef.fect upon the eigenvalues. This system 15
studied in section C. Finally the results of the\applicati'ons of the

theory are discussed in detail in section D.

A.  Theory

The thermal rate constant, K o(T) for a bimolecular reaction can
be given in terms of the cummlative reaction probabiiity, N(E), by
eq. (2.42). The semicla_ssical approximation to N(E) as obtained from
periodic orbit ‘theory i§ given by equations"(2.82) and (2.83). For a

one dimension: -~tem eq. (2.82) reduc_:es to
N(E) = {1+ exp[2e(B)i} L ’ (4.1)

where 9(E) reduces to the usual barrier penetration integral,

) X,
8(E) =-f>" :_';(v(x) - E) dx . (4.2)
x(

’

The use of "good'" action variables can be motivated by noticing that

the action variable for this one degree of freedom, which is given by

-
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- N . - ’
' n(n + 1/2) = f "27“‘ (E - V) (4.3)
h . o
is related to the barrier penetration integral by

2n(n + 1/2) = i6(E) : (4.4)

Therefore in terms of the action variable, the cumilative reactioﬂ pro-

bability is given by
N(E) = [1+ 2nimn(B)]! (4.5)

R For a f-dimensional system vhich is separable with only one unbound

: degree of freedum at the ‘saddle pomt the. action vanable for the
unbmmd motlon, nf, is given by :

(L

V) (4.6)

x

>
2m(ng ;1/2) =fJ$%“— (E
T x, ¥
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where Vf(x) is‘the potential in the :f degree of freedom and Et =E-e(n)
N = D0y,0,..050¢ 4, is the translational enérgy for that motion. The

cunulative reaction probability for this separable system is

NE) = 2{1 + exp[2r Im nf(E,n)]'}'1 4.7
n=0 R '

As an example consider a two-dimensional separable system defined by a
particle of mass m moving in a potential
2 2_2
vV = 1/2 mmlz x° - 1/2muw,” x, (4.8)

The Hamiltonian in the "'good" action variables is

H(np,mp) = hw (n)+1/2) + ihw,(m,+1/2)

(4.9)
E(nl,nz) -

Solving for the action variable n, as a function of energy and ny gives
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-

my = -2+ by (o + 1/2) - B)/Gwy) (4.10)

vwhich sybstituted into eq. (4.7) gives

-1

- NE) = Z,{ifexp,,hzT’; nml(n1+1/2)-13}
. n1=0

4.11)
5

Using eq. (2.42) one can solve for an analytic expression for the rate

.constant

$ .
K(T) = T(T) kTTQo(P , (4.12)

" -where

(M = 1/2 hw B/sinh (1/2 hu,B) - (4.13)

I(T) = 1/2 hu,8/ sin (1/Zhu,8) . (4.14)
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These are the correct partition function and tunneling correction factor
for a harmonic well and parabolic barrier respeétiveiy,‘ |

The theory can be extended to multidimensional nonseparable poten-
tials, a rigorous derivafion of eq. (4.7) for ngpseparable systems being
given by Millerﬁg. Equation (4.7) is the result for the nonseparable
system, however, nf(E,nJ is no longer obtained by solving a one-dimensional
problem. The idea then is to use the methods described in Chapter IIT
to construct these "good" action variables for the saddle point region.

The trajectory methods of semiclassical quantization seem inappli-
ﬁéble to regions of phase space which are classical nonaccessible. Although
it is known that complex iralued' trajectorires can be used to describe such -
tunneling phenomeha,21 such trajecfories would not in general form quasi-
periodic manifolds with which to construct thé action variables.

The periodic orbit theory of Cutzwiller, however, is applicable and .
in effect has already been used to describe tunneling in the collinear
H + H2 réaction. The periodic orbit theory for reaction rates can be
obtained by substituting the periodic orbit theory eigenvalue condition
in the saddle point, intoeq. (4.7). The modified version of the eigen-

" value condition, eq. (3.17),

1 , )
® (E - Z hu () (ni+1/2)> = 2nh(ng+1/2) (4.15)

i=1
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o gnres the energy eigenvalue implicitly, where ®(E) is the:action around
.- the ;periodic orbit: and {w; (E)} are the £-1 stability parameters. The

"—\ﬁmper pei'iodic -.ttéj'ectory,is found by rumning the trajectory in pui'ely

xmagmary t:une, corresponding to. purfely- real time on the inverted

surface. ThlS gives a purely mag'mary value for the action

B ®(E)/M = 2i8(E) , . (4.16)
. £-1 : :
2n 1m nf(E,nl,. .. ;nf_i) = 26<E - Z hmi.(E) (ni+1/2)> 4.17
‘ i-1 :

3

Substltutlon of thls into eq. (4. 7) gives the modified version of the ‘

periodic orbit theory for reactmn rates, eq. (2.84).

The ‘motivating idea for this chapter was the construction of a
7 theo_! j'mthout the approxlmatlons of per1od1c orbit theory."
omphshed by the use of the Hamllton-Jacob1 approach of

ter I1I section” C ~This, approach to, the constructlon of "good"

r1ab1es for saddle pomt regmns is used in the followmg
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B. Collinear H + H2 Reaction .

Thé calculations for the collinear H + H, reaction were carried oﬁt
using the Hamiltonian in natural collision coordinates as given by
lvkidden.?0 Madden claims to obtain the same qualitative results as Duff
and Truhlar,71 with the anharmonic poténtial given below. The Hamiltonian

is given by

2 2 :
P P :
H(pg,p,,5,0) = > + 5+ V(s,p) - (4.18)
2u(1 + oK(s)
2
K(s) = 1.6 e1:95
k(s) = ksp+UktanhZ (o 5)

o= %— My, Ty = Mass of hydrogen.

