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Abstract

Task influence has long been known to play a major role in the
way our eyes scan a scene. Interestingly, how the task modu-
lates attention when interacting with objects has been less in-
vestigated. Only few studies have contrasted the distribution of
eye fixations during viewing and grasping objects. How is at-
tention differently deployed when different actions have to be
planned on objects in contrast to a purely perceptual viewing
condition? To investigate these issues, we conducted an eye-
tracking experiment showing participants 2D images of real-
world objects. In blocks of trials, participants were asked ei-
ther to assign the displayed objects to one of two classes (clas-
sification task), to mimic lifting the object (lifting task), or to
mimic opening the object (opening task). Mean fixation lo-
cations and attention heatmaps show different modes in gaze
distribution around task-relevant locations, in accordance with
previous literature. Reaction times, measured by button release
in the manual response, suggest that the more demanding the
task in terms of motor planning the longer the latency in move-
ment initiation. Results show that even on simplified, two di-
mensional displays the eyes reveal the current intentions of the
participants. Moreover, the results suggest elaborate cognitive
processes at work and confirm anticipatory behavioral control.
We conclude with suggesting that the strongly predictive in-
formation contained in eye movements data may be used for
advanced, highly intuitive, user-friendly brain-computer inter-
faces.
Keywords: Eye-tracking, object interaction, fixation distribu-
tion, eye-hand coordination, movement preparation

Introduction
Since the early works of Buswell (1935) and Yarbus (1967)
top-down, task-related guidance has been shown to strongly
influence the way people move their gaze upon pictures. In
the second study, depending on the question asked, differ-
ent patterns of scanning were observed. Such an influence is
so critical that, as soon as a specific task is given, low-level,
bottom-up visual saliency is basically overridden and plays
quite a minor role in explaining eye fixations w.r.t. higher-
level cognitive factors (Henderson, Brockmole, Castelhano,
& Mack, 2007; Einhäuser, Rutishauser, & Koch, 2008). Sim-
ilarly, moving from pictures to real-world scenes and to tasks
involving motor actions, it is even more striking how eye
movements are precisely planned to provide information for
the execution of the current piece of action. This has been
shown in different settings, from tea-making (Land, Mennie,
& Rusted, 1999) to sandwich-making (Hayhoe, Shrivastava,
Mruczek, & Pelz, 2003) to a wealth of other more or less
complex motor tasks (Land & Tatler, 2009). In this case, any-
way, the nature of attention deployment is quite different. The
purpose of vision is here indeed less to get sense of the scene
and more to direct effectors and coordinate a much slower

and more complex behaviour than scanning. Strategies like
’look-ahead’ and ’just-in-time’ fixations (Hayhoe et al., 2003;
Ballard, Hayhoe, & Pelz, 1995) support the idea that vision
is deeply intertwined with the needs of motion planning and
supervising.

Further, in the context of the theory on the duplex nature
of vision (Goodale & Milner, 1992), distinct neural pathways
subserving the different functional demands of object cate-
gorization and object manipulation were suggested. This dis-
sociation between vision-for-action and vision-for-perception
has often been investigated by means of grasping tasks con-
trasted to perceptual judgement tasks, with visual illusions or
in covert attention settings (Goodale, 2011), but contrasting
evidence has emerged and it seems reasonable to assume a
strict interaction between the two systems.

How the differences between perceptual and motor task are
reflected in eye-movements has been less investigated. In a
seminal paper for eye-hand coordination, Johansson, West-
ling, Backstrom, and Flanagan (2001) recorded both eye- and
hand movements data during a motor task involving grasping
a bar, avoiding an obstacle, touching a goal position and plac-
ing the bar back. Subjects almost exclusively fixated land-
mark positions on the bar or in the experimental set-up, be-
fore making contact to them. The preparation of an action
upon an object defines an attentional landscape (Baldauf &
Deubel, 2010), (covertly) encoding in parallel locations rele-
vant for the subsequent serial motor execution.

