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The paper analyzes the impact of the initial observation on the problem of testing
for unit roots. To this end, we derive a family of optimal tests that maximize
a weighted average power criterion with respect to the initial observation. We
then investigate the relationship of this optimal family to unit root tests in an
asymptotic framework. We find that many popular unit root tests are closely
related to specific members of the optimal family, but the corresponding members
employ very different weightings for the initial observation. The popular Dickey-
Fuller tests, for instance, are closely related to optimal tests which put a large weight
on extreme deviations of the initial observation from the deterministic component,
whereas other popular tests put more weight on moderate deviations. At the same
time, the power of the various unit root tests varies dramatically with the initial
observation. This paper therefore helps to explain the results of comparative power
studies of unit root tests, and allows a much deeper understanding of the merits of
particular tests in specific circumstances.
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ymptotic distributions
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1. INTRODUCTION

Few papers in the large unit root testing literature explicitly address the role
of the beginning of the data series y;. In analyzing the properties of these tests,
all papers must make an assumption on the deviation of yo from its modelled
deterministic part — call this deviation £. As is known from Monte Carlo studies
and shown analytically below, the way the nuisance parameter £ is dealt with affects
profoundly the power performance and the relevant asymptotic theory, as well as
optimality results for testing procedures. The motivation behind this paper is to
develop optimality theory with regards to testing a unit root under various possible
assumptions on the initial condition, and also to show the implicit assumptions
made by various tests currently in use for testing for a unit root. In this way we
gain a deeper understanding of the properties of these now ubiquitous tests. In
addition we derive a general family of feasible tests that have known optimality
properties.

There has been great emphasis on ’getting the deterministic terms right’ in the
unit root testing literature, both theoretically and in practice. This is important
for both the null and alternative model. In one sense, the initial condition has
an effect similar to these deterministic terms. A fixed nonzero initial condition
introduces a term that is indistinguishable from a mean shift when there is a unit
root and a term which asymptotes to zero when the root is less than one. The
primary difference between the typical deterministic terms and the initial condition
is this differential behavior under the null and alternative hypotheses. The usual
method for dealing with deterministic terms, invariance, is not appropriate in this
situation. Instead, we derive the implication that for any unit root test one must
take either implicitly or explicitly take a stand on what the initial condition is.

The idea that one must take a stand on the initial condition seems at odds with
the majority of the literature. Typically, most papers derive their tests under the
assumption that ¢ is constant or comes from a bounded distribution. In terms of
the convergence of y; suitably standardized to an Ornstein-Uhlenbeck process such
assumptions have no effect as ¢ similarly transformed disappears at rate T%/2. Thus
under this assumption, one can ignore this term. Secondly, in terms of optimality
under assumptions such as normality of the underlying error process, this term in
the likelihood similarly disappears asymptotically and so can be ignored. However
in fixed sample sizes this term may well be relatively large compared to the terms
that do not disappear asymptotically, and hence the typical functional central limit
theorem results may not give good approximations to the small sample distributions
and power functions of the tests. Tests which are theoretically optimal for large
samples when we ignore this term may well be suboptimal in practice.

We deal with both of these implications for the initial condition. In terms of
optimality, we relax the assumptions on £ to include the cases where it disappears
but also cases where £ does not disappear asymptotically. The second of these
allows the presence of the initial condition to remain asymptotically, and hence
provide potentially more relevant asymptotic approximations for models where £ is
relatively large. As we cannot appeal to invariance to rid ourselves of this nuisance
parameter, we instead derive a family of tests which are optimal in the sense of
maximizing a weighted average power over different values of ¢.

By comparison to the optimal family, this analysis allows us to infer what implicit
weighting is made by commonly applied tests for a unit root. For some tests we



are able to show that they are indeed members of the optimal family for a certain
weighting function. Whilst the Dickey-Fuller statistics do not belong to this optimal
family, they exhibit a very close relationship to test statistics which optimally test
a standard mean reverting model against a special integrated model. For other
popular tests, we are able to identify a specific member of the optimal family such
that the asymptotic power of the test and the corresponding optimal test becomes
very much comparable.

These correspondences allows us to much deeper understand the merits of var-
ious unit root tests with respect to their handling of £. The implicit weightings
explain much of the behavior in terms of power of different unit root tests. We
find for the popular augmented Dickey Fuller test that it places very high weight
on extremely large values of the initial condition relative to the variance of the
error process. For other tests which fare well in Monte Carlo studies, like tests
based on Weighted Symmetric estimators, the implicit weighting is concentrated
on much smaller values of £. Given that both tests are close to optimal for different
assumptions concerning &, the lower power of the Dickey Fuller tests is a natural
consequence of the typical set-up of Monte Carlo studies which use relatively mod-
erate values for the initial condition.

In the next section we build the basic model and discuss various methods how to
deal with the nuisance parameter £. We then consider a family of tests which max-
imize weighted average power over different initial conditions, where the weighting
function is a given distribution function in both small and large samples. Section
four relates commonly employed unit root tests to members of the optimal family.
The relationships allow us to explain the differences in robustness to the initial
condition between the tests and also the power trade-offs implicit in the tests. Fi-
nally, we derive a family of feasible tests which are asymptotically equivalent to the
family of optimal tests.

2. HYPOTHESIS TESTING AND THE INITIAL CONDITION

We will consider the following general model in this paper

vw = XB+p+tw t=0,1,---,T
(2.1) wy = pwi_1+ vt t=1,---,T
wyp = &

where X, is a predetermined vector which has no constant element, Xy = 0 and u, 3
and ¢ are unknown. We also assume that the regressor matrix X = (Xy,---, Xp)/
has full column rank.

We are interested in distinguishing the two hypotheses

(2.2) Hy : p=1
H]_ : p<1

This model has received a great deal of attention. Test statistics typically do
not have approximate normal distributions, and much of the intuition from the
stationary world as to which tests are optimal does not hold for this testing sit-
uation. Many feasible test statistics have been suggested, the most famous being
Dickey and Fuller’s (1979) t-test and p-test. Monte Carlo evidence leads Pantula,



4

Gonzalez-Farias, and Fuller (1994) to promote tests based on Weighted Symmet-
ric regressions. Leybourne (1995) suggests a test based on forward and reverse
Dickey-Fuller regressions. None of these tests have known optimality properties.

Less work is concerned with the derivation of optimal tests. Dufour and King
(1991) derive the Point Optimal Test and Locally Best Test for independent Gauss-
ian disturbances v; and an independent zero-mean normal ¢ for various p. Elliott,
Rothenberg, and Stock (1996) derive the family of asymptotically optimal tests
against a fixed alternative p < 1 when ¢ is bounded in probability and (possibly
correlated) Gaussian v;. Rothenberg and Stock (1997) extend this to alternate
distributions on the error terms. Elliott (1999) derives the family of asymptotically
optimal tests for independent v; when ¢ is drawn from its unconditional distribution
under the fixed alternative.

In most parts of this paper, we will consider ¢ to be an unknown and fixed
nuisance parameter. With y = (y1,---,y7), w = (wi,--- ,wr) and e a T x 1
vector of ones, we can write the last T observations of the model more compactly
as

y=XpB+ pye+w.
Note that the expectation of w is not zero, but rather E[w] = £R(p), where R(r)
is the T x 1 vector R(r) = (r,72,--- ,7T). Define the T x T matrix A(r) as

1 0 0 -~ 0 O
- 1 0 .. 0 0
A(r) = O —r 1 .-« 0 O
0O 0 0 -+ —r 1
and let V be the variance-covariance matrix of v = (vq,--- ,vr). Then A(p)(w —

£R(p)) = v, and the variance-covariance matrix X(p) of w satisfies A(p)X(p)A(p)’ =
V. Finally, it will frequently be useful to consider the properties of the vector u =
w — &e. With T(r) = R(r) — e, we find that Efu] = £ (p).

We will use tildes to denote vectors and matrices which describe the model for

all T + 1 observations: Let § = (yo,%), X = < i ;)( > ,€a(T+1)x1 vector of

ones, w = (§,w)’, R(r) = (L, R(r))/, @ = (0,'), Y(r) = R(r) — & and 8 = (u, ).
We can then write § = X3+ @, E[W] = £R(p), and the variance-covariance matrix
of 1 is given by ¥(p) = diag(0, £(p)).

From a statistical perspective, the initial condition £ is just an additional nui-
sance parameter besides the variance-covariance matrix of v, 8 and u. We are not
primarily interested in its value, but we must be concerned about its impact on
the Data Generating Process in order to construct useful tests and evaluate their
performance.

Under the null hypothesis (p = 1) different values of ¢ induce simple mean shifts
in the data. Hence testing methods which are invariant to the mean u will be
invariant also to . Indeed, in this model we cannot separately identify the mean ¢
and &. This follows as under the null hypothesis § = X3+£6R(1)+w = X+ Eé+w
and € is in the column space of X , so that the estimated mean will estimate (1 +£).
Under the alternative hypothesis (p < 1), however, altering £ amounts to adding
a geometrically decaying series A¢p? to the data. It is interesting to note that the
exact form of the series A¢p’ depends on p — the very value we are conducting
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inference on. Clearly invariance to the mean does not prevent statistics to change
for different values of £. Statistics which are invariant to the mean are necessarily
similar for &, but their distribution under the alternative and hence their power is
affected by &.

It is long known that the power of unit root tests depends on the initial condition
in small samples, see Evans and Savin (1981, 1984), for instance, and Stock (1994),
p. 2777, for additional references. Typical asymptotic results, however, imply that
the power of various test statistics remains unaffected by the initial condition for
large samples. Typically, the asymptotic analyses assume ¢ either fixed or random
but bounded in probability. Under these assumptions, the asymptotic distributions
of tests statistics become independent of £&. The reason for this is that a Functional
Central Limit Theorem applies to terms like

t
1 3 g 1 t—s
—=wW=p — =+ —= Vs.
AT T wﬁ;”

So long as ¢ is bounded the term involving ¢ is disappearing at rate T'/2, whereas
the second term remains.

But consider the unconditional variance of a stationary autoregressive process,
which is proportional to (1 — p2?)~1. Useful asymptotics for the unit root testing
problem require p to become ever closer to unity as the sample size T increases.
Following the analysis of Chan and Wei (1987) and Phillips (1987b), the right rate
of convergence of p to one is achieved by setting p = 1 —~T ! for a fixed ~. In this
local-to-unity framework, (1 — p?)~1 = T'(2y)~! + o(T), so that the unconditional
variance is of order 7. An assumption of { = Op(1) therefore makes the initial
condition an order of magnitude smaller than the square root of the unconditional
variance of a comparable stationary process.

An appropriate way to capture the effects of the initial condition is hence to treat
¢ as an Op(T"/?) variable. This is carried out for a special case in Elliott (1999),
where £ is assumed to stem from the unconditional distribution of a stationary series
with p = = 1—gT~" for a fixed g. This assumption of an initial observation being
drawn from the unconditional distribution has also been popular in small sample
Monte Carlo analyses of unit root tests.

So if £ is a nuisance parameter of some impact, why not handling it the same
way as the other nuisance parameters of the model? Two possible strategies come
to mind.

A first approach is the ’plug-in’ method. Assuming a certain distribution for v,
we could develop an optimal statistic for the hypothesis test for ¢ known, and then
plug-in an estimator é If it were possible to estimate ¢ accurately enough (which
means here up to a 0,(7"'/2) term), the asymptotic distributions of the optimal
statistic for £ known would remain unaffected by this replacement, and, at least
asymptotically, we would not have foregone any power. Unfortunately, as we will
show below, such an estimator of £ does not exist, so that we lose the optimality of
the procedure.

Alternatively, we could try to develop tests which are invariant to £ even under
the alternative. Invariance is a popular concept in the literature, and it is by
appealing to this principle that the deterministic terms like the mean and the time
trend are dealt with (both the common OLS detrending as well as GLS detrending
vield tests that are numerically invariant to translations of the form of additive
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constants and time trends). But as mentioned above, the group of transformations
(2.3) Y=y +p'e

induced by different = depends on the true p.

From a conceptual point of view, the idea of invariance is that a test should be
symmetric with respect to a certain group of translations, because these translations
are not informative about the parameter of interest. This is clearly not the case here
— the translation (2.3) depends on the parameter of interest p and is informative
for p. If we had a very large &, there would be a pronounced arc in the data only
if p were less than one, but not if it were equal to one. But an invariant test is
precluded from exploiting this information. We conclude that invariance is not the
correct concept for removing &.

Rather, we will explore an alternative way to deal with the nuisance parameter £.
We will derive tests that maximize weighted average power over various values of &,
where the weight function is a prespecified distribution function. Since tests which
are invariant to the mean are unaffected by different values of £ under the null,
we only need to specify the weight function under the alternative. In this respect,
the situation here is very similar to Andrews and Ploberger’s (1994) analysis of
optimal asymptotic tests for the general testing problem when a nuisance parameter
is present only under the alternative. We cannot directly draw on their results,
however, since several of their assumptions are not satisfied for the testing problem
here.

3. A FAMILY OF OPTIMAL TESTS

3.1. Small Sample Analysis. In this section, we will develop optimal procedures
for the hypothesis test above for Gaussian disturbances v;, where we assume that
the nonsingular T'x T variance-covariance matrix V of v; is known. This assumption
is, of course, not likely to be met in practice. In section 5, however, we will show
that it is possible to obtain the same asymptotic power functions with feasible tests
which do not require such knowledge.

