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Abstract
Land-use and land-cover change significantly modify local land-surface characteristics and
water/energy exchanges, which can lead to atmospheric circulation and regional climate changes.
In particular, deforestation accounts for a large portion of global land-use changes, which
transforms forests into other land cover types, such as croplands and grazing lands. Many previous
efforts have focused on observing and modeling land–atmosphere–water/energy fluxes to
investigate land–atmosphere coupling induced by deforestation. However, interpreting
land–atmosphere–water/energy-flux responses to deforestation is often complicated by the
concurrent impacts from shifts in land-surface properties versus background atmospheric forcings.
In this study, we used 29 paired FLUXNET sites, to improve understanding of how deforested land
surfaces drive changes in surface-energy-flux partitioning. Each paired sites included an intact
forested and non-forested site that had similar background climate. We employed transfer entropy,
a method based on information theory, to diagnose directional controls between coupling
variables, and identify nonlinear cause–effect relationships. Transfer entropy is a powerful tool to
detective causal relationships in nonlinear and asynchronous systems. The paired eddy covariance
flux measurements showed consistent and strong information flows from vegetation activity (gross
primary productivity (GPP)) and physical climate (e.g. shortwave radiation, air temperature) to
evaporative fraction (EF) over both non-forested and forested land surfaces. More importantly, the
information transfers from radiation, precipitation, and GPP to EF were significantly reduced at
non-forested sites, compared to forested sites. We then applied these observationally constrained
metrics as benchmarks to evaluate the Energy Exascale Earth System Model (E3SM) land model
(ELM). ELM predicted vegetation controls on EF relatively well, but underpredicted climate factors
on EF, indicating model deficiencies in describing the relationships between atmospheric state and
surface fluxes. Moreover, changes in controls on surface energy flux partitioning due to
deforestation were not detected in the model. We highlight the need for benchmarking model
simulated surface-energy fluxes and the corresponding causal relationships against those of
observations, to improve our understanding of model predictability on how deforestation reshapes
land surface energy fluxes.
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1. Introduction

The land surface and atmosphere are closely coupled
through energy, water, and carbon cycles (Santan-
ello et al 2013, Gentine et al 2019). For example,
the land surface dissipates energy and water into the
atmosphere through evapotranspiration and latent
heat fluxes. Plants open stomata to receive atmo-
spheric CO2 and produce carbohydrates, which sim-
ultaneously lose water though transpiration (Lei et al
2010, Suyker and Verma 2010). The dissipated latent
heat and evapotranspiration fluxes modulate atmo-
spheric temperature and water vapor pressure, which
in return can affect vegetation and soil processes
(Allison and Treseder 2011, Lombardozzi et al 2015).
The strengths of such two-way interactions between
land and atmosphere are strongly dependent on land-
surface characteristics (e.g. soil temperature, wetness)
(Dirmeyer 2011, Ford et al 2014, Feldman et al 2019),
and atmospheric conditions (e.g. vapor pressure defi-
cit (VPD), radiation, and air temperature) (Zhang
et al 2014, Zhou et al 2014, Kukal and Irmak 2016).
Moreover, land–atmosphere interactions are largely
mediated by local vegetation (e.g. grass or tree) and
exhibit complex energy, water, and carbon coupling
among the soil, the vegetation, and the atmosphere
(Puma et al 2013, Williams and Torn 2015).

To better understand the land–atmosphere
coupling that includes the whole soil-vegetation-
atmosphere continuum, two segments of this coup-
ling are commonly distinguished: (a) the land seg-
ment, i.e. the linkage between land states (e.g. soil
moisture) and surface energy flux patterns (e.g. lat-
ent heat flux) and (b) the atmosphere segment, i.e.
the relationship between surface-energy flux pat-
terns and atmospheric states (e.g. precipitation)
(Guo et al 2006, Bowling et al 2010). In both land
and atmospheric segments, the evaporative fraction
(EF = LE/(LE + H), where LE and H are latent and
sensible heat fluxes) is considered a central variable of
interest (Koster et al 2009, Ford et al 2014, Feldman
et al 2019), which defines how the land surface par-
titions net radiation into latent versus sensible heat
fluxes.

