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Abstract: Crown base height (CBH) is an essential tree biophysical parameter for many 
applications in forest management, forest fuel treatment, wildfire modeling, ecosystem 
modeling and global climate change studies. Accurate and automatic estimation of CBH for 
individual trees is still a challenging task. Airborne light detection and ranging (LiDAR) 
provides reliable and promising data for estimating CBH. Various methods have been 
developed to calculate CBH indirectly using regression-based means from airborne LiDAR 
data and field measurements. However, little attention has been paid to directly calculate 
CBH at the individual tree scale in mixed-species forests without field measurements. In this 
study, we propose a new method for directly estimating individual-tree CBH from airborne 
LiDAR data. Our method involves two main strategies: 1) removing noise and understory 
vegetation for each tree; and 2) estimating CBH by generating percentile ranking profile for 
each tree and using a spline curve to identify its inflection points. These two strategies lend 
our method the advantages of no requirement of field measurements and being efficient and 
effective in mixed-species forests. The proposed method was applied to a mixed conifer forest 
in the Sierra Nevada, California and was validated by field measurements. The results showed 
that our method can directly estimate CBH at individual tree level with a root-mean-squared 
error of 1.62 m, a coefficient of determination of 0.88 and a relative bias of 3.36%. 
Furthermore, we systematically analyzed the accuracies among different height groups and 
tree species by comparing with field measurements. Our results implied that taller trees had 
relatively higher uncertainties than shorter trees. Our findings also show that the accuracy for 
CBH estimation was the highest for black oak trees, with an RMSE of 0.52 m. The conifer 
species results were also good with uniformly high R2 ranging from 0.82 to 0.93. In general, 
our method has demonstrated high accuracy for individual tree CBH estimation and strong 
potential for applications in mixed species over large areas. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (280.3640) Lidar; (100.6890) Three-dimensional image processing. 
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1. Introduction 
Tree crown base height (CBH) is defined as the distance from ground surface to the lowest 
live branch within a tree crown [1–3]. It is a basic structure parameter for measuring crown 
volume [4], crown ratio [5, 6], and other crown dimensional parameters [7, 8] both at 
individual tree and forest stand levels. Thus, there is a need for accurate and efficient 
estimations of CBH for tree growth observation [9, 10], tree health monitoring [11], forest 
wildfire management [12, 13], forest ecosystem modeling [14], and global climate change 
studies [15]. However, obtaining CBH is still a challenging task. Traditional field-based 
methods can obtain reliable and accurate CBH measurements [16, 17], but these methods are 
often time-consuming and labor-intensive. Remote sensing technique makes it possible to 
continuously observe forest parameters with higher efficiency [18, 19]. In particular, light 
detection and ranging (LiDAR), an active remote sensing technique, has the capability to 
penetrate forest canopy, and can provide precise estimations of three-dimensional tree 
structures [20, 21]. 

Many previous researchers have shown that LiDAR data are effective at estimating forest 
structural parameters [22–25]. Various algorithms have been successfully developed to 
estimate tree height [26], leaf area index [27, 28], aboveground biomass [29], canopy cover 
[7, 30, 31] at both individual tree [29, 32, 33] and forest stand scales [34, 35]. However, 
studies on LiDAR-based CBH estimation are still insufficient, particularly at individual-tree 
scale. Most previous researchers investigated the estimation of CBH at plot level [1, 7, 25, 
36]. In the recent decade, studies on individual tree-level CBH estimation are increasing to 
provide more precise forest structural information to support forest management planning and 
decision making [2, 3, 37]. 

