
UC San Diego
Recent Work

Title
Confidence Sets for the Date of a Single Break in Linear Time Series Regressions

Permalink
https://escholarship.org/uc/item/9hf4j4c2

Authors
Elliott, Graham
Muller, Ulrich K.

Publication Date
2004-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9hf4j4c2
https://escholarship.org
http://www.cdlib.org/


Confidence Sets for the Date of a Single Break in

Linear Time Series Regressions

Graham Elliott

University of California, San Diego

9500 Gilman Drive

La Jolla, CA, 92093-0508

Ulrich K. Müller

Princeton University

Princeton, NJ, 08544-1021

First Draft: April 2004

This Version: August 2004

Abstract

This paper considers the problem of constructing confidence sets for the date of a

single break in a linear time series regression. We establish analytically and by small

sample simulation that the currently standard method in econometrics to construct

such confidence intervals has a coverage rate far below nominal levels when breaks are

of moderate magnitude. Given that breaks of moderate magnitude are a theoretically

and empirically highly relevant phenomenon, we proceed to develop an appropriate

alternative. We suggest constructing confidence sets by inverting a sequence of tests.

Each of the tests maintains a specific break date under the null hypothesis, and rejects

when a break occurs elsewhere. By inverting a certain variant of a modified locally

best invariant test, we ensure that the asymptotic critical value does not depend on

the maintained break date. A valid confidence set can hence be obtained by assessing

which of the sequence of test statistics exceeds a single number.

JEL Classification: C22, C12

Keywords: Test Inversion, Coverage Control, Locally Best Test



1 Introduction

It is fairly common to find some form of structural instability in time series models. Tests

often reject (Stock andWatson (1996)) the stability of bivariate relationships between macro-

economic series. Similar results have been established for data used in finance and interna-

tional macroeconomics. Lettau and Ludvigson (2001) and Paye and Timmmermann (2004),

for example, find instabilities in return forecasting models. The next step after finding such

instabilities is to document their form. In general, the answer to this question is going to

be the evolution of the unstable parameter over time. With the additional assumption that

the parameters change only once, the answer boils down to the time and magnitude of the

break. Arguably, the timing of the break is typically of greater interest. This paper examines

a multiple regression model and considers inference about the time of a single break in a

subset of the coefficients.

Locating where parameters change is interesting for a number of reasons. First, this is

often an interesting question for economics in its own right. Having observed instability in

the mean of growth, we may well be interested in determining when this happened in order

to trace the causes of the change. Second, such results can be useful for forecasting. When

models are subject to a break, better forecasts will typically emerge from putting more (or

all) weight on observations after the break (Pesaran and Timmermann (2002)). Finally, from

a model building perspective, it is of obvious interest to determine the stable periods, which

are determined by the timing of the break.

The literature on estimation and construction of confidence sets for break dates back to

Hinkley (1970), Hawkins (1977), Worsley (1979), Worsley (1986), Bhattacharya (1987) and

others–see the reviews by Zacks (1983), Stock (1994) and Bhattacharya (1995) for addi-

tional discussion and references. The standard econometric method to construct confidence

intervals for the date of breaks relies on work by Bai (1994), which is further developed in

Bai (1997a), Bai (1997b), Bai, Lumsdaine, and Stock (1998), Bai and Perron (1998) and

Bai (1999). For the problem of a single break in a linear time series regression, the main

reference is Bai (1997b).

As is standard in time series econometrics, Bai (1997b) relies on asymptotic arguments

to justify his method of constructing confidence intervals for the date of a break. The aim

of any asymptotic argument is to provide useful small sample approximations. Specifically,

for the problem of dating breaks, one would want the asymptotic approximation to be good
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for a wide range of plausible break magnitudes, such that confidence sets of the break date

have approximately correct coverage irrespective of the magnitude of the break.

The asymptotic thought experiment that underlies Bai’s (1994, 1997b) results is such

that the magnitude of the break shrinks, but at a rate that is slow enough such that for a

large enough sample size, reasonable tests for breaks will detect the presence of the break

with probability one. In other words, this asymptotic thought experiment focusses on a the

part of the parameter space of the magnitude of the break that corresponds to a ’large’

break, as the p-values of tests for a break will converge to zero. Inference for the presence

of a break becomes trivial for such a ’large’ break, although the exact timing of the break

remains uncertain. In contrast, one might speak of a ’small’ break when both the presence

and the timing of the break is uncertain. Analytically, a small break can be represented by

an asymptotic thought experiment where the magnitude of the break shrinks at a rate such

that tests for a break have nontrivial power that is strictly below one.

In many practical applications, breaks that are of interest are arguably not large in this

sense. After all, formal econometric tests for the presence of breaks are employed precisely

because there is uncertainty about the presence of a break. From an empirical point of view,

the observed p-values are often borderline significant; in the Stock and Watson (1996) study,

for instance, the QLR statistic investigated by Andrews (1993) rejects stability of 76 US

postwar macroeconomic series for 23 series on the 1% level, for an additional 11 series on the

5% level, and for an additional 6 series on the 10% level. In a similar vein, variations in the

conduct of monetary policy that some argue are crucial to understand the US postwar period

are small enough that a debate has arisen as to both the size and nature of the breaks or

whether they are there at all. For example Orphanides (2004) argues that the relationships

are quite stable. Clarida et al. (2000) argue that the economic differences pre and post the

Volker chairmanship of the US Federal Reserve Board are economically important although

they did not test the break. Boivin (2003) finds based on tests and a robustness analysis

that a fixed ’Volker’ break does not capture well changes in the Taylor rule relationships.

In all, any changes to the relationship are small compared to the variation of the data even

though their existence is important to assessing the conduct of monetary policy. It is also

found that instabilities arising through Lucas-critique arguments have been difficult to find

empirically (Linde (2001)) and are by implication small, too.

Breaks that are small in this statistical sense are, of course, not necessarily small in
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an economic sense. As usual, economic and statistical significance are two very distinct

concepts. As an example, consider the possibility of a break in growth. Post-war quarterly

U.S. real Gross Domestic Product growth has a standard deviation of about unity. Even if

growth is i.i.d. Gaussian, this variation will make it very difficult to detect, let alone date,

a break of mean growth that is smaller than 0.25 percentage points. But, of course, a break

that leads to yearly growth of that is 1 percentage point higher is a very important event

for an economy.

Given the importance of ’small’ breaks, one might wonder about the accuracy of the

asymptotic thought experiment that validates the confidence intervals developed in Bai

(1997a). As we show below, the coverage rates of these confidence intervals are far be-

low nominal levels for small breaks. This is true even for breaks whose magnitude is such

that their presence is picked up with standard tests with very high probability.