Our aim is to develop an optimal procedure for the unit root testing problem
(2.2). For three reasons, a direct application of the Neyman-Pearson Lemma is not
possible: (i) 8 and p are unknown, (ii) the alternative is composite and (iii) there
is an additional nuisance parameter ¢, that is individually identified only under the
alternative.

To deal with the first problem, we will restrict attention to tests which are

invariant to the group of transformations
(3.1) §— §+ Xb Vb,
i.e. the requirement that a test statistic 7*(#) has the property T* (4 X l~)) =T*(9)
for all b. This has been the dominant strategy in the unit root literature for the
treatment of the unknown [ and u, and we will follow this approach. As already
noted above, invariance to the mean also makes the test statistic automatically
independent of £ under the null of p = 1.

The composite nature of the alternative is indeed a problem for unit root testing.
The value of p under the alternative enters the likelihood in such a way that there
does not exist a uniformly most powerful test, even asymptotically (cf. Elliott,
Rothenberg, and Stock (1996)). Dufour and King (1991) have thus derived small

sample point optimal tests that maximize power at a specific alternative p = p < 1,
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and Elliott, Rothenberg, and Stock (1996) have extended these results in a local-
to-unity asymptotic framework. We will follow this lead in this paper.

Finally, in order to deal with the nuisance parameter &, we will derive tests
which maximize a weighted average power criterion. Specifically, let F(£) be a
probability measure on . We will refer to a test ¢, (¢;r, F) as an optimal test if
for a given significance level «g, ¢, (4;7, F) maximizes weighted average power at
the alternative p=r < 1

oo

(32) | Pty seicts |p =1, = 2)dF(2)
-0

over all tests ¢(§) of size ap. F may be seen as representing the importance a

researcher attaches to the test being able to distinguish the two hypotheses for

various values of . In this perspective, the weighting F' is a device to derive tests

with a certain power characteristic as a function of &.

This treatment of a nuisance parameter is very similar to the approach of An-
drews and Ploberger (1994) for the general testing problem where a nuisance pa-
rameter is present only under the alternative. Note, however, that their weighted
average power criterion not only averages over various values of the nuisance para-
meter (here £), but also over various alternatives (here p). The criterion (3.2) puts
all mass on a single alternative p = r. Conceptionally, it is easy to generalize (3.2)
accordingly and to derive optimal tests in the larger class (cf. Miller (2002)). The
reasons we stick with maximizing power at a single alternative p = r in this paper
are threefold: First of all, the resulting optimal tests are of a much simpler form,
which in turn are easier to interpret. Also the main focus of the paper is on the
effect of the initial observation on unit root testing, and we think that we serve this
purpose best by keeping additional dimensions of the problem as simple as possible.
Finally, it turns out that if the alternative r is chosen local-to-unity r =1 — ¢g/T,
then the asymptotic properties of the optimal test are relatively insensitive to the
value of g. An additional averaging over this parameter would thus change little in
the properties of the tests.

The following Theorem is the most general result in this section. It provides an
optimal procedure for (2.2) for general X with an arbitrary weighting function F'
for £.

Theorem 1. Consider the Data Generating Process (2.1) when the disturbance
vector v is known to be multivariate Gaussian N(0,V). Then the test of Hy: p=1
against Hy : p = r which rejects for small values of the statistic

o0

S(T,F) :g/ [Gl—Go]g—an/

1 . . .

exp {—5 [xQR’lGlRl - QxR/lGlg] } dF ()
mazimizes (8.2) under all tests of the same size which are invariant to the trans-
formations (3.1), where F' is any cumulative distribution function, G; = X7 —
S IO TN TS e 1+eSte —/xt
Srxesr s, 5 = (TN TEN ), 5 = 5, = = 50)
and Ry = R(r).

Terms of the form &'G;@ might be recognized as the weighted sum of squared
residuals of a GLS regression of & on X using ¥; as weighting matrix.

The form of the optimal test where power is maximized at a single value £ = z
follows from Theorem 1:
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Corollary 1. Under the assumptions of Theorem 1, the optimal test of Hy: p=1
against Hy : p = r which is invariant to the transformations (3.1) and mazimizes
power at the specific alternative £ = x rejects for small values of the statistic

Env(r,z) =7 [G1 — Gol§ + $2}~%’1G1]~%1 — 2$R/1G1ﬂ.

At the point (7, z) in the alternative space, Env(r, z) reaches the maximal power
any test of the unit root hypothesis (2.2) can achieve. The family of tests Env(r, )
therefore enables us to derive the power envelope of the testing problem in both
the £ and p dimension.

For the subsequent discussion, it turns out to be useful to focus on mean zero
Gaussian weighting function F. From Theorem 1, we find from carrying out the
integration

Corollary 2. Under the assumptions of Theorem 1, the test of Hy : p =1 against
Hy : p = r which is invariant to the transformations (3.1) and mazimizes (3.2)
with F being the cumulative density function of a zero mean normal with variance
A rejects for small values of the statistic

o/ ~\2
Q) =7 [Gr — Golj — TG
1+ AR{G1Ry

As discussed above, the weighting function F' may be seen as simple device to
construct a family of optimal tests o (7; 7, F') with a different power characteristic
in the ¢ dimension. Alternatively, one might interpret these tests in a Bayesian man-
ner. The restriction to tests that are invariant to the transformations (3.1) implies
that any test statistic must be a function of a maximal invariant (cf. Lehmann
(1986), p. 285). It is easy to check that a maximal invariant for this group of
transformations is given by 7 = M, where M = I — X (X" X )_1)2 " and I is the
(T+1) x (T +1) identity matrix. Denote with f(%;7,x) the density of Z when p=1r
and ¢ = z in the Gaussian model (2.1). Note that, since # is independent of the
value of ¢ under the null of p =1 (M é = 0), the density f(%;1,z) is independent
of z. But now it is easy to establish that maximizing (3.2) is equivalent to finding
the most powerful test of Hy : the density of % is given by f(%;1,0) against the
alternative H; : the density of # is given by ffooo f(&;r,2)dF(z).

Theorem 1 above thus has an additional interpretation as providing a test statis-
tic which optimally (subject to the invariance restriction) discriminates Hy: p = 1
with arbitrary & against Hy : p = r and £ ~ F, where £ is a random variable
independent of v. As long as there is no stochastic dependence between ¢ and v,
the optimal unit root test for any distributional assumption F' on ¢ under the single
alternative p = r < 1 is the maximal weighted average power test based on S(r, F).
It is this second interpretation that makes our nonstochastic assumption of ¢ much
less restrictive than it looks.

In order to make the link between the two perspectives more explicit, consider
how one would usually approach optimal unit root testing if £ was assumed random
and independent of v. For a zero mean Gaussian £ with variance A, a test that max-
imizes power against the alternative p = r has to optimally discriminate between
two variance-covariance matrices in a normal linear model: With the (T+1)x(T+1)



matrix
1 0 O 0 O
-r 1 0 0 O
fl(r) — 0 —r 1 0 0
0 o 0 -+ —r 1

clearly /I(p)ﬁ; = (&,v)', so that the variance-covariance matrix Q(p) of w satisfies
A(p)Qp)A(p)’ = diag(A, V) = V. The form of the optimal statistic for this problem
is usually written as

(3.3) §(r)Qr) () — 9(1)'Q(1) (D)

where §(c) is the residual vector of a GLS regression of § on X, using variance-
covariance matrices fl(c) The equivalence between the distributional assumption
on ¢ and the weighting in Theorem 1 implies that tests based on (3.3) and Q(r, \)
should be identical. Some matrix algebra shows that Q(r, A) can indeed be rewritten
in the form of (3.3). See Appendix for details.

Dufour and King’s (1991) Point Optimal Invariant statistics are also very much
related to Q(r,\). They consider the special case where V = ¢2I, but impose
invariance to the larger group of transformations of the form § — ag + Xb for any
positive a and all vectors b. The additional invariance to scale makes the resulting
tests independent of o2. The test statistic for this problem is given by the ratio
rather than difference of the weighted sum of squared residuals in (3.3). We focus
in this paper on an asymptotic analysis, and since 2 can be estimated consistently,
the formulation of Dufour and King (1991) and (3.3) lead to the same asymptotic
power functions.

When v; are independent with variance o2 and ) is chosen to be 02/(1 — r?),
then 1 becomes stationary for p = r. Q(r,02/(1 —r?)) is hence the most powerful
invariant test of the unit root hypothesis against the stationary alternative with
p =r. When v; is stationary and autocorrelated, however, a random ¢ that makes
W stationary under the alternative cannot be stochastically independent of v¢. The
optimal test statistic in this case is hence not member of the family Q(r, A). The
following Theorem provides the optimal test for this case.

Theorem 2. Consider the Data Generating Process (2.1) when {v;}>, is a sta-
tionary Gaussian process with known autocovariances Elvivi_i| = (k) and as-
sume that Z,;“;O [v(k)| < oo. The statistic that optimally tests Hy : p =1 against
Hy:p=rand& =Y .o r*v_s which is invariant to the transformations (3.1) and
rejects for small values is

Q(r) =iy — ¥ Jot,
where Jo = Go, Ji = Q7' — Q;lX(X'Q;lX)—l)Z"Q;l, fl(r)f_llfl(r)' =V, V=
Vo
Ui
[Dooriy(t +19)].
Whilst in small samples there is a distinction between this test and the family
Q(r, 1), we show in the next section that this distinction is irrelevant asymptotically.

/
nV >, vo(r) = Var [y oo 7*v_,] and the T x 1 vector n is given by ) = ;] =
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3.2. Asymptotic Analysis. The subsequent discussion of these tests and their
relationship with other known unit root tests will concentrate on their asymptotic
distributions. For the asymptotic theory, we require a somewhat stronger condition
than a known nonsingular variance-covariance matrix of the Gaussian disturbances
Vi.

Condition 1. The stationary sequence {v:} has a known strictly positive spectral
density function f,(N\); it has a moving average representation vy = Ezo 0s€i—s
where the &; are independent standard normal random variables and Z:io slbs| <
0.

The asymptotics are developed in the local-to-unity framework introduced above,
ie. we investigate the limiting distribution of the test statistics as the sample
size T goes to infinity and v = T(1 — p) > 0 is a fixed constant. The natural
alternative r in the optimal family of tests based on S(r, F') is then also of the
form r =1 —¢T! for fixed g > 0. Furthermore, as mentioned in Section 2, we will
investigate the case that the initial condition has the same order of magnitude as the
standard deviation of the unconditional distribution of the stationary process with
p=1—~T"1, ~> 0, which is given by vg(p)"/2 = wT'/?(2y)~'/2 + o(T"/?), where
vo(p) is defined in Theorem 2 and w? is the ’long-run’ variance of v;, w? = 27 f,,(0).
Denote by « the such scaled version of the initial condition, o = w171/ 2(27)1/ 2,
so that £ = O(Tl/ 2) has the right order of magnitude to matter asymptotically. In
order to simplify notation, we introduce ’asymptotic’ versions S,(g, Fy,), Env,(g,a),
Qa(g,k) and Q.(g) of the tests above. They are simple reparameterizations of
the original tests, where g = T(1 —r), a = 2T~'/2w"1(29)'/?, k = 2gT " \w™2
and F,, describes the weighting function in terms of « rather than £. Given the
equivalence between the maximal weighted average power tests and optimal tests
for a certain distributional assumption on ¢, the case where F, is given by the
cumulative density function of a standard normal random variable corresponds
to Elliott’s (1999) analysis, and a degenerate F, which puts all mass on o = 0
corresponds to the case considered by Elliott, Rothenberg, and Stock (1996).

For the asymptotic distributions, we extensively use the following version of a
Functional Central Limit Theorem:

Lemma 1. Let w; be generated by the Data Generating Process (2.1). Under
condition 1, T(1 — p) = v > 0 fized and, when v > 0, £ = aw(2y)~V2TY2, as
T— >

T-1/2 - { wW(s) fory=0

wa(e™* = 1)(2y)" V2 + w 5 e NaW (N) else
= wM(s)

where =’ denotes weak convergence of the underlying probability measures, W (s)
is a standard Brownian motion and [-] indicates the greatest lesser integer function.
Further, M(s) is continuous at v = 0.

The asymptotic distributions of S,(g, F.), Env,(g,7), Qu(g,k) and Q.(g) for
general deterministics (subject to a smoothness condition) can be found in Theorem
8 in the Appendix. In the main text, we restrict ourself to the two most popular
cases: the mean only case without X, which will be denoted by a superscript p,
and the mean and trend case X =7 = (1,2,--- , T, denoted with a superscript 7.

For the time trend case, it is useful to write the asymptotic distributions in
terms of the asymptotic projection of M(s) off s, denoted M7 (s). It is the weak

U[Ts]
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limit of the residuals «” from an OLS regression of u on 7, i.e. T~/ 2u[TTs] =
M(s) —3s [AM(N)d\ = M T( ). The following Theorem states the asymptotic
distributions of Si (g, F,.), Env’,(g,2), Q% (g, k) and Q. (g) in terms of M#*(s) = M (s)
and M7 (s). For notational convenience, the limits of integration are understood to
be zero and one, if not stated otherwise.