Two forms for the potential V(s,p) were uséd, one harmonic in the

p motihn, the other anharmonic in the p motion.
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v =

u, sgchz(%s) . K(s)p? O (4.19)

-

har!nqnic: V(s,p)

p 2
_ o\
anharionic:  V(s,p) = U, sech’(as) + D |1-¢P N (4.20)

The coordinate s marks progress along the reéc;tion coordinate with
. R ]‘Je‘ing thebmmq motion orthdéqnal to s. The potential in s is a_
- Symétric Eckhart barrier centered at s = 0, the potehtials in p are
oséillators with s dependé'nt pa}x.‘ameters. |
- v‘ 'I'he construction of ''good" actipn‘variables for the saddle point
"region (s = 0) was a'ccohiplished usi;rxg the Hamiltdn-Jacobi,approach.
" Both' the iterative substitution method given by eq. (3.44) and the
-Newton itera17:kion; eq. (3.51) were used. For both iteration schemes the

zeroth order Hamiltonian was taken to be

‘”2 . ,

N PS 2 p.
; =2 il + I
. HO ; + Uv sech (avg) * v + Vo(p) (4.21)

S R - :

R

5

ere Yy (s) are:
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ksp_.pz - - - harmonic \ (4.22)
2 .
ks .
D1 - exp\ - —DR p - anharmonic (4.23)

For the one-dimensional oscillators the action-angle variables are given
in the appendix to chapter III. The action-angle vafiables fdr the
Eckart barrier are obtained from those given for the inverted barrier
in the same appendix. From the transériplgion D + -D and requiring the
energy to be in the range O + D, we obtain the desired results. The
zeroth order action-angle variables ahd the enei‘gy as a function of the

action are given for these three potentials below.

Harmonic oscillatoi‘:

‘I:Zk :
e M = (m1/2) & _;E

(4.24)
1/2

pmaq ) = (M> ~cos (q/m)
: Vaukg /|
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M')r_sé ‘oscillator:
RSP SC o n JZ
g, (m) DA A = 1- () gy J;’:p
S L ' _ (4.25)
: D 1 -‘Jl—xzcos(qm/h') .
; ; = : 4]
P(,m:qm) K 111 2 .
Sp A -
. &
i

Eckhart barrier:

@ = u A , A = 1+'(‘2m+1‘)a" 2——"2
eg(n Uy As s s i(zm+l) - o T

(4.26)

.S(H)qn) =
The total Hamiltonian in action angle variables is given by
H( 0 v ggm @ + Vi) U, sech”(o9)
Q. q M) = +e (m + V(sip) -
Y k) (1+0x ) @27

: s(n,qn) ‘and p(m,q) ‘are given above.
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The iterative substitution scheme is employed by use 'of eq. (3.44):

2n 2

Aii;:’ Akﬁ, " qun qumelfqum*“z%) oyt Bloyags slopet)) (4. 28)

- A

where

Ck eilkantkaa)
M- Z ke A ®)

" ) TR o B 3 “-29) :
K :

1°%2 ;

'k, 10k g ,) NG ' "

N, ) = N- 2. ) (4.30)

(klm Ty Mk,
ky .k

-

The *good" actlon variables (N,M) are parameters in the calculation, thus A
one specifies the set (N,M) and solves for the Fourier coefficients Ak k

The energy is g:wen by

2 27

EMN) = (211)"2'/dqn7 dqm H(qn,qm,n(qn,qm),m(qh,qm)) . (4.31)
0 0
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. The frequencies (wl,wz)are given'by wN) = aHOCN)laN .

2k ‘ .
w = YSP -harmonic

stp 1 -anharmonic ‘ (4.32)

T p

1 Zav UV‘Y Zqu As

The' discretization procedure used in section D of the previous

'éhaptér is employed to give the working formulae:

(241) ~  (2) (2

ey T ety :

® ST
Gk, " “‘1"2)-,]< _ t L k1’1 W, 5% (nht2 e iyt mltyty)
rz b N
LT G
"1 Ll gy Mok,

m( ) = M- (-1)"1“2
ll 2 ) ‘ Eo%-o 0 g ly/2) + w3(kyLy/2)

' e DY an mg

. iz, 2712 kz

' n(n.l.zz) - n- (1)11 Z w Ly /2) +u1(k -L,/2)
, k1-0k2=0 w) (kg Ly p(ky Ly

B
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: : g,y ' n,
1 2
: . S
(4.33)
) .
E(MN) = lim
i G rz,L,0e

'.‘ The Hamiltonian H(qy,q,,m,n) is given by eq (4.27)
i 4 Because of convergence problems with this method the Newton iteration

scheme was also used. This is given by eq. (3.51) which can be written

explicitly as follows:

-,

@n @ - ’
I

-

2
+ M
AklAk2 Al(lAkz .

ity

where Aki = (ki-ki') mod L; and

2n n
H;‘ﬂ‘z = (2m2 B/'dqn !dqm e 1k thoe) kl%%
2n 2
2 A ) -4 K
. _ : L (zn)‘z‘./'dq,J qum e il qption) o, M
. [} i
2n 0 2n

Mgy T @97 Jon, Joa I gy
] ) B .
' i .‘ 4 Q)]
nagq) = M- Y iy o) Bk,
Kk, .
:('-)

