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Abstract

Objective: It is unclear whether relatively low glycated haemoglobin (HbA1c) levels are

beneficial or harmful for the long-term health outcomes among people without diabetes.

We aimed to investigate the association between low HbA1c levels and mortality among

the US general population.

Methods: This study includes a nationally representative sample of 39 453 US adults

from the National Health and Nutrition Examination Surveys 1999–2014, linked to mortal-

ity data through 2015. We employed the parametric g-formula with pooled logistic

regression models and the ensemble machine learning algorithms to estimate the time-

varying risk of all-cause and cardiovascular mortality by HbA1c categories (low, 4.0 to

<5.0%; mid-level, 5.0 to <5.7%; prediabetes, 5.7 to <6.5%; and diabetes, �6.5% or taking

antidiabetic medication), adjusting for 72 potential confounders including demographic

characteristics, lifestyle, biomarkers, comorbidities and medications.
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Results: Over a median follow-up of 7.5 years, 5118 (13%) all-cause deaths, and 1116

(3%) cardiovascular deaths were observed. Logistic regression models and machine

learning algorithms showed nearly identical predictive performance of death and risk

estimates. Compared with mid-level HbA1c, low HbA1c was associated with a 30% (95%

CI, 16 to 48) and a 12% (95% CI, 3 to 22) increased risk of all-cause mortality at 5 years

and 10 years of follow-up, respectively. We found no evidence that low HbA1c levels

were associated with cardiovascular mortality risk. The diabetes group, but not the predi-

abetes group, also showed an increased risk of all-cause mortality.

Conclusions: Using the US national database and adjusting for an extensive set of poten-

tial confounders with flexible modelling, we found that adults with low HbA1c were at in-

creased risk of all-cause mortality. Further evaluation and careful monitoring of low

HbA1c levels need to be considered.

Key words: Low HbA1c, mortality, cardiovascular, parametric g-formula, machine learning, NHANES

Introduction

Glycated haemoglobin (HbA1c) is one of the major diag-

nostic biomarkers of diabetes, and it is well known that el-

evated HbA1c levels are associated with an increased risk

of all-cause mortality as well as cardiovascular disease

(CVD).1–3 Additionally, previous studies have shown that

relatively low HbA1c levels are associated with increased

risk of all-cause mortality and CVD among people with di-

abetes, suggesting a potential health burden for intensive

treatment of glucose levels.2–5 However, the effect of rela-

tively low HbA1c on long-term health outcomes among

people without diabetes remains unclear, as results from

previous studies have been inconsistent.3,6–12 Relatively

low HbA1c might be a proxy of malnutrition or an early

stage of chronic disease.3 Therefore, the observed increased

risk of mortality may not reflect a causal effect of relatively

low HbA1c, but instead be a reflection of the underlying

poor health. Moreover, although the risk of mortality

according to HbA1c levels may vary over time, previous

studies have employed a Cox proportional hazard model

to estimate hazard ratios, potentially violating propor-

tional hazards assumption (i.e. relative hazards are

assumed to not vary over time). In this context, to investi-

gate the impact of relatively low HbA1c on long-term

health outcomes, analyses using flexible models that con-

sider an array of confounders not previously accounted for

and that account for time-varying risk in the estimation,

are needed.

One of the major impediments for effectively addressing

the causal pathways from HbA1c to mortality is the com-

plex multifactorial interactions between blood glucose

levels and sociological, biological and clinical factors.

Ample evidence exists that numerous factors are associated

with both HbA1c and mortality, including demographics,

socioeconomic status, diet, exercise, biomarkers,

comorbidities and medication.13,14 Due to such a high-

dimensional data structure, it has often been challenging to

integrate all this information and accurately establish a

causal relationship between relatively low HbA1c and

adverse health outcomes. Furthermore, given that interven-

tions using a clinical trial approach to lower glucose levels

among people without diabetes would not be ethical

and feasible, causal analyses using observational data are

needed on this topic.

Key Messages

• Using the large national database of US adults in 1999-2015, along with the parametric g-formula controlling for a

high-dimensional set of confounders, we found that low HbA1c (4.0 to <5.0%) was associated with increased risk of

all-cause mortality at 5 and 10 years of follow-up.

• The association was stronger among females than males, particularly at 5 years.

• We found no evidence that low HbA1c was associated with cardiovascular mortality risk.