Theorem 3. Under the conditions of Lemma 1, for i = u,7

(i)

S(i(g,Fa) = sé—f—s’iM"(l)Q—i—s%/M"(s)st

—2ln/ exp{—% [séa/Mi(s)ds—I—siaM"(l)+sf—,a2]}dFa(a)
where sy = —g, s =g, sh = g%, s =2¢%/2, sl = (2g)1/2, st =g/2 and

55 = 9781—9(1+g)/(3+3g—|—g),s2_g \/—g3/2 s] = —g¥2(3 +
9)/IV2(3 +3g + ¢°)], s5 = ¢°/18(3 + 39 + ¢°)]

(%)

Env’(g,a) = s& + si M¥(1)% + &5 / M?(s)%ds
+ ska / M¥(s)ds + shaM'(1) + sia®
(ii)
. . . . . . 2
Qila k) = db+ a0 (7 + 6 ([ 3r'e)as)
@M [ M)+, [ (s as

where q0 =—g, ¢ =g—9gk/(2+ gk), ¢b = —g°k/(2+ gk), ¢} = —2¢°k/(2 + gk),
q) = g% and

% = —g. af = (89° +8¢° — 3¢°k + g'k) /(24 + 249 + 8¢° + ¢°k), ¢f = —4g°(3 +
39+ g°)k/(244 249 + 8¢ + °k), ¢ = 49°(3+ 9)k/(24+ 249 + 84 + ¢°k), ¢ = ¢
() Q% (g) follows the same asymptotic distribution as Q%(g,1).

It is at this point that we can conclude that the *plug-in’ method for £ mentioned
in Section 2 does not yield the optimal test independent of £. Any ’point-point’
optimal test based on Env,(g, a) is admissible, but its asymptotic distribution de-
pends on the value of a. If there was an estimator & of « such that Env,(g, &) was
asymptotically equivalent to Env,(g, ), then clearly Env,(g, &) would dominate
Env,(g,a) for all values of a # a. Therefore such an & cannot exist.

Notmg that £ = yo — p, a natural estimator for « is T~ 120712 2(yo — i),
where [i° is some estimator of p. Let aG s be this estimator when y is estimated
by a GLS regression under the fixed alternative p = r = 1—gT ™! , using Q( ) as the
variance-covariance matrix. Substituting « in Env’ ¢ (9,0) with &g, we find that
the resulting test is asymptotically equivalent to Q% (g, k’), where k* = 2k + k2g /2
and k™ = 2k + k%¢3/[8(3 + 39 + ¢°)]. The ’plug-in’ method hence does yield
optimal tests, even though their interpretation in terms of Q¢(g,k) seems more
straightforward. Similarly, letting &4,; be the Maximum Likelihood estimator of
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o under the fixed alternative with p = 1 — g7~" yields Env’ (g, &%,;) which are
equivalent to Q% (g,00). See Appendix for details.

The statistics of Theorem 3 were all computed with the knowledge of the variance-
covariance matrix V' of v;. But their asymptotic distributions do not depend on the
specific form of the autocorrelations of v;. This — maybe surprising — result has
already been established by Elliott, Rothenberg, and Stock (1996) for the statistic
(Q(g,0) in our notation. It carries over to more general assumptions concerning the
initial condition, as well as to the optimal statistic against the stationary model
Qa(g). The result implies that it is impossible to exploit autocorrelations in v; to
devise unit root tests which have higher asymptotic local power than optimal tests
for independent vy.

As alast step in the analysis of this section, we derive the characteristic functions

of the asymptotic distributions of Env’ (g,a) and Q? (g, k), following the exposition
of Tanaka (1996). The characteristic functions will enable us to calculate critical
values and the power function with a much higher precision compared to Monte
Carlo methods. Note that Env’ (g, z) and Q% (g, k) are a weighted sum of functionals
of M(s). The desired characteristic functions are therefore easily derived once the
following Lemma is established:
Lemma 2. Let Z¥ = (M (1), [ M(s)ds) and Z7 = (Z", [ sM(s)ds)' and define
Vi(y) = E[Z!Z"], where  is the non-negative parameter in the definition of M(s)
in Lemma 1. Let T* = I + Ii [ M(s)?ds + Z"A*Z* + NV Zt where the symmet-
ric matriz A*, the vector N, I and li are nonstochastic. Then the characteristic
function of T for i = p, T is given by

—1/2

#'(0) = ‘I —oVi(§)A!

~ 1w, TN !
exp{ o+ 5)\ /(V’(c‘i)_1 —2AH) 7N — Zoﬂy} ,

where § = /42 — 2561, U§ = 01 — 1(6 — ), A* = OA¥i + diag((6 — 7)/2,0),
A7 = 0ATi + diag((6 — 7)/2,0,0), N = 071 — a2 (41/2, 3/2) and X = 6ATi —
a2 (7112, 43/2,0)'.

The variance-covariance matrices V() follow after some stochastic calculus and
are given in the Appendix.

Figure 1 depicts the asymptotic power of Q% (g, k) for various g and k = 0,1 with
~v = 5,10, 15, 20 and 25 as a function of c. All power curves in this paper are for a
level of 5%. For k = 0, the values g = 7 and g = 13.5 are those suggested by Elliott,
Rothenberg, and Stock (1996), and for the case k = 1 Elliott (1999) suggested using
g = 10 and g = 15. For large enough |«|, the power of all considered tests drops
to zero. The tests with k¥ = 0 achieve the maximal power at & = 0 (in fact,
Qa(g,0) = Env,(g,0)), but their power drops to zero for || > 2 in the mean case
and for |&| > 3 in the trend case for all considered values of . The tests with k = 1
have an asymptotic power which decreases in |«|, too, but at a considerably slower
rate than the tests with £ = 0. A comparison with the asymptotic power for the
larger values of g show that the test performance is relatively insensitive to this
parameter. For k = 1, larger g seem to moderately increase the power for large |c|,
at the cost of lower power for small values of |

Figure 2 shows the asymptotic power envelopes, derived by the test Env,(g,a).
Clearly, the larger the known initial condition, the easier it becomes to distinguish
the two competing hypotheses. It is interesting to note that the difference between
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FIGURE 1. Asymptotic power as a function of « for v = 5, 10, 15,

20 and 25

the power envelopes for the mean only case and the time trend case is very pro-
nounced. The intuitive explanation for this phenomenon is that the arc generated
by a non-zero « for moderate ~ is similar to a time trend. Invariance to the time
trend of Q7 (g, k) makes it difficult to distinguish the two possible origins, and hence

the smaller power.
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4. RELATION TO SOME POPULAR UNIT ROOT TESTS

In this section, we will explore the relationship of the optimal test based on
Q! (g,k) with other unit root tests suggested in the literature. Following Stock
(2000), we classify unit root test statistics by their asymptotic distributions, writ-
ten as some function h : C[0,1] — R of M(-), where C[0,1] is the space of square
integrable continuous functions on the unit interval. Various tests lead to a mul-
titude of functions h, and many other tests could be devised. However, for most
classes of tests and resulting functions h nothing is known about their optimality.

The asymptotic distribution of Q?(g,%) in Theorem 3 allows us to shed some
light on the optimality properties of many popular unit root tests. The classes
of tests considered in this paper fall into four categories: First, classes of tests
which are asymptotically equivalent to an optimal test based on Q¢ (go, ko) for a
particular choice of gg and ky. Second, the classes of statistics f)DF and 7PF are not
directly member of the family Q? (g, k), but they have a close relationship to the test
statistics Q? (g, k) which optimally discriminate p < 1 in (2.1) against a different
null model — see Theorems 5 and 6 below. Third, classes of tests whose asymptotic
distribution is a function of M*(1)2, ([ M"(s)ds)Q, M(1) [ M?(s)ds and M*(s)*ds,
just as the Q% (g, k) statistics, but no exact equivalence prevails. For these tests
we are still able to identify particular values gy and kg such that a test based
on Q! (go, ko) has asymptotic power as a function of v and « which is very much
comparable. The value of kg in these correspondences reveals the implicit weight the
classes of tests put on «. Finally, some classes of tests have asymptotic distributions
which depend on M (-) through other functions than the asymptotic distribution of
the optimal tests. These tests have low power over a wide range of values for v and
Q.

Table 1 shows the classes of tests considered in this paper. Members of the /BDF-
class and 7PF-class include the statistic suggested by Dickey and Fuller (1979) as
well as those of Phillips (1987a) and Phillips and Perron (1988), members of the
N-class and R-class include the (appropriately scaled) N1, Ny and Ry, Ry statis-
tics of Bhargava (1986) as well as the t-statistics suggested by Schmidt and Phillips
(1992) and Schmidt and Lee (1991), members of the LB-class include the (appro-
priately scaled) Locally Best Invariant test for the mean case as derived in Dufour
and King (1991) and the Locally Best Unbiased Invariant test for the trend case as
derived by Nabeya and Tanaka (1990), members of the Pr-class, i)DFGLS—Class and



15

TABLE 1. Classes of Unit Root Tests

# class asymptotic distribution
1 N [f MY (s)2ds] ™
2 R [f M R (5)2ds]
3 IB M(1)? mean case

M7™N(s)%ds trend case
4  Pr(e) cMbP(1)? + 2 [ MP(s)%ds
5 Qr(¢) same asymptotic distribution than Q.(¢, 1) +¢
6 /A)DFGLS(é) Mlyp(1)2 _ M’LYP(O)2 -1

2 Mi:P(s)?ds
. /A)DF MZ,OL (1)2 _ Ml,OLS(O)Q -1
Qsz' OLS (5)2ds '
g bWS Mz OLS( ) M’L,OLS(O) —1-2 f Mz,OLS(S)QdS
2 [ MHOLS(s)2ds

9 #DFCLS Mi’P(l)Q - Mi’P(O)Q -1

Q,QfMi’P(s)st
10 R Mi,OL (1)2 + Mi,OLS(o)Q —1—- 2fMi,OLS(S)2dS

2 fMiOLS(S)st
|M1,0LS( ) Mz,OLS(o) | -1

11 #hey
2,/ [ MiOLS(s)2ds
1 ,f_DF M OLS( ) — M OLS(O) -1

2,/ [ M#OLS (s)2ds
13 R/S SUPsc(0,1) Mi’OLS( ) — infse(o 1) Mi’OLS(S)
U M™OLS(5) st] [f MHOLS (g )st] mean case
[[ M%OS(s )2ds] [[ MTOLS(s )st] trend case
with MPOTS(s) = M(s) — J M(Ndx, M7O™S(s) = M7 (s) — 4 ] M7 (Ndx +
6s [ M7(N)dA, M@OUS(s) = M(s) — 3(3 — 125+ 10s%) fMT Yar— 30(1 65+
6s%) [ N2M7(\)d\, MPN(s) = M(s), M7V (s ) M7 (s )—sMT(l), ME(s) =
MO (), MTR(s) = M"(s) — (s — 3)M7™(1) — [ M7(N)dX, M*F(s) = M(s)
and M™FP(s) = M™(s) —s(c+1)(38% +c+1)"'M"(1 ) ¢>0.

14 J

%DFGLS—Class, indexed by a positive parameter ¢, include the statistics proposed

in Elliott, Rothenberg, and Stock (1996), members of the Qr-class, also indexed
by the parameter ¢, include the statistic suggested by Elliott (1999), members of
the [)WS— and #V5_class include the Weighted Symmetric Estimator of Pantula,
Gonzalez-Farias, and Fuller (1994), members of the #*¥~class include the statistic
suggested by Leybourne (1995), members of the R/S-class include the range statis-
tic suggested by Mandelbrot and Ness (1968), and members of the J-class include
Park’s (1990) variable addition tests J(0,1) in the mean case and J(1,2) in the
trend case where appropriate corrections for correlated disturbances are employed
for all test statistics. See Stock (1994) for details regarding these corrections. As
already pointed out by Nabeya and Tanaka (1990), note that the asymptotic dis-
tribution of the class of the Locally Best tests LB” in the trend case is a monotonic
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transformation of the asymptotic distribution of the N7-class, so that tests based
on these statistics are asymptotically equivalent.

In the following derivations, we assume that the optimal statistics of Theorem
3 and the members of the classes of test statistics in Table 1 converge jointly to
their respective weak limits; it is the same M (s) that describes all asymptotic
distributions. It can be shown using the Continuous Mapping Theorem that this
assumption is fulfilled for all standard members of the classes described above —
see Miiller (2002).

We first show that tests based on the classes of statistics 1-8 are equivalent to
tests based on statistics with an asymptotic distribution that closely parallels the
asymptotic distribution of Q,(g, k). To this end, note that the detrended M*™(s)
for the classes of statistics 1-8 can be expressed as M»™(s) = M*(s)+ai C?+sal C?,
where C* = ([ M*(\)dX, M*(1))’, a’ are 2x 1 vectors of constants and ay = 0. This
makes it possible to express their asymptotic distributions in terms of a constant,

ML), (f Mi(s)ds)Q, Mt(1) [ M*(s)ds and [ M?(s)?ds, since
Mz’,m (0)2 — (aﬁ’Ci)Q
MY = [(a] +af + d)'CP?
/M"’m(s)2ds = /Mi(S)QdS + C"[2aidy + aial + aja¥ + aba¥|C"

where d; = (1,0) and ds = (0,1)’. Moreover, note that many of the classes of
statistics have asymptotic distributions of the form A/B, where B > 0 (at least with
probability 1). But A/B < cv if and only if A — cv B < 0, where cv stands for the
asymptotic critical value used in the test. With these insights, it is straightforward
to show that tests based on statistics in the classes 1-8 with asymptotic critical
value cv are asymptotically equivalent to tests based on statistics with asymptotic
distribution®

(A1) N+ NMI(2)2 + N, < / Mi(s)ds>2+A§M"(1) / M(s)ds + N, / M'(s)%ds

that reject for negative values, where some of the weights )\; depend on the critical
value cv.