"(qnl"in) = N- k%:z' %, 10 07k0y,) Bklkz

EMN = Wy,



TS . ¥

' Discretiz’atic’m of this method is similar to:the simple itefativev scheme
’ and presents no problems i |
' The procedure then 1s to spec1fy the good action variables (M,N)
a‘nd-solve for the energy. The action variable M is restricted tq be a
" real mteger, however N is chosen a complex mumber. The cumilative

reactlon Pmbablllt)' NR(E) is then given by ~ ' '

- 1 |
N (E) - = Z [1;+ exp 2 In N] . (8.35)

BT

using only the :i.magihary part of N. ‘The real part of N is chosen such

that:' the energy is purely real. -In effect one picks a reaction proba-
) b111ty whlch defines Im(N), and finds the energy for thlS reaction
,.'probab111ty ,
The results of this semiclassical calculation were compared ﬁth

the exact quantum scattering results of Medden and an adiabatic semi-

'i:lassicel ealdxlatien. The adiabatic approximation assumes that the

: fenergy 1n the p degree of freedom ad]UStS rap1d1y to 1ts e1genvalue as ' '

-"on moves along the s coordmate. The tunnelmg in the s degree of

freednm 1s defmed by the barner penetratlon :mtegral for an effectlve

E) - N (4.36)
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where the effective potential is given by

veff (s)

Vp (s;M

VolsiM)

Uvsechz(avs) + Vp (s ;M)

hw(s) M + 1/2)

D1 B (1-(M+1/Z)

hw

(s)

(4.37)

- hammonic

D ) - anharmonic

where w(s) =\/Zk(5)/ . The tuming points are defined by Voge(s) = E.

The results of these calculations are shown in figures 15 and 16,

the reaction probability for M = 0 given versus the total energy for

the hammonic and anharmonic potentials respectively.

The appropriate

potential parameters used in the calculations are given in Table III.

The contribution to the probability from M > 0 is negligible for the

energies investigated. Comparison with the exact quantum results is

very poor, the results of the Hamilton-Jacobi approach being almost ‘

: .
identical to the adiabatic limit. Further discussion of this is delayed

unfil section D, where a detailed discussion of these results and the

. results’ of i:he‘foilowing example will be presented.
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o -

" Symmetric Double-Well Potential

The semiclassical eigenvalue condition for'a one- diJilen's‘ional double-

72

well potential is well-known In the case of a symmetric potentlal as

shown in figure 17, the energy eigenvalues are given by
(m+1/27 = ¢@E) +1/2 tan e ® B wqe) ,  (4.38)

for energies below the barrier height and integer values of n. The

phase integrals ¢ and 8, defined by

b S
$(E) = f‘/:—'} (E - V(x)) dx = [ :-g Eve) ax .39
a [o4
. C
e(ﬁ).=‘/:"§%§ (Voo - E) ax , - (4.40)
A o

wheré a,b,c, and d are ¢lassical turning points, cari be recdgnized as

v the’ integral one 'qllxahj;i’zes in the single well potential and the barrier
S pepgtga@tioh integral, respectively. This is analogous to defining

iaéj;ion.vatiables‘ for the well and barrier regions of the

if’.‘. potential. 'Thé't:luani:ity Q(8) is a quantum correction function given by

-
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Q®) = 1/2arg [1/2+i68/1] - o 1In 2. (4.41)

In this section an attempt is made to generalize this one-dimensional
WKB eigenvalue condition to a two-dimensional symmetric double-well as
shown in figure 18 The potential in the x direction is taken to be a
symmetric double well and the y direction is simply harmonic with an x
dependence in the frequency. -

In the spirit of constructing "good'" action variables for thé saddle
jpoint region of a scattering system, we wish to construct the "good"
action variables, (Nii N}i,i) , for the Barrier region of the double-well.

The generalized barrier penetration integral is then defined as

ﬁm=nmfm (4.42)

The "'good" action variables (N;,N}l,) » are also constructed for the poten-

tial well, the generalization of the phase integral ¢(E) is defined by

o®) = 7 N1z (4.43)
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,Quan‘ti"z‘atio‘n is -]'mp’osed by requiring N; = N;l = integer, i.e., motion 1n
the bound degree of freedom y is quantized in the barrier in the same
manner as in the well. The quantization condition is completed by
requiring ¢(E) and o(E) as defined by equations (4.42) and (4.43) to
obey the one—dimensional‘quahtization c;ondition, eq. (4.38)

This is our énsatz and we now wish to test it. For this purpose we

chose a form for the potential of the type

V) = V00 ¢+ Vx|,

J - ' 2
where V,(x) = 1/zad + 1/2bx* + v, X

1 ’
(4.44)

= 2, .2
VeOix) . = 1/Zmyx) y"

: 'Ihe_,f“g_ﬁri‘ of Vo(x) was sugée’stéd by previous work73 on the one-dimensional

double well. The potential v, has -a‘ maximm at x=0 and two minima at

-e T xE#+ 1/c In(2cV, /a). = £ x,.
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The calculation in the well was carried out using the Hamilton-Jacobi
approach of chapter III section C. The reference Hamilténia.n was ta]_(énf
to be a Morse oscillator fit to Vo(x) at x = Xy in the x direction and
a harmonic oscillator in y with frequeﬁCy my(xo) . The calculatio_n is
very similar to those for the two-dimensional coupled harmonic oscillators
treated in the previous chapter and further details of this phase of the
calculation are omitted. '

The calculation for the 'good" action angle variables in the barrier
parallels the calculation done in the previous section of this chapter
the barrier to reac‘tion in the H + H2 sysfem. The reference potential
was taken to be an Eckart barrier in the x direction fit to V (x)
around x = 0, and a harm?nic oscillator in y with frequency wy(x=0) .