Currently, methods for LiDAR-based CBH estimation can be divided into two main 
categories, regression-based method [38, 39] and direct estimations [2, 3]. The regression-
based methods require to develop a relationship between field-measured CBH and other tree 
biophysical parameters derived from LiDAR data, such as tree height and crown width [2, 38, 
39]; then the CBH in areas without field measurements can be predicted based on the 
experimental relationships. The accuracy of CBH estimation using regression-based methods 
have relied heavily on the reference data sampled in the field. The quality and quantity of 
field measurements may greatly impact the accuracy and predictability when applying these 
regression models to other areas [3, 13]. In contrast, direct methods estimate the CBH of 
individual trees directly from the LiDAR point cloud without the requirement of field 
measurements [2, 3]. The direct LiDAR methods are free from the uncertainties brought by 
field measurements, and thus they are more flexible in CBH estimation in forests with 
different species. Nevertheless, previous studies using direct methods often encountered the 
problem of overestimation, which was usually caused by the weak capability of laser pulses 
to penetrate dense canopy and reach the lowest tree branch, particularly in dense forests [2, 3, 
25]. To overcome this problem, Popescu and Zhao [2] generated vertical profiles based on the 
density and intensity of voxelized LiDAR point for each tree, and then calculated CBH as an 
inflection point of the polynomial curve fitted from the vertical profiles. They obtained a 
good result with a root mean squared error (RMSE) of 2 m. Vauhkonen [3] presented a 3D 
geometry-based algorithm to estimate the CBH for scots pine trees (Pinus sylvestris) with 
RMSEs ranging from 1.44 m to 3.56 m. These methods substantially improved the accuracies 
of CBH, but they can only be applied to limited species in most cases because of the high 
computational costs associated with the complex procedures of generating vertical profiles or 
reconstructing the 3D convex of individual trees. Therefore, it is still necessary and important 
to develop new methods which are simple and computationally efficient, and can be applied 
on multiple species simultaneously. 

The main objective of this study is to develop a simple method to estimate CBH directly 
from airborne LiDAR data. This method is based on frequency statistics and inflection point 
detection from the percentile ranking curves generated from LiDAR data. Using the field 
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measured tree structural information over a mixed-conifer dominated forest in the Sierra 
Nevada, California as a pilot study, we systematically evaluated our method over different 
tree species and tree sizes. This proposed method has the potential to apply to other forests 
and provide useful CBH estimations for forest and wildfire management. 

2. Data and methods 
2.1 Study area 

The study site is located in the Tahoe National Forest of California, U.S.A (Fig. 1), with an 
area of 92.1 km2. This area experiences a Mediterranean climate characterized by warm dry 
summers and cool wet winters. The terrain in this area is very complex, with the elevation 
ranging from 228 m to 2189 m [40]. The main vegetation in this site is the Sierra Nevada 
mixed conifer, which consists of white fir (Abies concolor, denoted by ABCO), California red 
fir (Abies magnifica, denoted by ABMA), incense cedar (Calocedrus decurrens, denoted by 
CADE), sugar pine (Pinus lambertiana, denoted by PILA), ponderosa pine (Pinus ponderosa, 
denoted by PIPO), Douglas-fir (Pseudotsuga menziesii, denoted by PSME). The forest 
includes smaller amounts of broadleaf species, such as Black oak (Quercus kelloggii, denoted 
by QUKE) and Canyon live oak (Quercus chrysolepis, denoted by QUCH). The variety of 
species in this site makes it an ideal study area to evaluate the robustness of our proposed 
method for CBH estimation. 

 

Fig. 1. The map of study area and the locations of field measured plots. 

2.2 Field measurements 

Field data were obtained during the summer of 2007 in the study site to obtain forest 
structural information. The first plot was randomly located, and others were regularly placed 
with a distance of 500m. The plot center was located using a TrimbleTM GeoXH GPS, and 
each plot was a circle with a radius of 12.62 m. Any plot within 12.62m of a road surface or 
build-ups was moved 25m in an arbitrary cardinal direction to avoid human impacts. The 
plots located on private lands or inaccessible areas were not measured. With each plot, the 
location, CBH, diameter at breast height (DBH), and tree height of each tree with a DBH>5 
cm were measured and recorded. A total of 94 plots and 637 trees were surveyed in this study 
site for validation. 
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2.3 LiDAR data 

The LiDAR data were acquired for the study area on September 2007, using a Cessna twin-
engine Skymaster equipped with an Optech GEMINI Airborne Laser Terrain Mapper 
platform [41]. The laser sensor recorded up to four returns for each laser pulse. The pulse 
repetition frequency was 100 kHz to 120 kHz. The flight height was about 900 m above the 
ground. Each flight line had a belt overlap of 67% [19, 42]. The scanning angle of the 
platform was from −15° to 15°. The spatial precision of the LiDAR data along the vertical 
and horizontal directions were approximately 10 cm and 10-15 cm, respectively. The average 
density of the LiDAR data was around 10 points/ m2. 

