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Abstract 

Monte Carlo simulation is a popular numerical experimentation technique used in a range of 
scientific fields to obtain the statistics of unknown random output variables. Though Monte 
Carlo simulation is a powerful technique for the probabilistic understanding of many processes, 
it can only be applied if it is possible to infer the probability distributions describing the required 
input variables. This is particularly challenging when the input probability distributions are 
related to population counts unknown at desired spatial resolutions. To overcome this challenge, 
we propose a framework that uses a dasymetric model to infer the probability distributions 
needed for a specific class of Monte Carlo simulations dependent on population counts. 

1. Introduction 
Monte Carlo simulation is a numerical experimentation technique that has been widely used in a 
variety of scientific domains to obtain the statistics of unknown random output variables by 
repeatedly sampling values from a set of known input random variables and then feeding them 
through a computational model (Mahadevan 1997). Dasymetric mapping, on the other hand, has 
been widely used in the field of areal interpolation to disaggregate coarse resolution population 
data to a finer resolution through the use of ancillary data (Eicher and Brewer 2001).  
 Though Monte Carlo simulation is a powerful technique for the probabilistic understanding 
of many processes, it can only be applied if the probability distributions describing the required 
input variables can be inferred. Unfortunately, conventional inference methods cannot often be 
used to infer the probability distributions of population counts (i.e. counts of populations with 
specific characteristics) that are unknown at desired spatial resolutions. Fortunately, recent 
advancements in dasymetric mapping, which may not be well known to researchers utilizing 
Monte Carlo simulation in fields other than areal interpolation, provide novel methods for 
estimating the probability distributions of population counts. To highlight the potential link 
between dasymetric mapping and Monte Carlo simulation, we propose a framework that uses the 
penalized maximum entropy dasymetric model (PMEDM) proposed by Nagle et. al (2014) to 
learn the parameters of multinomial distributions describing population counts needed to 
complete a specific class of Monte Carlo simulations.  

2. Methodology 
Suppose we’d like to calculate, through Monte Carlo simulation, the sample mean 𝑦𝑡 and sample 
standard deviation 𝑠𝑦𝑡 of an output variable 𝑦𝑡 = 𝑓𝑡(𝑎𝑡, 𝑥𝑡) for a set of non-overlapping regions 
𝑡 ∈ {1,… ,𝑇} where 𝑎𝑡 = [𝑎𝑡1,…,𝑎𝑡𝑘] and 𝑥𝑡 = [𝑥𝑡1,…,𝑥𝑡𝑘]  are vectors of random variables with 
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unknown and known probability distributions, respectively. Furthermore, assume 𝑎𝑡𝑖  represents 
the number of people or households with characteristic 𝑖 in region 𝑡 and assume 𝑥𝑡𝑖  represents 
some value conditioned on characteristic 𝑖  in region 𝑡. For example, 𝑎𝑡𝑖  might represent the 
number of one bedroom households in region 𝑡  while 𝑥𝑡𝑖  might represent the electricity 
consumption of a one bedroom household in region 𝑡. 
 Now, suppose that there also exist microdata, related to each of the 𝑘 characteristics, for a 
given population survey containing 𝑛 of 𝑁 respondents sampled from region 𝑠, where region 𝑠 is 
partitioned into the same 𝑡 ∈ {1, … , 𝑇} target regions. Furthermore, assume there exist summary 
count estimates and variances corresponding to each of the 𝑇 target regions and 𝑘 characteristics, 
and assume we know the prior probabilities  𝑞𝑗𝑡, for all 𝑗 ∈ {1, … , 𝑛}  and 𝑡 ∈ {1, … , 𝑇}, that a 
person or household with the same 𝑘  characteristics as respondent 𝑗 lives in target region 𝑡 . 
Given the preceding information, we can use the PMEDM to learn the actual probabilities 𝑝𝑗𝑡 , 
for all 𝑗 ∈ {1, … , 𝑛} and 𝑡 ∈ {1, … , 𝑇}, that a person or household with the same 𝑘 characteristics 
as respondent 𝑗 lives in target region 𝑡. We can then simulate, for all 𝑗 and 𝑡, several likely counts 
of each person 𝑗 in target region 𝑡, from which we can compute several realizations of 𝑎𝑡𝑖 , or the 
total people in region 𝑡 with characteristic 𝑖. Given these realizations of 𝑎𝑡𝑖 , we can complete the 
Monte Carlo simulation and compute the statistics of interest 𝑦𝑡  and 𝑠𝑦𝑡  to enhance our 
probabilistic understanding of the output variable 𝑦𝑡 . 