This evidence suggests that visual cues are sought and
weighted differently depending if the task is a skilled move-
ment or a perceptual judgement. Gaze behaviour in viewing
and grasping was investigated by (Brouwer, Franz, & Gegen-
furtner, 2009) and (Desanghere & Marotta, 2011). The first
ones used simple geometric shapes to be simply viewed or
grasped, while in the latter study Efron blocks were used and
in the viewing condition a perceptual judgement had to be
made. In both cases, the viewing condition produced first
fixations closer to the center-of-gravity (COG) of the object
(in accordance with (Foulsham & Underwood, 2009), among
others), while the grasping condition was characterized by
first fixations closer to the index finger location (or to the
more difficult to grasp location).

In this paper, we present an experiment building on that
of Brouwer et al. (2009). The main novelty of our approach
is the use of real object stimuli (displayed on a monitor) and
the comparison of three simple but realistic tasks, one ’pas-
sive’ (classification) and two ’active’ (lifting and opening).
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We were interested in investigating to what extent eye move-
ments subserve and anticipate the task demands, in the form
of information collection for movement planning, and the re-
lation to affordances (Gibson, 1979). This relation was ex-
pected to show in different scanning strategies determined by
the different landmarks associated to each task. Even though
the interaction with real objects in our daily life heavily re-
lies on depth perception, Westwood, Danckert, Servos, and
Goodale (2002) showed how subjects can effectively program
actions to 2D pictures, suggesting that the dorsal stream does
not critically rely on binocular information for prehension
movements (see also (Kwok & Braddick, 2003)). This turned
out to be the case in this study, where indeed familiar objects
were used and the scanning patterns were similar to those de-
scribed for real objects.

Experiments
We conducted a main eye-tracking experiment and a paral-
lel experiment aimed at extracting Regions Of Interest (ROI)
from every stimulus in every condition. This was done to
have an objective measure of the contact point regions that
would be chosen for an actual grasp instead of arbitrarily
choosing some expected ROIs. Both experiments are detailed
in the following subsections.

Participants
Eleven participants (6 women, 5 men, aged 22-41) carried out
the eye-tracking experiment in all 3 conditions (task). One
female participant’s data was discarded because of very bad
quality. All subjects were right-handed with corrected to nor-
mal vision. Ten different (4 men, 6 women, aged 18-41) par-
ticipants carried out the ROI extraction experiment. All of
them were confirmed right-handed. In both experiments par-
ticipants were compensated with study credits or money.

Stimulus material
Stimuli were chosen from the ALOI dataset (Geusebroek,
Burghouts, & Smeulders, 2005), containing pictures of 1000
daily-use objects in different light/view conditions. 14 ob-
jects (plus 2 test objects) were chosen such that all of them
could be easily lifted and had an opening part. They are
all portrayed in a frontal view against a black background.
Six objects are displayed upright, six lie horizontally with the
opening part on the right. Two objects present a handle on the
right and the opening on the top. All 14 stimuli are showed
in Fig.1. Each picture is 768×576 pixels. In each condition
they were presented at mid-height on the right of the screen.

Apparatus and Procedure
Participants sat in front of the screen, where the object stim-
uli were presented. In the eye-tracking experiment their head
was resting on a chin rest, about 70 cm away from the mon-
itor, 1680 × 1050 pixels, subtending 45.3◦ × 28.3◦ of field
of view. Stimulus pictures subtended 20.7 ◦, with the center
of the picture lying at 12.3◦ from the center of the monitor.

Figure 1: Stimuli pictures used in the experiment.

Eye movements were recorded via a binocular remote eye-
tracker (EyeFollower, LC Technologies) working at 120 Hz.
A keyboard was placed between the chin rest and the mon-
itor to record reaction times. Participants had to look at the
same stimuli with three different tasks in mind – each in one
block. The task order was randomized across participants, so
was the stimulus order within each block. For each task, ev-
ery object was presented five times, resulting in 210 trials per
participant. For training purposes, 30 more test trials were
conducted on 2 other objects before the main experiment.