• Our findings highlight that low HbA1c among people without diabetes may need to be carefully monitored.

• Future research is warranted to establish causality and identify underlying mechanisms that explain the relationship

between low HbA1c and long-term health outcomes.
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In recent years, there have been substantial advances in

the application of machine learning algorithms within the

framework of causal inference including the g-formula,15

propensity scores16 and targeted maximum likelihood esti-

mation.17 For example, the g-formula framework allows

the researcher to build an outcome prediction model based

on observed quantities, and then predict potential out-

comes under hypothetical exposure levels.18 Given the rap-

idly expanding availability of data, flexible machine

learning algorithms may offer advantages in applying this

step of the g-formula to efficiently specify the prediction

model, as they have the ability to discover whether it is im-

portant to include interactions and non-linear and higher-

order effects which may not be easily covered by conven-

tional regression models.18,19

In this study, using machine learning algorithms as well

as conventional logistic regression within the parametric g-

formula, we estimated the effect of relatively low HbA1c

on all-cause and cardiovascular mortality among the US

general adult population.

Methods

The study protocols of NHANES were approved by the

NCHS Institutional Review Board [https://www.cdc.gov/

nchs/nhanes/irba98.htm]. The UCLA IRB review was not

required for the present study (IRB#20–001055) because

we only used publicly available data without identifiable

information.

Study design and patients

We used data from the U.S. National Health and Nutrition

Examination Survey (NHANES) 1999–2014.20 NHANES

is a large-scale, multistage, nationally representative survey

of the civilian non-institutionalized population in the USA,

conducted by the National Center for Health Statistics

(NCHS). Structured interview data and physical examina-

tion results, including urine and/or blood samples, are col-

lected continuously and released in 2-year cycles.20 All

participants provided informed written consent at enrol-

ment and completed a household interview followed by a

physical examination in a mobile examination centre. The

response rates of NHANES during the study period were

70–80%.21 The study protocols of NHANES were ap-

proved by the NCHS Institutional Review Board.22

There were 39 520 participants aged �20 years at enrol-

ment for whom HbA1c was available. We excluded partic-

ipants with extremely low HbA1c levels (<4.0%) that

could be induced by severe liver disease or haemolysis

(n¼ 18).23 We further excluded participants who lacked

time-to-event data for death due to insufficient identifying

information when linking the mortality data (n¼ 49). The

final analytical cohort contained 39 453 participants.

Measurement of variables

Exposure and diagnosed diabetes ascertainment

During visits at the mobile examination centre, phleboto-

mists obtained blood samples from participants according

to a standardized protocol after participants fasted at least

8 h and no more than 24 h. These samples were subse-

quently analysed to measure HbA1c, using high-

performance liquid chromatography.24 We stratified par-

ticipants with HbA1c within the normal range into three

groups by HbA1c levels as follows: low HbA1c, 4.0 to

<5.0%; mid-level HbA1c (referent group), 5.0 to <5.7%;

and prediabetes, 5.7 to <6.5%, as done in previous stud-

ies.6,25 We also categorized participants with HbA1c

�6.5% or taking antihyperglycaemic therapies into the ‘di-

abetes’ group. We included them in our analysis as a posi-

tive control group for whom an increased risk of mortality

is expected compared with the mid-level HbA1c group.

Outcomes ascertainment

We used the NCHS Public-Use Linked Mortality File

through 31 December 2015, to ascertain death certificate

information provided by the National Death Index

(NDI)26 through record matching by social security num-

ber, name, date of birth, race/ethnicity, sex, state of birth

and state of residence. The primary outcome for the pre-

sent study was all-cause mortality, and the secondary out-

come was cardiovascular mortality. The cause of death

was determined based on the International Classification

of Diseases, Tenth Version (ICD–10). Cardiovascular dis-

ease was classified using ICD–10 codes I00–09, I11, I13,

I20–51 and I60–69.27

Covariates

Demographic variables included age, sex (male, female),

race/ethnicity (non-Hispanic White, non-Hispanic Black,

Mexican-American or others), citizenship status (US or

other), educational status (less than high school, high

school or General Education Degree, or more than high

school), health insurance status (private, public, none),

marital status (single, married) and the poverty–income ra-

tio (the ratio of the family income to the poverty threshold;

range, 0–5). Smoking status (never, current, former) and

physical activity levels (�moderate or not) were self-

reported. Diet information was obtained from 24-h dietary

recall collected by trained interviewers using a computer-
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based interactive platform (Supplementary Table S1, avail-

able as Supplementary data at IJE online). As comorbid-

ities, we selected anaemia, angina, arthritis, asthma,

cancer, chronic heart failure, emphysema, heart attack, hy-

pertension, liver failure and stroke (self-reported). Use of

statins, antihypertensives and antidepressants was also

self-reported. Biomarkers were measured according to

NHANES laboratory procedure manuals (Supplementary

Table S1).28 All covariates were measured or reported at

enrolment.