3. Application and Results 
To illustrate the utility of the proposed framework, we use Monte Carlo simulation and the 
PMEDM to estimate the mean and standard deviation of the average aggregate monthly 
electricity consumption for all Census block groups 𝑡 intersecting the Knoxville urbanized area 
defined by the Census in 2012 (Census 2012). More specifically, we compute the sample mean 
𝑦𝑡  and sample standard deviation 𝑠𝑦𝑡 , for all 𝑡, of the average aggregate monthly electricity 
consumption given by 
 

 
where 𝑎𝑡𝑖𝑟  represents the 𝑟 th realization of the number of households with characteristic 𝑖  in 
region 𝑡 and 𝑥𝑡𝑖𝑧 represents the 𝑧th realization of the average monthly electricity consumption of 
a household with characteristic 𝑖. Out of the 8 characteristics 𝑖, the first 4 characteristics refer to 
the number of 1 through 4 or more bedroom detached houses in target region 𝑡 while the last 4 
characteristics represent the number of 1 through 4 or more bedroom non-detached houses in 
target region 𝑡. In this application “detached” house refers to all houses following the United 
States (US) Census’ definition of “detached single-family housing units” and non-detached 
household refers to all other Census classifications for housing units (Census 2012). Also note 
that, due to limited sample sizes, studio apartments, or 0 bedroom houses, are grouped with 1 
bedroom houses. Furthermore, from this point forward, the term “monthly electricity 
consumption” refers to the average monthly electricity consumption over a 12 month period. 
 
3.1 Learning the Input Variable Probability Distributions 

𝑦𝑡 = 𝑓𝑡(𝑎𝑡, 𝑥𝑡) = ∑ 𝑥𝑡1𝑧 +
𝑎𝑡1𝑟

𝑧=1

∑ 𝑥𝑡2𝑧 + ⋯ +
𝑎𝑡2𝑟

𝑧=1

∑ 𝑥𝑡8𝑧

𝑎𝑡8𝑟

𝑧=1

 (1) 

Figure 1. The median average consumption and average standard deviation per 
household for all Census block groups intersecting the Knoxville urbanized area 
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To learn the probability distributions of the random variables contained in 𝑎𝑡  we collected all 
microdata variables, for all survey boundaries containing our study area block groups, matching 
the 8 categories defined above from the weighted 2008-2012 household-level Public Use 
Microdata Sample (PUMS) of the American Community Survey (ACS) (US Census 2012). 
Furthermore, we determined the summary count estimates and variances, related to the same 
characteristics, for all Census tracts and block groups, through the summary count estimates and 
90% margins of error (MOEs) published in the 2008-2012 ACS summary tables (US Census 
2012). In addition, we assumed each unique household had the same prior probability of 
belonging to each target region, and thus let  𝑞𝑗𝑡 = 𝑤𝑗

𝑇⋅∑ 𝑤𝑟
𝑛
𝑟=1

 , where 𝑤𝑗 represents the weight of 

microdata respondent 𝑗 . We then used the PMEDM to learn the probabilities 𝑝𝑗𝑡 , for all 𝑗 ∈
{1, … , 𝑛} and 𝑡 ∈ {1, … , 𝑇}, from which we simulated several realizations of 𝑎𝑡 . 
 To learn the probability distributions for the random variables in 𝑥𝑡  we used the 2009 
Residential Energy Consumption Survey (RECS) microdata, restricted to respondents living in 
Tennessee, published by the US Energy Information Administration (EIA) (Energy Information 
Administration 2009). More specifically, we assumed each of the 8 random variables 𝑥𝑡𝑖 
followed a normal distribution and estimated the mean and standard deviation of the monthly 
electricity consumption of each of these categories using the annual kWh reported by Tennessee 
respondents belonging to each category.  
 
3.2 Results and Discussion 
To complete the Monte Carlo analysis we simulated, for all 𝑡, 30 sets of population counts for 𝑎𝑡  
and then computed 30 values of 𝑦𝑡 , for each vector 𝑎𝑡 , to obtain a total of 900 simulated values 
of each 𝑦𝑡 . Figure 1 shows the mean monthly electricity consumption and standard deviation 
error bars for all household categories while figure 2 shows the median average monthly 
electricity consumption and standard deviation per household for all Census block groups 
intersecting the Knoxville urbanized area. As expected, the Census block groups closer to 
downtown Knoxville have a much lower median average consumption per household than the 
households in the wealthy suburban neighborhoods. This is likely due to the fact that the 
downtown block groups have a higher percentage of small apartments and student housing, 
which, according to figure 2, have a lower mean monthly electricity consumption than the 
wealthy suburban neighborhoods containing a higher percentage of large detached households. 
Though more difficult to interpret visually, the median average standard deviation per household 
within each block group varies according to the cumulative effect of the count and standard 
deviation of the mean electricity consumption coming from the mix of categories within each 
block group. 

Figure 1. Mean monthly electricity consumption and standard deviation error bars 
(kWh) by household category 
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 In summary, this case study is one example of the potential usefulness of the proposed 
framework for completing Monte Carlo analyses which require probability distributions over 
population counts.   
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Figure 2. Median average monthly electricity consumption and standard deviation per 
household for all Census block groups intersecting the Knoxville urbanized area 
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