In the classify task, participants were asked to look at the
presented object and to decide whether it could contain liquid
or not. The response was given by a left/right arrow key press.
This served the purpose of both having participants looking
at the objects each time and making a manual response as in
the other conditions. In the lift condition, participants had to
reach to the screen and to mimic lifting the presented object in
front of the screen. Analogously, in the open condition, they
reached to the screen and mimicked opening the object. They
were instructed to use only the right hand. To grasp objects,
they were asked to always perform a grasp frontally, either
with the thumb rightwards or downwards or by the handle,
where present. As to the opening, they were told to imagine
that the objects were glued to the shelf so they could open
them with just one hand. They were asked to execute the
movement as naturally as possible and to act on the object ac-
cording to the perceived size1. In each trial, participants were
asked to press the spacebar until they were ready to execute
the proper response. Each trial proceeded as follows: 1) the
task (classify/lift/open) is displayed as a reminder at the cen-
ter of the screen for 1.5 s; 2) the fixation cross is presented
for at least 1 s (or as long as the space bar is not pressed); 3)

1The displayed object stimuli were all of the same size, so that
objects were presented larger or smaller than they typically are in re-
ality. However, this scaling was not excessively pronounced so that
the action to perform was still plausibly and naturally performable.
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the stimulus appears on the right side of the screen; 4) Phase
A: eye data and reaction times are collected up to the release
of the space bar; 5) Phase B: eye data collected during the
execution of the motor response; 6) the hand goes back to the
spacebar and the next trial starts.

In the ROI extraction experiment, the same objects were
presented to different participants. In just 2 blocks (lifting and
opening), they were asked to place the tips of their fingers on
the object, picturing the requested action. These points were
recorded via a touch screen. After each trial, the participant
was shown the selected points and, if not satisfied, she could
repeat the trial. Every object was presented 3 times per block,
resulting in 84 trials total per participant.

Data Processing and Analysis

Fixations for the phase A and B were extracted for each trial
via the dispersion algorithm (Salvucci & Goldberg, 2000)
with a temporal threshold of 100 ms and a spatial disper-
sion threshold of 1.5◦. Data collected during phase A are
supposed to be indicative of the information extraction and
motor planning preceding movement initiation. Still, since in
many cases there was just one or even no phase A fixation on
the stimulus, quantitative evaluations were done on the first 3
fixations (or up to the third fixation) and on the mean of these
first three fixations. This choice was motivated by the consid-
eration that 3 fixations amount to about 1 s of stimulus pre-
sentation, sufficient to retrieve necessary visual information
and start the movement (according to reaction times), while
later fixations could be more arbitrary and dependent on the
subjects’ preference and interest for the object. For qualita-
tive evaluation and informative visualization, heatmaps were
computed from fixation data. These were obtained by placing
a Gaussian with σ = 1◦, centered on each fixation and height
proportional to the duration of the fixation, so that longer fix-
ations would be weighted more in the heatmap surface. Each
map was scaled between 0 (not fixated) and 1 (longest fix-
ated) to make maps comparable. Regions of interest were
extracted considering the distribution of the finger points in
each condition. In the ’open’ condition, points were com-
pactly concentrated around the opening region, hence mean
and variance of the point coordinates sufficed to identify a
rectangle containing the underlying region. In the case of
’lift’, points were more evidently multi-modal, resulting in
two major clusters one, smaller, for the thumb and one for the
rest of the fingers. To include both clusters in the ROI, points
were clustered via k-means, and a rectangle containing the
region underlying both clusters was identified (see Fig.6, left,
for an example of extracted ROIs). In most objects the two
ROIs were well-separated. In a few cases, they were slightly
overlapping and just in one case there was a major overlap.
This, nevertheless, did not hamper the comparison with the
heatmaps.

Results
Heatmaps
As a first qualitative impression of the general patterns of be-
havior observed in the three examined conditions, we com-
pared heatmaps obtained from fixations of phase A, from first
3 fixations (in total and separated) and for the mean of the
first 3 fixations. The same pattern was shown at different ex-
tents across all maps and objects, namely a maximum left of
the object center in the ’classify’ condition, a slightly higher-
left of the center maximum in the ’lift’ condition and a clear
maximum on the opening region in the ’open’ condition. Fig.
2 shows the phase A maps for one of the up-right objects
and one of the horizontal objects. Already in phase A, task-
dependent differences in eye fixations are evident.

Figure 2: Heatmaps of the phase A fixations superimposed
on corresponding stimuli. From left to right: ’classify’,’lift’
and ’open’ condition.

Figure 3: Heatmaps of the first, second and third fixation (left
to right). From top to bottom: ’classify’,’lift’ and ’open’ con-
dition.