2.4 CBH estimation methods 

The proposed CBH estimation procedure includes three main steps: (1) individual tree 
segmentation, (2) understory and noise removal, and (3) individual tree CBH calculation. The 
workflow is shown in Fig. 2 and a graphic example is shown in Fig. 3. 

 

Fig. 2. Flow chart of the method for estimating crown base height (CBH). 
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Fig. 3. An example of estimating individual tree CBH from LiDAR point cloud data. 

2.4.1 Individual tree segmentation 

A top-to-bottom region growing algorithm [41] was used to segment individual trees from the 
normalized LiDAR point cloud in LAS files. This algorithm segments trees according to the 
relative distance between trees. Trees may overlap in dense forest, but the space still exists 
between them at the tops of trees. The algorithm implements the segmentation from the tallest 
point of a tree to the shortest point of that tree. It has been shown to perform well on 
individual tree segmentation in complex mixed conifer forests [43]. Three preprocessing steps 
were conducted to the raw LiDAR point cloud prior to application of this algorithm, which 
included outlier removal, normalization and ground point removal. Outlier removal is 
necessary to prepare LiDAR data for individual tree segmentation [44]. We applied a 
Gaussian filter [45] with 5 times the standard deviation and a 10 * 10 window to detect 
outliers. Next, we used the ordinary Kriging algorithm to generate a DEM at a resolution of 1 
m from ground returns [46]. The elevation of each LiDAR point was normalized to above-
ground height by subtracting the DEM pixel value at the same location. Points below 1 m 
were considered as shrubs according to field survey, and were removed from the CBH 
estimation. We operated the above-mentioned procedures using the LiDAR360 software 
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(http://greenvalleyintl.com/). After the tree segmentation procedure, tree location was 
recorded as the treetop location, and tree height was derived as the above ground height of 
treetop, and crown diameter was calculated as the diameter of the circle which can contain all 
the points projected to the ground with the tree top as its center [Fig. 3(d)]. 

2.4.2 Understory and noise removal 

The understory structure and height of a given forest may vary significantly by environmental 
conditions and species type [47, 48]. The top of understory is often close to the CBH, which 
may cause difficulties in identifying crown base [2]. Thus, in order to eliminate the impact of 
understory on CBH estimation, removing understory and noise is necessary but often 
neglected in previous studies. In this study, we proposed an automatic method to remove the 
understory and noise by detecting the top of understory beneath individual trees. Through 
observation and investigation of LiDAR point clouds and field measurements, we found that 
LiDAR point density was always lower and even close to zero in the vertical gap between 
understory and crown base. Therefore, an accurate detection of the vertical gap where the 
point cloud density reduced sharply is the key to identify the top of understory. In order to 
characterize the vertical changes of point density, we generated a histogram of the vertical 
LiDAR point distribution at 0.1 m intervals and generated a smooth curve from this histogram 
for each individual tree. The 0.1 m interval was selected here because it is fine enough to 
form a smooth curve which kept the detailed changes in point density. The inflection points of 
the smoothed curve, which represented points with a sign of the curvature changes [49], were 
then identified as potential points of understory tree top. Detailed steps for selecting the 
understory tree top for understory and noise removal are introduced as an example below. 