The close similarity of this calculation to that previously dohe obviates
the necessity to further outline the calculation of the barrier penetra-
tion integral.

The procedure then was to find the energy in the well Ew(Ni, N;)
for the action variables N)i(, N}i,. The calculation in the barrier was
-performed with N)i,i = N)i, varying Nii until the energy in the barrier
Eb(N)i(i, N;i) was equal to that in thé well. Thus one constructs the
"gbod" action variables N)i(; N)i(:.l for an energy E = Ew = Eb The energy
E is an eiggnvalue if the phase integrals defined by equations (4.42)
and' (4.43) obey eq. (4.38). '

In the limit that the barrier is infinite, the barrier penetrétion
integral becomes infinite also and tan’l(e_e)—>0. That is, the energy

levels in the two wells become degenerate, determined by the ‘eigenvalue_
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' .'};-Eonc-liti":' L NL = iht'eger' For g finite barrier the degenef‘acy is spIit;

,the two elgenvalues g1ven by the quantlzatlon cond1t1on, eq (4.38).

.However, 1£ the ttmnelmg probablllty 1s small as is the case of the

Llowest e1genstate of the potentlal in, flgure 17, the sp11tt1ng will be
small and N \4111 be close to an integer.. In practlce one then does a
.rqot search over the vanahle Nx unt11v eq. (4.38) is sat15f1ed. That is

we want to solve F(N;l() = 0, where

CE () =.,(Ni"-n). szl @ eqe 649

for n=0,1.... 8(E) can be thought of as a function of N)i( through

the equation

(4.46)

m
.m

E,0) = E,(©)

"Also eq. (4. 45) must

'1, i, e., for the’ two elgemralues.

oW the barner helght. Finally it should be noted that
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Two other calculations. were performed upon thls system for comparlson.
A quantum mechanical calculation was performed by d1agona1121ng the
Hamiltonian in a ba515 of harmonic osc111ator states centered-at the

origin, The basis state was a product of hamonlc osc111ator states

for the x and y degrees of freedom:

Y5 Y = 6 - Gan

where

’ 2
N H, (aE)el/Zaj.EZ; i=xy

J
;)

Convergence of the results was checked by using progressively larger

basis sets.

2

The other calculation done was of a -semiclassical nature, using an
. adiabatic approximation. The adiabatic approximation is similar to that
used in the reactive H + H, system. An effective potential for motion in

the x degrée of freedom is defined as

Veee () = V00 + () 0N + 1/2) (4.48)
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. Thug one has an effect1ve one- dmensmnal problem which can be solved
usmg equatmns (4 38) - (4 40) w1th V(%) replaced by V ff(x)

.‘ . - These calculations were performed for the potent1al parameters
listed in Table IV the couplmg parameter A was var1ed from 0 to .3.

The effect of the couplmg is- to rela.x the v1brat1onal frequency in the

-y d1rect1on as one moves towards the’ saddle point. Within the adiabatic

approiimationthis will allow more energy to beé in the translational

degree of freedom, therefore increasing the tunneling probability. The

increase in tmmeling would cause a greater splitting in the eigenvalues.

- This qual1tat1ve behav1or is exhibited in all three of the calculations,
which are compared in ‘Table V. The splitting of the lower two eigen-
values is less than 03% of the eigenvalues, due to the small amount of

: tunnelmg. Both semiclassical methods g1ve the lowest elgenvalue to
less than .2% error, however the spllitting is a more rigorous test of
the theory and is shown to be between 7% and 8% in error. This is still
reasoheble agreement for the semiclassical approximation to the lowest
eigenvalue. '

Con;parison of the two semiclassical calculations is meaningless for

- the lowest pair. of energy levels due to the small amount of spl1tt1ng

However, the: second pa1r of eigenvalues affords a good comparison of

th two methods In the 1limit of no couplmg, A=0, the results for the

Ham11ton Jacob1 approach and the adiabatic approxmatlon are identical
as is- expected However 1t is surpnsmg that they continue to give

ntlcal results as the coupling is increased. For the uncoupled

case; the’ results are low by approximately 2%. As the coupling is
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- increased .the results for the splitti'ngvbecome higher than the quantum
results byra.‘factor of about‘7l% when A = .2. It is éxpected that the
‘adiabatic results would fail as t]}met coupling becdnes large, however it
is unclear why. the Ha:niltén—.]acobi method appears to-make. an adiabatic
type of appmximation also. This result was not totally unexpected
though since we have observed in the previous section that the Hamilton-
Jacobi approach to tunneling in the reactive H + H, system also gave
" adiabatic type results. This behavior is discussed in more detail in
the following section.
Before lea\}ing this section, one further attempt was made at
. obtaining an eigenvalue Céndition for the twoA-diménsional double well.
Althougﬁ the Haﬁﬁlton-.]acobi- approach to reaction rates proved unsuccessful,
the periodic. orbit theory for reaction rates gave an adequate description
of tunneling in the reactive system. Therefars it was thought that
different results for the semiclassical eigenvalues of the double well
might be obtained by using periodic orbit theory to construct the -good
action variables in the well and barrier regions of the potential. The
eigenyalue condition for the well is given by eq. (3.17). For this
t&o—diméhsional system, there is only one stability frequency and ‘
“eq. (3.17).defines tﬁé phase integral for the well as-9(E;), where