The question hence arises how to construct valid confidence sets for the date of a break

when the break is, at least potentially, small. We suggest basing confidence sets on the

inversion of a sequence of tests for a break. The idea is to test the sequence of null hypotheses

that maintain the break to be at a certain date. The hypotheses are judged by tests that

allow for a break under the null hypotheses at the maintained break, but that reject for

breaks at other dates. If the maintained break date is wrong, then there is a break at one of

these other dates, and the test rejects. The confidence sets is given by all maintained dates

for which the test does not reject. By imposing invariance of the tests to the magnitude

of the break at the maintained date, we ensure that coverage of the tests is correct for any

magnitude of the break. By a judicious choice of the efficient test that we suggest to invert,

the critical values of the sequence of test statistics does not depend on the maintained break

date, at least asymptotically. The construction of a valid confidence set for the break date

of arbitrary magnitude can hence be generated by comparing a sequence of test statistics

with a single critical value.

In the next section we analytically investigate the coverage properties of the popular

method of obtaining confidence intervals when the magnitude of the break is small. This

motivates the need for a new method. The third section derives the test statistics to be

inverted. Section four evaluates the methods numerically for some standard small sample

data generating processes.
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2 Properties of Standard Confidence Intervals When

Breaks Are Small

This paper considers the linear time series regression model

yt = X 0
tβ + 1[t > τ 0]X

0
tδ + Z 0tγ + ut t = 1, · · · , T (1)

where 1[·] is the indicator function, yt is a scalar, Xt, β and δ are k × 1 vectors, Zt and γ

are p × 1, {yt, Xt, Zt} are observed, τ 0, β, δ and γ are unknown and {ut} is a mean zero
disturbance. Define Qt = (X 0

t, Z
0
t)
0. Let ’

p→’ denote convergence in probability and ’⇒’
convergence of the underlying probability measures as T → ∞,and let [·] be the greatest
smaller integer function. We assume the following regularity condition on model (1):

Condition 1 (i) τ 0 = [r0T ] for some 0 < r0 < 1.

(ii) T−1/2
P[sT ]

t=1 Xtut ⇒ Ω
1/2
1 W (s) for s ≤ r0 and T−1/2

P[sT ]
t=τ0+1

Xtut ⇒ Ω
1/2
2 (W (s) −

W (r0)) for s ≥ r0 with Ω1 and Ω2 some symmetric and positive definite k × k matrices and

W (·) a k × 1 standard Wiener process.
(iii) sups |T−1/2

P[sT ]
t=1 Ztut| = Op(1).

(iv) T−1
P[r0T ]

t=[(r0−s)T ]QtQ
0
t

p→ sΣQ1 = s

Ã
ΣX1 ΣXZ1

ΣZX1 ΣZ1

!
, T−1

P[(r0+s)T ]
t=[r0T ]+1

QtQ
0
t

p→ sΣXQ2 =

s

Ã
ΣX2 ΣXZ2

ΣZX2 ΣZ2

!
uniformly in s ≥ 0, where ΣQ1 and ΣQ2 are full rank.

In the asymptotic thought experiments considered in this paper, the data that precedes

and follows the break are in the fixed proportion r0/(1 − r0). This thought experiment

is standard in the breaking literature, although recently alternative asymptotics have been

considered by Andrews (2003). With τ 0 = [r0T ], the data generated by this model necessarily

becomes a double-array, as τ 0 depends on T , although we do not indicate this dependence on

T to enhance readability. Conditions (ii)-(iv) are standard high-level time series conditions,

that allow for heterogeneous and autocorrelated {ut} and regressors {Qt}. Condition 1 also
accommodates regressions with only weakly exogenous regressors. As in Bai (1997b), both

the second moment of {Qt} and the long-run variance of {Qtut} are allowed to change at
the break date τ 0.

The state of the art econometric method to obtain confidence intervals for τ 0 developed

by Bai (1997b) proceeds as follows: Compute the break date estimator τ̂ which is given
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by the value of τ that minimizes the sum of squared residuals of the linear regression (1),

where τ 0 in the indicator function is replaced by τ . Denote the coefficient estimate of δ

that corresponds to this minimizing choice of τ in the indicator function by δ̂. A level C

confidence interval for τ 0 is then given by

[τ̂ − [λ(1+C)/2m]− 1, τ̂ − [λ(1−C)/2m] + 1] (2)

where m = δ̂
0
Ω1δ̂/(δ̂

0
ΣX1δ̂)

2 and λc is the 100c percentile of the distribution of an absolutely

continuous random variable whose distribution depends on two parameters that can be

consistently estimated by δ̂
0
Ω2δ̂/(δ̂

0
Ω1δ̂) and δ̂

0
ΣX2δ̂/(δ̂

0
ΣX1δ̂)–see Bai (1997b) for details. In

the special case where Ω1 = Ω2 and ΣX1 = ΣX2, λc is the 100c percentile of the distribution of

argminsW (s)− |s|/2. This distribution is symmetric, so that the level C confidence interval
becomes [τ̂ − [λ(1+C)/2m] − 1, τ̂ + [λ(1+C)/2m] + 1] with m = δ̂

0
Ωδ̂/(δ̂

0
ΣX δ̂)

2. Typically, Ωi

and ΣXi for i = 1, 2 are unknown, but can be consistently estimated. For expositional ease,

we abstract from this additional estimation problem and assume Ωi and ΣXi known in the

following discussion of the properties of the confidence intervals (2).

As shown by Bai (1997b), the intervals (2) are asymptotically valid in the thought ex-

periment where δ = T−1/2+�d for some 0 < � < 1/2 and d 6= 0. Although the magnitude

of the break δ shrinks under these asymptotics, the generated breaks are still large in the

sense that they will be detected with probability one with any reasonable test for breaks:

The neighborhood in which the tests of Nyblom (1989), Andrews and Ploberger (1994) and

Elliott and Müller (2003) have nontrivial local asymptotic power is where � = 0. In other

words, in the asymptotic thought experiment that justifies the confidence intervals (2) the

p-values of any standard test for breaks converge to zero. With 0 < � < 1/2, there is ample

information about the break in the sense that it is obvious that there is a break, the only

question concerns its exact location.

In fact, when 0 < � < 1/2, τ̂ /T is a consistent estimator of r0–see Bai (1997b). The

break is large enough to pinpoint down exactly its location in terms of the fraction of the

sample. The uncertainty that is described by the confidence interval (2) arises only because

the break date τ 0 is an order of magnitude larger than r0, since τ 0 = [Tr0].

As argued above, it is very much unclear whether breaks typically encountered in practice

are necessarily large enough for this asymptotic thought experiment to yield satisfactory

approximations. The p-values of tests for breaks are never zero, and quite often indicate only

borderline significance. Also from an economic theory standpoint there is typically nothing
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to suggest that breaks are necessarily large in the sense that their statistical detection is

guaranteed. This raises the important question about the accuracy of the approximation

that underlies (2) when in fact the break is smaller.