In order to identify the inflection points appropriately, we first applied the spline curve-
fitting algorithm to smooth the histogram (the blue curve in Fig. 4). Then we drew a second 
derivative curve (the red mixed with black curve in Fig. 4) corresponding to the smoothed 
curve and got multiple inflection points where the second derivative values were zero on each 
curve (a, b,…, z,… points in Fig. 4). These inflection points can be the local maximum, 
minimum, or stationary points of the point density. The challenging task was how to select 
the correct inflection point (indicating the top of understory) from the candidate points. This 
was determined by the following procedures. 1) We highlighted the sub-ranges of second 
derivative curve which has positive signs (referred as above-zero parts here after), shown as 
the red curves in Fig. 4. These above-zero parts of curves indicated that the point cloud 
densities were lower than the adjacent below-zero parts (e.g., point density in ab is lower than 
bc in Fig. 4). 2) We calculated the point density for each of the above-zero height region, and 
chose the region with the lowest point density (in Fig. 4 mn has the lowest density at 0.5). 3) 
We compared the height of m with that of n, and selected the inflection point with lower 
height as the top of understory. If the height of m is lower than that of n, m would be marked 
as the top of understory, otherwise n would be marked as the top of understory (e.g. in Fig. 4, 
mn is the region with the lowest point density and m was set to the top of understory). After 
that, we removed the LiDAR points which were below the selected inflection point (m as 
shown in Fig. 4) as understory and noise for individual trees prior to CBH estimation. This 
procedure was successful at detecting most understory points. Some points which were too 
isolated and discrete to be completely detected between the top of understory and the crown 
base were remained. 

                                                                            Vol. 26, No. 10 | 14 May 2018 | OPTICS EXPRESS A569 



 

Fig. 4. An example of one individual tree, showing the process of locating the top of 
understory for subsequential removal. 

2.4.3 CBH estimation 

A percentile ranking based method was used to estimate the CBH as follows. We first 
generated a percentile ranking profile per tree using points without understory. This profile 
was fitted using the spline algorithm (the black curve in Fig. 5). The first derivative curve (the 
blue curve in Fig. 5) and the second derivative curve (the red curve in Fig. 5) were created, 
and then located the first derivative value at each inflection point (second derivative equals to 
zero, e.g. a,b,c,…, j in Fig. 5). We then selected the inflection point where the first derivative 
value is maximum (e.g. f in Fig. 5) and the percentile ranking value should be under 0.5 as the 
estimation of CBH. Figure 5 shows an example of estimating CBH based on the percentile 
ranking profile. The same procedure was applied to the entire LiDAR point cloud to calculate 
the CBH for each segmented tree. Noted that the first derivative reveals whether the 
percentile ranking is increasing or decreasing, and by how much it is increasing or decreasing. 
The second derivative indicates whether the first derivative is increasing or decreasing. If the 
second derivative is positive, the first derivative will be increasing (the fitted spline curve is 
concave). Conversely, if the second derivative is negative, the first derivative will be 
decreasing (the fitted spline curve is convex). Specially, if the second derivative is equal to 
zero, there would be an inflection at this point. The inflection occurs where there is an abrupt 
change on the percentile ranking. The expected inflection as CBH is the one where the first 
derivative value is maximum and the percentile ranking value should be less than 0.5. The 
second quartile height has been reported to be a good variable for estimating the forest 
biomass by [50]. Thus we considered that CBH should be lower than the second quartile 
height. 
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Fig. 5. An example of estimating CBH based on the percentile ranking profile of LiDAR 
points for an individual tree. 

2.4.4 Tree-to-tree matching method 

The matching between field measured and LiDAR-derived trees is the preliminary step for 
validation of the LiDAR estimation results. Tree parameters, such as tree location, tree height 
and tree crown size, were considered in the tree-to-tree matching procedure of this study. Tree 
location was considered as an important parameter of the matching in previous studies [2, 51, 
52]. However, due to the uncertainties of GPS measurements under forest canopy and the bias 
of LiDAR-derived tree location, the matching would be difficult and problematic if only 
using tree location. Therefore, as shown in previous studies, a manual check was required to 
pair more trees [2]. To make the matching more automatic and to reduce the labor costs, tree 
height [51, 52] was also used to pair the trees. Moreover, by trial and error, we found that the 
diameter of tree crown was an appropriate threshold to refine the distance between paired 
trees in LiDAR estimates and field measurements. Thus, we designed a strategy which 
combined the tree location, tree height and crown size, to improve the accuracy and efficiency 
in tree-to-tree matching, as shown in an example below. 

