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Nano- and Mesoscale Ion and Water Transport in Perfluorosulfonic-Acid 
Membranes 

 
A. R. Crothersa,b, C. J. Radkea,b, A. Z. Webera  

  
aLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA  

bDepartment of Chemical and Biomolecular Engineering, University of California, 
Berkeley, CA 94720, USA 

  
  

Water and aqueous cations transport along multiple length scales in 
perfluorosulfonic-acid membranes. Molecular interactions in 
hydrophilic domains dictate nanoscale resistances while the 
connectivity of domains controls mesoscale transport. The 
developed multiscale models probes the synergy of these length 
scales. Concentrated solution theory and electrokinetics are used to 
predict transport in the aqueous domains as a function of hydration. 
A resistor network upscales the nanoscale properties to predict 
effective membrane ion and water transport and their coupling. The 
nature of macroscopic and nanoscale properties differs drastically 
because the mesoscale network mediates transport. Moreover, the 
effective tortuosity and connectivity is not the same for water and 
ion transport. The methodology and findings highlight improvement 
opportunities for membrane performance. 

  
 

Introduction  
  
The mass-transport properties of ion-conducting membranes prescribe performance of 
polymer-electrolyte fuel cells (PEFCs) (1). Chiefly, effective PEFC operation necessitates 
high membrane ionic conductivity (1). Because conductivity strongly increases with 
membrane hydration, rapid ion transport requires ample water content (1). Therefore, water 
diffusivity concomitantly controls conductivity for heterogeneous PEFC humidification by 
promoting thorough hydration in PEFCs (1). Water gradients also directly induce ionic 
current via transport couplings in which water convection and diffusion cause ion transport 
(e.g., electro-osmosis) (1-2). Improved membrane design and operation, consequently, 
require the simultaneous optimization of ion conductivity, water diffusivity, and their 
coupling (1). In this work, we present a model for mass transport of water and ions in PEFC 
membranes based on nanoscale properties that provides a framework to understand 
mesoscale membrane performance. 
     
     Prototypical PEFC membrane materials are perfluorinated sulfonic-acid ionomers 
(PFSA) (3). They are random co-polymers consisting of perfluorinated, Teflon-like 
backbones with pendant sidechains that terminate in sulfonic-acid groups (3). 
Hydrophobicity differences between the backbone and sidechains cause nanophase 
separation (3), wherein an inert hydrophobic matrix envelops hydrophilic domains 



containing water and sulfonic-acid groups (3). The hydrophobic matrix ensures structural 
stability and durability (3). The sulfonic-acid proton transfers to a water molecule in the 
hydrophilic phase forming a hydronium ion (3). Additional water dissociates the hydronium 
from the sulfonate group (3). Proton movement carries ionic current through the nanoscale 
hydrophilic domains. These domains connect in a network at the mesoscale that provides a 
percolating pathway for transport across the membrane (3). 
 
     Because transport occurs across multiple lengthscales, improving membrane design 
requires concerted optimization at each lengthscale (3). Nevertheless, modeling efforts have 
either focused on macroscopic transport without grounding parameters in nanoscale 
phenomena or, conversely, studied the nanoscale without explicit connection to macroscale 
experiments, with a few exceptions (4-5). 
 
     We present a methodology to connect directly nanoscale properties with macroscopic 
ion and water transport and their coupling using an explicit representation of the conductive 
network. The mesoscale is represented by a resistor network for species transport. Two 
transport parameters describe water and ion mobility and another accounts for coupling 
between the two; each of these parameters are functions of water content. Conductances are 
calculated using a simple nanoscale model. The network model predicts macroscopic 
conductivity, water diffusivity, and electro-osmotic coefficient as a function of water 
content, enabling comparison to experimental data. 
 
