
UC Irvine
ICS Technical Reports

Title
An efficient multi-view design model for real-time interactive synthesis

Permalink
https://escholarship.org/uc/item/9hb167v1

Authors
Hadley, Tedd
Wu, Allen C.H.
Gajski, Daniel D.

Publication Date
1992-04-20

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9hb167v1
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

An~cient Multi-View Design Model
for Real-Time Interactive Synthesi§__

Tedd Hadley, _Allen C-H. Wu, and Daniel D. Gajski
~· ,,,,,,....

Technical Report 92-35
April 20, 1992

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-8059

hadley@ics.uci.edu

/J1< f !f 1 ves
z
0??
é3

e
)70, 7J

Abstract

This report describes an efficient multi-view design model for real-time interactive syn­
thesis of behavioral descriptions in.to layout data. We present a hybrid data structure
which combines all of the design data needed throughout multiple levels of abstraction,
including behavior, structure, and fl.oorplan, in.to a single unified view. We also give a
detailed time and space complexity analysis of the proposed design model, showing that
it provides fast updating capabilities for incremental design changes but <loes not require
an exorbitant amount of memory space. These features make this design model ideal for
user-controlled synthesis systems that support incremental design and re-design tasks.
Furthermore, the simplicity of the data structure allows easy implementation, mainte­
nance, and extendibility.

Contents

1 Introduction 1

2 Design Views for Interactive Synthesis 2

2.1 Interactive Tasks 3

2.2 Design Views 5

3 Design Model 6

3.1 Data Structure 6

3.2 Behavioral Model 9

3.3 Structure Model . 9

3.4 Floorplan Model 12
,,

3.5 Design Model for a Linear Topology Architecture 13

4 Complexity Analysis of Basic Operations 14

4.1 Space Requirement 14

4.2 Time Complexity Analysis 16

5 Conclusion 18

List of Figures

1 Views for interactive synthesis 4

2 Incremental scheduling and binding example 5

3 The hybrid data structure. 7

4 The two data structure entities. 7

5 The behavioral model: (a) a VHDL description, (b) the CDFG model. 8

6 The structure model: (a) the structural supernode formation, (b) the
structural netlist and control state table. 10

7 The floorplan model: (a) the structural model, (b) the floorplan with a
datapath, (c) the floorplan with multiple datapaths. 12

8 The design model: (a) structural model, (b) datapth formation, (e) fl.oor-
plan model. 13

9 A linked list example. 15

10 The hierarchical search time complexity example. 18

11

1 Introduction

Typical high-level synthesis systems take as input a behavioral description and output

a register-transfer level design implementing the given behavior. Several common in­

termediate tasks occur within the synthesis process to convert the abstract behavior to

structure. These are transformations, scheduling, module selection, and allocation. A

survey of high-level synthesis tasks is given in [McPC88] and [GDWL92].

In most high-level synthesis systems, each intermediate task is performed automat­

ically, without any intervention by the user. In addition, each tool or procedure per­

forming a task typically does not provide any indication as to what steps were taken

or decisions performed to convert the input description to the output result. From the

viewpoint of an experienced human designer, such "black-box" systems are unaccept­

able due to the inaccessible workings of the tools and algorithms involved. Hence, in

recent literature there has been increasing interest in interactive synthesis systems and

methodologies [CPTR89, WRJF92, BuE189, Jenn91, Knap89].

An ideal system for interactive synthesis must allow the user to interruptor interfere

with the design process at any point. It must provide support for iterative, re-designing

tasks such as rescheduling and rebinding. Furthermore, physical estimates and qual­

ity measures must be made readily and rapidly available in order to aid the user in

the decision-making process. To support user tasks, an interactive system must provide

graphical views into the design, visually describing the potentially complex relationships

between behavior, structure, and floorplan, and allowing the user to immediately per­

ceive the consequences of his or her decisions. To provide for these requirements, an

interactive system needs an underlying data model which can combine all of the design

data produced at multiple levels of abstraction into a single unified view. This data

model must also provide a fast updating capability to support real-time incremental

changes.