The weights )\; for the various classes of unit root tests are given in Tables
2 and 3. Note that the asymptotic distribution of Q% (g,k) has the same form
(4.1), a weighted sum of a constant, M*(1)2, ([ Mi(s)ds)z, M(1) [ M?(s)ds and
J M(s)*ds. From the joint convergence of the classes of statistics 1-8 in Table
1 and Q(g,k) to their respective weak limits, rejection or nonrejection in the
limit as T' — oo of tests based on these statistics can hence be described in terms
of inequalities of weighted sums (4.1). If for a certain choice of g and k these
inequalities turn out to be identical, then the tests are asymptotically equivalent.

Consider a test based on a statistic which is member of a class 1-8 in Table
1. Suppose that the test is carried out at a level «y, which implies an asymptotic
critical value cv(cp). From the discussion above, the test is asymptotically equiv-
alent to a test based on a statistic 7 with asymptotic distribution (4.1) and that

2There is a zero probability set of events for which the statement is not true (for example, if
any of the denominators becomes zero). All similar statements in the sequel are understood with
this measure theoretic qualifier.
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TABLE 2. Weights in the alternative description (4.1) of the as-
ymptotic critical region of some classes of unit root tests — mean

case

A Ay AL A5 Al
R -1 0 —cv 0 cv
N -1 0 0 0 cv
LB —cv 1 0 0 0
f)DF — % % cv -1 —cv
HPFGLS -1 % 0 0 v
,?)WS —% % 24+¢cv -1 —cv-—1
Py —ev z 0 0 2
Qalgk) a4 —cv  af @b & @

TABLE 3. Weights in the alternative description (4.1) of the as-
ymptotic critical region of some classes of unit root tests — trend

case
T T T T T
0 A Ay Az 4
R -1 # cv —cv cv cv
N -1 3¢V 0 0 cv
LB —cv % 0 0 1
por -3 3 —6+4cv 2 —cv
~DFGLS 1 St—6cv—12¢ cv—63%cv _
P 2 2(3+35+22)2 0 0 v
WS ~1 i 14 +4cv 2 —1—cv
— -
Pr —cv T 0 0 &2
0 _ 2% (22 4+5e+8) __48%(2%+3243) 423 (243) 2
T v {862 +24c+ 24 1807104124  FI8iodciod ¢
Qalg,k) a5 —cv 4 % 4 A

rejects for negative values. Now suppose that the weight vector (A}, X5, g, M2) of
the statistic satisfies

1 qiggo,kog

2 2 k
42 g :l q2 90, Ko
(42) A *1 4390, ko)

A (90, ko)

for some lp > 0, go and ko, where qj are defined in Corollary 3. Apart from
a constant, the statistics T and lOQfI(gO,kO) then converge jointly to the same
asymptotic distribution. It hence suffices to show (4.2) for some ly > 0, go and ko
in order to establish the asymptotic equivalence of a test based on a statistic in the
classes 1-8 of Table 1 with an optimal test based on Q (go, ko)-

When solving for an asymptotically equivalent test, the four nonlinear equations
(4.2) must be satisfied by the three unknowns gg, ko and ly. Therefore, it is not
surprising that not all classes of tests in Tables 2 and 3 are asymptotically equiv-
alent to a particular Q°(go, ko). But for classes 1-6, equivalence can indeed be
established.
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FIGURE 3. Asymptotic power as a function of « for v =5, 10, 15,
20 and 25

Theorem 4. Under the conditions of Lemma 1 the classes of unit root tests 1-6
of Table 1 are asymptotically equivalent to optimal tests based on Q' (g,k) for a
particular choice of g and k:

mean mean and trend
g k g k
R 00 #0 -0 2/g
N o0 0 —0 arbitrary constant
pPFCLS  _o¢y 0 g7/DFGLS 0
LB -0 k#2 -0 arbitrary constant
Pr(e) c 0 2 0
Qr(@) ¢ 1 ¢ 1
where the equivalence for pPYS™S in the trend case holds provided gmPFELS —
2y1/2 — _
1—3a+(1—2?1a—3a ) / with a = _64_62?2_:315240.6%‘)/21?/02 SV s real.

Given the equivalence of a distributional assumption concerning £ and the weight-
ing approach (3.2), the asymptotic equivalence of tests based on Pr(¢) and Qr(c)
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with tests based on Q,(¢,0) and Q,(, 1), respectively, is warranted ’by construc-
tion’. The locally best tests which make up the LB class were derived by Dufour
and King (1991) and Nabeya and Tanaka (1990) under the assumption that the
variance of ¢ is a fixed number. This corresponds to the case k = 0, and so again by
construction the LB-class of tests is asymptotically equivalent to a test based on
the (appropriately scaled) limit of Q,(g,0) as g — 0. But Theorem 4 additionally
implies that this limit is independent of k, proving that the LB-class of tests are
also asymptotically locally optimal against an alternative with a zero-mean, nor-
mal ¢ independent of v; with variance O(y~1). Additionally, since the asymptotic
distribution of Q,(g) is the same than that of Q,(g, 1), this is also true if the initial
observation is drawn from the unconditional distribution under the alternative.

The (uncorrected) R and N statistics were constructed as approximations to
the locally best tests of the unit root hypothesis for independent disturbances vy
against the stationary model (¢ = E:io pv_s) and nonstationary model with
¢ = vg in the neighborhood of p = 1, respectively. Their derivation by Sargan
and Bhargava (1983) and Bhargava (1986) uses the Anderson approximation to the
variance-covariance matrices in the Gaussian densities. Interestingly, the different
assumption concerning the initial in the derivation of N and R leads to asymp-
totically different approximate locally best tests, in contrast to the exact locally
best tests based on LB. As already pointed out by Nabeya and Tanaka (1990), the
N and R statistics generally do not — even asymptotically — correspond to the
locally best test statistics when the exact densities are used. In fact, the R* and
N statistics are optimal for a p that is just smaller than any alternative considered
in the local-to-unity framework, and a test based on R” statistic is locally optimal
against the alternative that the initial stems from a normal with a variance which
is an order of magnitude larger than the variance of the unconditional distribution.

The ,?)i’DFGLS—CIass of tests are asymptotically equivalent to a test based on
Q% (g,0) where g depends on the level of the test. Fixing ¢ at 13.5 (the value
suggested by Elliott, Rothenberg, and Stock (1996)), we find that the 5% critical
values of p*PFOLS and p7PYOLS are given by —8.039 and —16.591, respectively,
which correspond to g = 16.08 and g = 29.20, whereas the 1% critical values are
—13.694 and —23.576, which correspond to ¢ = 27.39 and g = 36.14. The reduction
of the level therefore yields tests which are optimal for alternatives which are easier
to distinguish.

The asymptotic power as a function of o and v of R!, N* and p* DFGLS are
depicted in Figure 3. Tests based on the R? statistic have about the same robustness
against large || as tests based on Q¢ (g, 1) for a relatively large g. The N*-class and
ﬁi’DFGLS—class of tests have similar asymptotic power characteristics, underlining
the observation that the choice of g is especially unimportant for the case k = 0. As
their construction would suggest, both tests concentrate their power at moderate
values of |.

Figure 4 shows asymptotic power as a function of v and « of the LB-class of
tests. Especially in the mean case, power is very low for most of the considered
values of v and «. In the mean case, the exact locally best approach hence does
not yield a test with good power for relevant values of v and «, in contrast to the
approximation to this test employed by Sargan and Bhargava.

We now turn to the pP¥ and 7% classes of tests. While the asymptotic critical
region of the pPF-class can be written in the form (4.1), there are no values lo,
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go and ko such that (4.2) is satisfied. The asymptotic critical region of the P
class is fundamentally nonlinear in M*(1)2, ([ M'i(s)ds)z, M(1) [ M'(s)ds and
J M(s)?ds. But consider the model

Ay, =T V2¢ + 1y mean case

Ay, =7+ T3t + v, trend case
which includes the additional parameter ¢ over (2.1) with p = 1.

(4.3)

Theorem 5. Consider the Data Generating Processes (4.8) and (2.1) with regres-
sor matriz X = X' when the disturbance vector v is multivariate Gaussian N(0,V)
and ¢ is random and independent of v. Then

i GL2E)
1+ KZZQ’ G@ZZQ
is a statistic to optimally test Hy : § stems from model (4.8) with ( ~ N(0,x)
against Hy : § stems from model (2.1) with p =r in the sense of (3.2) with a zero
mean Gaussian weighting function of variance \ which is invariant to the transfor-
mations (3.1), where Zéf =T-2% and Z~<T =T-3/2(0,1,22,... | T?).
Furthermore, let Qui(r, A) be the limit of these statistics as k — 0o, and denote with
Qfl(g, k) the asymptotic version QZ(g, k) = Q'(1—gT~",w?k(29)"'T). Then under
the assumptions of Lemma 1, a test based on a member of the [)"’D F_class with crit-
ical value cv»PF is asymptotically equivalent to a test based on Qufl(—2 evhPF o0).

Qi(rA) = Q'(r,\) +

Members of the [)i’D F_class hence are (the limit of ) asymptotically optimal tests,
but only under the assumption that the null hypothesis is given by (4.3). This some-
what strange property may be understood from the fact that the coefficients in a
Dickey-Fuller regressions of y on (y_1, e, X) have an altogether different interpreta-
tion under the null of p = 1 compared to p < 1 (cf. Bhargava (1986)). In the mean
case, for instance, the coefficient on e estimates the transformed mean p(1 — p)
under the alternative, but a time trend under the null of p = 1. Some authors, like
Phillips and Xiao (1998), have conjectured that this introduction of a superfluous
regressor under the null is the reason for the reportedly low power of the ,?)D F_class
compared to other unit root tests.

But Theorem 5 reveals another striking feature of the statistics in the p”F-class:
the weight function for « puts very much weight on very large |a. At the 5%
level, the asymptotic critical values of the [)DF—class are —14.1 and —21.7 in the
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mean and time trend case, respectively, so that the f)i’D F class is asymptotically

equivalent to tests based on Q*(28.2,00) and Q7 (43.4, 00) for this level. Figure 5
depicts the asymptotic power of the 5% tests based on the /“)"’D F_class (solid line),
along with the asymptotic power of a test based on Q% (—2cvPF | 00) (dashed line).
The difference in asymptotic power between the two tests is small for all considered
values of v and «. This implies that it is the extreme weighting of large values of ||
(rather than the additional parameter regressor under the null) that is the deeper
reason for the low power of tests in the i)D F_class at small and moderate values of
|| — the range of initial values typically considered in Monte Carlo studies.

Theorem 6. Let Q%,(g, k) as in Theorem 5. Then

(i) g4PF = argmin, Qufl(g, 00) exists with probability 1

(i) under the assumptions of Lemma 1, a test based on a statistic of the #PF _class
is asymptotically equivalent to o test which rejects for small values of

Sign(gi,DF)Qui (gi,DF, OO) )

Tests based on statistics in the 77F-class can hence be thought of as estimating

~, and then using the estimated value for g in the statistic Qz(g, 00). This makes
the 77 -class comparable to a generalized likelihood ratio statistic, especially given
that QZ(g, 00) is asymptotically equivalent to Env: (g, &4y, where Eivi(g,a) is
defined analogously to Envt(g,a). Since the tests reject first if the estimated v is
larger than zero, it is a ’signed’ version of a generalized likelihood ratio statistic.
While not proving any optimally property of the #PF _class, Theorem 6 relates this
class to the optimal statistics Qfl(g, 00), which put an extreme weighting on large
values of |a.

Figure 6 depicts the asymptotic power of a test based on 7
with a test based on

PE (s0lid line), along

gLR" = sign(§") Q5 (9", 00)
where §* = argmin, Q?,(g,00) (dashed line). Note that Q7 (9", 00) is asymptotically
equivalent to the likelihood ratio statistics @3 and ®3 of Dickey and Fuller (1981).
As one would expect, the asymptotic power of both tests is large for large values of
|oe). In fact, in stark contrast to all other popular tests (apart from the f)D F -class)
power increases in |¢| for all considered values of 4. The ’right’ null model in the
construction of gLR? leads to an even steeper gradient.
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FIGURE 6. Asymptotic power as a function of « for v = 5, 10, 15,
20 and 25

TABLE 4. Classes of Unit Root Tests and values of g and & of a
comparable test based on Q,(g,k)

mean mean and trend

e go ko 0 g0 ko

WS 983 10.8 .988 991 159 1.01
pWs 994 233 .999 998 364 1.00
pley 901 25.8 .973 913 374 1.08
#PFGLS 996 8.36 0.00 999 177 0.00

Whilst the asymptotic distribution of the classes of test statistics 8-11 depend
on the same functionals of M(s) than Q,(g,%), there does not seem to exist such
a close link to a particular member of the family Q,(g,k) compared to the test
statistics considered so far. But it would still be insightful to identify particular
values of gg and kg such that tests based on a class of statistics 8-11 become very
much comparable to tests based on Q,(go, ko). One measure of ’comparability’ of
tests of the same level is the probability that the two tests either both reject or
both do not reject. By (approximately) maximizing this probability over g and k
under the null hypothesis of p = 1 for T large, we found the results depicted in
Table 4. The column cp is the (estimated) conditional asymptotic probability that
the 5% level test based on Q. (go, ko) rejects given that the 5% level test based on
the the statistic in the first column rejects for p = 1. See the Appendix for how we
conducted the search for suitable values of gy and k.