 

Theory  
  
Mesoscale Transport 
  
     The connected aqueous domains of the PFSA membrane are treated as a resistor 
network. Each domain is a conductive element for transport and nodes of the network 
connect multiple domains. Concentrated-solution theory dictates that the difference, Δ, of 
water chemical potential, 𝜇#, and ionic potential (i.e. the electrochemical potential of 
protons), Φ, between two neighboring nodes 𝑎 and 𝑏 induce ionic current, 𝑖),*, and water 
flux, 𝑁#

),* , through each aqueous slit domain of length 𝐿 (4, 6) 
    
 𝑖),* = −𝜅

ΔΦ
𝐿 −

𝜅𝜉
𝐹
Δ𝜇#
𝐿  

[1] 
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[2] 

 
where 𝐹 is Faraday constant. The current density is proportional to the flux of cations, 𝑁8

),*, 
(i.e. 𝑖),* = 𝐹𝑁),*) because the anion is immobile and the cation has unity valance.  The 
conductivity of the network element domain, 𝜅 , relates current to the ionic-potential 
difference. The water transport coefficient, 𝛼, relates water flux to a chemical potential 



difference. The electro-osmotic coefficient, 𝜉, describes the coupling between water flux 
and current (3). Absent any concentration gradients, the conductivity, 𝜅, is 
 
 

𝜅 = −
𝑖9,:
ΔΦ
L

			for	Δ𝜇# = 0 

 

[3] 

The electro-osmotic coefficient, 𝜉, is the number of water molecules that accompany proton 
flux (absent concentration gradients) 
 
 

𝜉 =
𝑁#
9,:

𝑁8
9,: 				for	Δ𝜇# = 0 

[4] 

 
Finally, the water transport coefficient relates the flux of water to its chemical potential 
gradient when there is no current 
 
 

𝛼 = −
𝑁#
9,:

Δ𝜇#
𝐿

			for	𝑖),* = 0 
[5] 

 
     The conductivity and electro-osmotic and water-transport coefficients of an aqueous 
domain element depend on water content, quantified by the molar ratio of water to sulfonate 
groups, 𝜆 (mole H6O/ mole SODE). The water content of an aqueous domain element, 𝜆, is 
the macroscopic average (mean) water content,	〈𝜆〉, with some deviation from the mean, 
𝑒I, caused by local variations in sulfonate-group concentration and polymer morphology 
  
 𝜆 = 〈𝜆〉(𝜇#) + 𝑒I [6] 

 
where the mean of 𝑒I is zero and 〈𝜆〉 is a known function of water chemical potential (3). 
     
     The mesoscale transport system is fully specified at steady-state with species 
conservation. The fluxes of water and protons through each domain element into a node 𝑎 
from all neighboring nodes 𝑏 satisfy (6) 
 
 L𝑖),*

*

= 0 [7] 

 
and  
 
 L𝑁#

),*

*

= 0 [8] 

 
Equations 1, 2, 7, and 8 constitute a nonlinear system of equations because conductivity 
and the electro-osmotic and water-transport coefficients are functions of water chemical 
potential via Equation 6. Nanoscale physics governs the dependence of transport 
coefficients on water content. 



     
 
Nanoscale Transport 
 
     The transport properties of the aqueous domain elements are linked to the local water 
content and nanoscale properties via a model of ion and water transport in the aqueous slit-
like domains of a PFSA. The hydrophilic domains are strongly phase separated from the 
polymer backbone and are locally flat, ribbon-like channels (3). We idealize a domain as a 
slit filled with water and dissociated aqueous protons. The polymer, pendant sulfonate 
groups, and undissociated protons constitute the walls of the channel. The transport 
properties of a network element resistor include both the conducting aqueous slit and the 
associated insulating hydrophobic matrix. 
 
     Mass flux through a network resistor, 𝑛N = 𝑁N/𝑀N, is the mass flow of species 𝑖 with 
molar mass 𝑀N through the aqueous slit divided by the area of that slit and the enveloping 
polymer matrix. (The fluxes are treated as scalar since they occur bidirectionally along the 
channel). Total flux is the sum of convective and diffusive contributions 
 
 𝑛N = 𝑗N + 𝜑#𝜌N𝑣 [9] 

 
where 𝑗N is the diffusive mass flux, 𝜑# is the water volume fraction, 𝑣 is the mass-averaged 
velocity, and 𝜌N  is the mass-density of species 𝑖 (+ for protons and w for water) in the 
aqueous solution (7). The factor of 𝜑# normalizes the convective flux over the hydrophilic 
and hydrophobic areas of the resistor. According to the definition of the diffusive flux in a 
binary system, proton and water diffusive fluxes sum to zero in each domain element, i.e. 
𝑗8 = −𝑗# (7).  
 