Surface energy partitioning and land–atmosphere
coupling are subject to land-surface characteristics
(Koster et al 2004, Carleton et al 2008, Koster et al
2010) and can be affected by land-use and land-
cover change (LULCC) (Cooley et al 2005, Hirsch
et al 2014, Lorenz and Pitman 2014). As one of
the major LULCC activities, deforestation breaks
or at least weakens the existing linkage within the
land-vegetation-atmosphere continuum, by remov-
ing woody plants that could potentially transpire a
large amount of water into the atmosphere (Claussen
et al 2001, Davin and de Noblet-ducoudré 2010,
Myoung et al 2012). Consequently, the land sur-
face tends to dissipate energy through the sensible
heat pathway (Gash and Nobre 1997) rather than the

latent heat pathway in deforested versus forested land
(Evaristo and McDonnell 2019). However, observed
EF does not necessarily decline after deforestation,
owing to the concurrent changes of albedo and sur-
face energy balance (Luyssaert et al 2014). The separ-
ation of the compounding changes (vegetation cover
and background atmospheric forcings) (Winckler
et al 2017) is one of the major challenges in under-
standing how deforestation affects both land-surface
energy partitioning and land–atmosphere coupling.

The patterns and controllers of EF have been
widely investigated in the scientific literature
(Brimelow et al 2011, Findell et al 2011). However,
most of these studies have focused on the impacts
related to soil states (i.e. soil moisture) (Ford et al
2014, Feldman et al 2019), while fewer studies have
considered the role of vegetation cover and other
factors (Myoung et al 2012, Williams et al 2016). This
knowledge gap necessitates a comprehensive exam-
ination of how vegetation cover and other envir-
onmental states could potentially impact surface-
energy partitioning before and after deforestation.
A second challenge is to extend the analysis of the
soil moisture–EF relationship (Dirmeyer 2011) to
include relevant variables that could potentially drive
surface-energy partitioning.

Linear correlative relationships have been widely
used to analyze coupling between land states (i.e. soil
moisture) and surface-energy partitioning (Basara
and Crawford 2002, Ford et al 2014), even though
nonlinearity in these interactions are acknow-
ledged (Brubaker 1995, Zeng et al 2002). There-
fore, linear-correlation-based representation of land–
atmosphere coupling potentially leads to an incom-
plete understanding or misleading conclusions.

In this study, we analyze these nonlinearities
and develop relevant metrics to quantify nonlin-
ear impacts on surface-energy partitioning from
deforestation. We diagnose the strength of land–
atmosphere coupling using a recently synthesized
FLUXNET dataset (Chen et al 2018) with paired
forest-versus-non-forested land surfaces that share
common climate forcing. Thus, differences in land–
atmosphere coupling strength between paired for-
ested and non-forested sites can be attributed to
deforestation-induced land-cover change. We apply a
novel and nonlinear metric (transfer entropy) based
on information theory (Liu et al 2019) to diagnose
how land-cover change (deforestation) affects EF and
land–atmosphere coupling.

2. Methodology

2.1. Paired FLUXNET dataset
In this study, 29 pairs of FLUXNET sites from
the FLUXNET2015 Tier 1 and AmeriFlux data-
sets (Baldocchi et al 2001) were used. The spa-
tial locations of the paired sites are shown in
figure 1, and the general information of the
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sites are listed in table S1 (available online at
stacks.iop.org/ERL/16/024014/mmedia). Each pair
contains a forested (e.g. broadleaf or needleleaf
forests) site and a nearby non-forest (e.g. grassland,
cropland, or open shrub) site. The median linear dis-
tance between the paired sites is 21.6 km, and the
median elevation difference is 20.0 m. Because of the
proximities, we assume the two sites within each pair
share similar atmospheric conditions. Although the
meteorological measurements at the paired sites are
not identical, Chen et al (2018) have demonstrated
that the differences inmeteorology are generally small
and not likely a major factor in simulated surface flux
differences in most of the pairs. Therefore, the dif-
ference (forest vs non-forest) in surface fluxes can be
considered as the effects of deforestation.