By = E- m+1/2) hoE) ,andm=N , (.49

m
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: ZG(E) 15 t.he act1on along a per1od1c traJectory of total energy E, and
® (E) is “the stab111ty frequency of that tra]ectory. a
"~ The barrler penetratlon mtegral is obtained from a traJectory on
the mverted potent1a1 surface which is per1od1c and begins at the saddle
. point. The barner penetratlon mtegral is then g1ven by e(Em), where

‘ E -is given by

Erh = E - (m+1/2) hmb(Em) , and m =-N)i,,i ’ (4.50)

vhere 26(E) is the action elong the classical trajectory of total energy.
E, and w (E) is the stability paremetei' of this trajectory. From this
point the quantization condition for the two-dimensional .double well is
the same as in the Hamilton-Jacobi approach. We specify Ni - Nt

Y
for m equal’to an integer and require that cb(Em) and e(Em) as defined

= m,

above cbey equat1on (4.38).

The pertinent periodic trajectories for both the well and barrier

re_gmns aré t—r1v1_a1 “to find, both being along tlme x-axis. Because y

: ema]:nsequal to.zero fot the- entire trajectory, one can reduce the
problem to two 'coupled differentl'ﬁl equations for calculating the
',t":' Jectory Thls also greatly reduces the calculat1on of the R matrlx

‘f:med in the append1x of -chapter 1I. Of the sixteen var1ab1es

rm1ng the matrlx, only e1ght are nonzero, requiring the integration

;of only e1ght add.1t1onal equatmns of motion instead of sixteen. The

3f1nal matnx 1s ‘also block diagonal, with 2x2 submatr1ces. These
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eigenvalues can be evaluafed directly without reco_pfse to diagonalization
routines. The procedure for the calcul‘ation of ﬁhe stability frequency
and the action for both the barrier and the well is outlined in the - A
appendix of chapter II. The equations of motion for the well change by
the prescrlptlon V—+ -V in eq. (A2.6), i.e., the trajectories are computed .
on the right-side up potential. Also the eigenvalues of the R matrix
for the well calculation will be complex, however, the eigenvalues can
be expressed as A= eiiv, where v are the stability parameters.

The procedure then parallels that in the Hamllton-Jacobl approach,
one flxes m at an mteger value and calculates e(Em) and ¢(Em) , where
E and E are given by equations (. 49) and (4.50), respectlvely, but
for the same value of total energy E. If a and ¢ obey eq. (4.38) then
E is an eigenvalue. )

The results for this calculation are quite disappoiinting. The
eigenvalue splittings for the lowest two enei-gy levels obtained here
are identical to those obtained by the Hamilton-Jacobi approach. The
eigenvalues and their splitting for the secon& pair of energy levels as
calculated by these semiclassical methods as well as the correct
: quantum mechanical resu1t§_are presented in Table VI. The surprising
results are that the periodic :erbit thec;ry gives worse agreement with.
the quantun eigenvalue splitting rthan does the Hamilton-Jacobi approach.
'l'hls mplles that the periodic orb1t theory overestimates the amount of
tunneling, more so than ad1abat1c, approximation. This results is puzzling
since periodic orbit theory was used quite successfully to describe

tunneling in the H + H, reaction. The use of periodic orbit theory
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, and Hamlton-Jacobl theory to descnbe turmelmg in both these systems,
: the double well and the react1ve molecular C01115101'l, are dlscussed in

’

'more detail in the followmg section,

D. D_iscossion

-

The results of the pre\nous two sections, usmg the Hamllton-Jacob1 ‘
approach to construct the ""good"" action variables for the saddle pomt
region, are disappointing. For both systems studied, H + H2 reaction

: -+ - and the eigenvaluesplitting in the double—weil potential, the Hamilton-

Jacobi approach gave nearly achabatlc results. An’ alternate approach to

- these problems has been the use of per10d1c orbit theory- ro describe the
tunnelmg in the saddle pomt region. However, periodic orbit theory
for ‘Teaction rates 1s ent1re1y equlvalent to using eq. (4 7) for the

» cmmulatwe reaction probab111ty, w1th the ""good" action vanables being
constructed by periodic orbit theory for eigenvalues. Therefore the
, ‘only ldifference between periodic orbit theory and the Hamilton-Jacobi
approach to reactlon rates is the method by which one constructs the

"good" actlon vanables. :

A companson of these two sem1c1a551cal methods as used to defme ' '
an e1genva1ue com:htlon has been made in Chapter I11. The penodlc . |

- 'orblt theory is based upon the semlclassmal approxmatlon to the matrix

element of the propagator.. Hamllton-Jacobl theory is based upon the

olutlons of the ‘Hamilton-Jacobi equatlon which gives the phase of the

‘sem1c1a551ca1 wavefunction. The sem1c1a551ca1 approx1mat10ns made in

- ’-’the “two theor1es are quite different in nature and give quite different

results in their apphcatlons.
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L

The use of periodic orbit théory to describe reaction rates }is just,i-b '
fied by the ri’gbrous derivati;)n of the periodic orbit theory of reaction
rates as. reviewed 1¢n chaptér *II, section C. The validity of the Hamilton-
Jacobi métho:i,fqr rf-:actioﬁ rates. is questionable though. For bound
systems'the .HaJﬁilton:Jacobi approach to eigenvalues gives quz;ntiié‘xtimld» by
requiring the semiclassical wavefunction to be single-vﬁlued. For a
saddie ‘point region, single-valuedness of the wavefumction restricts the
''good" action variables in the bouna degrees of freedom to be in;cegérs