    Absent concentration gradients, the diffusive flux of protons is proportional to the 
electrostatic gradient 
  
 𝑗8 = −𝜑#𝜌8𝑢8𝐹∇Φ [10] 

 
where 𝜌8  and 𝑢8  are the density and mobility of dissociated protons in the aqueous 
domain, respectively (7). As in Equation 9, 𝜑# corrects for the conductive volume fraction. 
Upon distributing the dissociated protons uniformly across the aqueous domain, the 
electrostatic Hagen-Poiseuille equation gives the average velocity in that aqueous slit 
element (7) 
 
 

𝑣 = −
ℎ6

12𝜂 (𝑐8𝐹∇Φ) 
[11] 

 
for laminar flow, where ℎ is the height of the slit, 𝜂 is the viscosity of the solution, and 
𝑐8	(= 𝜌8/𝑀8) is the molar concentration of dissociated protons (7). The electrostatic body 
force on the dissociated protons (the term in parenthesis) replaces the pressure gradient of 
the classic Hagen-Poiseuille equation (7). 
     



     Substitution of Equations 9 thru 11 into Equation 3 relates the conductivity to nanoscale 
properties 
 
 

𝜅 = 𝜑#𝐹6 3𝑢8𝑐8 +
ℎ6

12𝜂 𝑐8
67 

[12] 

 
where the first and second terms are the contributions from diffusive and convective fluxes 
caused by the electrostatic potential gradient. The second term appears because the slit is 
not electrically neutral. 
      
     Combining Equations 4 and Equations 9 thru 11 gives the electro-osmotic coefficient 
 
 

𝜉 =
−𝑢8

𝑀8
𝑀#

+ 𝑐#
ℎ6
12𝜂

𝑢8 +
𝑐8ℎ6
12𝜂

 

[13] 

 
The first terms in the numerator and denominator in Equation 13 are contributions from 
diffusion of water opposite the electric field and diffusion of cation with the electric field, 
respectively. The second terms in the numerator and denominator arise from the convective 
flux of the solution along the electric-field gradient. 
  
    Finally, the water-transport coefficient relates water transport in the absence of current, 
and connects to diffusivity in the membrane 
 
 ∇𝜇# = −

𝑅𝑇
𝐷#𝑐#

𝑥8𝑁# = −
1
𝛼𝑁# [14] 

 
where 𝑅 is the gas constant, 𝑇 is temperature, 𝐷# is the effective diffusivity of water in the 
membrane, and 𝑥8 is the mole fraction of dissociated protons (4). 
 
     Equations 12 thru 14 relate nanoscale properties to network transport. We now turn to 
what these properties are. The fraction of protons dissociated from sulfonate groups is 
dictated by the hydration state of the membrane. As the membrane hydrates, water, H6O, 
solvates protons, H8, dissociating them from the sulfonate groups, RSODE, 
 
 (𝑣8 + 𝑣E)H6O + HRSOD ⇌ H8(H6O)cd + RSOD

E(H6O)ce 
 

[15] 

where 𝑣8  and 𝑣E are the number of water molecules solvating the proton and sulfonate 
group, respectively. The equilibrium constant, 𝐾, of Equation 15 is 
 
 

𝐾 =
gH8(H6O)cdhgRSOD

E(H6O)ceh
[HRSOD][H6O](cd8ce)

 
[16] 

 



where the brackets denote thermodynamic activities. We assume that the activity of water 
outside ion solvation shells is unity and the other species are ideal. Thus, the fraction of 
dissociated protons is 
 
 

𝑓8 =
𝐾(𝜆 + 𝑣 − 1) − l𝐾(4𝜆 + 𝐾(1 + 𝜆 − 𝑣)6)