Sensible (H) and latent (LE) heat fluxes (daily
averaged fluxes from 10am to 4pm) are used to cal-
culate the EF (EF = LE/(LE + H)) for both fores-
ted and non-forested sites, which serves as a target
variable in the following transfer entropy analysis.
The canopy photosynthesis flux (gross primary pro-
ductivity (GPP)) is derived from the measured net
ecosystem exchange (NEE) of CO2 and total ecosys-
tem respiration, the latter was extrapolated from the
nighttimeNEEusing environmental variables (Reich-
stein et al 2005). We apply GPP as a proxy for veget-
ation dynamics and stomatal conductance (Williams
and Torn 2015). In this study, we also include other
available observations (from FLUXNET) in our ana-
lysis: downwelling shortwave radiation (R), temper-
ature (T), precipitation (P), and VPD to investigate
how atmospheric conditions affect EF. The analysis
is conducted at relatively dry and wet sites, which
are selected by their annual precipitation being either
lower or higher than the mean of all the sites.

2.2. Transfer entropy analysis
To quantify directional control of a source variable
(e.g. GPP) on a target variable (e.g. EF), informa-
tion theory states that the uncertainty underlying the
target variable could be significantly reduced, if it
shares a significant amount of information entropy
with the source variable, when excluding effects from
confounders (Ruddell and Kumar 2009). Transfer
entropy measures the amount of information from
a source variable to a target variable. If significant
transfer entropy exists, a causal link from a source
variable to a target variable exists. Transfer entropy
is based on Shannon information entropy (Shannon
1949), which measures the uncertainty of a system,
and can be derived from the probability distribution
of the variable:

H(X) =−
∑p

(xt) log2p(xt) (1)

where xt is time series of variable X. To estimate
the probabilities in equation (1), each variable is
discretized into several fixed-interval histogram bins.

xt, therefore, can also be regarded as values in the time
series X for the tth bin. H(X) is measured in bits and
hereafter will be referred as information entropy.

Transfer entropy measures the shared inform-
ation entropy between source and target variables
by excluding the information entropy from con-
founders. As increasing the number of confounders
will cause high-dimensional computation and statist-
ical reliability issues (Runge 2018, Runge et al 2019),
we only consider the immediate history of a tar-
get variable as the confounder, which always con-
tributes the most confounding information in many
study cases (Ruddell and Kumar 2009). The transfer
entropy from a source variable (X) to a target vari-
able (Y), knowing the historical condition of target
variable, is defined as (Schreiber 2000):

T(X→ Y) =
∑

yt,y
[k]
t ,x[l]t

p
(
yt,y

[k]
t ,x[l]t

)

× log2

p
(
yt
∣∣∣(y[k]t ,x[l]t

))
p
(
yt
∣∣∣y[k]t

) (2)

where l and k are leading time of source variable X
and the historical condition of Y, respectively and yt
are values in the Y time series for the tth bin. In the
experiments, we use daily data, and set k as 1 day
(Ruddell and Kumar 2009). For the time lag, l, 0–
5 days are considered, because we focus on short-term
processes within a few days (Scott et al 1997, Brunel
et al 2006, Ivanov et al 2008). For the binning para-
meter, we use 11 bins, according to the recommend-
ation of the proper bin numbers from Ruddell and
Kumar (2009).

The shuffled surrogatemethod (Kantz and Schür-
mann 1996) is employed to determine whether an
information flow between coupling variables is sig-
nificantly stronger than that between shuffled source
and target time series by randomchance.Xs andYs are
obtained by shuffling Xt and Yt randomly in time to
destroy time correlations. Surrogate transfer entropy
Ts (Xs → Ys) is computed 100 times using Monte
Carlo simulations. A one-tailed significance test is
applied to determine the 95% confidence of the trans-
fer entropy (Ruddell and Kumar 2009). The detailed
key steps of significant test can be seen in text S1.
Finally, relative transfer entropy (T/H) is calculated
to normalize transfer entropy with its total uncer-
tainty (Bossomaier et al 2016) andmake the strengths
of transfer entropy inferred from observations and
E3SM land model (ELM) model simulations be
comparable.

For each couple of variables (e.g. T/H(X→Y)),
we chose the maximum value of causal strength
among all the time lags (0–5 days) to represent
the strongest interactions within the 5-day time
window. Comparison of the strongest causal links
within a time window is also widely employed in
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Figure 1. Location and land-cover type of (a) all the paired sites, the paired sites in (b) Australia, (c) America, and (d) Europe.
The land-cover type of each site is based on the reported land cover in FLUXNET database.

other causality detection researches (Ruddell and
Kumar 2009, Ye et al 2015). To make sure all the
selected causal links are significant, we conduc-
ted significant tests on each potential causal link
at each time lag. For the potential causal links
that failed to pass the significant test, their transfer
entropy was set to zero. In this study, all the ana-
lysis is based on the time lags with peak strengths
at which most information is transferred (Ruddell
and Kumar 2009). We append details of the causal
strengths at different time lags in the supplement
(text S2, figure S4, tables S3 and S4).