In order to answer this question, we consider the properties of the confidence interval (2)

in the asymptotic thought experiment where δ = T−1/2d, i.e. where � = 0. These asymptotics

provide more accurate representations of small samples in which the break size is moderate

in the sense that p-values of tests for breaks are typically significant, but not zero. When

d is very large, then the probability of detecting the break in this thought experiment is

very close to one. One might hence think of asymptotics with δ = T−1/2d as providing the

continuous bridge between a stable linear regression (when d = 0) and one with a large

break (d large). In contrast to the set-up with 0 < � < 1/2, r0 is not consistently estimable

when δ = T−1/2d for any finite value of d. The reason is simply that if even efficient tests

cannot consistently determine whether there is a break (although for d large enough their

power will become arbitrarily close to one), there cannot exist a statistic that consistently

estimates a property of that break. In other words, the uncertainty about the break location

in asymptotics with δ = T−1/2d extends to the fraction r0.

For expositional ease and to reduce the notational burden, the following proposition

establishes the asymptotic properties of the confidence interval (2) when δ = T−1/2d in the

special case where Ω1 = Ω2 = Ω and ΣQ1 = ΣQ2 = ΣQ.

Proposition 1 For any λ̄ > 0, define for a standard k × 1 Wiener process W (·)

M(s) = Ω1/2W (s) + 1[s ≥ r0](s− r0)ΣXd

G(s) =
M(s)0Σ−1X M(s)

s
+
(M(1)−M(s))0Σ−1X (M(1)−M(s))

1− s
r̂a = arg max

λ̄≤s≤1−λ̄
G(s)

δ̂a = Σ−1X
r̂aM(1)−M(r̂a)

r̂a(1− r̂a)
.

Then under Condition 1 and δ = T−1/2d,

T−1(τ̂ ,m)⇒ (r̂a,
δ̂
0
aΩδ̂a

(δ̂
0
aΣX δ̂a)2

)

where τ̂ minimizes the sum of squared residuals in the linear regression (1) with τ 0 replaced

by τ over all τ ∈ (λ̄T, (1− λ̄)T ).
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There are several points to make about the result in Proposition 1. First, in the state-

ment of the proposition, the potential choices of the break date are trimmed away from the

endpoints. While such trimming is standard in the literature on tests for breaks (Andrews

(1993), Andrews and Ploberger (1994)), it is quite innocuous in the statement of the Propo-

sition. The reason is that W (s)0W (s)/s converges to zero as s → 0 almost surely, so that

the probability for r̂a to be close to the bounds is very small even for a very small choice of

λ̄.

Second, the margin of error of the confidence intervals (2) becomes of order m = Op(T )

(and not op(T )). As discussed, the uncertainty about the break location under these local

asymptotics extends to uncertainty about r0. Although the confidence intervals (2) have not

been constructed for this case, they automatically adapt and cover (with probability one) a

positive fraction of all possible break dates asymptotically.

Finally, the asymptotic distribution of (τ̂ − τ 0)/m is no longer given by argminsW (s)−
|s|/2, but it depends on r0, Ω and ΣX . It is hence not possible to construct asymptotically

justified confidence intervals for local asymptotics by adding and subtracting the margin of

error m from τ̂ .

Table 1 depicts the asymptotic coverage rates of nominal 95% confidence intervals (2) for

k = 1, Ω = ΣX and various values of Ω−1/2d and r0, along with the asymptotic local power

of a 5%-level Nyblom (1989) test for breaks. For d = 8, coverage rates are below 87%, and

much smaller still for d = 4. This is despite the fact that breaks with d = 8 have a very

high probability of being detected with Nyblom’s tests for breaks, at least as long as they do

not occur at the very beginning or very end of the sample. The asymptotic distribution of

p-values of the Nyblom test for d = 4 and r0 = 0.35 is such that 17% are below 1%, 20% are

between 1%—5%, and 13% are between 5% and 10%. This corresponds at least roughly to

the distribution of p-values found by Stock and Watson (1996) for the stability of 76 macro

series, although this comparison obviously suffers from the lack of independence of the macro

series. When d = 16, which corresponds to a break that is big enough to be almost always

detected, the asymptotic approximation that justifies (2) seems to become more accurate,

as effective coverage rates become closer to the nominal level.

Returning to the example of US GDP growth introduced in Section 1, suppose one

wanted to date a break in mean growth with a sample of T = 180 quarterly observations.

When quarterly growth is i.i.d. with unit variance (which roughly corresponds to the sample
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Table 1: Local Asymptotic Properties of Bai’s (1997b) CIs

r0 = 0.5 r0 = 0.35 r0 = 0.2

Ω−1/2d Cov. Nybl. Cov. Nybl. Cov. Nybl.

4 0.564 0.438 0.544 0.375 0.484 0.204

8 0.862 0.953 0.844 0.915 0.793 0.651

12 0.927 1.000 0.920 0.999 0.906 0.956

16 0.939 1.000 0.939 1.000 0.930 0.999

For each r0, the first column is asymptotic coverage of the con-

fidence intervals (2), and the second column is local asymptotic

power of the 5%-level Nyblom (1989) test for the presence of a

break. Based on 10,000 replications with 1000 step approxima-

tions to continuous time processes.

variance), then d = 12 corresponds to a break in the quarterly growth rate of 12/
√
180 =

0.89 percentage points. For the asymptotic approximation underlying (2) to be somewhat

accurate, the break in mean growth has hence to be larger than 3.5 percent on a yearly basis!

This asymptotic analysis suggests that the standard way of constructing confidence in-

tervals based on (2) leads to substantial undercoverage in small samples when the magnitude

of the break is not very large, but large enough to be detected with high probability by a

test for structural stability. A small sample Monte Carlo study in section 4 below confirms

this to be an accurate prediction for some standard data generating processes.

3 Valid Confidence Sets for Small Breaks

As shown in the preceding analysis, the standard method for constructing a confidence

interval for the date of a break in the coefficient of a linear regression does not control

coverage when the break is small. At the same time, small breaks are often plausible from

a theoretical point of view, and are found to be highly relevant empirically. This raises the

question of how to construct confidence intervals that maintain nominal coverage rates when

breaks are small or large.

A level C confidence set can be thought of as a collection of parameter values that

cannot be rejected with a level 1 − C hypothesis test. In standard set-ups, estimators are

8



asymptotically unbiased and Gaussian with a variance that does not depend on the parameter

value. If one bases the sequence of tests on this estimator, the set of parameter values for

which the test does not reject becomes a symmetric interval around the parameter estimator.

The problem is hand is not standard in this sense, as the asymptotic distribution of the

estimator r̂ is not Gaussian centered around r0–see Proposition 1 above. What is more,

the asymptotic distribution of r̂ depends on r0 in a highly complicated fashion. Basing valid

tests for specific values of r0 (or equivalently τ 0) on r̂ therefore becomes a difficult endeavor.