The large values of ¢p imply that the behavior of the classes of test statistics
8-11 can be closely mimicked by members of the optimal family Q. (g, k), only for
the test based on 77 cp is below 98%. This close correspondence is confirmed in
Figure 7 which depicts the asymptotic power the tests of Table 4 (solid line) along
with the corresponding tests based on Q,(g, k) (dashed line). The asymptotic power
of the popular tests is hardly distinguishable from the corresponding optimal tests
over a wide range of values of v and . The classes of tests WS, f)WS and 77 are
hence very much comparable to tests based on Q4(g,1) for some g. The implicit
weighting of different « of these tests almost corresponds to the optimal weighting
if the initial value is drawn from the unconditional distribution. This explains why
%WS, [)WS and 77 fared well in Monte Carlo studies which employed such an
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FIGURE 7. Asymptotic power as a function of « for v =5, 10, 15,
20 and 25

assumption — see Pantula, Gonzalez-Farias, and Fuller (1994), Leybourne (1995)
and Elliott (1999).

The asymptotic distributions of the J and R/S statistics depend on functionals
of M(s) which do not appear in any of the optimal families S, (g, Fy,), Enve(g, @)
and Q,(g,k). But the asymptotic distribution of Env,(g,a) is composed of an
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exhaustive list of functionals of M (s) which appear in the asymptotic likelihood of
a first order autoregressive process. An ’asymptotic sufficiency’ argument therefore
suggests that the J and R/.S statistics are inefficient unit root test statistics. This
would explain their poor performance in Monte Carlo experiments as provided by
Stock (1994). This reasoning implies that the low power of these statistics is likely
to be general to any particular alternative or assumption on the initial condition.

5. ASYMPTOTICALLY EQUIVALENT FEASIBLE TESTS FOR THE OPTIMAL FAMILY

The optimal statistics derived in section 3 depend not only on the assumption of
the weighting F' but also on the assumption that the disturbance vector v is Gauss-
ian with known variance-covariance matrix V. The results of the last section imply
that some popular tests, which are constructed without the knowledge of V, are as-
ymptotically equivalent to specific members of the family of optimal test statistics
Q.(g,k). In this section we extend this feasibility by deriving families of test sta-
tistics which do not require the knowledge of V' either and that are asymptotically
equivalent to the optimal families of statistics S, (g, Fi), Enve(g,a) and Q.(g,k)
of section 3. Furthermore, we show that tests based on these statistics achieve the
same asymptotic power under very general assumptions on the distribution of the
error process as under the assumption of normality.

We assume the following condition on the Data Generating Process

Condition 2. The zero mean process {v;} is covariance-stationary and ergodic
with finite autocovariances ¥(k) = Evivi_g] such that

(a) w? =372 (k) is finite and nonzero

(b) the scaled partial-sum process T-V/2 3 ¥y = W (s).

The suggested statistics for the mean case (i = p) and trend case (i = 7) are

. o N2, TN
819, Fa) = s+ st (07T 2% ) + 5} («TlT‘w Zyt)
t=0

-0 t=0

T
oo 1] . ) ) ) )
— 2ln/ exp {—5 [sgaw—lT—:?»/Q E yi + sflaw—lT—lmy’T + s§a2

} dF,(a)

.y o N2 T\
Env,(g,0) = sh+ st (07177 /2%) + s} («rflT—W S
t=0

T
+ séaw_lT_g/Q Z yZ + siad)_lT_l/Qyéﬂ + sf—,a2
t=0

.y o N2 TN
Qilg.k) = ab +af (7' T2+ (é_lT‘g’/Q Zyt)
t=0

T T
+ @O Ty + T Ty ()
t=0 t=0



25

where S; and q;'. (for i = u, 7, 7 = 0,1,2,3,4) are defined in Theorem 3 and @ is
an estimator of the long run variance of v;. The detrended data y} is generated
according to

(i) i = p then g =y, —yo A

(ii) 2 = 7 then y] = y}' — By}, where 3 is the OLS estimate from a regression of
Y} on 7.

The construction of these tests follows the ’modified’ test statistic approach
suggested by Stock (2000), and extended in Ng and Perron (2001). They suggest
the above method for obtaining a test which is asymptotically equivalent to the
Elliott, Rothenberg, and Stock (1996) Pr test, which corresponds to Q,(g,0) test
in our notation, so that for k = 0 the above tests are equivalent (apart again from
the constant) to the M Pr test in Ng and Perron (2001).

Theorem 7. Assume that the data is generated under Condition 2 and that & 5 w

under the null and local alternatives. Then S*é(g, F,), ETIR/Z(Q, a) and QAfl(g, k) have
the same asymptotic distribution than Si(g, F,), Env’(g,a) and Q% (g, k) under
Condition 1, i.e. the distributions described in Theorem 3.

Thus tests can be constructed that have asymptotically the same power as the
optimal tests under the normality assumption. Note, however, that the tests are
not generally optimal if the disturbances v; stem from a nonnormal distribution.
See Rothenberg and Stock (1997) for a discussion of how one might construct more
powerful unit root tests in this situation.

A great number of potential estimators for & are available — each will affect the
small sample properties of the test but not the large sample properties. Potential
estimators include ’sums of covariances’ type estimators such as derived and exam-
ined in Newey and West (1987) and Andrews (1991) or alternatively autoregressive
estimators discussed in Haan and Levin (2000) and employed for special cases of the
above unit root tests in Elliott, Rothenberg, and Stock (1996) and Elliott (1999).
Stock (1994) discusses choices available. We will follow the suggestions in Ng and
Perron (2001) with a modification in the first step in accordance with the points
of this paper and examine the properties of autoregressive estimators constructed
according to the following scheme.

Step 1: Calculate 3} according to their definitions above

Step 2: Run the regression Ay; = 6oy;_; + >_F_, 0;Ay;_; + ey for a range of
possible lag lengths p =0, , Pmax-

Step 3: Choose p* according to minimize the MAIC criterion of Ng and Perron
(2001). This criterion is given by

2(r(p) +p)
T — Pmax

N 1T o152 T i
where 0127 = (T ~ Prmax) ! Zt:pmax eg,t and 7(p) = (0120) 190 Zt:pmax (ytl—l)2'
Step 4: For the chosen p*, rerun the regression in Step 2 and construct the
estimate

MAIC = In(62) +

<

? (1 - é(l))2

where 6(1) = ?;1 éj.
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TABLE 5. Asymptotic critical values and small sample size for T =
100, independent normal innovations

critical values critical values

1% 5% size 1% 5% size
Qr(7,0)  -5.035 -3.694 0.044 7(7,0) -5.882 -5.403 0.031
Q*(10,0) -6.110 -3.513 0.044 )7(10,0) -7.764 -6.814 0.030
QM(7,1)  -5.428 -4.585 0.040 )7(7,1)  -5.964 -5.552 0.028
Q4(10,1) -6.94 -5.354 0.039 )7(10,1) -7.945 -7.152 0.027
Q4(7,2) -5.618 -4.920 0.038 )7(7,2)  -6.040 -5.678 0.025
Q4(10,2) -7.245 -5.874 0.037 )7(10,2) -8.090 -7.380 0.024

Notes: Size values are for 5% nominal level and are based on 60000 Monte Carlo
replications with pmax = 0.

The modification to the Ng and Perron (2001) procedure is in Step 1 where in
that paper the detrending of 7 is carried out according to the assumptions of Elliott,
Rothenberg, and Stock (1996).

To implement the tests, asymptotic critical values were computed from inverting
the characteristic function for the Q% (g,k) tests constructed via Lemma 2. Table
5 reports 1% and 5% critical values for mean version of the tests where we have
set ¢ = 7,10 and k = 0,1,2. Recall that different choices for ¢ simply maximize
the power at different points in the v dimension and different choices for k accord
to a different weighting of possible initial conditions, where larger values indicate
more weight on larger initial conditions. Also reported are Monte Carlo results for
size using the asymptotic 5% critical value when the model is generated according
to (2.1) with T' = 100, no serial correlation and normally distributed errors. The
statistics are all a little undersized, although this is minor.

The asymptotic theory and results presented so far suggest that there is a trade-
off between power for small and large initial conditions. We have shown this ana-
lytically through showing that optimal tests are different for different assumptions
on the initial condition, and numerically that increasing k lowers asymptotic power
when the initial condition is small. We have also shown that many popular unit
root tests have a close correspondence to a member of the family of optimal tests
Q! (g, k) for a certain choice of g and k. These tests too are thus making implicitly
this trade-off in their power functions.

Tables 6 and 7 show these points in a Monte Carlo exercise where the model
is as for the size calculation in Table 5 and we have varied the initial condition.
The two panels show power against p = 0.9 (as T = 100 this corresponds to the
asymptotic results where v = 10) for the mean case and the trend case, respectively.
We can see clearly that the ranking in terms of power for both cases accords with
the asymptotic results. Concentrating on the Q“(g, k) test, we have for o = 0 that
the power falls as the weighting function puts more mass on larger initial conditions
(increase k). For example, with g = 10, we have power equal to 64% when k = 0,
this drops to 62% for k = 1 and 54% when k = 2. However, for all of these tests
power falls as |a| increases. At o = 1.5 the power rankings of the tests is reversed.
When k& = 0 power has fallen to just 11%, for k = 1 it is 35% and for &k = 2
power has only fallen by 11% to 43%. The same qualitative behavior can also be



TABLE 6. Size corrected small sample power of various tests for
p = 090, T = 100 and independent normal innovations in the
mean case

83
test 0 05 1 15 2 25 3 35 4
P A7 46 45 44 42 40 37 .34 .32
jHDF 30 .31 .33 .35 .40 45 52 .60 .68
N# 74 57 .24 .05 .00 .00 .00 .00 .00
RH 51 .51 48 43 .36 .26 .18 .10 .05
Pk 75 63 .33 .09 .01 .00 .00 .00 .00

T
pHoPFCLS 73 64 .38 .13 .02 .00 .00 .00 .00
v PFCLS 73 64 .39 .14 .02 .00 .00 .00 .00

WS 57 56 .51 .42 .30 .17 .07 .02 .00
WS 61 59 51 .38 .22 .09 .03 .00 .00
QH(7,0) 76 .60 .26 .05 .00 .00 .00 .00 .00
Q“(10,0) .77 60 .26 .05 .00 .00 .00 .00 .00
QX(7,1) 64 61 51 34 .16 .04 .01 .00 .00
Q*(10,1) .62 60 .51 .37 .20 .07 .01 .00 .00
Q1 (7,2) 52 52 50 45 .39 .31 .22 .14 .08
Qr(10,2) .52 52 .50 .45 .38 .30 .21 .13 .07

M (2=10) .62 59 .51 .37 .21 .08 .02 .00 .00
Notes: Based on 60000 Monte Carlo replications with ppaz = 0.

TABLE 7. Size corrected small sample power of various tests for
p = 090, T = 100 and independent normal innovations in the
trend case

83
test 0 05 1 15 2 25 3 35 4
pPF 24 24 23 22 20 .18 .16 .14 .12
#7:DF A8 .18 .19 20 .21 .23 .25 .28 .31
N7 30 .28 22 .15 .08 .04 .02 .01 .00
R 26 .25 .23 20 .16 .12 .08 .05 .03
P; 32 .30 24 .17 .10 .05 .02 .01 .00

pTPFCLS 30 .29 24 .18 11 .06 .03 .01 .00
#7/DFGLS 31 29 24 .18 .12 .06 .03 .01 .00

prwvs 28 27 24 21 16 .12 .07 .04 .02
FTWS 20 28 24 20 .15 .10 .06 .03 .01
)7 (7,0) 31 .20 23 .15 .09 .04 .02 .01 .00
)7(10,0) .32 .29 23 .16 .09 .04 .02 .01 .00
) (7,1) 31 .20 25 .19 .13 .07 .04 .02 .01
)7(10,1) .30 .29 24 19 .13 .08 .04 .02 .01
)7 (7,2) 27 26 24 21 17 .13 .09 .06 .03
Q7(10,2) 27 26 24 22 .18 .14 .10 .07 .04

Q% (6210) B0 .28 24 19 13 .08 .04 .02 .01
Notes: See notes of Table 6.
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observed for the trend case in Table 7. Such results clearly show that the trade-off
between power for small and large initial conditions accords with the analytical
results presented earlier.

The robustness of the Dickey Fuller t-statistic also comes through clearly in the
Monte Carlo results. This test has the lowest power amongst the tests by a fairly
large margin when |« is small. However, this test is the only test that has power
that increases as |o| gets larger. For very large || it is the dominant test in terms
of power. This accords directly to the analytical results that show that although
this test is not asymptotically equivalent to a member of the Q,(g, k) family, it is
intimately linked to the optimal family Qa(g, 00) which puts very much weight on
very large |a.

6. CONCLUSION

In choosing a test based on asymptotic properties the choice comes down to
choosing a power function. In employing unit root tests in practice the choice of a
particular test is inherently more difficult as there is no uniformly most powerful
test even in the case of assuming a zero initial condition. In this paper we show that
for more general assumptions on the initial condition, the choice of an asymptotic
power function depends also on the initial condition of the process. This is true for
both the set of tests that are derived to exploit information on the initial condition in
some optimal way (e.g. Elliott, Rothenberg, and Stock (1996)) and also commonly
applied tests that do not explicitly consider the initial condition (e.g. the Dickey
and Fuller (1979) statistics). This paper shows how power is affected analytically
and empirically. Since a researcher must make a choice based on some view of the
initial condition, it makes sense to make this choice explicit. We derive families
of statistics that are optimal in the sense of maximizing weighted average power,
where the weighting is a distribution function of the initial condition. Such statistics
contain previous efficient tests for a unit root such as those in Elliott, Rothenberg,
and Stock (1996) and Elliott (1999). We relate other statistics, that do not have
such optimality properties, to this optimal class as a method of understanding the
implicit assumptions they make on the initial condition. Through this we are able to
gain a much fuller understanding of these statistics and their properties, as well as
a deeper understanding as to the differences in power properties found in previous
Monte Carlo studies (which usually have the initial condition being drawn from
its unconditional distribution under the alternative, which is identical to simply
dropping off ’enough’ observations to ’get rid’ of the initial condition). The results
then give researchers fuller information on the power curve choice.