An evolution in time across the first 3 fixations/conditions
for one object is presented in Fig.3. If the first fixation is usu-
ally close to the COG (with some undershoot) for all condi-
tions, already by the second fixation is possible to infer where
the scanpath will lead. The first fixation was a ’phase A’ fix-
ation in 90% of cases, the second fixation in 53% , while the
third just in 28%. Of 5733 examined fixations, 3359 were
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phase A. While for the first fixation phase A fixations are
equally distributed across tasks (1832 A fixations, 34% clas-
sify, 32% lift, 34% open), in the second the proportion is in
favor of lifting and opening (1037 A fixations, 24% classify,
33% lift, 43% open), by the few third A fixations mostly for
the ’active’ tasks motion had not yet initiated (490 A fixa-
tions, 17% classify, 38% lift, 45% open).

Average Fixations
The mean of the first three fixations (or up to 3) on each stim-
ulus image was extracted for each trial. Often the first fixation
was in the direction of the COG of the object but landed ei-
ther on the black background or on the edge of the object,
hence showing some undershoot along the x-axis (we use im-
age coordinates since the objects are not shown in a com-
pletely frontal view but in perspective, hence the center of the
object outline would not correspond to the COG). A repeated
measures ANOVA on the x coordinate of the average fixa-
tion with task and object as within-subject factors showed a
main effect of task (F(2,18) = 36.9, p < .001), a main effect
of object (F(13,117) = 19.87, p < .001), and and interac-
tion effect of object and task (F(26,234) = 13.73, p < .001).
The mean X coordinates according to object and task are pre-
sented in Fig. 4. For most objects, the ’classify’ mean posi-
tion was the most left and the ’opening’ the most right. This
is of course more extreme for horizontal objects, e.g, the gel
tube, the white jar, the juice bottle, while for three up-right
objects (yellow tea pot, orange tea pot, and chips tube) the
lifting mean position is to the right of the opening position
either because the handle was on the right or the plastic lid
was best opened by exerting force with the right thumb.
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Figure 4: Mean X coordinate of each object across task.

An analogous analysis was performed on the vertical mean
location. Again the effect of task was significant (F(2,18) =
51.58, p < .001) as that of object (F(13,117) = 134.02,
p < .001) and interaction (F(26,234) = 28.13, p < .001).

The mean Y coordinates according to object and task are pre-
sented in Fig. 5. In this case the ordinate is expressed in
image coordinates, with origin in the top left corner. Up-right
objects (such as the green can or the chips tube) present of
course the most extreme mean vertical location for the ’open’
task, while for horizontal objects the mean y location is al-
ways at the same height with a slight tendency upwards in the
’lift’ condition.
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Figure 5: Mean Y coordinate of each object across task. Note
that the y axis is in picture coordinates, hence the lower the
value the higher the location in the picture.

Comparison Heatmaps-ROI
To gain a more specific insight regarding to what extent the
fixation map can predict the region on which the motor ac-
tion is performed, we compared the ROIs extracted for the
two ’active’ conditions with the peak of the corresponding
heatmaps achieved considering the first three fixations (see
Fig.6). The peak of the fixation map (where the map has value
1) consistently falls within the corresponding ROI. The mean
distance between the peak and the center of the ROI for the
’lift’ condition was 91.1± 59.52 pixel, while for the ’open’
condition was 63.2172± 35.53. In both conditions the dis-
tance between the peak and the center of the corresponding
ROI was always smaller than that to the center of the other
ROI (one-tailed t-test, p < .001).

Reaction Times
Mean reaction times in releasing the spacebar significantly
increase from ’classify’ to ’lift’ to the ’open’ condition. The
difference is most pronounced between ’passive’ and ’active’
conditions (classify: 0.596 ± 0.052s, lift: 0.805 ± 0.126s,
open: 0.826 ± 0.110s). A repeated measures ANOVA on
the average reaction time with task and object as within-
subject factors showed a main effect of task (F(2,18) = 7.04,
p = 0.006) and a main effect of object (F(13,117) = 2.14,
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Figure 6: Left: touched points and Regions Of Interest extracted for one of the stimuli (green: ’lift’ condition; magenta: the
’open condition’). Center: heatmap of the first 3 fixations in the ’lift’ condition (in green the center of the corresponding ROI).
Right: heatmap of the first 3 fixations in the ’open’ condition (in green the center of the corresponding ROI).

p = 0.016). The mean reaction times for object and task are
presented in Fig.7. Three objects (spice bottle, basket, and
yellow tea pot) obtained shorter reaction times for opening
than for lifting, in contrast to the general pattern – possibly
because of the size difference compared to the real object,
which made the decision on how to lift the object more dif-
ficult, and because of the particularly obvious opening action
for all three objects. It must be noted that longer reaction
times in the active tasks may be due not only to motion plan-
ning and affording points selection but also to the extraction
of 3D information in absence of disparity cues.
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Figure 7: Mean reaction times of each object across task.