But this does not alter the fact that a valid level C confidence set for τ 0 can be constructed

by inverting a sequence of level (1− C) significance tests, each maintaining that under the

null hypothesis, τ 0 = τ for τ = 1, · · · , T . As long as each of these tests has correct level,
the resulting confidence set has correct coverage, as the probability of excluding the correct

value is identical to the type I error of the employed significance test. When τ 0 6= τ , the

break will occur at a date different to the maintained break. Tests that reject with high

probability for a break that occurs at a date other than the maintained break date τ will

result in short confidence sets. The more powerful the sequence of tests, the shorter the

confidence set becomes on average (cf. Pratt (1961)).

Confidence sets for the break date of the coefficient in a linear regression model hence can

be obtained by inverting a sequence of hypothesis tests of the null hypothesis of a maintained

break at date τ against the alternative that the break occurs at some other date

H0 : τ 0 = τ against H1 : τ 0 6= τ . (3)

The construction of these tests faces three challenges: (i) Their rejection probability under

the null hypothesis must not exceed the level for any value of the break size δ. (ii) It is

powerful against alternatives where τ 0 6= τ . (iii) A practical (but not conceptual) complica-

tion is that the critical value of test statistics of (3) will typically depend on the maintained

break date τ . For the construction of a confidence set, one would hence need to compute T

test statistics, and compare them to T different critical values, which is highly cumbersome.

Consider these complications in turn. First, concerning (i), in order to control the rejec-

tion probability under the null hypothesis for any value of δ, we impose invariance of the

test to transformations of yt that correspond to varying δ. Specifically, we consider tests that

are invariant to transformations of the data

{yt,Xt, Zt}→ {yt +X 0
tb0 + 1[t > τ ]X 0

td0 + Z 0tg0, Xt, Zt} for all b0, d0, g0. (4)
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When {Xt, Zt} is strictly exogenous, this invariance requirement will make the distribution of
the test statistic independent of the values of β, γ and δ under the null hypothesis. But even

if {Xt, Zt} is not strictly exogenous, the asymptotic null distribution of the invariant test
statistics will still be independent of β, γ and δ under Condition 1, as shown in Proposition

3 below. For a scalar AR(1) process with no Zt and Xt = yt−1, for instance, the requirement

of invariance to the transformations {yt, yt−1} → {yt − b0yt−1, yt−1} for all b0 amounts to
the sensible restriction that the stability of the regression of {yt} on {yt−1} should not be
decided differently than the stability of the regression of {∆yt} on {yt−1}.
Second, in order to ensure that the tests to be inverted are powerful (ii), one would like

to choose the most powerful test of (3). For the construction of efficient tests based on

the Neyman-Pearson Lemma one needs an assumption concerning the distribution of the

disturbance ut and other properties of model (1).

Condition 2 (i) {ut} is a sequence of independent and mean zero Gaussian variates of
variance σ2.

(ii) The conditional distribution of Qt given {Qt−1, Qt−2, · · · , yt−1, yt−2, ...} is independent
of {ut}, and it does not depend on β, γ, δ and τ 0. Furthermore, the unconditional distribution
of {Qt} does not depend on δ and τ 0.

Part (i) of the condition specifies the distribution of {ut} to be Gaussian. Only the
efficiency of the following tests depends on this (often unrealistic) assumption, but not the

validity of the resulting tests. In fact, the asymptotic local power of the efficient test tailor-

made for Gaussian disturbances turns out to be the same for all models with i.i.d. innovations

of variance σ2. The assumption of Gaussianity of {ut} for the construction of efficient tests
is least favorable in this sense.

Part (ii) of Condition 2 requires the conditional distribution of Qt given past values of

Qt and yt not to depend on β, γ, δ and τ 0, which is the assumption of weak exogeneity

as described in detail by Engle, Hendry and Richard (1983). This assumption will allow a

factorization of the likelihood of {yt, Qt}Tt=1 into two pieces, one capturing the contribution
to the likelihood of ut = yt − X 0

tβ − 1[t > τ 0]X
0
tδ − Z 0tγ and the other the contribution

of Qt conditional on {Qt−1, Qt−2, · · · , yt−1, yt−2, ...}. The independence of the latter piece
of the parameters ensures that it cancels in the ratio of the likelihoods of the null and

alternative hypothesis, making the resulting optimal statistic independent of the conditional
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distribution of Qt. In addition, the break parameters δ and τ 0 are assumed strictly exogenous

to the regressors, which rules out certain breaks of coefficients of weakly exogenous regressors.

Again, the requirement of this strict exogeneity only affects the small sample optimality of

the test statistic (7) below, tests remain asymptotically valid as long as Condition 1 holds.

Unfortunately, even under Condition 2, a uniformly most powerful test does not exist,

as efficient test statistics depend on both the true break date τ 0 and δ, both of which are

unknown. In fact, under the invariance requirement (4), the parameter δ that describes the

magnitude of the break under the alternative is not identified under the null hypothesis, as

the distribution of any maximal invariant to (4) does not depend on δ (at least in the case

of strictly exogenous {Xt, Zt}). As in Andrews and Ploberger (1994), we therefore consider
tests that maximize weighted average power: A test ϕ is an efficient level α test ϕ∗ of τ 0 = τ

against τ 0 6= τ when it maximizes the weighted average power criterionX
t6=τ

wt

Z
P (ϕ rejects|τ 0 = t, δ = d)dνt(d) (5)

over all tests which satisfy P (ϕ rejects|τ 0 = τ) = α, where {wt}Tt=1 is a sequence of nonnega-
tive real numbers, and {νt}Tt=1 is a sequence of nonnegative measures on Rk. The prespecified

sequences {wt}Tt=1 and {νt}Tt=1 direct the power against alternatives of certain dates τ 0 and
break magnitudes, respectively. From a Bayesian perspective, the weights {wt} and {νt},
suitably normalized to ensure their integration to one, can be interpreted as probability

measures: If τ 0 and δ were random and followed these distributions under the alternative,

then ϕ∗ is the most powerful test against this (single) alternative.

The efficient tests depends on the weighting functions {wt} and {νt}, so that the question
arises how to make a suitable choice. As demonstrated in Elliott and Müller (2003), however,

the power of tests for structural stability does not greatly depend on the specific choice of

weights, at least as long as they do not concentrate too heavily on specific values for τ 0 and

δ. With power roughly comparable for alternative weighting schemes, ease of computation

becomes arguably a relevant guide.

A solution to the final complication (iii), the dependence of the critical value of the

sequence of tests on the maintained break date, can hence be generated by a judicious

choice of the weighting functions with little cost in terms of inadequate power properties.