. and an attempt has been made to identify the action variable in the
tunneling direction as a generalized WKB barrier penetration integral.
Howeve-r, if one examinés thé _derivation of the WKB tunneling probabiiity
for the one-dimensional case, one sees that the semiclassical wave-
fimctions outside of the barrier are also used. One matches th;ase exterior
solutions to the solution inside the barrier. Thé tunnel ing probability

~is then given by the square modulus of the ratio of the amplitudes. More

explicitly, the WKB wavefunction to the left of the barrier is given by

'

, x x
ifn/a + fk(x")dx'] -ifn/2 + f k(x') dx'],
‘l’(x) =A 5 'x]. + .Be X1 (4.51)
/KXY . vk(x) : ’

and to .the right of the barrier there is only flux to the fight

®

i

X
i[n/4 + Lk(x)dx]
2

e = &E . ' (4.52)
. VEixi
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These two "éoiutioﬁ§ to Schrodingers equation are matched by assuming
the barrier ‘to the parabolic and usmg parabolic cylinder functions as

the solution inside the barrler. The tunnelmg probability is then

: ﬁwmby
S P o= [c/Al2 = @+, (4.53)
where
; )
8(E) =:/. n (y(x)-ﬁ) . (4.54)
X.
1

This entails knowing the solution outside of the.barrier, not just the -
, solution through the barrier. The use of Hamllton-Jacobl theory to

ccmstruct the multidimensional: barrler penetratlon mtegral does not do

this mathcmg, it uses only the solution inside the" barr1er. Therefore,

- G s no_surprise that the proposed method of constructmg the Ygenerali:-

. zatlon to the WKB barrler penetration- mtegral is not the correct one.
:';;However at thlS time no alterna: ive method is obvious to correct this
'_dlscrepancy.

In the appllcatmn of Hamilton-Jacobi theory to the double well

‘ thlS matchmg of solutions mterlor and exterior to the barrier is

agam ther problqm: "To insure the correct solution to the e1genva1ue
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problem this matching must be done rigomugly. The method described in
section C attempts to do this nﬁtching by requiring the action variable
Br the bound degree of freedom, -y, to be the 'same in the well and in the
barrier. The procedure is completed by use of eq. (4.38) to restrict -
the action variables in the x direction. .Similar to the derivation of
the one-dimensional WKB tunneling probability, the derivation of eq.
-(4.38) is accomplished by matching the WKB solutions to the 'Schrodinger
. equation across the barrier and requiring the wavefmctiéns to be
éxponentially decaying 1n the classicaliy forbiddén parté of the poten-
tial. 'Thg resﬁlts of section C have sho@ that the method described
theré does not do this matching properly for a multi-dimensional
rionseparable potential. ‘
The application 6f periodic orbit theory to the double—well
potential also gave poor results and again it can be attributed to
the improper méﬂ1cing of the wavefunctions across the barrier. The
same method of quantization of the system was imposed as in the case of
the application of Hamilton-Jacobi theory, only the method of constructing
the "good" action variables differed. In this light then one would expect
that periodic ofbit theory would give results that are at least as bad as
the Hamilfcoﬁ-Jacobi theory. -
.. This brings to mind the qhes’_cion of why periodic orbit théory works
so well for desc.fibi'ng reaction rates wﬁén it gives poor results for the
eigenvalues of file double-well. To get the proper eigenvalue condition
fcir»t':he dotzble well in two-dimensions it is mandatory that the WKB
wavefunctions are known exterior to the barrier (in the wells) and that

they are matched properly across thc barrier. However, in the application.
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P

- of penodlc orbit theory to reactlon rates ﬂ’llS matchmg is not needed

' ' Indeed the per10d1c orb1t theory of reactlon rates is derlved from

‘ tran51t10n state theory which approxmates the dynamics of the system

in order to obviate the need for solutions to the full dynamlcal problem

' out51de the saddle point reglon. The generahzatmn of the WKB tunneling
probability arise naturally out Iof a rigorous derivation of the theory,
therefore obviating the need to derive the proper tunneling probability
by the matching of waveﬁmctions across the barrier, i.e., completing
a full ldynamical calculation for the system. |

It is still desirable to obtain a method by which the "good"
action variables at the saddle point could be used to déscribe the
tl_mneling and give a good estimate of the reaction rate without know-
ledge of the solutioné outside the barrier region. At thistime the
periodic orbit method is ‘the only method at our disposal and it contains
dynamical approxmatlons vwhich are undesirable. It would also be
vdesuable to obtain a method for matching solutions of the Hamilton-Jacobi
equation for the regions outside the barrier by the solutions inside the
beﬁief. : This:-~wou1d allow a state-to-state deseription of reactive rates
‘for Teactive systems, and would also ‘give a procedure for calculating the
e1genva1ues of the double we11 potentlal in two -dimensions. The e1a551cal