2.3. Land surface model simulations
We use offline simulations of the land model (ELM)
in the Energy, Exascale, and Earth System Model
(E3SM) (Zhu et al 2019, 2020) forced with in situ
climate at the paired sites to assess how well the
observed patterns of surface energy partitioning are
reproduced. Although the offline ELM does not sim-
ulate two-way feedbacks between the atmosphere and
land surface, it is able to capture one-way causal
links from the atmosphere to the land surface. There-
fore, the ELM simulated causal controls from envir-
onmental factors to EF can be directly compared
with those derived fromobservations. The ELM satel-
lite phenology (SP) mode uses prescribed vegeta-
tion phenology (leaf area index) from the Moder-
ate Resolution Imaging Spectroradiometer (MODIS)
satellite and observed temperature, precipitation,
downwelling shortwave and longwave radiation, and
vapor-pressure deficit to prognostically simulate eco-
system carbon, water, and energy dynamics. The lon-
gitude and latitude of each site are used to extract
necessary vegetation and soil properties from a global
surface dataset (Koven et al 2013), including e.g.

global distribution of plant functional types (Friedl
et al 2010), soil texture (Webb et al 2000), and par-
ent material phosphorus content (Yang et al 2013).
Before transient simulations, ELM model ran a 200-
year accelerated spinup simulation to accumulate soil
organic carbon and vegetation biomass. Then ELM
ran another 200-year regular spinup to further stabil-
ize the local hydrological and biogeochemical cycles,
using the repeated 20 year (1901–1920) historical cli-
mate forcings at each site (Cai et al 2019).

3. Results and discussion

3.1. How deforestation changes the land-surface
energy partitioning
First, we investigate the deforestation effects on land-
surface energy partitioning between H and LE using
the EF. Shifting from forested to non-forested open
lands, we did not identify any consistent changes in
observed EF (figure 2(a), table S7). In general, defor-
estation led to significantly decline in LE, H, and R
(figures 2(c), (d) and (e), table S7), resulting in rel-
atively small EF effects (table S7). Diurnal and sea-
sonal dynamics of LE and H confirm that the decline
of LE and Hmainly occur during daytime and during
summer, due to limited evapotranspiration and smal-
ler net radiation inputs over non-forested surfaces
(Chen et al 2018). Consequently, LE andH offset each
other to either enhance or reduce EF (figure 2(a)).
For the non-forested sites, the 25th, 50th, and 75th

percentiles of EF were 0.37, 0.46, 0.59, respectively.
Compared with the 25th, 50th, and 75th percentiles
of EF at forested sites (0.27, 0.48, 0.75), deforest-
ation tended to enhance EF when the forested EF
was low, but, conversely, reduced EF when the for-
ested EF was high (detailed pairwise comparison of
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Figure 2. (a) Mean EF at forested versus non-forested sites. (b) EF changes after deforestation and its relationship with local water
supply. Mean LE (c), H (d), and R (e) at forested versus non-forested sites.

EF in forested and non-forested sites can be seen in
figure S1). Similarly, across precipitation gradients
from 0 to 1200 mm yr−1 (figure 2(b)), the differences
between forested and non-forested EF at the sites with
precipitation from 600 to 1200 mm yr−1 was signi-
ficantly lower than those at the sites with precipita-
tion lower than 600 mm yr−1 (figure 2(b), text S3).
It seems that the EF difference increased again when
the mean precipitation higher than 1200 mm yr−1

(figure 2(b)), but no enough data was available to test
this hypothesis.

In general, ELM better reproduced observed EF at
the forested sites than non-forested sites as the mean
absolute error at forested sites was significantly lower
than that of non-forest sites (table S5). Meanwhile,
ELM tended to significantly underestimate EF at non-
forested sites (figure 3(a) and table S6). Therefore,
ELM better reproduced observed EF at the forested
sites than non-forested sites. This inaccuracy was due
to an underestimation of evapotranspiration and lat-
ent heat fluxes at some C3 grass and temperate shrub
sites, particularly during spring and summer, as we
identified in a recent study (Cai et al 2019). Similar
to the observed forested and non-forested EF rela-
tionship (figure 2(a)), ELM also did not exhibit a
systematic shift in surface-energy partitioning due to

forest cover change (figure 3(b)). But the ELM failed
to represent the systematic shift of LE and H caused
by deforestation (figures 3(c) and (d), table S8).