Previous work in unified design models has attempted to link the various design

domains in order to achieve a single coherent data-structure. DDS [KnPa85] divides

1

design information into four subspaces having no implicit relationships with each other:

behavior, structure, physical, and timing/control. These subspaces are then linked with

explicit bindings. Another scherne is used by CORAL 11 [B1TK88], which rnaintains fine

grained links between the behavioral specification and generated structure by storing

link inforrnation externally for each design stage. Both of the above rnodels provide a

unified representation for design information in different design dornains. However, the

use of bindings which exist outside the design subspaces makes it difficult to irnplement

the real-time response required for an interactive system.

In this report, we presentan effi.cient design model for real-time interactive synthesis.

Our design model uses a hybrid data structure to represent behavior, structure, and

floorplan. This data structure is easily transformed into views (including behavior,

datapath, control-unit, and fl.oorplan) for interactive synthesis tasks. We also give a

detailed space and time complexity analysis showing that this design model provides fast

updating capabilities for incremental design changes. These features make the design

model ideal for user-controlled synthesis systerns that support incremental design and

re-design tasks.

The rest of the report is organized as follows. Section 2 describes the design views

needed for interactive synthesis. Section 3 presents the proposed design model. Section

4 gives a detailed time and space cornplexity analysis of the rnodel. Finally, Section 5

sumrnarizes our approach.

2 Design Views for Interactive Synthesis

There are several tasks in interactive synthesis that are unique frorn autornatic synthesis.

These tasks may be categorized as partial design, incremental design, and re-design.

Each task in interactive synthesis rnay require a combination of design views. This

section describes the tasks in interactive synthesis and lists the design views needed for

each task.

2

2.1 Interactive Tasks

Typically, interactive synthesis can be applied in one of two ways. In the first, the

interactive-synthesis tool incorporates an initially complete or partial design (either gen­

erated automatically using synthesis tools or developed by the user), and then allows

the user to improve it by re-scheduling, re-binding, module selection, structural parti­

tioning, and fl.oorplanning, guided by the information provided by the design views. In

the second application, the user performs module selection, scheduling, binding, struc­

tural partitioning, and fl.oorplanning incrementally according to the hints and quality

measures provided by the views.

The basic interactive synthesis tasks are: (1) module selectíon, (2) partía/ scheduling,

(3) partial binding, (4) structural partitioning, (5) incremental scheduling and binding,

(6) re-binding, (7) re-scheduling. and (8) floorplanning.

Module selection is done to allocate an initial set of physical components for the

target design. The set need not be complete; for example, it should not be necessary for

the user to select every register needed in a design. Functionality, styles, and physical

information of the modules available from the library should be provided to the user.

Partial scheduling allows the user to specify time-steps at arbitrary locations in the

design and assign operations to them.

Partial binding assumes a set of prior selected modules. Given a behavior, the user

may wish to bind data-fl.ow operators or variables to physical modules. While such a

binding may imply a crude schedule, it should be possible for the user to do partial

bindings given only a behavior and a set of allocated modules.

Structural partitioning allows the user to group highly connected modules into blocks.

Incremental scheduling and binding is an iterative process where at each step the user

adds a time-step to the behavior, assigns operations from the behavior to the time-step,

and specifies modules to implement the data-fl.ow operations.

Re-binding allows the user to explore alternate bindings by assigning operators or

3

variables to different modules, or swapping two operator or variable assignments among

two modules.

Re-scheduling allows the user to examine the results of moving operations to different

time-steps.

Floorplanning tasks are interactive placement and routing, and possibly port repo­

sitioning and module rotation.