The results of this paper have implications for larger dimension systems, and
may be extendable in these directions. First, a multivariate analog of unit root
testing is testing for cointegrating rank. Such tests usually assume away the initial
condition as is often the case in the univariate literature. Such tests will have some
relationship between power and robustness to this assumption. Second, a recent
literature has developed around pooling unit root tests for a number of variables
in a panel setting. The panel setting will also be affected in a similar way to the
univariate tests, although in a panel setting more may be possible in terms of using
the data to discern between potential assumptions on the initial condition.
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APPENDIX

Proof of Theorem 1:

From the theory about invariant tests, we know that an optimal invariant test sta-
tistic is given by the Likelihood Ratio statistic of a maximal invariant (cf. Lehmann
(1986), pp. 282). Let M = I — X(X'X)~1X’, where I is the (T +1) x (T + 1)
identity matrix. Then M 7 is such a maximal invariant. Maximizing the weighted
average power criterion (3.2) is equivalent to maximizing power against the simple
alternative Hy : the density of § is given by ffooo f(§lz)dF (), Where f(|z) is the
density of §j given ¢ = z. Under Hy and for any &, M{ ~ N(0, MM ) Under Hy
and ¢ fixed to z, M§ ~ N(MRyz, M1 M), such that the distribution of M7 under
H1 is glven by a mixture of these normals. Note that the common null space of
M3, M is the column space of X. The density of M7 restricted to the hyperplane
which is orthogonal to X is then proportional to exp{—iy M (M SoM )™ M 7} under
Hy and proportional to exp{—%(g — le) M(MEl M) M( — 13511:)} under Hy and
¢ fixed to any x, where ()~ is any generalized inverse (cf. Rao and Mitra (1971),
p. 204).

We now prove that G; = $7 — 37 X(X’S7 X)~1X’S; are generalized inverses of
MY, M. (Recall that a generalized inverse G of the matrix A has the property
AGA = A). Note that X’ f]z-_ X is necessarily nonsingular, since

det>; = det 27! det[1 + e'S; e — ¢/Te] # 0.

Furthermore, M Gil\;[ = @, because Gi)z = X 'G; = 0, so that G; has a column
space no larger than the projection matrix M. We hence find

MENGNMEN = ME,GEN
— S S - STR(RE;
_ NS - MEESX(XE
_ NS

1—1—6’21 —e/yt 0 0 ~
-1 0w M

(7
(37 )

where the last line follows from
el
XS 85M = < 0 X/ >
- (o &)
- (o %)

co ©
Mo Mo
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Putting everything together yields
I exp {— (5 — Ryx)! M(MS, M)~ M (i — le)} dF(z)
exp {—%@’M(MEOM)‘M@}
2 exp {—%( — Ryz)G1(j f%lyc)} dF(x)
exp {—39'Go}
= exp {—%ﬂ’ Gy — Go]g} /oo exp{ 1 [ 2R G Ry — 2xR1G1y]} F(a).

—00

LR =

Taking logarithms proves the Theorem.

Proof of Corollary 2:
The proof for A = 0 is a direct consequence of Corollary 1. For A > 0, we need to

find

o0

1 ~ ~ N
Q(r,\) =7 [G1 — Go) g—2ln/ exp {—5 [xQ(RllGlRl + )\_1) - 2:cR/1G1gj} } dz+c

where ¢ stands for a constant that does not depend on §. Carrying out the inte-
gration yields the result.

Different form of Q(r,~ A): N N
Leth_Q()QO_Q()RO_éande_ () Then@()Q 7(1) and
gj(r)’Qflg(T) are equal to § [Q_ Q;lX(X’Q X) X6y 1§ with i = 0,1, re-
spectively. It is clearly sufficient to show that

oy R.G§)? T et s

G — UG [Qfl — O X(XOTIR) LA

7'Gij L RGE, 7| ; X(X'Q7X) ;
for i = 0,1. Since both statistics are invariant to the mean and G;¢ = 0and ¢'G; =0
we can substitute j* = §j —yoé for § and T; = R; — € for R; in the above expression.
Note that To = 0. Recall that G; = E — E X(X’E X) 1X’E Let d = 0,d"y
and b = (0,) with b and d arbltrary T x 1 vectors. Then d’El b=d'S7h, and

WithX:(i )(z.),weﬁnd

oo (1 0\ [ 1+e5le 5! 10
Xu X = <e X> -¥;'e st e X

(1 0
- \o x=7'x )¢

It follows that d'S7 X (X'S7 X) 1 X/S7b = dS7 X (X/S71X) "1 XS 1. Define
U, = X'S7X, Dy = M40, - VST XU XS e the T x 1 vector
(1,0,---,0)" and
&. — D-1 1 TiZ X0
A N P € et R i €0 atls 0 A D €\ el aly D28\ /ety
With these definitions,

/G )2 —1s e\’ —YE e
o~ mo_ ( ki pis—=1, i Y . i Y
A I 7o I ( X'Ey >©’< X'Ey )
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Then
o DRI 15 s RS A YD ¢
i -X's71y U,
~ ANl r2efVley —ret V14, \ o
— / 1 1 '3
=X ( —r ALV ey ¥t X
e
and
_ngi—lyﬂ 1 —1
< X'syr >:XQ¢ U8
and finally

y“/Ei_ly“ — g#’f)i—l?j#
so that the equality is established.

Proof of Theorem 2:
We first prove that vp(r) is necessarily finite. We have

vo(r) = Var ery_S]
s=0
= ) rPp0)+2) Py () 2> () 4
s=0 s=0 s=0
©  k oo
_ 20 +2> (k) SQZk:O (%) <00
1—1r2 1—1r2

Now just as in the proof of Theorem 1, M 7 i1s a maximal invariant. The aim is
thus to optimally discriminate between the two multivariate normals M glHy ~
N(0, M, M) and M{|Hy ~ N(0, M M). The following statistic optimally dis-
criminates between two multivariate normals with singular variance-covariance ma-
trices which share the same column space (Rao and Mitra (1971), p. 206)

Q(r) = i M(MSQy M)~ Mij — if M(MQo M)~ M
where ()~ is any generalized inverse. The proof of Theorem 1 shows that Jo = Go

is a generalized inverse of M ijfl , and the same line of argument also shows that
J1 is a generalized inverse of My M.

Proof of Lemma 1:
The Lemma is similar to Lemma 2 in Elliott (1999). By recursive substitution,

t

up = Z Py + a(2) Y22 (1 - ).
7j=1

But a(2y)"2w(1 — pIT) — wa(l — e=7%)(2y)~"/2 uniformly in s and by Phillips
(1987b) and the Continuous Mapping Theorem

[T's] s
T_l/QZpt_jz/j :>w/ e~ =N aw (N,
0

=1
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so that the result for v > 0 follows from the Continuous Mapping Theorem. Fur-
thermore, as v — 0, we find wa(1 — e~7%)(2y)~/2 — 0 uniformly in s by applying
PHoépital’s rule.

Asymptotic Theory:

Notation: If A is a T X ¢ matrix A = [ay,], then let A_; be the T X ¢ matrix
A_1 = B = [by], where for 1 <t <T, by; = az—1,; and by; = 0. Furthermore, let
AA = A—A_;. If not stated otherwise, '—’ and *2’ are understood to denote the
limit and limit in probability as T' — ooc.

The proof of the asymptotic results consists of two major steps: First, we in-
vestigate the effect of the (known) variance-covariance matrix V' of v;. Elliott,
Rothenberg, and Stock (1996) have shown that for bounded ¢ (which correspond
to o = 0p(1)), the asymptotic distributions of the various terms which make up
the optimal test statistic in this case only depend on V' through the variance v(0)
and the long run variance w? of v;. As we will show, the same is true for the test
statistics considered here. The second step then consists of applying Lemma 1 to
derive the limiting distributions of the various test statistics in terms of M(s).
Lemma 3. Let V = [Vj;] = [y(i — j)] and ¥ = [¥,;] = [p(i — j)] be T x T Toeplitz
matrices from (k) and p(k), the Fourier coefficients of the spectral density function
£.() of ve, 2 f, () and [27 £, (X)) 71, respectively. If the elements of the T'x 1 vector
b are bounded in absolute value, then, under Condition 1,

T (V-1 —0
Proof. See Elliott, Rothenberg, and Stock (1996), Lemma Al. O

Lemma 4. Let d = (dy,--- ,dr) and b= (by,---br) be two T x 1 non-stochastic
vectors such that for all s € [T~11], dirs) = O(1) and bips = O(1), and that for
all s € [2T71,1], TAdps) = O(1). Then under the conditions of Lemma 1

(i)

(i)

TV —w2Db—0

T372d (V™' —w™2Du_1 20

(iii)
TY20(V-' w2 50

()

T2V —w2NAu 5 0
(v)

T2 (V' —w2Du_s %0
(vi)

T IAWYV 1 +1— w2 [2T_1Au/u_1 + 7(0)] 20

Proof. The proof of the Theorem draws heavily on the Appendix of Elliott, Rothen-
berg, and Stock (1996). For any matrix B, let |B| = tr'/2[B’B] and note that for
real conformable matrices B and C, |tr(BC)| < |B||C|, and |BC| < |B|r(C) <
|B||C|, where r(C') is the largest characteristic root of C. Define the T x T matri-
ces A = wV=2 —w VY2 ¥ as in Lemma 3 and F° = [Fg] with F§ = ¢~/ if
i > j and 0 otherwise. Furthermore, for v > 0, let & = w — £R(p) = v — €Y (p) =
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u — aw(2y)Y2T2Y(p) such that 4 is the disturbance vector purged of the in-
fluence of &. Elliott, Rothenberg, and Stock (1996) show in their Appendix that
under Condition 1, 0 < w < oo, w? = Spo _y(k), w2 = >po ___ p(k), both
v(k) and p(k) are absolutely summable, T~ AF¢| — 0 for all 0 < ¢ < 1, (V) =
o), r(V-1) =0Q1), T2 (V' —w2Di_; & 0 and 2T AWV~ 1a_y +1 —
w2 2T Ay +4(0)] 5 0.

We proceed by first proving that T—'/2|Ad| — 0. To this end, let ¢ be the T x 1
vector ¢ = [1;], where for 1 <t < T, 1y = dyy1—d; and 17 = 0, so that d = Fli+djye,
where dy is the initial element of d. Note that . = O(T~1). Now

T7YAd? = T 'd'A%d
T7Y(d+die) A2FYu| + T 1d2e/ A%e

IA

and with A = wV—1/2 — =1y 1/2,

TUA? < T7'w|(d+ die) VYA + T w ™ (d + die) VY2 AFY|
+T71d2e/ A%e
< T lor(VY2)AFY|W(d + dye)| + T w™tr(VY2) | AFY|o(d + dre)|
+T7rd2 e (w™2V +w?V ! = 21)e].
But r(V=12) = r1/2(V—1) = O(1), r(V'/2) = r1/2(V) = OQ1), |u(d + dre)'| =
[i(d + dye)(d + die)]'/? = O(1) and T~'|[AF'| — 0 by the result of Elliott,
Rothenberg, and Stock (1996), so that we are left to show that the final element

in the sum above converges to zero, too. Now using w™2 = > he_ o p(k) and
w2 =722 v(k), we find

T-1 foe)
T (U —w™De| = T7'(2) (T —k)p(k) —2T > p(k)
k=1 k=1
T—1 0o
= 2|71 kp(k)+ Z p(k)
k=1 k=T

IA

22min(§,1>|p(k:)|—>0
k=1
and
= k
T7e'(V —w?Ie| < 2 min(—,1> k) —0
e Jel < 23 Jmin (75,1 ) B(8)

from the absolute summability of the sequences p(k) and (k). The result now
follows from Lemma 3.

(i)
TV —w™2Dd] = T lw I V—Y2Ad|
T~ w Y |r(V=/2)|Ad]
T ™ (W' 0) V2 (V=12)|Ad| — 0

IA

since b'b = O(T).
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(ii) We first treat the case v > 0. With u_; = p~ ' FPu+T"2aw(2y)~ 2T (p)_1,
we have that
T34V —w™Nu_y = T32p V™ —w2DFry
+T 7 (2y) "V 2wd (V7' — w21 Y(p) 4

But Y(p)_1 satisfies the assumptions made on the vector b, so that the second term
goes to zero by (i). The variance of the first term is

6l %27t d (V™ —w ) Fry) = T73p 2w 2d'V-12AFPVFPAV 2
< T3p 2w 2AF?Pldd [P (V= 2)r(V) — 0

since T~!|dd'| = T~'d'd = O(1). For v =0, u_y = F'v, so that the result follows
from setting p =1 in (6.1).
(ili) We prove convergence in mean square
Var[T~V2d' (V™! — w™2Dw] = T w2d'A%d — 0.

(iv) For v = 0, Au = v, and the result follows immediately from (iii). For
v > 0, we find Au = v —~yT " (u_1 +aw(2y)~/2T"/2¢), so that we find the desired
convergence by applying (i), (i) and (iii).