Statistical analyses

We employed the parametric g-formula algorithm, a gener-

alization of the method known as standardization, to esti-

mate the risk of death at 5 and 10 years for each HbA1c

category. All models included continuous and quadratic

terms for the follow-up year since NHANES enrolment,

HbA1c category, an indicator variable for NHANES enrol-

ment year, and all of the above-mentioned covariates.

Missing data among covariates (28% of all participants

had at least one missing value) were imputed with a ran-

dom forest approach.29

In the parametric g-formula, we first fitted outcome pre-

diction models using the exposure (HbA1c categories) and

the above-mentioned 72 covariates, after arranging data

into a person-time structure. To find the best predictive

model for the outcome in this first step of the parametric g-

formula, we developed a reference model and three ma-

chine learning models for each outcome using a training

set (composed of a randomly selected 50% of the data). As

the reference model, we fitted a pooled logistic regression

model. In this model, we pooled observations from each

follow-up year into a single dataset and employed logistic

regression to predict the occurrence of each outcome. We

also fitted tree-based machine learning algorithms (random

forest30 and gradient-boosted decision tree31) and

SuperLearner.32 To minimize the potential for overfitting,

we performed 10-fold cross-validation for each model.

After developing these prediction models, we computed

the following prediction performance measures for each

model in the test set (50% randomly selected samples):

the area under the receiver operating characteristic

curve (AUC) and confusion matrix results (i.e. sensitivity,

specificity, positive predictive value and negative predictive

value).

As the second step of the parametric g-formula, using

the total sample, we employed the pooled logistic regres-

sion model and one of the machine learning algorithms

with the best prediction performance and predicted the val-

ues for the potential outcomes under counterfactual

exposures. Then, we estimated the average marginal effect

of the exposure on the outcome. We compared the esti-

mated risk of death at 5 and 10 years had all eligible partic-

ipants belonged to each of the HbA1c categories, using a

risk ratio (RR) and a risk difference (RD) measure.33

Robust 95% confidence intervals (CIs) were estimated by

repeating these analyses on 200 bootstrapped samples. A

more detailed discussion and coding for the parametric g-

formula are presented elsewhere.34 To evaluate mortality

risks according to continuous HbA1c, we also employed

restricted cubic spline models fitted with Cox proportional

hazard regression with three knots (10th, 50th, and 90th

percentile).

The stratum-specific analyses were conducted by age:

younger (<65 years) versus older (�65 years) and by sex:

male versus female. P-value for heterogeneity was calcu-

lated using the method proposed by Altman and Bland.35

We also performed the following sensitivity analyses to as-

sess the robustness of our findings: (i) we performed com-

plete case analysis with NHANES survey weights to

account for unequal probabilities of selecting NHANES

participants and non-response of those eligible and

approached (n¼ 28 312)36; and (ii) we re-analysed data

restricting participants to those with haemoglobin �13 g/dl

in males and haemoglobin �12 g/dl in females who did

not report anaemia, because HbA1c could be affected by

anaemia (n¼ 34 740).37,38 All statistical analyses were

conducted using R version 4.0.2.

Results

The mean age of participants was 49.5 years (standard de-

viation, 18.3; median, 48; interquartile range, 34 to 64),

and 48.1% were male. Demographic characteristics of

participants across HbA1c groups are shown in Table 1

and Supplementary Table S1.

Prediction of all-cause mortality and cardiovascu-

lar mortality

Overall, the median duration of follow-up was 7.5 years,

and 5118 all-cause deaths and 1116 cardiovascular deaths

were identified (Supplementary Table S2, available as

Supplementary data at IJE online). Kaplan-Meier survival

curves by HbA1c levels are shown in Supplementary

Figure S1, available as Supplementary data at IJE online.