General Discussion
The presented experiment was aimed at assessing different
eye movement strategies employed in identifying an object in
contrast to tasks in which actual interactions had to be per-
formed on the object. The distinct tasks as well as the object-
specific affordance points were expected to strongly influence
the distribution of eye fixations on each object. Indeed, we
found significant differences in the scanpath behavior in the 3
conditions, suggesting for each one the construction of a spe-

cific attentional landscape around the informative/affording
points.

In the classification task, the mean position of the first three
fixations was mostly in the direction of the COG of the object.
When grasping an object to lift it, fixations concentrated on a
position to the left of and slightly higher than the COG. On
the one hand, it seems reasonable that instead of fixating both
contact points in an alternate fashion, fixating near the center
of the object allows both contact points to be in the fovea and
para-fovea, as suggested in (Desanghere & Marotta, 2011).
On the other hand, for up-right objects a preference to fixate
more on the side of the thumb could be observed, while hori-
zontal objects were on average fixated closer to the rest of the
fingers. In the case of the two objects with a handle, there was
a smaller peak in the center of the object (suggesting a first
brief fixation there) and a higher mode on the handle, where
later, longer fixations concentrated. In both cases it is possible
that due to the objects’ reduced size, subjects first considered
lifting them with a power grasp and then went for the han-
dle. In the case of opening, the fixation distribution presented
a clear peak well localized on the opening region, which re-
quired the most processing for the planning of the finer motor
operation (usually performed with a precision grip). Even if
the overall distribution of fixations is already indicative, the
different patterns in the unfolding of the scanpath are best ap-
preciable when looking at the temporal evolution of the first
three fixations. The distributions of the first fixation is hardly
distinguishable across tasks, but already by the second fix-
ation (at which point the reaching movement often had not
been initiated, yet) the task ’signature’ became evident.

These results confirm the general predictive nature of eye
movements. Beyond that, however, our data indicate that
tracking eye movements may be exploited in even more sub-
tle ways, inferring the exact intention of how a user may in-
teract with an object. Such discriminability of eye scanpaths
according to the intended interaction goal may substantially
help in devising machine learning algorithms to timely infer
the intention of impaired patients and possibly inform assis-
tive interfaces to control prosthetic devices without the need
of cumbersome training. The reliability with which the fix-
ation mode consistently fell within the specific ROI supports
considerations.
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It seems plausible that the general flow of processing is first
concerned with locating the object of interest (first fixation
close to the COG). Next, it moves towards the most informa-
tive points – either for decision making in the case of the clas-
sification task, or for the purpose of executing anticipatory
behavior control (Hoffmann, 2003; Butz, Sigaud, Pezzulo,
& Baldassarre, 2007) towards interaction-relevant points (for
lifting/opening) with proper behavioral interaction routines.
In the former case, just the ventral system would be involved,
pooling resources for recognition and decision-making. In
the latter, ’active’ conditions, also the dorsal pathway and pre-
motor cortical regions would be substantially involved. After
object localization and recognition, object-relative behavior
needs to be planned, which involves reference-frame trans-
formations of position, size, and shape and planning of reach-
ing and grasping motions with properly aligned hand shapes
(Jeannerod, Arbib, Rizzolatti, & Sakata, 1995; Cisek, 2007;
Herbort & Butz, 2011). The consequentially more elaborate
motion planning is also confirmed by significantly longer re-
action times when an active motor task, different for every
object, has to be planned anew.

In conclusion, as for more complex behavior, even for
single actions to be performed within the same object, the
eyes extract visual information in a goal-oriented, anticipa-
tory fashion, incrementally revealing the interaction inten-
tions.
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