(v) and (vi): For v = 0, % = u, and we are back to the analysis of Elliott, Rothen-
berg, and Stock (1996). For v > 0, we have u_; = 61 + aw(2y)~V2TV2Y (p) 4
and Au = At + aw(2y)"V2TV2AY(p) = At — awy(2y)"Y2T~/2p='R(p). But
T(p)_1 and R(p) both satisfy the necessary assumptions for applying parts (i), (ii)
and (iv) to the respective pieces, so that the result follows. O

Lemma 5. Under Condition 1, if b is a T x 1 Op(1) vector, then 'V =1n = 0Op(1).

Proof. The proof will be carried out in the framework developed in the Appen-
dix of Elliott, Rothenberg, and Stock (1996) and already employed in Lemma 4.
Define the T x T matrix D = I — ¥V. For a real T X p matrix B = [b], let
||B|| = Zle > %y bij. Then |B| <||B]|. Furthermore, Elliott, Rothenberg, and
Stock (1996) argue at the beginning of their Appendix that under Condition 1,
> heo [kv(k)| < 0o and [|D|| = O(1). Note that these inequalities imply that the
sequence 7, is absolutely summable, since

iirk'y(k—f—t) < iih k+1t)]

t=1 k=0 k=

o~
=
f==)

= k)| < oo.
k=0
We can write
b’V "] o' (¥ + DV~
b Tn| + |n'V D).

Now since any element of b is bounded in probability and the sequence p(k) is
absolutely summable, we have that every element of ¥ is bounded in probability.
But the absolute summability of the sequence 7, then implies that |V ¥n| is Op(1),
too.

For the second term, first note that boundedness in probability of b; together with
boundedness of ||D|| implies boundedness in probability of ||D’b||. Furthermore,

IA
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the absolute summability of the sequence 7, implies boundedness of 7'n. We hence
find
[ VID'b| < |n'VTHID|
o [r(V=H)I1D'B]
('m)2r (V1)1 D'Bl| = Op(1).

INIA

O

Lemma 6. Let b and d be T x 1 O,(1) vectors, and define b = (b1, V')’ and d =
(dy,d’). Then, as T — oo,

T2 \' | ey [ TV2d
< T_1/21b ) (V T Vv 1) < T_1/2(11 > L 0,
where V = diag(Tw?(29)~", V) and V is defined in Theorem 2.

Proof. From the formula for partitioned inverses, we have

7= <v07(]7") nv')‘1

_ 6—1 1 —77/V_1
_V—ln 6v—1+v—1nnlv—1

where § = vy(r) — 7'V 1. Furthermore

st [ T2 ! 1 —'V-1 T'/24,
T-1/2p —Vlp V14 v-lgyv-t T-24
_ 1 T1/2b1 / T1/2d1 _ T_1/277/V_1d
T2 —T' 2 V=l + T2V 1d+ T2V -tyy'V—1d
= § ' [Thidy —dif Vo — by VA + T8V V d+ T WV IV )
Apply Lemma 5 and a direct calculation to find § = vg(r) — 'Vl = ;’—;T +

o(T). Furthermore, use Lemma 5 again in order to show that T-'7/V~16 % 0,
T V-1d 2% 0 and T-W'V-"1yn/'V—1d 5 0. But

T1/2b1 /f/—l T1/2d1

T—1/2b T—1/2d
(T2 \ [ TW2(29)7t 0\ TV2d,
T\ T Y 0 vV T-1/24
= %bldﬁ—T‘lb’V‘ld—f—o(l)

so that the result follows. O

Lemma 7. Let h(s) = (hi(s),-- ,hq(s)) be a bounded, twice differentiable vec-
tor function [0,1] — R? with h(0) = (0,---,0)" and bounded first and second
derivatives B (s) = (hi(s), - ,hg(s)) and h"(s) = (h{(s), -+ ,hy(s))'. Define
h(s,c) = ch(s) + h'(s) and H(s,c) = ch'(s) + h"(s). Let Z = TAX + cX_y and
e=Au+cT u_y. If Xy, t=1,---,T, is such that for all s € [T~ 1], X{g,; —
hj(s) and TAX gy ; — h(s), and for all s € [2T-1,1], T2A2X[ST],J- — hj(s), then
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under the conditions of Lemma 1

()
T-'WRZVZ - L(c) = [L(c)ij] = | / hi(s, o)y (s, c)ds]
(it)
T w?cZ'Vie = l(c)=c f h(s,c)ds
(ii)
T~YV2,2'V "l = m(c) = h(1,e) M(1) — / [H(s,c) — ch(s,c)|M(s)ds
(iv)

T2 Vo = me(c) = ¢ / M(s)ds+ eM(1)

Proof. (i) Apply Lemma 4 to find T7'2'V~-1Z — T7'w?Z'Z . But Zirs,; —

hi(s,c), so that the result follows.

(ii) Follows directly from Lemma 4.

(iii) Use Lemma 4 to establish 7-1/22'V~1p — T=1/2,=27', % 0. Then use
the identity Z'Au = Z'u — Z' ju_1 — AZ'u_y to write T-1/272'o = T~/27'(Au +
T u_q) = T_l/QZ{FuT —T-Y2AZ'u_y+cT—3/2Z'u_y, where Z and ug are the
last rows of Z and u, respectively. By definition, T='/2AZ"u_; = T /?(A2X) u_1+
¢T~'2AX"u_;. The first row of T2A%X is possibly not O(1), but since the first
element of u_1 is zero this is inconsequential. The result now follows from Lemma
1 and the Continuous Mapping Theorem.

(iv) Proceed as in (iii), with Z replaced by ce. O

Theorem 8. Suppose that L(0) and L(g) of Lemma 7 are nonsingular. Then under
the conditions of Lemma 7,

(i)
Sa(g, F.) = P —m(g) L(g) " m(g) + m(0)' L(0)~'m(0)
2 [ exp (=} ["20)7 6 - L(0) (o) (o)

+20(29)"2(m(9) — L(9)' L(9) "' m(9)) | } dFu(a)
(i)
Env,(g,a) = P —m(g)'L(g)~"m(g) +m(0)'L(0)~'m(0)
+a*(29)7' (9% —1(9)' L(9) "M 1e(9)) + 2a(29)"/*(me(g) — le(9)' L(g) " "m(g))
(iii)
Qa(9, k) = P +m(0)'L(0)"'m(0)
1/2 ’ 2 1/2 N\t 1/2
(M) (g ) ()

(iv) the asymptotic distribution of Q,(g) is the same as the asymptotic distribution
of Qalg,1)
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where P = gM(1)*> — g+ g [ M(s)?ds, and m(-), l.(-) and me(-) are defined in
Lemma 7.

Proof. First note that since GiX = 0 we can set ¥ = 4 and substitute Ry by
T; = T(r) in the expressions of the test statistics without loss of generality.

We first establish that @74 — @S54 = P. But the initial element of 4 is zero,
and since X7 = AV'A;, we find /ST u — /'S5t = 20T AWV luy +
¢*T~2u' \V~'u_;. Applying Lemma 4 yields 2g7 ' Avw'V = u_1+¢?T v, V" u_i+
g—w 20T Av'u_y +gv(0)+¢*T~ 2w/ ju_q)] 2 0. But 2T ' Aw/u_y = T~ 2—
T-1 Zle (Auy_1)? = w2M(1)2 — 4(0), so that the result follows from Lemma 1
and the Continuous Mapping Theorem.

(i) and (ii): We need to calculate the asymptotic distributions of d i:li) and
dS7 X(X'S7X) 1 X’S7b, where d = (0,d’) and b = (0,5') and d and b stand

. /=1 _ /-1
for any combination of v and wT1/2Y;. With ¥, = < Ltene —ex, >

- te DI
and X =1 %) wetmddSb=astp x5 x=(1 0 and
— e X ) 7 - 7 k] 7 - 0 X/Zi—lx

dYTX(X'S7 X)) X'SThb=d ST X (XS IX) XS .

Since ©;' = AVA;, X7 = §,V18; and IS X (XS X)TIXS D =
SVIZ(ZVZ) T ZIV 1B, where Zg = TAX, Zy = TAX + gX_1, 60 = Ad,
Bo = Ab, 61 = Ad+gT~'d_y and 3, = Ab+gT~'b_1. Note that for d = wT"/2Y,
61 becomes wT'/2AY; + wgT~V2(Y1)_; = —wgT~"/2e. The function f(zy) =
f_oooo exp{ay — a®z}dF,(a) is continuous in z and y for any cumulative distribution
function Fy,(-). Now apply Lemma 1, 4 and Lemma 7 with ¢ = g and ¢ = 0 to
the various terms with d equal to u or T/2wY and b equal to u or T%/2w Y1, and
parts (i) and (ii) follow from their joint convergence and the Continuous Mapping
Theorem.

(ili) We first consider the case k > 0, and we rely on the alternative expression
(3.3) for Qu(g,k). With ug = 0, clearly ﬁ(])’fl(l)_lﬁ(l) is equal to % Got so that
we can rely on the derivations above for this part. Define €}y = fl(r) and A; =
fl(r) Then ﬁ(r)’fl(r)_lﬁ(r) = fb’[fll_l - Q;l)Z(X'Q;lx)—l)Z/Q;l]a and Ql_l =

" . - 2 -1 -
AlV~1A;, where V = < kw*(29)7°T 0 . From ug = 0, we find fblﬂl_lfb =

0 14
5 T/? 0 X 0
w27 u. Furthermore TW/°4; X < T-124e T-1/27, > and A1 < o )’

where ¢, = Au+ gT~'u_y, so that
1o [ 2087w+ AT e Vle gT eV —1Zy
XX = < gT™'Ziv e T ZiV='7

. —1/2 17/—1
172181~ _ [ 9T /%e'V "2y
T XQl U = ( T_l/QZiV_lsol .
From Lemma 4 and 7, T-'¢'V—'e — w2, T-1Z|V~le — l.(g), T~'/2e' V¢, =
me(g) and T—'/2Z,V =1, = m(g). The result for k > 0 now follows from Lemma
1, the joint convergence of these pieces and the Continuous Mapping Theorem.
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Clearly, Q,(g,0) corresponds to Env,(g,0). But setting & = 0 in the general
expression for Q,(g, k) yields Env,(g,0), so that the expression for Q,(g,%) holds
true also at k = 0.

(iv) The only difference between Q,(g) and Q.(g,1) would arise from the pres-
ence of the variance-covariance matrix V rather than V with A\ = Tw?(2¢)~" in
part (iii). But Lemma 6 shows that this difference does not matter asymptotically,
so that the two asymptotic distributions are identical. (|

In the light of this Theorem, Theorem 3 in the main text becomes a corollary. For
the mean case, there is no X, so that the result follows directly after substituting
all expressions:

(g, Fy) = gM(1)2 — g+ 2 / M(s)2ds

- 21n/exp {—% [%oﬂg ++v2a <g3/2/M(s)ds + gl/QM(l)ﬂ }dFa(a)

Envli(g,a) = gM(1)*~g+¢ / M (S)2d8+%a29+\/§a <g3/2 / M (S)d8+g1/2M(1)>

gk (g [ M(s)ds + M(l))2

B 2+ gk

For the time trend case we can set X = T~'7, so that for s € [T71,1], X1y =
T Ts) — s = h(s) and TAX 1y = 1= h/(s), and for s € 2T, 1], T?A2X (5 =
0 = h”(s). Therefore 71(.9, ¢) = ch(s) + h/(s) and ﬁ(s, ¢) = ch/(s) + h"(s) become
h(s,c) = es +1 and H(s,c) = ¢. We find L(c) = [ h(s,¢)%ds = [(2s® + 2cs +
Dds = 2/3+c+1, le(c) = ¢ [ h(s,c)ds = ¢ [(cs + 1)ds = ¢2/2 + ¢ and m(c) =
h(1,e)M (1) — [[H(s,¢) — ch(s,c)|M(s)ds = (¢ + 1)M(1) + ¢* [ sM(s)ds. Since all
considered statistics are invariant to the time trend, we might substitute M (s) with
its projection off s, M7 (s) = M(s) —3s [ AM(A)dX. Clearly then [ sM7(s)ds = 0.
Plugging in these terms in the expressions of Theorem 8§ yields

Qﬂ%k>igmun2—g+g{/mu$ws

+1)2MT(1)2
879, Fa) = (g + )M (1) - +2/MT 25 - X ITMTLY
(0.F) = (9+ DM —g -+ [ M(9)%s = S 2T

oo 1.2 2

_ 59°+9)
—2In exp{ —1 [a22 1(2—(297)
/_oo p{ 2|20 \g 32 +g+1

+v2ag™ /2 <g2 / M (s)ds + gM™ (1) — (30° Eggg(f_ ;i)lMT(l) )} } dF,(a)

(g +1)2M(1)2

Env)(g,a) = (g + )M (1) — g+ Q/MTSst—
(9:0) = (g+1)M"(1)° —g+g () I2tg+1

+a*(29)7" <92 ) >

39° +g+1
(39° +9)(g+ 1)MT(1)>
392 +g+1

++/2ag™1/? (gz / M7 (s)ds + gM™(1) —
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QT (g, k) = (g + 1)M™(1)% — g + 2 / M ()2ds—

k1/2 g fMT dS-l—gMT( )) ! 2g+g2k kl/Q(%QQ‘l—g) -1
< (g+ 1M (1) > <k1/2(1g2+g) 39°+g+1 )
( kY/2(g? [ M7 (s)ds + gM™ (1)) >
X
(g+1)M7(1)

The coefficients given in Theorem 3 in the main text follow after a considerable
amount of algebra.