Specifically, consider measures of the break size νt that are probability measures of mean
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zero k × 1 Gaussian vector with covariance matrix b2Ht, where

Ht =

(
τ−2Ω−11 for t < τ

(T − τ)−2Ω−12 for t > τ
and wt = 1 ∀t 6= τ (6)

This choice of weighting functions puts equal weight on alternative break dates. Further-

more, the direction of the break as measured by the covariance matrix of the measures νt

corresponds to the long-run covariance matrix of {Xtut} (which depends on whether t < τ

or t > τ). The magnitude of the potential break is piecewise constant before and after the

maintained break date τ . Even if Ω1 = Ω2, the break size will not be identical, though, but

depends on τ : When τ is close to T , for instance, then this choice of νt puts less weight on

large breaks that occur prior to τ compared to those that occur after.

While not altogether indefensible, this choice of weighting scheme is mostly motivated

by the fact that the resulting efficient test statistic has an asymptotic distribution that does

not depend on τ . This makes the construction of an (asymptotically) valid confidence set

especially simple, as the sequence of test statistics can be compared to a single critical value.

Proposition 2 Under Condition 2, the locally best test with respect to b2 of (3) that is

invariant to (4) and that maximizes the weighted average power (5) with weighting functions

(6) rejects for large values of the statistic

UT (τ) = τ−2
τX
t=1

Ã
tX

s=1

vs

!0
Ω−11

Ã
tX

s=1

vs

!
+ (T − τ)−2

TX
t=τ+1

Ã
TX

s=τ+1

vs

!0
Ω−12

Ã
TX

s=τ+1

vs

!
(7)

where vt = Xtet and et are the residuals of the ordinary least squares regression (1) with τ 0

replaced by τ .

Busetti and Harvey (2001) and Kurozumi (2002) suggest a specialized version of UT (τ) for

constant and trending {Xt} as a test statistic for the null of stationarity under a maintained
break at date τ , although they do not derive optimality properties. The locally best test

against martingale variation in the coefficients of a linear regression model has been derived

by Nyblom (1989). Specialized to the test of a single break of random magnitude and

occurring at a random time (which results in a martingale for the now random coefficient), the

usual Nyblom statistic applied to a stable linear regression model puts equal probability on

the break occurring at all dates, and the covariance of the break size is constant. It is possible

to apply the Nyblom statistic to the breaking regression model (1) with τ 0 replaced by the
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maintained break date τ , although one would not recover the usual asymptotic distribution,

as the regressor {1[t > τ 0]Xt} does not satisfy the necessary regularity conditions.
From this perspective, the weighting scheme (6) can be understood as yielding the sum

of two Nyblom statistics, at least when there is no Zt: One for the regression for t = 1, · · · , τ
and one for the regression t = τ + 1, · · · , T . This makes perfect intuitive sense: When
the maintained break τ is not equal to the true break date τ 0, there is one break either

prior or after τ . One way to test this is to use a Nyblom statistic for the (under the null

hypothesis stable) standard regression model for t = 1, · · · , τ , and another Nyblom statistic
for the (under the null hypothesis also stable) standard regression model for t = τ+1, · · · , T .
Proposition 2 shows that this this procedure does not only make intuitive sense, but is also

optimal for the weighting scheme (6).

As described in Proposition 2, the test statistic UT (τ) is not a feasible statistic, as Ω1 and

Ω2 are typically unknown. But under the null hypothesis of τ 0 = τ , under weak regularity

conditions on Xt and ut, Ω1 and Ω2 can typically be consistently estimated by any standard

long-run variance estimator applied to {vt}τt=1 and {vt}Tt=τ+1–for primitive conditions see,
for instance, Newey and West (1987) or Andrews (1991). Denote by ÛT (τ) the statistic

UT (τ) with Ω1 and Ω2 replaced by such estimators Ω̂1 and Ω̂2.

Proposition 3 If Ω̂1
p→ Ω1 and Ω̂2

p→ Ω2, then under Condition 1 and τ = τ 0

ÛT (τ)⇒
Z 1

0

B(s)0B(s)ds

where B(s) is a (2k)× 1 vector standard Brownian Bridge.

The distribution of the integral of a squared Brownian Bridge has been studied by Mac-

Neill (1978) and Nabeya and Tanaka (1988). For convenience, critical values of ÛT (τ 0) for

k = 1, · · · , 6 are reproduced in Table 2.
As required, the asymptotic null distribution of ÛT (τ) does not depend on δ. For any size

of break δ, the collection of values of τ = 1, · · · , T for which the test ÛT (τ) does not exceed

its asymptotic critical value of significance level (1 − C) hence has asymptotic coverage C,

i.e. is a valid confidence set. Note that this in particular implies that the confidence set is

valid under asymptotic thought experiments where δ = T−1/2d for some fixed d, in contrast

to the confidence interval (2).

In detail, one proceeds as follows:
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Table 2: Critical Values of ÛT (τ)

k 1 2 3 4 5 6

10% 0.600 1.063 1.482 1.895 2.293 2.692

5% 0.745 1.238 1.674 2.117 2.537 2.951

1% 1.067 1.633 2.118 2.570 3.036 3.510

Based on 50,000 replications and 1000 step approximations

to continuous time processes.

• For any τ = p + 2k + 1, · · · , T − p − 2k − 1, compute the least squares regression of
{yt}Tt=1 on {Xt,1[t > τ ]Xt, Zt}Tt=1.

• Construct {vt}Tt=1 = {Xtet}Tt=1, where et are the residuals from this regression.

• Compute the long-run variance estimators Ω̂1 and Ω̂2 of {vt}τt=1 and {vt}Tt=τ+1, respec-
tively. An attractive choice is to use the automatic bandwidth estimators of Andrews

(1991) or Andrews and Monahan (1992). If it is known that Ω1 = Ω2, then it is

advisable to rely instead on a single long-run variance estimator Ω̂ based on {vt}Tt=1.

• Compute ÛT (τ) as in (7) with Ω1 and Ω2 replaced by Ω̂1 and Ω̂2, respectively.

• Include τ in the level C confidence set when ÛT (τ) < cv1−C(k) and exclude it otherwise,

where cv1−C is the level (1− C) critical value of the statistic ÛT (τ) from Table 2.

There is no guarantee that this method yields contiguous confidence sets. The reason for

this is straightforward. The confidence set construction procedure looks for dates that are

compatible with no breaks elsewhere. When the break is small, there may be a number of

possible regions for dates that appear plausible candidates for the break. The confidence set

includes all these regions. Note that this is not a sign that there are multiple breaks, but

rather that the exact location of one break is difficult to determine. A confidence set with

good coverage properties will reflect this uncertainty.