All of the candidate algorithms, including the pooled logis-

tic regression model, showed high prediction performance

of all-cause mortality and cardiovascular mortality, with

AUCs ranging from 0.86 to 0.90 (Table 2). Sensitivity,

specificity and negative predictive value were also similar
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Table 1 Baseline characteristics according to glycated haemoglobin (HbA1c) levels in NHANES 1999–2014a,b

HbA1c levels within the normal range HbA1c�6.5% or

antidiabetic medication
Low

(4.0% to <5.0%)

Mid-level

(5.0% to <5.7%)

Prediabetes

(5.7% to <6.5%)

Total, n 4314 23 953 5921 5265

HbA1c %, median (IQR) 4.8 (4.7-4.9) 5.4 (5.2-5.5) 5.9 (5.8-6.1) 7.0 (6.5-8.2)

Age (years) 36.5 6 15.0 46.8 6 17.9 59.1 6 15.6 61.7 6 13.4

Sex (female), % 59.1 51.7 50.4 48.5

Race/ethnicity, %

Non-Hispanic White 54.0 50.1 40.6 36.3

Non-Hispanic Black 17.4 17.2 27.0 26.8

Mexican-American 16.3 18.3 16.4 21.4

Others 12.3 14.4 16.0 15.5

Education status, %

Less than 9th grade 7.3 10.7 16.4 22.0

9th-11th grade 13.7 15.1 17.1 19.3

High school or GED 21.4 23.4 24.5 22.3

Higher than high school 57.6 50.8 42.0 36.4

Married, % 49.7 53.6 54.5 56.0

Smoking, %

Never 59.4 54.2 49.8 48.8

Current 21.9 22.6 20.6 16.7

18.7 23.2 29.6 34.5

Insurance status, %

Private 33.1 34.0 38.5 32.9

Public 42.1 42.1 41.5 52.3

Uninsured 24.8 23.9 20.0 14.8

Poverty-income ratio 2.64 6 1.66 2.62 6 1.65 2.45 6 1.57 2.23 6 1.50

Physical activity levels

(�moderate), %

68.7 65.2 56.8 47.6

Anaemia, % 4.7 3.3 3.5 6.3

Angina, % 0.7 2.1 3.9 7.8

Arthritis, % 12.2 22.5 36.4 44.3

Asthma, % 14.0 12.6 12.3 14.6

Cancer, % 4.2 8.1 12.2 12.9

Chronic heart failure, % 1.0 1.9 4.1 9.8

Emphysema, % 0.6 1.6 3.1 3.6

Heart attack, % 1.3 2.9 6.2 11.1

Hypertension, % 15.9 27.2 47.1 65.5

Liver failure, % 2.9 3.1 3.6 5.8

Stroke, % 1.7 2.6 5.2 8.7

Statin use, % 2.8 9.7 23.8 42.3

Antihypertensive use % 8.2 18.1 38.3 58.2

Antidepressant use, % 7.9 8.8 9.6 14.5

Systolic blood

pressure (mmHg)

116.8 6 16.5 123.3 6 19.3 131.9 6 20.8 134.2 6 21.4

Diastolic blood

pressure (mmHg)

67.8 6 12.9 70.8 6 12.9 71.7 6 14.1 68.8 6 15.6

Waist (cm) 91.6 6 14.1 96.1 6 14.9 103.4 6 15.2 108.9 6 15.6

BMI (kg/m2) 26.5 6 5.5 28.0 6 6.2 30.5 6 6.9 32.4 6 7.4

NHANES, National Health and Nutrition Examination Survey; IQR, interquartile range; GED, General Educational Development; BMI, body mass index.
aData are presented as count (percentage) or mean 6 SD, otherwise specified.
bOther variables (dietary information and biomarkers) are shown in Supplementary Table S1, available as Supplementary data at IJE online.
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for pooled logistic regression and SuperLearner, whereas

random forest yielded a lower specificity and gradient

boosting yielded a lower sensitivity.