2(𝐾(𝑣 − 1) − 1)  
[17] 

 
where 𝑣 = 𝑣8 + 𝑣E and is approximated as 4 (3). Consequently, a mass balance gives the 
fraction of water not solvating ions (i.e. free water) 
 
 𝑓# = 1 −

𝑓8𝑣
𝜆  

[18] 

 
for 𝜆 > 𝑓8𝑣 and 𝑓# = 0 otherwise.  The fraction of free water governs the water-transport 
coefficient, as shown in Table I, and is consistent with experiment (8). Values and 
expressions of additional nanoscale parameters are also given in Table I. 
 

TABLE I.  Nanoscale properties. Note: 𝑁o is Avogadro’s number 
Property Expression/Value Units Source/ 

Assumptions 
Average water content 〈𝜆〉(𝜇#) - Fit from (3) 

Water volume fraction 𝜑# =
𝑉#𝜆

𝑉#𝜆 + 𝐸𝑊/𝜌s
tuv 

- Ideal mixing 

Proton mobility 𝑢8 =3.75E-12  s mol kg-1 Infinite dilution (9) 

Slit height ℎ = (𝜆𝑉#/𝑁o	)
w
D			 m Isotropic swelling 

Solution viscosity 𝜂 =	8.90x10-4 Pa s Pure water (10) 

Concentration of 
dissociated protons 

𝑐8 = 𝑓8/𝑉#𝜆 mol m-3 Ideal mixing and negligible 
proton volume 

Concentration of 
water 

𝑐# = 1/𝑉# mol m-3 Ideal mixing and negligible 
proton volume 

Proton molar mass 𝑀8 = 1 g mol-1 (10) 

Water molar mass 𝑀# = 18 g mol-1 (10) 

Water diffusivity 𝐷# = 𝜑#𝑓#2.3 x10-9 m2 s-1 Free water has diffusivity of 
bulk water (8) 

Mole fraction of 
dissociated protons 

𝑥8 = 𝑓8/(𝜆 + 𝑓8) - Definition 

Solvation equilibrium 
constant 

𝐾 = 0.30 - Fit Equation 17 to molecular-
dynamics simulations (11) 

Water molar volume 𝑉# = 1.8E-5 m3 mol-1 (10) 

Polymer equivalent 
weight 

𝐸𝑊 = 1100 g polymer / 
mol SODE 

(3) 

Density of dry 
polymer 

𝜌s
tuv = 2E-6 g m-3 (3) 



 
 
 
Simulations 
 
     Equations 12 thru 14 specify the transport properties of domains as a function of water 
content. Equations 7 and 8 are solved for ionic and water chemical potential for 153 nodes 
on a cubic grid. The grid spacing and, consequently, aqueous domain length, 𝐿, is 2 nm and 
each node has a coordination number (number of nodes connected to it) of three, consistent 
with experimental observations (12).  The entire mesoscale simulation size is 303 nm3. We 
use a simplified systems with square grids of 202 nodes for qualitative visualization of 
simulation results. 
     
     The water chemical potential at the top and bottom boundary nodes control the average 
water content of the network. The nodes at the back, front, left, and right sides are periodic 
(e.g. a left boundary node connects to a right opposing boundary node), thereby simulating 
an infinite sheet. A small fixed ionic potential drop (of 1 ´ 10-5 V) at the top and bottom 
nodes of the network determines the effective network conductivity, 𝜅yzz , and electro-
osmotic coefficient, 𝜉yzz . A small chemical-potential drop (equivalent to a 0.001% 
difference in relative humidity) simulates the water-transport coefficient of the network, 
𝛼yzz . Such small driving forces assure obedience to linear transport laws. The effective 
transport properties are given by Equations 3 thru 5, where the current and water flux is the 
sum over the top (or, equivalently, bottom) face nodes and normalized by face area; the 
potential difference between the top and bottom nodes and the height of the network 
replaces ‘Δ’ and ‘𝐿,’ respectively. 
 