It is also possible that the confidence set is empty–this will happen when the test

rejects for each possible break date. When the model contains multiple large breaks, this

will happen asymptotically with probability one. In practice then, one would take this as

a signal that the maintained model of a single break is not appropriate for the data. The
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converse situation, where there are no breaks, will result in confidence sets that suggest a

break could be anywhere and so for models without a break most dates will be included in

the confidence set. The reason for this is that the test, looking for a break in the sample

away from the maintained break date, will fail to reject with probability equal to one minus

the level of the test. Also this result makes sense. If there is weak to no evidence of a break,

then a procedure that tries to locate the break finds it could be anywhere.

4 Small Sample Evaluation

This section explores the small sample properties of the confidence sets suggested here and

those derived in Bai (1997b). We find that the analytic results of Section 2 accurately

predict the performance of Bai’s (1997b) confidence intervals, as they tend to substantially

and systematically undercover when the break magnitude is not very large. In practical

applications this renders these intervals uninterpretable. Since we do not know a priori the

size of the break we cannot tell whether the intervals provide an accurate idea as to the

uncertainty in the data over the break date. A comparison of confidence set lengths reveals

that confidence sets constructed by inverting the sequence of tests based on ÛT (τ) tend to

be somewhat longer even for breaks that are large enough for Bai’s (1997b) method to yield

adequate coverage. At the same time, effective coverage rates of confidence sets constructed

by inverting the tests ÛT (τ) are extremely reliable and thus can be interpreted in the usual

way.

The small sample data generating processes we consider are special cases of model (1)

yt = X 0
tβ + 1[t > τ 0]X

0
tδ + Z 0tγ + ut t = 1, · · · , T (8)

with T = 100. Specifically, we consider four models: (M1) a break in the mean, such that

Xt = 1 and there is no Zt, and i.i.d. Gaussian disturbances {ut}; (M2) as model M1, but
with disturbances that are independent Gaussian with a variance that quadruples at the

break date; (M3) Xt a Gaussian, stationary mean zero first-order autoregressive process

with coefficient 0.5 and Zt = 1 with i.i.d. Gaussian disturbances {ut} independent of {Xt};
(M4) a heteroskedastic version of M3, where the disturbances {ut} are given by {ũt|Xt|},
where {ũt} are i.i.d. Gaussian independent of {Xt}. The variance of the disturbances is
normalized throughout such that the long-run variance Ω1 of {Xtut} prior to the break is
unity.
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We consider a version of ÛT (τ) that imposes equivalence of the long-run variances of

{Xtut} prior to and after the break, Ω1 = Ω2, denoted ÛT (τ).eq, and one that does not,

denoted ÛT (τ).neq. While ÛT (τ) is automatically robust against heteroskedasticity, this is

not the case for the basic Bai confidence set (2). We therefore compute three versions of Bai

confidence sets: One imposing both Ω1 = Ω2 and homoskedasticity (Bai.eq), one imposing

Ω1 = Ω2 but allowing for heteroskedasticity (Bai.het) and one allowing for both Ω1 6= Ω2

and heteroskedasticity (Bai.hneq). In models M1 and M2, of course, Bai.eq=Bai.het.

Tables 3 through 6 show the empirical coverage rates and average confidence set lengths

for the confidence interval (2) and confidence sets constructed by inverting the test statistics

ÛT (τ) as described in Section 3, based on 10,000 replications. In all experiments, we consider

confidence sets of 95% nominal coverage, and breaks that occur at date [r0T ], where r0 = 0.5,

0.35 and 0.2. Empirical rejection probabilities are estimated based on 10,000 replications.

The Tables also include the rejection probability of a 5%-level Nyblom test for the presence

of a break (based on the asymptotic critical value, although unreported simulations show

size control to be very good).

Overall, the small sample results confirm the asymptotic results of Section 2: The Bai

method fails to cover the true break date with the correct probability as long as the break

is small. For all four models and three break dates, the usual method for constructing

confidence intervals has coverage far below nominal coverage whenever the break is small

enough for the Nyblom statistic to have power substantially below one. For example in Model

M2 with r0 = 0.35 and d = 8 the Nyblom test rejects for half of the samples, yet confidence

intervals (2) have coverage below 75%. When power of the test for a break gets closer to

one, coverage of these confidence intervals is closer but not necessarily at the nominal 95%

rate. For example in Model M3 with r0 = 0.35 and d = 12 the Nyblom test rejects the null

of no break 98% of the time, yet coverage for these confidence intervals is still below 90%.

It is only when the breaks are large enough to be essentially always detected that empirical

coverage of the Bai confidence intervals equals nominal coverage.

For the cases where coverage is not controlled, there is no way of comparing the lengths of

the confidence sets. However it is clear from the experiments that the undercoverage trans-

lates into confidence intervals (2) that are relatively short, giving a misleading impression

as to the uncertainty over the break date. In contrast, confidence sets based on inverting

ÛT (τ) control coverage remarkably well. For the case where both the Bai method and the
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Table 3: Empirical Small Sample Coverage and Length of Confidence Sets

Model M1: Constant regressor, i.i.d. disturbances.

d = 4 d = 8 d = 12 d = 16

Cov. Lgth Cov. Lgth Cov. Lgth Cov. Lgth

r0 = 0.5

ÛT (τ) .eq 0.949 77.7 0.949 42.4 0.949 22.1 0.949 15.1

ÛT (τ) .neq 0.950 77.2 0.950 42.3 0.950 22.7 0.950 15.8

Bai.eq 0.698 53.5 0.890 32.1 0.940 16.0 0.959 9.5

Bai.het 0.698 53.5 0.890 32.1 0.940 16.0 0.959 9.5

Bai.hneq 0.686 52.0 0.882 32.1 0.938 16.0 0.956 9.5

Nyblom 0.428 0.948 1.000 1.000

r0 = 0.35

ÛT (τ) .eq 0.952 79.0 0.952 44.3 0.952 22.5 0.952 15.0

ÛT (τ) .neq 0.954 78.7 0.954 44.1 0.954 23.1 0.954 15.7

Bai.eq 0.692 51.5 0.878 31.8 0.937 16.1 0.962 9.5

Bai.het 0.692 51.5 0.878 31.8 0.937 16.1 0.962 9.5

Bai.hneq 0.676 49.8 0.873 31.6 0.932 16.1 0.959 9.5

Nyblom 0.366 0.902 0.999 1.000

r0 = 0.2

ÛT (τ) .eq 0.949 83.2 0.949 55.7 0.949 27.1 0.949 15.3

ÛT (τ) .neq 0.951 83.3 0.951 56.1 0.951 27.9 0.951 16.2

Bai.eq 0.660 45.8 0.851 30.3 0.926 16.4 0.955 9.7

Bai.het 0.660 45.8 0.851 30.3 0.926 16.4 0.955 9.7

Bai.hneq 0.631 43.4 0.832 29.2 0.914 16.0 0.947 9.5

Nyblom 0.189 0.617 0.939 0.997
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Table 4: Empirical Small Sample Coverage and Length of Confidence Sets

Model M2: Constant regressor, disturbances with breaking variance.