Structure

Control and Data-flow

Sta Cond CondVlll .. Control Oufput NHIStai.
T1 ALU.CAOD-1 T2
T2 ALU.CADO- 1 T3
T3 ALU.CSUB- 1 T4
T4 COMP.CE0· 1 T5

R5.CLOA0· 1
TS R5.0(0) '1' ALU.CADD· 1 T&

'<1 ALU.CADO- 1 T&
T8 ~ '1' ALU.CSUB- t T8

MIA.T.CMULT • 1
'<1 MULT.CMULT • 1 T7

T7 ALU.CAOD- t T&
T8 ALU.CADD • 1 :·····i······:·····+·····:·····+·····:······~·····+·····:·····+···i

TlmeStepa
Floorplan

Figure 1: Views for interactive synthesis

4

2.2 Design Views

From the previous section it is clear that multiple views may be needed for each inter­

active synthesis task. The primary design views are (1) control/data fiow behavior, (2)

time steps, (3) structure, and (4) physical.

Figure 1 shows what the various views could look like from a user's perspective. Con­

trol and data-flow views capture the abstract behavior of the design. Time steps show

the control values assigned in each state. The structural view shows the connectivity of

the design and the current component set. The physical view shows the floorplan of the

design in terms of blocks, data-paths, control units, modules, buses, and ports.

It is also necessary that all of the views required for a particular task coordinate

closely together such that changes in one view will be reflected in others. Furthermore,

all the design information available should be accessible from any one design hierarchy.

For instance, Figure 2 shows an incremental scheduling and binding example. After

Floofl'IM- -

(•) (b)

Figure 2: Incremental scheduling and binding example

assigning the three ports (A,B,and C) into separate registers, the user assigns a timestep

for the add operation and binds it to the ALU. In the second step (Figure 2(a)), the

user assigns a timestep for the add operation and binds it to the ALU. The result of the

add operation must be bound to a register. The structural and floorplan views provide

information about which variable is assigned to which register. By examining these

5

views, the user can determine that the port variable a is no longer used in the design.

Since it is bound to register Rl, that register is free to accept a new value. Moreover,

ií the user wishes to know the corresponding layout connection oí a data-fl.ow path (for

instance Path A in Figure 2(b)), the fl.oorplan view can provide that information, as

illustrated in Figure 2(b).

3 Design Model

To support the interactive synthesis tasks described in the previous section and to pro­

vide a highly coordinated view environment, an efficient multi-view design model is

needed. This section describes our design model. We first describe the data structure,

and then show how the design behavior, structure, and floorplan views are represented.

3.1 Data Structure

In our design model, we use a hybrid data structure to represent behavior, structure,

and fl.oorplan (Figure 3). For simplicity, the chip level will be described as a single node

representing the goal design and forming the root oí the tree (although the data structure

and subsequent analyses can be trivially extended to include a fourth level oí hierarchy:

the MCM level). All design hierarchies are represented using a single hierarchical graph

data structure. The relationships between different design hierarchies are initiated by

a grouping process. For instance, a structural node will contain a set oí behavioral

nodes and edges, while a floorplan-module node will contain a set oí structural nodes, as

indicated in Figure 3. In order to combine the nodes in different hierarchies, each node

in one hierarchy may be a parent or child oí nodes in another hierarchy. This means

that a node may have multiple parents, one for each possible hierarchy.

The data structure is composed oí only two entities: the supernode and the superedge

(Figure 4). A supernode has one or more input and output ports. Each port may

connect to a superedge. Each superedge connects two ports belonging to two supernodes,

6

Figure 3: The hybrid data structure.