3.2. How deforestation affects land part of
land–atmosphere coupling
Because of limited observations of soilmoisture in the
FLUXNET paired dataset, an investigation of the clas-
sic soil moisture–EF relationship (Dirmeyer 2011) is
not considered here. Instead, vegetation controls over
land–atmosphere coupling are evaluated by the rel-
ative transfer entropy from Gross Primary Produc-
tion (GPP) to EF, taking GPP as a proxy for sto-
matal conductance that regulates water flow from soil
to the atmosphere (Baldocchi et al 2001). Such an
assumption is largely supported by the close relation-
ship between observed GPP and evapotranspiration
fluxes across a wide range of vegetation covers (Mu
et al 2007, Gitelson et al 2014, Jiang and Ryu 2016).

The observed directional control of GPP on EF
at forested sites was significantly higher than that at
non-forested sites (figure 4(a), table S9), indicating
a stronger vegetation impact on atmospheric con-
ditions over forests through recycling and convect-
ive cloud development (Blyth et al 1994, Trenberth
1999, Freedman et al 2001). However, no statistically
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Figure 3. (a) ELM simulated EF at paired FLUXNET sites compared with observations (Error bars represents 25, 50, and 75
percentiles of observed and modeled EF). ELM simulated EF (b), LE (c), and H (d) at forested sites compared to non-forested
sites.

significant difference was identified in ELM between
forested and non-forested sites in terms of the direc-
tional control of GPP on EF (figure 4(b), table S9).
ELM generally captured a similar directional control
fromGPP on EF at the non-forested sites (figures 4(a)
and (b), dashed lines, table S10), but failed at the
forested sites (figures 4(a) and (b), solid lines, table
S10). Moreover, the results (figures 4(c) and (d),
table S12) showed that at relatively dry sites (mean
annual precipitation <373 mm yr−1, figure S2), the
observed control from GPP on EF remained similar
with that at relatively wet sites (mean annual precip-
itation >373 mm yr−1, figure S2). It demonstrates
the important role of stomatal controls on ecosys-
tem water loss through evapotranspiration in both
relatively dryer and wetter conditions. Similar con-
clusions have been drawn from studies at U.S. South-
ern Great Plains sites, where the strong relationship
between GPP and EF was observed during both relat-
ively dry and wet periods (Williams and Torn 2015).
However, the ELM significantly underestimated the
control from GPP on EF at forested sites over relat-
ively dry areas (figure 4(c), table S11). The underes-
timation was not significant at the forested sites over
relative wet areas, as well as at the non-forested sites
in both relatively dry and wet areas (figures 4(c) and
(d), table S11).

3.3. How deforestation affects atmosphere part of
land–atmosphere coupling
Together with the controls from vegetation and
soil, atmospheric conditions (i.e. temperature
and radiation) are also expected to mediate

surface-energy partitioning, and consequently con-
tribute to land–atmosphere coupling (Farah et al
2004, Peng et al 2018). For example, when the surface-
water supply is abundant, higher solar radiation
(a major source of surface energy) will potentially
provide more energy to evaporate surface water and
also affect plant stomatal behavior (Pieruschka et al
2010), exerting strong controls on latent heat flux
(figure S3). Such controls, however, might weaken
during dry periods, especially when the canopy is
dense and plants actively close stomata to prevent
water loses. In this case, removing vegetation cover
might help couple the incoming radiation back again
with soil evaporation and EF, even though the soil is
relatively dry (Gentine et al 2007).

In the study, solar radiation (R) exerted a much
stronger control on EF at forested sites (figure 5(a),
table S13), with a mean causal strength 27%–44%
larger than the controls from other drivers includ-
ing temperature (T), precipitation (P), and VPD
(figure 5(a), table S13). Deforestation tended to
reduce the controls from R, and P on EF, and main-
tained the directional T, and VPD on EF (figure 5(a),
table S14).