It is now easy to analyze the GLS estimator agrs = (29)"/2w™ T2 (yy — 1)
of @ mentioned in the main text. Define the vector s; = (1,0,---,0)’ which has
the same number of rows as X has columns. Then

fi—p—& =8 (X0 X)X d
so that
dars = —(29)Y 2w 1TV 2 (X7 X)X Q5 .
Let d = 29+ kg® — kl.(9)'L(g) ~'lc(g). From steps very similar to those used in the
derivations of Theorem 8, we find

2 1/2 ’ /2,
agrs = —(20k)'%s ( i%f(gl; * Léeg()g) > < ‘ m(;)(g) >

_ 12414 1 —k'21,(9)' L(g)~"

= (2gk) 124 1( —kY2L(g)"u(g) kL(g)"1(9)le(9)'L(g)~" + dL(g)~" >
o < k1/2 (g >

_oniy2 k(me(g) —le(9)'L(g)~"m(g))

= & 29 + k(g% — le(9)' L(g)~'le(9))

Since & s and the various parts in Env, (g, ) converge jointly to their respective
weak limits, we can apply the Continuous Mapping Theorem to Env,(g, &ars)-
With S = g% — l.(9)"L(g) " !l(g) we find

Enva(g, dcLs) = P — m(g)' L(g) " 'm(g) + m(0) L(0)""m(0)

L K2S(me(g) —1e(9)' Lg)"'m(g))* _ 2k(me(g) = Le(9)' L(g) 'm(g))*
(29 + kS)? 29+ kS '

Furthermore, using the original form for Q(r, \) of Corollary 2, an alternative ex-

pression for the asymptotic distribution of Q4 (g, k) is
Qalg, k) = P —m(g)'L(g)~'m(g) + m(0)'L(0)~'m(0)
_ k(me(g) = le(9)'L(g) "'m(g))*
29+ kS '

We conclude that Q, (g, k) and Env, (g, &) converge to the same limiting distribution
when
k(49 + kS)
2g '
Substituting out for S yields the expressions in the main text.

k=
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Similarly, from the expression for Env(r, z) in Corollary 1, let

5 R|Gyj

Emr = RGi Ry and anrp = w ITY2(29)1% ),
1

be the Maximum Likelihood estimators of ¢ and « under the fixed alternative with
p=r =1-gT™1, respectively. From the expressions derived in the proof of

Theorem 8 we find

1/2me(g) = Le(9)' L(g) "' m(g)
9% —le(9)' L(g)~!e(9)

Noting that this asymptotic distribution corresponds to the distribution of &grs
as k — oo, we conclude from the discussion above that Env,(g, &) is equivalent
0 Qu(g, ).

Proof of Lemma 2:

The proof follows closely the method developed in Tanaka (1996), pp. 109. A very
similar result may also be found in Elliott and Stock (2001). We have to take care,
however, how « enters the picture.

We have
¢'(6) = E,, [exp {6T"i}]
! 1
= Eslexp{0l4i — 5(6 —7) — 7™y

4
. 72 — 62 e ey
+ <91§i - > / M(s)%ds + Z"AZ' + X\ Z'}]

&ML = —(29)

1 1 R T
— axp {Gloi —5(6-7)- Za%} Es [exp {Z“A’Z’ +3 /Z’H ,
where § = /2 — 2{16i and the subscript of the expectation operator denotes the
value of v in the definition of M(-) with respect to which the expectation has to be
computed. To justify the change in measure used in the second line, consider the
likelihood of u from (2.1) with standard normal innovations, vy = g and @ = a

zT: (ut —rup_q + Tl/Qa(Qg)_l/Q(l - r))Q] }

1
L? exp{——
9

2=

- T .
- P {_% > (Au + g7 uis + Lag'2T712) ] }

t=1

Sl

1
= exp {—5 Z (Auf + 29T " Awgug_1 + V2aT~2g" 2 Ay

| t=1

FPT 202 | +V2aT~32g% 20,y + %a2gT_1)”

and the likelihood when vy =d and o =0

0 1|5 2, od &
Lg < exp ) Z Aug +2TAut“t—1+ﬁut—1 .

t=1
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Therefore
ﬁ_% ¥ - {%i [Qd—l_“gAutut—l ~ V2T 292 Ay
n d21:2 72 _ BaT-2 32, a2 gT—l ] }
N eXp{%(d—g)(M(l) —1) /M s

—(29)"2algM(1) + g /M s)ds] — 4}.

Note that rather changing the measure to a process with an identical ¢, as is done
in Tanaka (1996), we change it to a process with o = 0, which somewhat simplifies
our calculations. '

The remaining expectation in ¢°(6) may be computed "by completing the square’

Es [exp {Z"’NZ“' + XUZ"H

= (27r)_di/2 det™1/2 Vi(é)/

—0o0

exp {_% [Zi/(vi(6)—1 —9AHZi - 25\1’/Z¢} } d7i

det ™1/ [I —aVi()A } exp { ;X (Vi)™ - 2/1@')—1&”}

where d* = 1 and d” = 2. The last line follows after notmg that Ejs [Z’] =
and, with m’ = (V#(8)~! — 20~ 1)\ , that (Z% —m")'(Vi(6)~"! — 20 (7 )
Zi(Vi(§)=t —2Ki)z¢ — 287 + N (Vi(5)~! — 24)71X',

VH(6) and V7 (6):
The definition of M(s) and some stochastic calculus reveal that with oo = 0 and
v=20

[ s
J M(s)ds
J sM(s)ds

Hence V() = [vjx] = [ J 9;5(s)gr(s)d ] Carrying out the integration yields vi 1 =
(1—e72)/(28), v2 = (1 = e7®)2/(26%), va2 = (=3 + 26 + 4e=® — e729)/(28%),
vig = (6 =1+ (1+8)e72)/(26%), va3 = (6% — (1 + 6)(1 — e7*)?)/(26") and
v33 = (3 — 38 +26° — 3(1+ 6)%e=2) /(65°).

exp[—8(1 — s)]
/ {1~ exp[~8(1 - )]} /6 aw(s)
{1465 —exp[-6(1 — 8)] (14 6)} /6

91(s)
/ ( g2(8) )dW(s)

93(s)

Proof of Theorem 5:

The statistic Qufq(r, A) differs from the statistic Q*(r, \) only in the density of y
under the null hypothesis. Using the notation of the proof of Theorem 1, we
have M§|H0,§ =z~ N(zMZC,MiOM), so that the density of J\;IgﬂHO on the
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hyperplane ¢’ X =0is proportional to
/ exp {—% [(gj — 22 M(MSoM)™ M (§ — 2Z¢) + 22,%_1} } dz

[ o (§GeZ)?
Xp{ 3 [y T ¥ ZLGoZ,

}

vghere ¢ is a constant that does not depend on §. The optimal test statistic hence
Q. (r, \) becomes
y | (7 Gh 20
V() =QN(r A+ ————————=
BN =N+ SR
and
QUi(r7 )‘) = lim Qufe (T7 /\)
] Tles 71)2
¢ 0% ¢

From the joint convergence of the two pieces of Qi(r, A) and the Continuous Map-
ping Theorem, the asymptotic distribution of Q’ (g, k) is given by sum of the asymp-
totic distribution of Q? (g, k) and the asymptotic distribution of (§'G}Z, 02/ Zé’ Gf)ZZl.
Since Q’('r A) is invariant to X, we can replace §j with @i. Let h“( ) = 0 and

h7(s) = s. Clearly, T—1/2 ZC rs) = § = g"(s) and T~ 1/2Z<,[TS] — 82 = g"(s), so

that from part (i) and (iii) of Lemma 7 and the reasoning in the proof of Theorem
8

W GoZy = wil[St — g XH (XSG X)) TIXVEg)ZE

(M) - / g (5) M (5)ds

N
l "o / e )M(S)ds> (/ ’”’<5>2d8)_1 / h"’<s>gi’<s>ds]
stz o (o) (futou)

Carrying out the calculation for ¢ = p and ¢ = 7 yields
(@ Gy ZY)* { M(1) fori=p
=y - T 2 T T
ZYGHZ} 3MT(1)2 4+ 12 (f M™(s)ds)” —12M7 (1) f M"(s)ds fori=rT

and

Combining these results with the asymptotic distribution of Q% (g, k) of Theorem 3,
we find that the Weights ¢ in the asymptotic distribution of Qi (g,k) on 1, M*(1)2,
(fMz )2 fM’ s)ds and [ M*(s)?ds are given by ¢ =g, @' = ¢}’ +1,
& =dh, 45 =df, da = gi, and §f = q] +3, & = ¢ +12, §§ = ¢§ — 12, where
g; are defined in Theorem 3. With these weights, it is straightforward to establish
the solution gg = —2cvhP¥ and kg — oo of (4.2).

Proof of Theorem 6:
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First note that minimizing Qui(r, A) with respect to r is equivalent to minimizing

7Gy — ﬁ% — only the density under the alternative depends on r. Ex-
1 Gt
pression (3.3) allows to rewrite
. R\ G19)? Nl Byl GBI L L B (11
(6.2) ¥ G1y— (F1G19) =F[Qr) " =Q(r) X (X'Qr) X)) TLXQ(r) Yy,

At + RllGﬂ%l
and note that fl(r)_l = fl(r)’diag(g\_l, V‘l){l(r). Clearly, k — oo implies %\_1~:
2gw™2 Tk~ — 0. Now lim/\fl_)o Q(r)~! = A(r)'diag(0,V—1) A(r) = B(r)'Vy B(r),
where B(r) = A(r) — diag(l 0,---,0) and V;~ = diag(0,V~1). By standard regres-
sion algebra, (6.2) as A1 = 0 is hence equal to the sum of squared residuals of a
GLS regression of B(r)i = Aii— gT~'4i_; on B ( )X with V;~ as the inverse of the
variance-covariance matrix. For the regressors in the mean and time trend case,
we find B(r )é =gT7%0,1,---,1) and B(r)¥ = (0,1,1+¢T~1,1+29T71,--- |1+
(T —1)gT~ 1y, Let H* = (0,1,---,1)" and H™ = (H*,#), so that the last T' rows
of H' become H* = e and H™ = (e,7) and note that the same column space is
spanned by the regressors B (r )X ? than by H?. We hence find
lim §[Q(r)™" = Q@) XN (XVQ(r) LX) T X))y

A1—0

= (A —gT Y1) V5 (MG — gT Ya_y)

—(Ai — gT Ya_,)Vy HY(H"Vy HY Y HVy (At — gT i_y)

= (Au—gTu )V Y Au— gT  u_y)
(6.3) —(Au— gT YY) VIIH(H'V T HY T H'V " (Au — ¢T M u_y)
It is now an easy matter to minimize this expression with respect to g. Note that
the coefficient of g2 is positive almost surely, so that

T=! (u_ V7 Au— oV HY(H'V H) " H"V =" Au)
T-2 (ul_lv—lu_l _ u/_lV—lHi(Hilv—lHi)—lHilv—lu_l)

G9PF =

minimizes (6.3) and exists with probability 1. From part (i) and (iii) of Lemma 7
and the reasoning in the proof of Theorem 8, we find that the asymptotic distri-
bution of §#PF corresponds to the asymptotic distribution of the statistics in the
pPF_class. Clearly then, as T — oo, the sign of §“PF corresponds to the sign of
the Dickey-Fuller t-test type statistics.

Furthermore, substituting §>?% for g in (6.3) yields

AWV Au— AWV HY(HYV T HY) TP HYV T Au
T2 (o, V= Au —u V- HI(HYV - HY) " HYV 1 Au)?
T2 (u_\V—lu_y — V- H(HVV=LH) TV ~Ty_y)

A direct calculation shows that the first part (excluding the fraction) of this ex-
(@ GhZ))*
ZiGhZi
above. Therefore, applying part (i) and (iii) of Lemma 7 and the reasoning in the
proof of Theorem 8 one finds

pression is equal to @' Gha + in the notation of the proof of Theorem 5

[Mz OLS(1)2 _ pfi-OL8(()2 — 1] 2
4 [ MHOLS(s)2ds ’

Qu(g"PF, 00) = —
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which is negative almost surely. sign(§»PF)@Q? (3*PF,00) has hence an asymptotic
distribution that is a monotone transformation of the asymptotic distribution of
the 7°P¥ class, which concludes the proof.

Method to find a comparable Q,(g,k) for a given class of tests:

Denote with 7, the decision of a given class of tests of size 5% to reject (r, = 1)
or not to reject (r, = 0) the n-th draw W (s) of a random sample n = 1,--- , N of
a Wiener process. Consider a nonlinear logit regression of r, on a constant and a
scaled weighted sum of W (1)?, (f Wfl(s)ds)Q, Wi(1) [Wi(s)ds and [ W (s)?ds,
where the weights depend on g and k and are given by the weights q;'. (g,k) of
Qi (g,k) (cf. Theorem 3)

Tn = L(ZO + lle,n(gy k)) +en

where L(z) is the logistic function L(z) = 1/(1+ e~*). Then the estimated values
of g and k in this regression may serve as approximations to the values of gy and
ko which maximize the asymptotic probability that the two tests both reject or do
not reject under the null hypothesis of p = 1. The values of Table 4 were calculated
with N = 80'000.

Proof of Theorem 7:

Since all considered tests are invariant to the respective deterministics, we can set
9 = 4 without loss of generality. By recursive substitution u; = 2221 Pt v+
a(2y)~V2wT 2(1 — p*). Under Condition 2 and fixed v = T(1 — p) > 0 we find
from the Continuous Mapping Theorem that 71/ Qﬁ[Ts] = wM(s). Recall that
M#(s) = M(s) and M7 (s) = M(s) — 3s [ AM(X)dA. The result now follows from
the consistency of @, the Continuous Mapping Theorem and Theorem 3.
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