     The system of 3375 equations was solved numerically using a modified Powell method 
in the SCIPY module of python 3.6. The relative tolerance was 1x10-12. The solution to the 
accompanying linear system of equations (i.e. Equations 7 and 8 with transport coefficients 
independent of chemical potential) provided the initial guess solution. The resistor-network 
geometry was constructed using OpenPNM (13). 
 
     We treat the difference from the mean of water content, 𝑒I, as a random variable for each 
domain with a normal distribution centered around zero. Negative values of 𝜆 were set to 
zero, slightly biasing 〈𝜆〉  higher than the measured value at a given water chemical 
potential. The standard deviation of the distributions, 𝜎I, is equal to 7 (mole H2O/mole 
HSOD), unless otherwise stated. 

 
 

Results and Discussion  
  
Nanoscale Transport Properties 
     
     Figure 1 shows the nanoscale transport properties 𝜅 (solid line), 𝜉 (dashed line), and 𝛼 
(dash-dot line) as a function of domain water content. The water-transport and electro-
osmotic coefficients monotonically increase with hydration. At low water content, water 
molecules in a domain solvate the ions and have low mobility. Additional water is free and 



rapidly diffuses and widens the aqueous domain, increasing the water-transport coefficient. 
Moreover, swelling of the aqueous domains causes increasing convection and electro-
osmosis, as Equations 11 and 13 show. Similarly, conductivity increases markedly with 
water content at low hydrations because the hydrophilic volume fraction grows and protons 
dissociate from sulfonate groups. However, above 𝜆 = 9, water dilutes charge carriers, 
decreasing conductivity. 
 
     The probability distribution function of 𝜆 for three values of 𝜎} in Figure 1 emphasizes 
the heterogeneous water distribution. For 𝜎I = 7, a membrane with 〈𝜆〉 = 14 has both dry 
domains and those with more than twice the average water content. The hydrated domains 
have vastly larger transport coefficients than dry ones. 𝜎I determines the shape of the water-
content distribution. 
 

 
Effective Transport Properties 
 
     Figure 2 shows the effective transport properties of the network 𝜅yzz  (solid line), 𝜉yzz 
(dashed line), and 𝛼yzz  (dash-dot line) as a function of hydration. The predictions 
quantitatively match measured conductivity (squares) and show the same trend as 
experimental electro-osmotic (circle) and water-transport coefficients (diamonds) but with 
poor quantitative agreement. The lack of agreement stems from simplified nanoscale 
physics. For example, the electro-osmotic coefficient only accounts for the hopping 

 

Figure 1. Nanoscale transport coefficients 𝜅 (solid line), 𝜉 (dashed line), and 𝛼 (dash-dot 
line) as a function of domain water content, 𝜆 . The shaded regions are probability 
distribution functions (PDFs) of 𝜆 with 𝜎I = 7, 8, and 12 in a membrane with 〈𝜆〉 = 14  
(solid, grey, vertical line). Transport coefficient axes, are on the left; PDF axis is on the 
right. 



mechanism of proton transport and not the vehicular, which results in lower values (3). 
Moreover, electro-osmotic and water transport coefficients are notoriously difficult to 
measure without artifacts (3). 
 
    In contrast to nanoscale transport, all effective properties monotonically increase with 
increasing water content because of increasing network connectivity. At low hydration, 
water and protons only transport through the few connected, wet domains. With increasing 
〈𝜆〉  wet domains progressively neighbor each other and provide additional transport 
pathways, increasing 𝜅yzz and 𝛼yzz.  
 

 
Figure 2. Effective network-transport coefficients from the model and experiments for 𝜅yzz 
(model is solid line and experiments are squares (3)), 𝜉yzz  (model is dashed line and 
measurements are circles (14)), and 𝛼yzz (model is dash-dot line and fit to experiments is 
diamonds (4)), as a function of average membrane water content, 〈𝜆〉.  