ELMmodel results revealed that although EF val-
ues at forested sites were relatively well simulated, the
directional controls from R, P, T and VPD on EF
were consistently underestimated (figures 5(a) versus
(b), table S15). Moreover, the ELM-simulated land
segment of land–atmosphere coupling was not sens-
itive to deforestation or changes in vegetation cover
(table S16). Themajor discrepancy is in how available
energy (solar radiation) reshapes the surface-energy
partitioning before and after the forest is removed.
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Figure 4. Land segment of the land–atmosphere coupling. Observed (a) and model simulated (b) probability densities of relative
transfer entropy from GPP (proxy for land stomata conductance) to EF for forested sites (black solid line) and non-forested sites
(black dash line). The observed (white) and model simulated (dark grey) relative transfer entropy from GPP to EF for forested
and non-forested sites in relatively dry sites (c) and relatively wet sites (d).

Figure 5. Observed (a) and ELMmodel simulated (b) the directional control from radiation (R), temperature (T), precipitation
(P), and VPD for non-forested (white) and forested (dark grey) sites.
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3.4. Implications for land-model development
and analysis
Land-surface models have been used to analyze
responses of land carbon, water, and energy dynamics
to ongoing environmental changes (Zhu and Zhuang
2013, 2015, Riley et al 2018, Fleischer et al 2019,
Medvigy et al 2019, Zhu et al 2019). LULCCs, such
as deforestation, significantly disturb the vegetation
cover and modify land-surface characteristics (Gash
and Nobre 1997, Davin and de Noblet-ducoudré
2010), thus imposing critical challenges in evaluat-
ing land-surface model fidelity in terms of simu-
lating carbon, water, and energy fluxes before and
after deforestation (Lawrence et al 2016). Signific-
ant effort has been conducted to parameterize land-
surface models and reduce the model-data discrep-
ancy (Decharme 2007, Chen et al 2010, Domínguez
et al 2010, Zhu et al 2016, Meier et al 2018, Cai
et al 2019, Song et al 2020). However, it has not
been fully investigated why model biases exist. This
study expands benchmarking of land-surface energy-
flux partitioning to include cause–effect relationships
that might be responsible for model biases. We high-
light potential model biases of leaf stomata conduct-
ance controls on surface-energy partitioning in the
ELM model, especially when the land surface is for-
ested, and the model’s significant underestimation
of how incoming radiation and precipitation con-
trol surface-energy partitioning for both non-forested
and forested land surfaces. In contrast, temperat-
ure and VPD are much more accurately represen-
ted in ELM in terms of their directional control on
surface energy partitioning. Therefore, this analysis
could direct future ELM model development to par-
ticularly focus on vegetation stomata conductance
parameterization, radiation transfer, and precipita-
tion partitioning (i.e. intercept, overflow) processes.

Analysis of deforestation effects on surface-energy
partitioning is often complicated by compounding
changes in vegetation cover and background climate
forcings (Winckler et al 2017). Isolating the effects
of these changes is challenging in observations but
is valuable for improving understanding of how and
why deforestation reshapes land-surface energy par-
titioning. This analysis applied a FLUXNET dataset
in which non-forested and forested sites are paired
with similar atmosphere conditions (e.g. temperat-
ure, precipitation) (Chen et al 2018). Thus, the dia-
gnosed biases in the directional controls could be
attributed to the processes that govern the directional
controls rather than originating from differentness in
background climate forcings.

4. Conclusion

Deforestation significantly modifies the land sur-
face by changing vegetation cover, disturbing
surface-energy partitioning, and land-atmosphere

interactions. In this study, we investigated the changes
in land-surface energy partitioning with a FLUXNET
dataset of paired forested and non-forested sites.
We applied nonlinear diagnostic metrics to quantify
how land and atmospheric states control surface-
energy partitioning using transfer entropy calcula-
tions. We found that: (a) deforestation simultan-
eously reduces latent and sensible heat fluxes due to a
reduction of both evapotranspiration and incoming
radiation, thus possibly leading to either an increase
or decrease in EF; (b) GPP exerted a strong control
on the EF in forests and deforestation weakens this
control; (c) incoming radiation was the most prom-
inent atmospheric variable mediating the EF; (d)
the ELM simulated the EF better at forested sites
than non-forested sites; however, it failed to cap-
ture most of the directional controls from either land
segment or atmosphere segment on surface-energy
partitioning at both forested and non-forested sites.
This study therefore highlights the need for bench-
marking model-simulated directional controls on
land-atmosphere water and energy fluxes to improve
land-model performance.
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