51 effectlvely does this for the reactive eystem

S-mtnx theory of M111er
- by use of complex trajectories. which ‘tunnel through the barrier. It
Vwould",be;advantageous however to construct the "good" action variables

by the Hamilton-Jacobi method for regions interior and exterior to the
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barrier and match the solutions properly to give the detailed state-to-
state rate expressions. Solution of the Hamilton-Jacobi equation for

the "'good" action variables could then be constructed by means of the

method described in section C of chapter III.
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TABLE T. Semiclassical Eigenvalues®
N N, Ref. 11a . Ref. 11b. -Present  Exact Quant’um
0 0y - .9920 %9922 . . 9920 - 0.9916 .
10 1.5164 1.5164 1.5164 1.5159
2 0 2.0313 2.0313 12,0313 2.0308 ¢
0 1 2.4196 24198 . 2.4194 2,4188 .
0.0 0.9942 0.9942 0.9941 0.9939
10 1.5813 1.5812 1.5812 11.5809 -
20 2.1615 - 2.1616 2.1615  2.1612 - <
0 0 0.9955 0.9954  0.9955 . 0.9955
1°0 1.6870 - 1.6870 ° 1.6870 - '1.6870
0 -1 . 2,2780" 2.2785 2.2782 2.2781
. 2 -0 2.3750 2.3751 2.3750 2.3750
11 2.9584 2.9588 2.9584 2.9583 :
i 0 2 - 3.5480. 3.5480 -+ 3.5479 S
0.81  1.21 . -.08° 0.1 0 0 0.9978 0.9978 0.9978  _ 0.9980 - :
10 1.8941 - 1.8944 1.8941 - - 1.8944
v 01 2.0897 210889 2.0890 2.0890
2 0 2.7895 2,7900 2.7896 . 2.7899

a These eigenvalues refer to the potential described in Section D.




TABLE II. Semiclassical Eigenvalues: w = 0.7 and Wy =1.3
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=0, N,=1)

l‘ M, =0, N,=0) M, =1, N2=O)
Semiclassical Quantum Semiclassical Quantum Semiclassical Quantum

0 1, 1. 1.7 1.7 2.3 2.3
-.06 .9987 .9988 1.6970 1.6970 2.2932 2.2932
-.08 .9975 . 9975 1.6933 1.6933 2.2870 2.287b
-.10 .9955 - .9955 | 1.6870 ~1.6870 2.2782 - 2.2781
-.12 .9927 .99’26 1.6770 1.6769 2.2661 2.2658
-.14 .9889 .9884 1.6617 1.6612 2.2496 2.2490
-.16 .9836 .9826 1.6382 1.6370 2.2268 2.2257
-.18 .9764 .9743 1.6010 1.5980
-.20 .9667 - .9621
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TABLE ITI. Parameters for Madden's Hy

Natural Collision Coordinate Hamiltonian®

ksp = 1.65 eV/ag
- Up = 4858 eV
0 = 2.2164 a,,
Uv = .3958 ev
av = - 2.0473 a,
D = 4,476 eV
a . = atomic unit of length

3 The analytical form for the Hamiltenian is given by equations

T 4.18) - (4.20),
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TABLE IV. Potential Parameters for the Two-dimensional

Double Well?
a = 1.6464 eV/ag-
b =  .23003 eV/ag
. 2
¢ = 1.1954 /a
[o]
V, = 1.5304 eV
hu, =  .40818 eV .
o = 6. /ao
n = .2
m = 4.250 x 10724

2 The potential is given by eq. (4.44).
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‘TABLE V. Double Weil Eigenvalues®

R

Hami 1ton-Jacobi - . Adiébatié Quantum
| 2163.58 . 2163.58 i 2159.78
. I LI (.83)
2164.35 T 2164.35 2160.11
- 1.7 3005.0 3095.0 - 3089.4
g . (35.6) (35.6) (36.4)
1,  3130.6 3130.6 3125.8
.1 0 2163.43 2163.43 © 2158.93
g (.88) (.88) . (.96)
0, 2164.31 2164.31 2159.89 }
1 3087.7 - 3087.7  3078.1
- (44.8) (44.9) ' (44.4)
1, 3132.5 3132.6 3122.5
.20 2163.26 . 2163,26. 2158.56
g S (1.02) : (1.02) (1.10)
0, 2164.28 2164.28 2159.66
1 - 3078.4 ‘ 3078.3 3064.2
g (58.6) (58.8) (54.9)
1, - 3137.0 3137.1 3119.1
3 0 2163.07 2163.07 2158.16
g (1.18) , (1.19) . (1.27)
0, 2164.25 2164.26 . 2159.43
A T 3065.3 3047.1
. BT (86.5) (68.4)
ST _ 3151.8 - 3115.5 4

fTableIV Al energies are in cm-l, the quantities in parentheses

&

fepii:i_e ent the splitting of the eigenvalues.
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TABLE VI. Double Well Eigenvalues®

A Periodic Orbit " Hamilton-Jacobi
0. 1 3095.0 3095.0 3089.4
8 (35.6) (35.6) (36.4)
1, 3130.6 3130.6 3125.8
1 1 3087.6° 3087.7 3078.1
g (45.0) (44.8) (44.4)
1, 3132.6 3132.5 3122.5
201 3077.6 3078.4 3064.2
- (60.8) - (58.6) (54.9)
1, 3138.4 3137.0 3119.1
3001 3062.3 3047.1
g (68.4)
1, 3115.5

aEnergy eigenvalues for the potential given by eq. (4.44), potential

parameters given in Table IV. AllreﬁErgies in cm'l, the quantities in

parentheses are the energy level splittings..
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FIE'URE CAP'fIONS
Fig. 1 Sketch of a collinear poteni:_ial energy surface. for a symmetric

-atom diatom reaction', A+ BA VAB + A. x and y are mass weighted, or
"skewed", coordinates that d1agona11ze the kinetic energy

) X = R(u/M)""’, y= r(m/M)%, where R and r are the translational and
v1brat10nal coordmates, Tespectively, and m the corresponding
reduced masses [ni'= BA/(B+A), u = AB*A)/(2A%B)]. M is any
arbitrary mass, and the classical kinetic ene‘rg'yi is %M ()'cz + )'rz).