&.oper Nodo

.,,.,.,., ""_

~~~ 
!.. .... ·:_ i.~j"~ J .... ) 

.... J 

Figure 4: The two data structure entities. 

7 



respectively, in the same hierarchy. A supernode may have zero or more sets of children. 

Each set contains one or more supernode or superedge children belonging to another 

hierarchy. Each supernode or superedge has a unique set of attributes that establish the 

context in which it is used. 

Having only two major data types in the data structure considerably simplifies the 

implementation. Only one set of routines needs to be written and debugged to support all 

possible operations on the connectivity of the data structure. In addition, the simplicity 

of the data structure allows new design views to be added with a minimum of effort. 

Typical high-level synthesis system implementations use unique data structures for each 

design view. This requires a separate implementation for each data structure, which 

increases the amount of time spent debugging applications and decreases the overall 

reliability of the system. 

enttty example la 
port (a: In BIT~O to 3); 

b: in BIT O to 3¡; 
e: lnBITOto3; 
~: out BI ¡o to a¡: 
ki ~~ ~lt g ¡~ ~ i 

and axample 

archltecture body of exarnple Is 
begln 

prooess begln 
tt(a>b) 

h • (a+b)x((a+b¡xo); • f:.· {l>+-O)+((a+b xc); 

k • a+b; -20ns 
end W; 

end procesa; 
end body; 

(a) 

O : Extemal signa! 

Q : lntamal signa! 

(b) 

.. ··. ··· ... 

,,,,"' 

\ 
\ 

' et \ 

,,'' ,, 

. • . 
• 1 
1 
1 

I 

' 

Figure 5: The behavioral model: (a) a VHDL description, (b) the CDFG model. 

8 



3.2 Behavioral Model 

We use a control/data-:flow graph to represent behavior. Control :flow is represented by 

supernodes whose edges indicate control transitions. Control-flow supernodes may be 

conditionals, loops, or data-flow blocks. Data-:flow supernodes may be operators, ports, 

or variables. Edges between data-flow supernodes indicate data :flow. In addition, an 

explicit timing edge between data-flow supernodes indicates a delay constraint. 

Figure 5(b) shows a CDFG that corresponds to the VHDL program in Figure 5(a). 

It consists of five control-supernodes of which Vi and Vs are conditionals, and Vi, V3 

and V4 are data-flow blocks. Edge ei indicates a delay constraint of 20ns over data-flow 

supernode Vi . 

3.3 Structure Model 

Structure is represented by supernodes corresponding to ports, datapaths, modules, 

components, or control units. Supernodes that represent storage components have data­

flow superedge children corresponding to storage requirements between time-steps. Su­

pernodes that represent functional components have data-flow supernode children. Su­

peredges between structural supernodes represent physical connections. The children 

of superedges are data-flow edges between data-flow supernodes. Physical connection 

superedges may themselves be grouped into interconnect supernodes corresponding to 

buses or multiplexors. Control-unit supernodes contain data-:flow supernodes corre­

sponding to time steps. Each time-step supernode contains sorne number of data-:flow 

operator children corresponding to execution in that time interval. 

Using the example in Figure 5, given an adder, a multiplier and a comparator, a 

scheduler partitions this CDFG into 6 time steps. The allocator assigns three registers for 

storage su ch that variables {a, d, h}, {e, b, g} and {e, f, k} are stored in registers R1 , R2 

and R3, respectively. Figure 6(a) shows the structural model of which V1, Vs, and Vg 

are component supernodes that contain the sets of data-flow supernode children { comp }, 

{multl,mult2}, and {addl,add2,add3,add4}, respectively. V4 , Vs, and V6 are storage 

9 



Dapath section Control section 

(a) 

(b) 

P~:i:.:n1 Control ouput Status Next atep 

Regiater lnterconnect 

Step R1 R2 R3 Unit1 Unlt2 Unit3 Unl14 Unlts 

load load load •1 •2 83 •1 82 a3 •1 82 •1 •2 •1 •2 con d. 

t1 1 1 1 o 1 o o 1 o 1 o o o o o o t2 

t2 o o o o o o o o o o o o o o o 011 t6lt3 

t3 1 o o 1 o o o o o o o o o 1 o o t4 

t4 o 1 1 o o o 1 o o o 1 o 1 o 1 o t5 