For each single tree measured in the field (ai), we first selected the potential pairing trees 
bj from the LiDAR-derived tree segments by their spatial location. Any LiDAR-derived trees 
with a distance [dij in Eq. (1)] smaller than the diameter of tree crown was marked as potential 
paired trees (bj). Then, we further refined the selection using a comprehensive difference 
index [Dij in Eq. (2)], which considered the location distance and height difference in a 
weighted combination. The weight for the height difference was set as 0.5, as suggested [52]. 
Finally, the tree with the smallest Dij among all the potential LiDAR-derived pairing trees was 
matched to the field measured tree ai. Any tree in the field measurements that failed to find 
potential pairing trees within crown diameter distance was labeled as unmatched and 
excluded from validation. 
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where (xi,yi)is the location of a field measured tree ai to be paired, (xj,yj) is the position of a 
LiDAR-derived tree bj, dij denotes the distance between ai and bj, Dij denotes the 
comprehensive difference index of tree matching, hi denotes the height of ai, hj denotes the 
height of bj, w is set to 0.5 as the weight of height difference [52]. 

2.4.5 Accuracy assessment of estimating CBH 

After the CBHs of all the trees were estimated, the coefficient of determination (R2) and root 
mean squared error (RMSE) [Eq. (3) and Eq. (4)] were used to assess the accuracy of CBH 
estimation. The bias [Eq. (5)] in LiDAR CBH estimation calculated as the percentage of 
difference between averaged LiDAR-derived and field measured CBH comparing to field 
measurement were also used to quantify the magnitude of over/under estimations. 

 ( ) ( )2 22

1 1

1 /
n n

i i i m
i i

R x y x x
= =

= − − −   (3) 

 ( )2

1

/
n

i i
i

RMSE x y n
=

= −  (4) 

 100%m m

m

y x
bias

x

−
= ×  (5) 

where n represents the number of trees, xi represents the ith CBH value of a field-measured 
tree, yi represents the ith CBH value of a LiDAR-derived tree, xm is the mean CBH value of 
all field-measured trees, ym represents the mean CBH value of all LiDAR-derived trees. 

3. Results 

3.1 Individual tree segmentation 

A total of 943 trees were automatically segmented from LiDAR point data in the study area. 
A visual examination of the preliminary segmentation results were conducted by three 
researchers with experiences in LiDAR remote sensing. By a majority vote, we observed 57 
omission errors and 66 commission errors. The overall accuracy was 0.87, which was 
satisfactory comparing to previous studies conducted in similar forest conditions [41]. The 
under-segmented trees (omission errors) were mainly found in dense plots where some trees 
stood closely to each other and were mistakenly treated as a single tree by the algorithm [53]. 
To correct those errors, we manually separated the point clouds of under-segmented tree into 
two or three trees by visually examining the point clouds at different angles in the LiDAR360 
software. Finally, we manually segmented the 57 under-segmented trees into 143 trees and 
generated a total of 1,029 trees for CBH estimation. 

3.2 Field measurement results and tree-to-tree matching 

A total of 637 trees were measured in the field, and their tree height, DBH, CBH, and tree 
location were recorded. It should be noted that the field survey was conducted in a quick plot-
driving strategy, and only trees with a DBH larger than 15 cm were measured. Therefore, the 
number of measured trees was smaller than the actual number of trees as well as the number 
derived from LiDAR data. Among the 637 measured trees, 381 of them could not find a 
matched tree from LiDAR-data within the crown distance. Thus, only 256 trees in the field 
measurements were successfully paired with LiDAR-derived ones. The matching accuracy is 
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likely influenced by GPS errors and the difference in the definition of tree location between 
these two data sources. For example, the tree location was determined by the tree top in the 
LiDAR data, whereas it was recorded as the base of tree trunk location in the field 
measurements. Therefore, the deviation between tree top and base of tree trunk can also lead 
to the mismatch. Overall, there were 40.2% of field-measured trees and 24.9% of LiDAR-
derived trees were matched successfully in this study. 

Table 1 shows the summary of field measurements and tree-to-tree matching results. For 
field-measured trees, the average CBH was 7.63 m with a standard deviation of 4.51 m, the 
average tree height was 23.97 m with a standard deviation of 9.31 m and the average DBH 
was 44.22 cm with a standard deviation of 21.38 cm. For LiDAR-derived trees, the average 
crown diameter was 8.98 m with a standard deviation of 3.14 m; the average tree height was 
22.35 m with a standard deviation of 9.29 m. The average height of LiDAR-derived trees was 
1.62 m (6.76%) lower than that of field-measured trees, which indicated that LiDAR-derived 
tree height was slightly lower than the field-measured ones likely for two reasons: 1) it is 
often difficult for LiDAR laser beam to hit the exact tops of trees [51], and 2) it is often 
difficult to measure tree height accurately in the field [54]. 