Estimated risk of all-cause mortality and

cardiovascular mortality at 5 and 10 years

After adjusting for all potential confounders including

demographic characteristics, diet, exercise, comorbidities,

biomarkers and medications using a pooled logistic regres-

sion model within the parametric g-formula, compared

with the mid-level HbA1c group, the low HbA1c group

showed a 30% (95% CI, 16 to 48) and a 12% (95% CI, 3

to 22) increased risk of all-cause mortality at 5 years and

10 years of follow-up, respectively. On the absolute scale,

the low HbA1c group showed a 1.83 (95% CI, 1.02 to

2.97) and a 1.66 (95% CI, 0.35 to 3.00) percentage points

increase for all-cause mortality risk at 5 and 10 years of

follow-up, respectively (Figure 1, Table 3). We found no

evidence of an association between HbA1c and cardiovas-

cular mortality. The findings were qualitatively consistent

when we used SuperLearner (which showed the highest

predictive performance among the three machine learning

algorithms) within the parametric g-formula (Figure 1).

We did not find evidence for an association in the predi-

abetes group with all-cause mortality at 5 and 10 years

of follow-up (Figure 1; Supplementary Table S3, available

as Supplementary data at IJE online). As expected, the

diabetes group showed an increased risk of all-cause and

cardiovascular mortality regardless of model specifications

(i.e. either the pooled logistic regression model or

SuperLearner) (Figure 1; Supplementary Table S4,

available as Supplementary data at IJE online). These asso-

ciations were also found when restricted cubic spline

curves were fitted with Cox proportional hazard regression

(Supplementary Figure S2, available as Supplementary

data at IJE online).

Stratum-specific analysis by age and sex

We found similar associations for low HbA1c and all-

cause mortality in the younger and the older population on

the relative risk scale (Figure 2; Supplementary Table S5,

available as Supplementary data at IJE online). When we

stratified by sex, we estimated increased risk of all-cause

mortality for low HbA1c among females but not among

males (Figure 2; Supplementary Table S5, available as

Supplementary data at IJE online). We found no evidence

for an association between low HbA1c and cardiovascular

mortality in any subgroups stratified by age and sex

(Supplementary Table S6, available as Supplementary data

at IJE online).

Sensitivity analyses

The results for all-cause mortality did not substantially

change when we performed complete-case analysis using

NHANES survey weights (Supplementary Table S7, avail-

able as Supplementary data at IJE online) and when we re-

analysed the data after restricting to participants without

anaemia, particularly at 5 years (Supplementary Table S8,

available as Supplementary data at IJE online).

Table 2 Predictive ability of pooled logistic regression model, tree-based algorithms and SuperLearner for all-cause and cardio-

vascular mortality

Models AUC Sensitivity Specificity PPV NPV

Outcome: All-cause mortality

Logistic regression model 0.87 0.80 0.78 0.05 >0.99

Random forest 0.86 0.91 0.54 0.03 >0.99

Gradient boosting 0.86 0.54 0.92 0.09 >0.99

SuperLearner 0.87 0.85 0.75 0.04 >0.99

Outcome: Cardiovascular mortality

Logistic regression model 0.90 0.84 0.82 0.01 >0.99

Random forest 0.88 0.94 0.61 0.01 >0.99

Gradient boosting 0.89 0.42 0.96 0.03 >0.99

SuperLearner 0.90 0.90 0.74 0.01 >0.99

Each model included all 72 covariates listed in Table 1 and in Supplementary Table S1, available as Supplementary data at IJE online (e.g. demographic charac-

teristics, diet, exercise, comorbidities, biomarkers, medications). Confusion matrix results (i.e. sensitivity, specificity, PPV and NPV) were at the cut-off value of

the prevalence of each outcome. PPVs were generally low for all algorithms due to the small number of outcomes overall (i.e. all-cause and cardiovascular

mortality).

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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Figure 1 Adjusted all-cause and cardiovascular mortality risk according to glycated haemoglobin (HbA1c) levels using parametric g-formula with

pooled logistic regression models and SuperLearner. The ranges of the survival rate (Y-axis) presented in figures were 0.8 to 1.0 for all-cause mortal-

ity and 0.9 to 1.0 for cardiovascular mortality. Robust 95% confidence intervals (CIs) for each HbA1c category estimated by bootstrapping (in the

pooled logistic regression model) are presented in Table 3; and in Supplementary Tables S3 and S4, available as Supplementary data at IJE online

Table 3 Adjusted all-cause and cardiovascular mortality risk ratio and risk difference at 5 and 10 years among participants

with low glycated haemoglobin (HbA1c; 4.0% to <5.0%) compared with those with mid-level HbA1c (5.0% to <5.7%) using

parametric g-formula with pooled logistic regression modelsa

Outcomes Follow-up periods

5 years 10 years

All-cause mortality

Number of events/total number of participants

among low HbA1c group

149/3453 (4.3%) 249/2205 (11.3%)