t5 1 1 o 1 o o o o 1 o o 1 o o 1 o e top 

t6 o o 1 o o o o o o o 1 o o 1 o o stop 

(e) 

Figure 6: The structure model: (a) the structural supernode formation, (b) the struc­
tural netlist and control state table. 

10 



supernodes that contain the sets of data-fl.ow superedge children {a, d, h}, {e, b, g} and 

{c,J,k}. Vi, V2, Vs, Vio, Va and Vis are port supernodes. Finally, Vi4, Vis, V16, V11 

and Vis are control-unit supernodes. Each control-unit supernode consists of a set of 

time steps, and each time step contains a set of data-fl.ow supernode children that can 

be executed in that time step. For example, the data-fl.ow supernode comp in Vi is 

assigned to the time step t2 • Thus, the control supernode Vis consists of a time step t2 

containing the data-fl.ow supernode comp. 

We now describe how the structural model can be mapped onto a structural netlist. 

We :first describe the datapath formation. Figure 6(b) shows the resulting datapath 

structural netlist. The storage supernodes V4, Vs and Vi are mapped to Regl, Reg2 

and Reg3, respectively. The component supernodes V7 , V8 and Vi are mapped to a 

comparator, a multiplier and an adder. Each superedge denotes a physical connection 

between two supernodes. When a supernode has more than one incoming superedge en­

tering one of its inputs, a selector ( e.g., a multiplexer) is needed to select the data input 

from different sources. For instance, supernode V4 (Regl) has 3 incoming superedges; 

therefore, a 3-input selector (I nterconnect unitl) is needed on its input. lnterconnect 

units may be represented implicitly, or explicitly by grouping superedges into intercon­

nect supernodes 

We form a control-state table from the control section of the structural model, as 

shown in Figure 6( c). Using a given component library, we can determine the control pins 

for each component. For example, if we choose a 3-input multiplexer with 3 select-inputs 

for Interconnect unitl, it has three control inputs, sl, s2, s3. Present state, status and 

next state can be derived directly from the structural model. For example, time step tí 

in Vi4 (Figure 6(a)) consists of three read operations (rdl, rd2, rd3) to load input data 

from ports a, b and e to registers Ri, R 2 and R3 • rdl reads input data from port a and 

stores it into the register R1 via Interconnect unitl (Figure 6(b)). Therefore, the control 

outputs for the load input of R1 and the select input sl of Interconnect unitl are set 

to one. Since this control supernode ( Vi4 ) is not a branch node, the next state is the 

first time step ( t2) of its successor (Vis). On the other hand, for a conditional branch 

node Vis, the next state depends on the conditional status (row t2of Figure 6(c)). 

11 



3.4 Floorplan Model 

Based on the datapath and control-unit formation, we can directly map the structural 

model onto a chip :floorplan. Using Figure 6 as an example, the structural netlist is 

divided in to four parts (Figure 6( a)): datapath, control, input ports and output ports. 

Figure 7(b) shows the chip floorplan. The datapath section is mapped to a floorplan 

datapath that can be implemented using a bit-sliced stack or standard cells, while the 

control section is mapped to a control unit that can be implemented using a PLA 

or standard cells. The area and dimension of the datapath and control unit can be 

obtained using layout models [KuRa91, WuCG91, Zimm88] or by running target layout 

tools. Each port supernode is mapped to a chip pin consisting of an 1/0 pad anda pad 

driver. Finally, the superedges crossing the boundaries of the datapath, control unit, 

and input/output ports are mapped to the routing area of the chip. 

Control section 

(a) 

a 

(b) (o) 

Figure 7: The floorplan model: (a) the structural model, (b) the floorplan with a data­
path, ( c) the floorplan with multiple datapaths. 

The datapath section of the structural model can be further partitioned into multiple 

12 



datapaths. For example, the dotted lines in Figure 7(a) show that the datapath section 