Table 2 shows the summary of the field measurements for matched trees. The amount of 
ABCO, ABMA, CADE, PILA, PIPO, PSME, QUKE is 102 (39.84%), 9 (3.52%), 20 (7.81%), 
33 (12.89%), 47 (18.36%), 41 (16.02%) and 4 (1.56%), respectively. Mean tree heights across 
tree species varied from less than 7 m for PILA to over 27 m for ABMA. Meanwhile, mean 
DBHs varied from less than 16 cm for PILA to over 55 cm for QUKE. 

Table 1. Summary of the field measurements and LiDAR-derived tree structure 
parameters for the matched trees. 

 Min. Max. Range Average Standard deviation 

Field data 

DBH (cm) 19.8 144.4 124.6 44.22 21.38 

Height (m) 8.19 55.75 47.56 23.97 9.31 

CBH (m) 1.4 24.1 22.7 7.63 4.51 

LiDAR-derived data 

Crown Diameter (m) 3.05 18.53 15.48 8.98 3.14 

Height (m) 7.86 52.5 44.64 22.35 9.29 

CBH (m) 1.41 24.56 23.15 8 4.52 

Table 2. Summary of the field measurements for the matched trees categorized by tree 
species. Tree height, CBH and DBH are presented as mean values ± standard deviation. 

Abbr. Tree species Number of 
trees 
(percent) 

Height(m) CBH(m) DBH(cm) 

ABC
O 

White fir (Abies concolor) 102 
(39.84%) 

24.06 ± 9.32 7.95 ± 
4.45 

44.07 ± 
21.11 

ABM
A 

Red fir (Abies magnifica) 9 (3.52%) 27.44 ± 
11.63 

8.64 ± 
5.73 

51.5 ± 25.59 

CAD
E 

Incense cedar (Calocedrus 
decurrens) 

20 (7.81%) 15.31 ± 5.92 5.08 ± 
3.09 

39.09 ± 
20.05 

PILA Sugar pine (Pinus lambertiana) 33 (12.89%) 7.45 ± 9.47 4.5 ± 5.4 16.97 ± 
20.86 

PIPO Ponderosa pine (Pinus ponderosa) 47 (18.36%) 22.43 ± 
10.72 

6.91 ± 
4.64 

45.26 ± 
23.96 

PSME Douglas-fir (Pseudotsuga 
menziesii) 

41 (16.02%) 23.26 ± 6.91 7.45 ± 
3.41 

40.75 ± 
16.58 

QUK
E 

Black oak (Quercus kelloggii) 4 (1.56%) 15.78 ± 5.85 4.6 ± 0.63 55.15 ± 
40.72 
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3.3 CBH estimation and accuracy assessment 

The comparison of CBH estimates between LiDAR-derived data and field measurements are 
shown in Table 1. The minimum and maximum of LiDAR-derived CBH values were 1.41 m 
and 24.56 m, respectively, with a range of 23.15 m. The average CBH value was 8 m with a 
standard deviation of 4.52 m. The RMSE, R2, and bias were 0.88, 1.62 and 3.36%, 
respectively, which indicated that LiDAR estimated CBH matched well with field-measured 
results, albeit with a slight overestimation (Fig. 6). 

 

Fig. 6. Comparison of CBH from field measurements and the proposed LiDAR-based method. 

The accuracies of LiDAR-based CBH estimates were among four tree height groups 
(<15m, 15 to 25m, 25 to 25m, and >35m) are presented in Fig. 7, respectively. Results 
revealed that the RMSEs of groups where tree height below 35 m were nearly the same, 
slightly varied from 1.55 m to 1.59 m. Yet the group of trees with the height over 35 m 
showed a larger RMSE at 2 m. 