Number of events/total number of participants

among mid-level HbA1c group

1125/18024 (6.2%) 2104/10906 (19.3%)

Adjusted risk ratio (95% CI) 1.30 (1.16 to 1.48) 1.12 (1.03 to 1.22)

Adjusted risk difference (95% CI) þ1.83% (1.02 to 2.97) þ1.66% (0.35 to 3.00)

Cardiovascular mortality

Number of events/total number of participants

among low HbA1c group

23/3327 (0.7%) 46/2002 (2.3%)

Number of events/total number of participants

among mid-level HbA1c group

263/17162 (1.5%) 452/9254 (4.9%)

Adjusted risk ratio (95% CI) 1.17 (0.80 to 1.59) 1.21 (0.92 to 1.54)

Adjusted risk difference (95% CI) þ0.28% (-0.35 to 0.99) þ0.83% (-0.32 to 2.01)

a200 iterations were performed for bootstrapping to estimate 95% confidence interval.
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Discussion

Using a nationally representative database of US adults

and controlling for potential confounders (e.g. demo-

graphic characteristics, diet, exercise, comorbidities, bio-

markers and medications) with several statistical

algorithms, we found that individuals with low HbA1c

(4.0% to <5.0%) were experiencing an increased risk of

all-cause mortality at 5 and 10 years of follow-up com-

pared with those with mid-level HbA1c (5.0% to <5.7%).

This relationship was stronger for females than males. We

found no evidence that low HbA1c was associated with

cardiovascular mortality.

The question of whether relatively low HbA1c is benefi-

cial or harmful for people without diabetes has been

actively debated for a long time. Although some previous

studies have reported associations between relatively low

HbA1c and increased CVD and mortality,7–10 its clinical

and biological relevance has remained unclear. As HbA1c

is becoming more frequently (and routinely) measured

based on clinical guidelines,39 the chance that clinicians

detect people with relatively low HbA1c might increase,

and there is a need to answer this long-debated question

about the potential burden of relatively low HbA1c levels

on health. In this context, our findings provide new evi-

dence, indicating that we may need to carefully monitor

people with relatively low HbA1c.

Our findings were consistent with previous cohort stud-

ies investigating the association between low HbA1c and

all-cause mortality among people without diabetes.7,9,10 A

recent study among US adults aged �50 years without dia-

betes, from the Health and Retirement Study, also reported

a reverse J-shaped association between HbA1c and all-

cause mortality, but not cardiovascular mortality.3 Given

the null association between relatively low HbA1c and all-

cause mortality over 15 years of follow-up among Japanese

adults,11 the association might be heterogeneous across

Figure 2 Adjusted all-cause mortality risk among participants low glycated haemoglobin (HbA1c; 4.0% to <5.0%) and mid-level HbA1c (5.0% to

<5.7%) stratified by age and sex using parametric g-formula with pooled logistic regression models. The ranges of the survival rate (Y-axis) pre-

sented in figures were 0.8 to 1.0 except for the older population (range 0.5 to 1.0) who had a higher mortality rate than other groups. Robust 95% con-

fidence intervals (CIs) were estimated by repeating these analyses on 200 bootstrapped samples
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race/ethnicity, which requires further investigation. A pre-

vious study in NHANES also did not find an association

between relatively low HbA1c and all-cause mortality over

a median follow-up of 9 years, but this analysis only in-

cluded 7333 participants aged �65 years enrolled before

2004.6 Furthermore, most of these studies might have suf-

fered from limitations including a limited number of cova-

riates adjusted for (i.e. unmeasured confounding bias),

violations of proportional hazard assumptions, or a rela-

tively short follow-up period. Our study, using high-

dimensional data from a national survey with long follow-

up time and flexible statistical modelling, overcomes some

of these limitations and therefore helps to advance the cur-

rent state of knowledge about the potential impact of low

HbA1c on mortality.