can be divided into two smaller datapaths, DP1 and DP2. In this case, each datapath 

is mapped to a separate datapath on the fl.oorplan, e.g., DP1 is mapped to Datapathl 

and DP2 is mapped to Datapath2, as shown in Figure 7(c). 

3.5 Design Model for a Linear Topology Architecture 

In the previous sections, we described the design model for a random-topology archi­

tecture (i.e., point-to-point). In this section we will describe the design model for a 

multi-bus datapath with a two-phase dock. 

We use the example in Figure 5 to describe the structural and :floorplan models. The 

unit/storage binding result is the same as described in Figure 6 except that registers are 

grouped into a single register file. The register file consists of four ports ( one read-only, 

one write-only and two read/write ports) three register cells, as shown in Figure S(a). 

Datapalh sectlon 

(a) 

Bua1 

"""" _ ... 

o...,.. .. 

Bua4 

(b) (o) 

Figure 8: The design model: (a) structural model, (b) datapth formation, ( c) fl.oorplan 
model. 

13 



Figure 8(b) shows the datapath structural netlist. The supernode V 7 has been 

mapped onto a register file that consists of three register cells, Reg_celll, Reg_cel/2 and 

Reg_cel/3 and four ports, R, R/Wi, R/W2 and W. The component supernodes Vs, Vg 

and Vio have been mapped to a comparator, a multiplier andan adder. The input-port 

supernodes V4, Vs and V6 are mapped to input ports a, b and e, and the output-port 

supernodes V1, V2, V3 and V11 are mapped to output ports h, g, k and cond. Using the 

multi-bus architecture, all superedges that share the same connection are grouped into 

a bus. For instance, superedges ei, e2, e4, es and es are mapped to wires wi, w2, w3 , W4 

and w5 which are connected to the Bus3 sharing the common source (R port of the 

register file) via the wire W 8 • Finally, a control-state table can be derived directly from 

the structural model in the same manner described in the previous section. 

The final structural netlist is divided into five parts: datapath , control, register file, 

input ports and output ports. The corresponding fioorplan model is shown in Figure 8( c). 

4 Complexity Analysis of Basic Operations 

To support the interactive synthesis tasks described in Section 2, six basic operations 

are required: (1) initial setup, (2) adding an edge or link, (3) deleting an edge or link, 

( 4) adding a node, (5) deleting a node, and (6) path searching. 

In the following sections, we describe the space requirement for the design model and 

the time complexities of each operation. 

4.1 Space Requirement 

Let n 1 and n2 be the number of data-fiow nodes and edges, and let n3 and n4 be 

the number of control-fiow nodes and edges in the CDFG. Let m1 be the number of 

components in the structural hierarchy and m2 be the number of modules in the floorplan 

hierarchy. 

We will analyze the space requirement in two parts: (1) the space complexity based 

14 



e :Superedge. 
o :Supernode. 

(a) (b) 

Figure 9: A linked list example. 

on the number of entities (i.e., supernodes and superedges) used in our design model 

and (2) the space complexity based on the number of links between the entities in the 

same and different hierarchies. Our data structure maintains a linked list that contains 

ali the entities in the same hierarchy. In addition, each entity contains a linked list 

of its parents and children. For instance, Figure 9( a) shows a CDFG example that 

contains two control-fiow supernodes and one control-fiow superedge. Each control-fiow 

supernode contains one data-fiow supernode and three superedges. Figure 9(b) shows 

the corresponding linked list. 

In the CDFG (i.e., leaf-level), one supernode is needed to representa data-fiow node 

as well as a control-fiow node. Also, one superedge is needed to represent a data-fiow 

edge as well as a control-fiow edge. Therefore, the space complexity of the CDFG is 

O(n1 + n2 + n3 + n4)· 

In the structural level, one supernode is needed to represent a component. Since 

interconnect units are represented implicitly in our structural model, components only 