 

Fig. 7. The CBH from LiDAR estimates compared to the CBH from field measurements, for 
different tree height groups. 
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Figure 8 shows the accuracies among different species. The R2 in CBH estimation ranged 
from 0.82 to 0.93, which indicates that the LiDAR-derived results can explain the majority of 
the variation (>80%) in field-measured CBH regardless of the species type. The RMSE varied 
substantially among species, with the largest RMSE value in ABMA at 2.31 and lowest in 
QUKE at 0.52. Accounting for differences in the average CBH among species, we found that 
the highest bias in CADE at 26.9%, and lowest in PIPO at 1.3%. 

 

Fig. 8. CBH estimates from LiDAR compared to those from field measurements for seven tree 
species (i.e., ABCO, ABMA, CADE, PILA, PIPO, PSME, and QUKE). 

4. Discussion 
Estimating CBH was the core objective of this study. The accuracy of our LiDAR-based CBH 
estimation is competitive when compared to previous LiDAR-based studies [2, 3, 38, 39]. 
Our results show that the proposed method in this study can estimate CBH at tree level more 
accurately in mixed-species forests as compared to previous studies (Table 3). For all trees, 
including five conifer species and two broadleaf species, we achieved an RMSE of around 1.6 
m. In a similar study by Popescu and Zhao (2008) which estimated CBH of both deciduous 
and pine trees, the averaged RMSE was approximately 2 m [2]. Vauhkonen (2010) gained an 
RMSE value ranging from 1.44 m to 3.56 m, but only for Scots pine [3]. In addition, in this 
study the coefficients of determination (R2 = 0.88) for CBH between field-measured trees and 
LiDAR-derived trees was slightly higher than those from Popescu et al. [2] (e.g. R2 of 0.75) 
and Vauhkonen [3] (e.g. R2 of 0.8). Overall, the results indicate that our method performed 
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equally or slightly better than other LiDAR-based methods and also had a wider application 
in mixed-species forest for individual tree CBH estimation. 

Table 3. Summary of results from previous CBH estimation method comparing with our 
method for individual trees 

Method Reference Forest type 
Understory 
removal 

Sampling 
data 

R2 
RMSE 
(m) 

Vertical profile 
and regression 
method 

Solberg et al. 
(2006) 

Spruce and 
deciduous 
trees 

No Yes NMa 3.5 

Vertical profile on 
voxel 

Popescu and 
Zhao (2008) 

Pine and 
deciduous 
trees 

No No 
Around 
0.75 

Around 2 

The 3D geometry 
Vauhkonen 
(2010) 

Scots pine No No 0.71-0.84 
1.44- 
3.56 

Detecting 
inflection based 
on percentile 
ranking files 

This study 

Mixed-
species 
including 
seven species 

Yes No 0.88 1.62 

a NM denotes not mentioned 

The strong flexibility of our method was partly due to the fact that it estimates CBH 
directly from airborne LiDAR data with no requirement for field measurements. Studies such 
as [38,39] relied heavily on filed measurements to calculate CBH, and consequently 
constrained the transferability of the method across species. The direct method proposed in 
our study, on the other hand, can be used to multiple tree species, and thus has the potential 
for large-scale applications. The other advantage of this method lies in the removal of 
understory noise from LiDAR points prior to CBH estimation. The existence of shrubs and 
small trees in the understory is very common in many forests, but often neglected in CBH 
estimation. Popescu and Zhao [2] mentioned that the understory vegetation can make the 
vertical profile of LiDAR point density too noisy to detect CBH accurately. Moreover, the 
usage of spline curve in CBH estimation also contributed to the robustness of our method. 
Spline curve function generates a special piecewise curve, which is a simple but very useful 
tool to identify inflection points [55]. In this study, the spline curve was used to detect the 
abrupt changes in LiDAR point density in the vertical direction, which has been demonstrated 
to be helpful for both understory tree top detection and CBH determination. Overall, the three 
features of this proposed method which include the independence of prior knowledge, the 
removal of understory noise, as well as the usage of spline curve have contributed to its 
flexibility, accuracy, and efficiency in LiDAR-based CBH estimation. It also demonstrated 
strong capability to apply over large areas for mixed-species forests. 