5 and u .are the linear combinations of x and y which diagonalize

the potentlal energy -at the saddle point. Sl,S and S indicate the

"surfaces' which are referred to in the text.

Fig. '2 Reacti’on pfobability for the collinear H + H2 Teaction on the
Porter-Kai‘blus potential surfaée from a microcanonical classical
trajecfory calculation (CL DYN) and microcanonical classical

‘ ti‘ansifion state theory (CL 18T), as a function of total energy
above the barrier height. Resqlts from ref. 12.

Fig: ;3 Same as Figure 2, except that o(E) is the microcanonical

' 4' 1;eaétive“cross section for the thfee-dimensional H + H2 reactidn.

F1g . One-dimensional tunneling coefficieﬁtfof the Eckart barrier

- ' Eed; (2.52 (b))], ‘the di;ﬁeﬁsioﬁless parameters-a and u are :defined
. @,{t'eqi. (2.52(b)). i‘he, solid line is the exact quantum mechanical

«;Values‘ givéil in ref. 29, and the broken line the result given by

eq. (2.64).
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Fig. 5 Izéte cpnstaht as a function of temperature for the collinear -
H + H, reaction, here with the Truhlar-Kuppermann (ref. 34) potential
surface. The upper line is the exact quantum result given in
ref.‘ 38(a), the lower line the result.of conventional transition
state theory, eq. (2.65), and the points the results given by
eq. (2.61) which is based upon the use of the semiclassical phase

space distribution function.

Fig. 6 Same as Fig. 5, except with the Porter-Karplus (ref. 37)

" potential surface.

Fig. 7 A perspective view of the upside-down l-l3 potential surface
with the peribdi(; trajectories corresponding to two different

energies. The circle shows the position of the saddle point.

Fig. 8 The classical action integral (a generalized barrier

' penetration iﬂntegral) along the periodic trajectory on the upside-
doﬁn l-l3 potential surface, as a function of total energy E. VSp
is the height of the saddle point.

Fig. 9 The stability fréquency for the (unstable) periodic trajectory
on the upside-down H3 f)otential surface, as a function of total
energy E. The quantity plotted is the ratio of the stability

frequency of the free H;- molecule.

Fig. 10 The cumulative reaction probability N(E) as a function of total
energy E = E_+ lhuuH , here for the collinear H + H, reaction on
o 2 27 2
the Truhlar-Kuppermann (ref. 34) potential surface. The solid line
is the exact quantum mechanical result given in ref. 38(a), and the
points comnected by the broken line are the values given by the

semiclassical limit of quantum transition state theory, eq. (2.82).




Fig.
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11 Same as Fig. 10, except with the Porter-Karplus (ref. 37)

potential surface.

Fig. 12 Cummulative reaction probability N(E) as a fimction of total

energy E = ]50 + %—huﬂz. for the collinear H + Hz reaction on the

Porter-Karplus (ref. 37) potential surface. The pair of lines to
the right are reproduced from Fig. 11, the upper being the quantum
scattering results of ref. 38(b}, the lower the semiclassical results
of eq. (2.82). The solid line to the left is the results from
periodic orbit theory without the modification, eq. (2.80), and

. the triangles represent the results of the local approximation given

Fig.

by eq. (2.92).

S
A

non-separsble coupling. The lomst'i:hree eigenvalué§ — (NI’NZ =
(0,0), (1,0), and (0,1) — are shown for the system described in
Chapter 111, with w = 0.7, wy = 1.3, and n = -A. (For the top
curve the solid and dashed lines are indistinguishable.) The

dotted lines show the maximum in the potential energy surface as

a function of A. *

Fig. 14 Percent error in the semiclassical level shift, as a function

of the non-separable coupling. The results are those in Table II
and Figure 13,and the quantity plotted is 100X| (b - Q) /Al
where A is defined in Eq. (3.66) and M = quantum mechanical,

8C = semiclassical.
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Fig. 15 C(umlative reaction prébrability versus the total energy for the
H + H, reaction usi_ng the Hamiltonian in nétural collision
coordinates as given in ref. 70, Tﬂe potential vin the coordinate
perpendicular to the reaction ccordinate is taken to be harmonic.

The solid line is the exact quantum mechanical (EQ) result of Madded.

The broken line represents the semiclassical approach of construi:ting

"good'" action variables for the barrier region by the Hamilton-
Jacobi method (H)). The dotted line is the result of a semiclassical

adiabatic (AB) calculation.

Fig. 16 Same as Fig. 15, except the potential perpendicular to the

reaction coordinate is taker to be anharmonic (Morse oscillator).

Fig. 17 Symmetric double w . ootential for a orie-dimensiohél potential
of the form given by V (x) in eq. (4.4;1). The exact quantum
mechanical energy levels are given, occurring in pairs labeled by
g, u for the even and odd states, respectively. The eigenvalues
are for the .potential Vo(x) with the parameters as given in Table IV.
The splitt'mg of the lowest two eigenvalues is smaller than the

scale of the figure.

Fig. 18 Two-dimensional double welllpotential as given by eq. (4.44).
This 1s a contour map of equally spaced‘ equipotential lines in the
(x,y) i)lane. The outer two croéses représent the location of the
two minima, the location of the saddle point between the two wells

is given by the center cross.
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