include functional and storage units. Furthermore, the control section of the structural 

netlist is identical to the control-fiow graph; hence, no additional entities are needed 

in the structural level to represent the control section. Since in the worst case each 

behavioral superedge is mapped onto one structural superedge, the space complexity 

of the structural model is O(m1 + n2). Similarly, in the fioorplan level, one supernode 

15 



is needed to represent a module but the connections between modules are represented 

implicitly. Therefore, the space complexity of the floorplan model is O(m2 + n2 ). 

We now analyze the space complexity of links between nodes in the same hierarchy. 

To maintain a linked list for all the entities in the same hierarchy, we need n3 + n4 links 

for the behavioral hierarchy, m1 links for the structural hierarchy, and m2 links for the 

flooplan hierarchy. Therefore, the space complexity is O(n3 + n4 + m1 + m2). 

The links between hierarchies may have a many-to-many relationship. The links 

between the data-fl.ow and control-flow have a space complexity of O((n1 + n2) X n3)· 

Similarly, the space complexity of the links between the CDFG and structural level 

is O(m1 x (n1 + n2 + n3 + n4 )). Finally, the space complexities of the links between 

structural/fl.oorplan and floorplan/chip levels are O(m1 x m2) and O(m2), respectively. 

The above complexities considers the worst-case scenario. In practice, it is reasonable 

to assume that each data-fl.ow node/edge will map onto a single component and each 

component will map onto only one module. Therefore, control-flow supernodes contain 

at most n1 +n2 children, structural supernodes contain at most n1 +n2 +n3+n4 children, 

and fl.oorplan supernodes contain at most m1 children. Thus, 0(2(n1 + n 2) + n3 + n4 + 
m1 + m 2) space is needed to link the entities between different hierarchies. 

4.2 Time Complexity Analysis 

This section discusses the time complexity of the six basic operations. 

l. lnitial setup. Given a CDFG and an initially complete or partial design with 

a schedule, a module set, and structural bindings, this step constructs the links 

between the different hierarchies. To map the CDFG onto the structure requires 

a search through the structural component linked list for each CDFG node and 

edge. Therefore, the time complexity is O(m1 X (n1 + n2 + n3 + n4)). Similarly, it 

takes O(m1 x m2) time to map the structural components onto the modules and 

and O(m2 ) time map the modules onto the chip. 

16 



2. Adding an edge or link. Adding a link between two entities of different hierarchies 

or an edge between two entities in the same hierarchy requires a search through 

the entity's linked list. Thus, it takes O(n1 + n2 + n3 + n4 + m1 ) time to insert a 

link between the CDFG and structural levels, or to insert an edge in the CDFG. 

Similarly, it takes O( m1 + m2) time to insert a link between the structural and 

:f:loorplan levels, orto insertan edge in the structural level. Finally, it takes O(m2) 

time to insert a link between the :f:loorplan and chip levels, or to insert an edge in 

the :f:loorplan level. 

3. Deleting an edge or link. Deleting a link consists of two steps: locating the node 

and locating the edge or link. It takes O(n1 +n2 +n3 +n4 ), O(m1 ), and O(m2) time 

to locate a node in the CDFG, structural, and :f:loorplan hierarchies, respectively, 

and the same time complexity to locate the edge or link. 

4. Adding a node. Since each hierarchy maintains a linked list of all the entities, 

adding a node to that hierarchy takes constant time. 

5. Deleting a node. Deleting a node requires a search through the entity's linked 

list. Thus, it takes O(m1 ) and O(m2) times to delete a node in the structural and 

floorplan hierarchies, respectively. lf the child links of the deleted node are not 

empty, it takes constant time to reassign the node and parent hierarchy links. 

6. Path search. The main feature of this operation is to identify the data-:f:low path 