To investigate the influences of the tree biophysical parameters on LiDAR-based CBH 
estimation, we systematically analyzed the accuracies among different height groups (Fig. 7) 
and tree species (Fig. 8) by comparing with field measurements. Our method would be 
slightly affected as the tree height exceeds or under a certain value. A possible reason for the 
larger uncertainty is that taller tree has longer crown length which could make the laser pulses 
difficult to reach the base of the tree crown. Results also indicated that bias in the group of 
tree height below 15 m was 15.6% which was a little higher than that of the other three 
groups. The reason could be that there were more noises which were difficult to be detected 
by our method under the crown of shorter trees. With respect to the influence of tree species, 
we found that the accuracies varied substantially among species. Similar results were reported 
by [2], which mentioned that the correlation between field-measurement data and LiDAR-
derived data for deciduous trees is lower than that for pines. 
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Although our method performed well and estimated CBH efficiently and precisely, it has 
some uncertainties. The first uncertainty was caused by individual tree segmentation, which is 
an indispensable step of LiDAR-based forest structural parameter estimation at individual tree 
level [53]. The results of tree segmentation inevitably influence the accuracy of the CBH 
estimation. We selected the top-to-bottom region-growing method developed by Li et al. 
(2012), owing to its excellent performance and comprehensibility in point cloud based tree 
segmentation [41]. Our results showed that 91% of trees were detected and 87% of them were 
segmented correctly. These results are comparable to the results reported in the study of Li et 
al. [41], which reported the accuracy of tree segmentation at 94%. Tree segmentation methods 
will perform differently in forests with different densities and in mixed species as well as 
using LiDAR data with different qualities and settings. Some researchers also indicated that 
the accuracy of tree segmentation over 80% was feasible for the forest applications [53]. We 
also noticed that many new methods have been developed to improve the tree segmentation, 
but evaluating their uncertainties is not the focus of this study. Therefore, instead of testing 
more sophisticated segmentation method, we manually corrected the under-segmented trees 
as suggested in previous studies [2]. The errors in tree-to-tree matching between LiDAR-
derived and field measured trees may also impact the reliability of validation. These biases 
were mainly caused by uncertainties in GPS location and tree height estimation. In order to 
reduce these impacts on validation, we designed a comprehensive index to find the best match 
and excluded samples with large location bias [2, 8]. Similar strategies were also used in 
previous studies, Popescu and Zhao (2008) only used 12% of field measurement to reduce 
tree-to-tree matching uncertainties. Lastly, the method proposed in this study also has some 
limitations. To better delineate the vertical profile and detect the inflections, our method 
requires LiDAR data with relatively high point density. Further research is necessary to 
discuss the effect of point cloud density on the accuracy of the CBH estimation using similar 
method. In addition, our method was based on spline curve, besides its simplicity compared 
with other sophisticated method [2, 41, 42], and it may have the problem of overfitting. 
Overall, this method performed well in the Sierra Nevada mixed-conifer dominated forests 
with the RSME less than 2 m. More studies are needed to evaluate the accuracy of this 
method over other forests with different densities and species. 

5. Conclusions 
This study developed and tested a new CBH estimation method, which includes two 
important strategies. The first is the removal of noise and understory vegetation for each tree, 
in essence to clean up the vertical profile of a tree and make accurate CBH estimation 
possible. The second is estimating CBH by generating a percentile ranking profile of LiDAR 
points for each tree and using a spline curve to identify the inflection points based on the 
generated percentile ranking profile. The method proposed in this study was applied in a 
mixed-conifer dominated forest in Sierra Nevada, California, USA. Satisfying results have 
been achieved using this method with a slight overestimation of 3.36%, and the RMSE and R2 
value for all the trees were 1.62 m and 0.88, respectively. Accuracy for CBH estimation was 
the highest for black oak (QUKE) trees, with an RMSE of 0.52 m. The conifer species results 
were also good with uniformly high R2. For the most abundant conifers in the forest (i.e. 
ABCO, PIPO, PSME) results were good: ABCO (RMSE = 1.56), PIPO (RMSE = 1.44) and 
PSME (RMSE = 1.53). In general, taller trees have relatively higher uncertainties than shorter 
trees. Overall, this direct LiDAR-based method proposed in this study has demonstrated high 
accuracy for individual tree CBH estimation with no requirement of prior knowledge, and 
strong potential for applications in mixed species over large areas. 
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