Underlying biological mechanisms for the association

between relatively low HbA1c and mortality have still not

been established. Poor health status (e.g. malnutrition,

unfavourable profiles of red blood cell-related factors, in-

flammation, decreased liver function or an early stage of

chronic disease) has been proposed as an explanation for

the association between relatively low HbA1c and mortal-

ity among people without diabetes.8,23,25 Hypoglycaemia

induces sympatho-adrenal activation, inflammation and

endothelial dysfunction, all of which could lead to chronic

and cardiometabolic diseases.40 Given these proposed

mechanisms and the fact that we did not find evidence for

an association between low HbA1c and cardiovascular

mortality (likely due to insufficient statistical power), fur-

ther investigations with a larger sample size focusing on a

high CVD risk population are warranted. Furthermore, we

found a stronger association among females than males,

particularly at 5-year follow-up. This was mainly due to

the higher mortality risk for mid-level HbA1c among males

than females, although both sexes showed similar mortal-

ity risks for low HbA1c. Given sex differences in glucose

metabolism,41 our findings also indicate the importance of

evaluating HbA1c by sex.

As expected based on ample previous evidence,42–44 the

diabetes group showed an increased risk of all-cause mor-

tality. A cohort study of one million US adults reported di-

abetes to be associated with a higher risk of mortality for

several diseases such as CVD, cancer, respiratory dysfunc-

tion, digestive diseases, genitourinary disorders and even

accidents.42 Although mortality and incidence of cardio-

vascular events among people with diabetes have decreased

over the past two decades, mainly owing to remarkable

advancements in the treatment of CVD and diabetes,43,44

our findings highlight that there is still a need for further

improvement of diabetes management to avoid

complications.

The present study has three major strengths. First, our

study used a large, nationally representative sample of the

US general population with linkage to the most updated

national mortality database. Second, we applied the para-

metric g-formula that does not require the proportional

hazard assumption and allows us to estimate clinically

meaningful absolute/relative risks.34 This approach also

enabled us to estimate risks at different time points (i.e. 5

and 10 years of follow-up). Last, we employed several en-

semble machine learning algorithms to build the outcome

prediction models in the first step of the parametric g-for-

mula, including an ensemble method called SuperLearner

that combines multiple machine learning algorithms with

weights estimated to maximize performance.32 Our results

suggest that a conventional logistic regression modelling

approach, which has much lower computational cost than

machine learning algorithms, may well suffice to answer

our research question, as risk factors are well known. But

even in a scenario such as ours, comparing the findings

from both logistic regression models and machine learning

algorithms may provide a transparent approach to address-

ing the potential for bias due to model mis-specification.

Our study has limitations. First, although we included

an extensive set of covariates, there is always a possibility

for bias due to unmeasured confounding in observational

study design. For example, low-density lipoprotein choles-

terol levels were not available for many NHANES partici-

pants; therefore, we used statin use as a proxy for

dyslipidaemia. The lack of detailed information on diabe-

tes, such as family history and antibodies, may also limit

the interpretation of the diabetes and mortality associa-

tion, but does not affect the interpretation of our primary

outcomes (i.e. low HbA1c and mortality among people

without diabetes). The wide range of age in the present

study may also raise a concern about residual confounding

by age even after adjusting for age. However, as increasing

age is negatively associated with low HbA1c and positively

associated with mortality risks, such bias would be

expected to cause an underestimation of the effect of low

HbA1c on mortality. Given that clinical trials may not be

feasible and ethical on this topic, future studies using other

epidemiological approaches such as Mendelian randomiza-

tion should be considered to validate our findings. Second,

diet, lifestyle and comorbidities may have been mis-

measured because these variables were self-reported.

Third, as HbA1c was only measured at baseline, we had

no information about how changes in HbA1c may or may

not contribute to the increased risk of mortality. Last, co-

variate information was also only available at baseline.

Thus, the exposure-confounders relationships were not

well defined temporally, and we cannot rule out the possi-

bility of reverse causation and over-adjustment. Further
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longitudinal studies with measurements of HbA1c and

other covariates at multiple time points are needed to over-

come this limitation.

In conclusion, low HbA1c was associated with an in-

creased risk of all-cause mortality at 5 and 10 years of

follow-up among US adults. Our findings may indicate the

importance of carefully monitoring individuals with rela-

tively low HbA1c without diabetes, as well as individuals

with diabetes in clinical practice. A better understanding of

this relationship would enable health care professionals to

design effective public health interventions to reduce the

risk of long-term adverse health outcomes that may be re-

lated to relatively low HbA1c.
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Supplementary data are available at IJE online.
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