and its corresponding layout orientation path. To locate a path in the CDFG takes 

O(n1 + n2 + n3 + n4 ) time complexity. However, only constant time is needed to 

trace the corresponding path in the structural and :f:loorplan hierarchies. 

From the above analysis, we observe that the worst time complexity among the 

operations is proportional to the number of nodes and edges in the CDFG. However, for a 

large design the number of nodes and edges of the CDFG can be considerable. Therefore 

we use a two-level hierarchy CDFG (Figure 9) which reduces the average search time 

substantially by permitting the identi:fication of the control-:f:low node :first followed by 

the data-:f:low node. For example, consider a CDFG containing 1,000 data-flow nodes 

17 



4000 

500 1000 
# of control-nodell 

Figure 10: The hierarchical search time complexity example. 

and 3,000 data-fl.ow edges. Figure 10 shows the relationship between the average search 

time and the number of the control-fl.ow nodes. If the CDFG has 100 control-fl.ow nodes 

in which each node contains in average of 40 data-flow entities, the worst-case search 

time will be reduced from 4,000 to 140 by first identifying the control-flow node and 

then the data-flow node. 

5 Conclusion 

We have presented an effi.cient multi-view design model for real-time interactive synthesis 

supporting interactive tasks at the behavioral, structural, and floorplan levels. The 

hybrid data structure implementing our design model combines all of the design data 

generated in the synthesis process in to a single unified view. For incremental design 

changes, the space and time complexity analyses shows that updating the design model 

takes either linear or constant time without excessive memory overhead. These features 

make the design model ideal for user-controlled synthesis systems which require fast 

updating capabilities for incremental design changes. Another important feature of the 

design model is the simplicity of the data structure which allows easy implementation, 

maintenance, and upgrading capabilities. 

We have implemented an interactive synthesis system prototype on top of the design 

18 



model proposed which currently supports a subset of the described interactive tasks. The 

interactive graphical displays are implemented using OSF /Motif and the Xll Window 

System. 

19 



References 

[BlTK88] R.L. Blackburn, D.E. Thomas, P.M. Koenig, "CORAL 11: Linking Behavior 
and Structure in an IC Design System," in Proc. 25th DAC, pp. 529-535, 
1988. 

[BuE189] O. A. Buset and M. l. Elmasry, "ACE: A Hierarchical Graphical Interface 
for Architectural Synthesis," in Proc. 26th DAC, pp. 537-542, 1989. 

[CPTR89) C.M. Chu, M. Potkonjak, M. Thaler, and J. Rabaey, "HYPER: An Interac­
tive Synthesis Environment for High Performance Real Time Applications", 
in Proc. ICCD-89, pp. 432-435, 1989. 

[GDWL92] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: Introduction 
to Chip and System Design, Kluwer Acedemic Publishers, 1992. 

[Jenn91] G. Jennings, "GRTL - a Grpahical Platform for Pipelined System Design", 
in Proc. EDAC-91, pp. 424-428, 1991. 

[KnPa85] D.W. Knapp and A.C. Parker, "A Unified Representation for Design lnfor­
mation," in Proc. of the 1th CHDL-85, pp. 337-353, 1985. 

[Knap89] D.W. Knapp, "An Interactive Tool for Register-Level Structure Optimiza­
tion," in Proc. 26th DAC, pp. 598-601, 1989. 

[KuRa91] F. J. Kurdahi and C. Ramachandran, "LAST: A Layout Area and Shape 
Function esTimator for High Level Applications," in Proc. EDAC-91, pp. 
351-355, 1991. 

[McPC88] M.C. McFarland, A.C. Parker, R. Camposano, "Tutorial on High-Level 
Synthesis," in Proc. 25th DAC, pp. 330-336, 1988. 

[WRJF92] R.A. Walker, S. Ramabadran, R. Joshi, S. Flatland, "lncreasing User ln­
teraction During High-Level Synthesis", in Proc. Micro-92. 

[WuCG91] A. C-H Wu, V. Chaiyakul and D. D. Gajski, " Layout Area Models for 
High-Level Synthesis," in Proc. ICCAD, 1991. 

[Zimm88] G. Zimmermann, "A new Area and Shape Function Estimation Technique 
for VLSI Layouts," in Proc. 25th DAC, pp. 60-65, 1988. 

20 