d = 4 d = 8 d = 12 d = 16

Cov. Lgth Cov. Lgth Cov. Lgth Cov. Lgth

r0 = 0.5

ÛT (τ) .eq 0.936 85.1 0.936 68.8 0.936 46.0 0.936 29.1

ÛT (τ) .neq 0.950 85.4 0.950 67.5 0.950 44.6 0.950 28.6

Bai.eq 0.572 53.2 0.735 48.5 0.846 33.9 0.894 21.5

Bai.het 0.572 53.2 0.735 48.5 0.846 33.9 0.894 21.5

Bai.hneq 0.614 52.5 0.762 46.5 0.869 33.8 0.918 22.0

Nyblom 0.204 0.613 0.922 0.996

r0 = 0.35

ÛT (τ) .eq 0.963 87.5 0.963 74.5 0.963 53.6 0.963 34.9

ÛT (τ) .neq 0.954 86.9 0.954 71.4 0.954 48.6 0.954 30.7

Bai.eq 0.562 59.1 0.735 54.7 0.856 39.8 0.906 25.6

Bai.het 0.562 59.1 0.735 54.7 0.856 39.8 0.906 25.6

Bai.hneq 0.584 52.7 0.747 44.9 0.866 33.5 0.916 22.5

Nyblom 0.135 0.469 0.834 0.983

r0 = 0.2

ÛT (τ) .eq 0.978 90.2 0.978 83.2 0.978 69.0 0.978 49.9

ÛT (τ) .neq 0.951 89.3 0.951 80.6 0.951 64.4 0.951 44.4

Bai.eq 0.550 61.4 0.694 54.7 0.829 42.4 0.904 29.6

Bai.het 0.550 61.4 0.694 54.7 0.829 42.4 0.904 29.6

Bai.hneq 0.552 53.6 0.681 42.5 0.814 31.1 0.897 22.3

Nyblom 0.071 0.196 0.442 0.717
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Table 5: Empirical Small Sample Coverage and Length of Confidence Sets

Model M3: Stochastic regressor, i.i.d. disturbances.

d = 4 d = 8 d = 12 d = 16

Cov. Lgth Cov. Lgth Cov. Lgth Cov. Lgth

r0 = 0.5

ÛT (τ) .eq 0.954 79.7 0.954 51.7 0.954 31.0 0.954 21.9

ÛT (τ) .neq 0.955 79.1 0.955 51.2 0.955 32.0 0.955 23.5

Bai.eq 0.699 53.7 0.856 32.7 0.899 16.5 0.902 9.7

Bai.het 0.682 50.8 0.842 30.9 0.889 15.8 0.893 9.4

Bai.hneq 0.647 48.6 0.819 31.2 0.873 16.3 0.886 9.7

Nyblom 0.373 0.882 0.994 1.000

r0 = 0.35

ÛT (τ) .eq 0.953 80.5 0.953 54.0 0.953 32.1 0.953 22.2

ÛT (τ) .neq 0.954 80.2 0.954 53.9 0.954 33.3 0.954 23.9

Bai.eq 0.693 52.1 0.856 32.3 0.896 16.6 0.903 9.8

Bai.het 0.671 49.3 0.841 30.6 0.885 15.9 0.896 9.5

Bai.hneq 0.639 46.7 0.820 30.6 0.866 16.3 0.880 9.7

Nyblom 0.313 0.803 0.978 0.998

r0 = 0.2

ÛT (τ) .eq 0.954 83.3 0.954 63.6 0.954 41.4 0.954 27.3

ÛT (τ) .neq 0.958 83.8 0.958 65.1 0.958 44.0 0.958 30.4

Bai.eq 0.666 47.4 0.819 30.8 0.881 17.0 0.900 10.0

Bai.het 0.650 45.1 0.803 29.2 0.870 16.2 0.893 9.7

Bai.hneq 0.601 41.6 0.760 27.8 0.832 16.2 0.865 9.8

Nyblom 0.169 0.505 0.782 0.914
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Table 6: Empirical Small Sample Coverage and Length of Confidence Sets

Model M4: Stochastic regressor, heterskedastic disturbances.

d = 4 d = 8 d = 12 d = 16

Cov. Lgth Cov. Lgth Cov. Lgth Cov. Lgth

r0 = 0.5

ÛT (τ) .eq 0.959 78.6 0.959 47.5 0.959 27.7 0.959 20.0

ÛT (τ) .neq 0.964 77.7 0.964 46.5 0.964 28.5 0.964 21.4

Bai.eq 0.547 26.4 0.745 11.7 0.857 5.9 0.921 3.8

Bai.het 0.742 52.9 0.879 28.0 0.938 14.0 0.969 8.4

Bai.hneq 0.674 47.1 0.849 26.6 0.923 13.6 0.958 8.1

Nyblom 0.413 0.922 0.996 1.000

r0 = 0.35

ÛT (τ) .eq 0.959 79.5 0.959 49.6 0.959 28.9 0.959 20.5

ÛT (τ) .neq 0.964 78.8 0.964 48.6 0.964 29.3 0.964 21.7

Bai.eq 0.544 26.2 0.742 11.8 0.848 6.0 0.922 3.8

Bai.het 0.736 51.7 0.878 28.0 0.939 14.1 0.970 8.4

Bai.hneq 0.665 45.0 0.843 26.0 0.916 13.4 0.958 8.1

Nyblom 0.349 0.857 0.987 0.999

r0 = 0.2

ÛT (τ) .eq 0.956 82.7 0.956 59.9 0.956 36.9 0.956 24.4

ÛT (τ) .neq 0.965 82.9 0.965 59.9 0.965 37.9 0.965 26.1

Bai.eq 0.515 26.6 0.712 12.5 0.844 6.2 0.914 3.9

Bai.het 0.716 49.1 0.852 27.8 0.930 14.5 0.965 8.6

Bai.hneq 0.629 40.4 0.795 23.5 0.900 12.8 0.947 7.7

Nyblom 0.191 0.556 0.825 0.934
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method suggested here result in confidence sets of correct coverage, however, it is seen that

the Bai method delivers the smaller set.

When the break in the regression coefficient is accompanied by a break in the long-run

variance of {Xtut}, as in model M2, the methods that account for that possibility perform
somewhat better in terms of coverage and confidence set lengths. As one might expect,

in the presence of heteroskedasticity as in model M4, the Bai method that fails to account

heteroskedasticity does not do well. The effective coverage rates of the asymptotically robust

versions of the Bai statistic get closer to the nominal level in model M4 compared to the

homoskedastic model M3. This is less surprising than it seems: The normalization of the

variance of {ut}–in order to ensure a long-run variance of {Xtut} = {|Xt|Xtũt} equal to
unity–makes the disturbance variance of model M4 smaller than in model M3.