 
     The impact of network connectivity is not equal for all transport properties, however. 
Figure 3 shows that the effective network tortuosity, 𝜏� (defined as 𝜏� = 𝑋���/𝑋, where 𝑋 
is a transport property) is different for ion and water transport. The values of 𝜏 indicates the 
dominance of the mesoscale over the nanoscale. The insert in Figure 3 explores this 
relationship by showing simulation results of a 20x20 node square network with an applied 
potential across the top and bottom. Segments are black lines and colored spheres are nodes 
on the maximum flux path (i.e., a path starting from the middle node at the bottom boundary 
and following segments that carry the most flux out of each node on the path; these 
segments carry, on average, 90% of the flux from a node). The highest current and water 
pathways are colored red and green, respectively. Tan balls are shared maximum pathways 
for water and ions.  



     
     The insert in Figure 3 illustrates that 𝜏9 is larger than 𝜏� because water-transport 
pathways are longer. Similarly, 𝜏�  is greater than one because the ratio of water to proton 
transport across a network is less than the ratio moving across an average domain. The 
variance of domain transport properties causes these different pathway lengths. For 
example, 𝜅 is relatively invariant with water content at high saturations. Consequently, the 
distribution of water in the membrane does not cause a heterogeneous conductivity 
distribution. In contrast, 𝛼 has a heterogeneous network distribution because it depends 
strongly on hydration, as illustrated in Figure 1. 
 

 
Figure 3. Effective network tortuosity, 𝜏, for conductivity, 𝜅 (solid line), electro-osmotic 
coefficient, 𝜉  (dashed line), and water-transport coefficient, 𝛼  (dash-dot line), as a 
function of average network water content, 〈𝜆〉. Insert shows simulation results for a 
20x20 node network. Segments are black lines. Red and green spheres show maximum 
ion current and water flux pathways, respectively, and shared pathways are tan.  

 
 
     Increasing network heterogeneity creates longer transport pathways and decreases 
effective transport properties. Figure 4 demonstrates that as the variance of domain water 
content, 𝜎I , increases from 7 (sold line) to 8 (dashed line) and 12 (dash-dot line), 𝜅yzz 
decreases. The insert provides visualization of the tortuous ion transport for more 
heterogeneous networks by showing the pathways of maximum flux for a 20x20 node 
network simulation with 𝜎I = 7  (dark) and 12 (light). This result explains the higher 
experimental conductivity of membranes that are more homogeneous because of thermal 
treatments (squares) than untreated membranes (diamonds). 



 

 

Figure 4. Effective network conductivity, 𝜅yzz, for a network with the variance of water 
content, 𝜎I , of 7 (solid line), 8 (dash-dot line), and 12 (dashed line). Insert shows 
simulation results for a 20x20 node network. Segments are black lines. Light (𝜎I = 12) 
and dark (𝜎I = 7) spheres are nodes along pathways of maximum current.  

 
 

Summary  
  

     This paper connects nanoscale phenomena in PFSAs to macroscopic water and proton 
transport properties. Diffusion and electrokinetic transport of aqueous protons and water in 
a slit with charged walls establishes transport in PFSA domains as a function of local water 
content. For upscaling, a cubic resistor network represents the interconnected hydrophilic 
phase. The nanoscale model parameterizes the resistor-network element properties. Our 
network model bridges nanoscale and macroscale transport properties. 
 
     We show that macroscale properties emerge out of the mesoscale architecture of PFSAs. 
The effective conductivity and water-transport and electro-osmotic coefficients differ from 
nanoscale properties in both magnitude and hydration dependence. While nanoscale 
properties strongly depend on solvation of sulfonic-acid groups and domain size, mesoscale 
transport requires connections between wet regions. Moreover, effective connectivity is 
species dependent: water forms longer transport pathways through PFSAs than do protons. 
Even the coupling between water and proton transport (i.e. the electro-osmotic coefficient) 
is different for the network than for a single aqueous domain. 
 



     These insights into multiscale transport in PFSAs caution against attempts to interpret 
phenomena at disparate lengthscales in heterogeneous media without considering 
intermediary ones. Conversely, there are avenues for improving membrane performance 
that effect change at mesoscale (e.g., membrane thermal treatments). The proposed model 
guides exploration of these approaches and engineering of improved membranes. 
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