Overall, the small sample experiments are highly encouraging for constructing reliable

confidence sets for the break date by inverting a sequence of tests based on ÛT (τ). Empirical

coverage rates are very close to nominal coverage rates for all data generating processes

considered here, making the method developed in this paper an attractive choice for applied

work.

5 Conclusion

It is more difficult to determine the location of a break than it is to distinguish between mod-

els with and without breaks. In practice, breaks that can be detected reasonably well with

hypothesis tests are often difficult to date and standard methods of constructing confidence

intervals for the break date fail to deliver an accurate description of this uncertainty.

As a remedy, we suggest an alternative method of constructing a confidence set by in-

verting a sequence of tests. Each of the tests maintains the null hypothesis that the break

occurs at a certain date. By imposing an invariance requirement, the tests control coverage

for any magnitude of the break. The confidence sets so obtained hence control coverage

also for a small break. In addition, the test statistics to invert have an (asymptotic) critical

value that does not depend on the maintained break date. The confidence set can hence be

computed relatively easily by comparing a sequence of T test statistics with a single critical

value, where T is the sample size.
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6 Appendix

Proof of Proposition 1:

For τ ∈ (λ̄T, (1 − λ̄)T ), let l = τ/T. Define νt = ut + T−1/21[t > τ 0]X
0
td, and let {Z̃t}

be the least squares residuals of a regression of {Zt} on {Xt,1[t > τXt}. By standard linear
regression algebra, the sum of squared residuals of a OLS regression of {νt} on {Xt,1[t >

τ ]Xt, Zt} is given by

S(τ) =
TX
t=1

ν2t −
Ã

τX
t=1
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!0Ã τX
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0
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Ã
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For t < τ = [lT ], Z̃t = Zt − (
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−1

Xt, and similarly, for t > τ , Z̃t =
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Xt. From the uniform convergence of T−1

P[sT ]
t=1 XtZ

0
t
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0
t in s and sup0<s<1 |T−1/2

P[sT ]
t=1 Xtνt| = Op(1) and sup0<s<1 |T−1/2

P[sT ]
t=1 Ztνt| =

Op(1) we find
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where Žt = Zt−ΣZXΣ
−1
X Xt. Note that Žt does not depend on τ . Furthermore, T−1
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M(1)−M(l) uniformly in l. Hence

arg min
τ∈(λ̄T τ≤(1−λ̄)

S(τ) = arg min
λ̄≤l≤1−λ̄

S([lT ])

= arg max
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where supλ̄≤l≤1−λ̄ |RT (l)| = op(1) and the last line follows from the continuous mapping

theorem. The continuous mapping theorem is applicable since G(·) is a continuous Gaussian
process due to the arguments put forward in Kim and Pollard (1990), as an application of

their Theorem 2.7.
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Let δ̂(τ) be the least-squares estimator of δ with τ 0 replaced by τ in (1), and let {X̃t} be
the residuals of a regression of {1[t > τ ]Xt} on {Qt}. Then

δ̂(τ) =

Ã
TX
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X̃tX̃
0
t

!−1 TX
t=1

X̃tνt.
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t=1

QtQ
0
t)
−1

TX
t=1

Qtvt

⇒ lM(1)−M(l),

uniformly in l, since T−1/2
PT

t=1 Ztvt = Op(1). The application of the CMT hence yields the

result for δ̂a.

Proof of Proposition 2:

Let BQ be the matrix T×(T−2k−p) matrix that satisfies B0
QBQ = IT−2k−p and BQB

0
Q =

MQ, whereMQ is the projection matrix off the column space spanned by {Xt,1[t > τ ]Xt, Zt}.
Let y = (y1, · · · , yT )0 and Q = (Q1, · · · , QT )

0. Then (BQy,Q) is a maximal invariant to the

group of transformations (4). By the Neyman-Pearson Lemma, Fubini’s Theorem and the

likelihood structure in Condition 2, an efficient invariant test for b2 > 0 of (3) maximizing

(5) can hence be based on (see Elliott and Müller (2003) for development)

LRT =
X

t=1,··· ,τ−1,τ+1,··· ,T
wt

Z
exp

£
σ−2y0MQΞ(t)d− 1

2
σ−2d0Ξ(t)0MQΞ(t)d

¤
dνt(d)

where Ξ(t) is a T ×k matrix with rows X 0
s when s > t and a 1×k zero row vector otherwise.

23



Under the choice of weight functions (6), we compute for t < τ

F (t) =

Z
exp

£
σ−2y0MQΞ(t)d− 1

2
σ−2d0Ξ(t)0MQΞ(t)d

¤
dνt(d)

=

Z
(2π)−k/2|b2τ−2Ω−11 |−1/2 exp

"
σ−2d0

TX
s=t

Xses − 1
2
σ−2d0Ξ(t)0MQΞ(t)d− 1

2
b−2τ 2d0Ω1d

#
dd

= |b2τ−2Ω−11 |−1/2|b−2τ 2Ω1 + σ−2Ξ(t)0MQΞ(t)|−1/2

× exp
"
1
2
σ−4

Ã
TX
s=t

Xses

!0 ¡
b−2τ 2Ω1 + σ−2Ξ(t)0MQΞ(t)

¢−1Ã TX
s=t

Xses

!#
= |Ik + b2σ−2τ−2Ω−11 Ξ(t)0MQΞ(t)|−1/2

× exp
"
1
2
σ−4b2

Ã
τX
s=t

Xses

!0 ¡
τ 2Ω1 + σ−2b2Ξ(t)0MQΞ(t)

¢−1Ã τX
s=t

Xses

!#

since
PT

s=τ+1Xses = 0. By a one-term Taylor expansion around b2 = 0

2(F (t)− 1) = σ−4b2τ−2

Ã
TX
s=t

Xses

!0
Ω−11

Ã
TX
s=t

Xses

!
− b2σ−2τ−2 trΩ−11 Ξ(t)0MQΞ(t) + o(b2).

Proceeding analogously for t > τ and collecting terms whose distribution depends on δ and

τ 0 yields the result.

Proof of Proposition 3:

Proceed similarly to the proof of Proposition 1 to show that under Condition 1, for s ≤ r0

T−1/2
[sT ]X
t=1

Xtet = T−1/2
[sT ]X
t=1

Xtνt −

⎛⎝ [sT ]X
t=1

XtX
0
t

⎞⎠⎛⎝[r0T ]X
t=1

XtX
0
t

⎞⎠−1⎛⎝[r0T ]X
t=1

Xtνt

⎞⎠
−

⎛⎝ [sT ]X
t=1

XtZ̃
0
t

⎞⎠Ã TX
t=1

Z̃tZ̃
0
t

!−1Ã TX
t=1

Z̃ 0tXt

!
⇒ Ω1/2(W (s)− sW (r0)).

With the analogous result for s > r0, the Proposition becomes a consequence of the Contin-

uous Mapping Theorem.
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