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Significance

﻿APOE4  encodes a human 
lipoprotein variant implicated in 
cholesterol trafficking and 
metabolism. APOE4 is a major 
genetic risk factor for age-related 
Alzheimer’s disease (AD) and 
all-cause mortality in humans, 
highlighting the importance of 
understanding APOE4 biology and 
pathophysiology and identifying 
targets that can be harnessed to 
modify APOE4-induced 
pathologies in cells and organisms. 
In this study, we demonstrate that 
targeting Caenorhabditis elegans  
Von Hippel–Lindau (VHL)-1 
proteins can markedly suppress 
neural pathologies, loss of 
long-lasting behavioral memory, 
and population mortality induced 
by transgenic human APOE4 . 
Additionally, we present evidence 
for evolutionarily conserved 
mechanisms, showing that VHL 
inactivation strongly mitigates 
neurovascular injuries and synaptic 
damage caused by transgenic 
humanized APOE4 in mice.
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The ε4 variant of human apolipoprotein E (APOE4) is a key genetic risk factor for 
neurodegeneration in Alzheimer’s disease and elevated all-cause mortality in humans. 
Understanding the factors and mechanisms that can mitigate the harmful effects of 
APOE4 has significant implications. In this study, we find that inactivating the VHL-1 
(Von Hippel–Lindau) protein can suppress mortality, neural and behavioral pathologies 
caused by transgenic human APOE4 in Caenorhabditis elegans. The protective effects 
of VHL-1 deletion are recapitulated by stabilized HIF-1 (hypoxia-inducible factor), a 
transcription factor degraded by VHL-1. HIF-1 activates a genetic program that safe-
guards against mitochondrial dysfunction, oxidative stress, proteostasis imbalance, and 
endolysosomal rupture—critical cellular events linked to neural pathologies and mortal-
ity. Furthermore, genetic inhibition of Vhl reduces cerebral vascular injury and synaptic 
lesions in APOE4 mice, suggesting an evolutionarily conserved mechanism. Thus, we 
identify the VHL–HIF axis as a potent modulator of APOE4-induced neural pathologies 
and propose that targeting this pathway in nonproliferative tissues may curb cellular 
damage, protect against neurodegeneration, and reduce tissue injuries and mortality.

APOE4 | neurodegeneration | VHL–HIF axis | mitochondrial dysfunction | oxidative stress

 Age-related mortality and pathologies occur in nearly all biological species. Understanding 
the factors that modulate this trajectory is essential for developing strategies to mitigate 
the impact of aging on population health. Intrinsic genetic determinants and host phys-
iology, extrinsic environmental challenges and abiotic stress, as well as stochastic events 
all interact to confer mortality risks. In humans, genetic association studies have identified 
major genetic risk factors for all-cause mortality, including the ε4 allele of the APOE  gene 
(APOE4 ) ( 1     – 4 ). This allele also represents the highest genetic risk factor for late-onset 
Alzheimer’s disease (AD) as well as the highest genetic risk modifier of early-onset forms 
of AD ( 5   – 7 ). Emerging human studies implicate APOE4  homozygosity as a major genetic 
cause, not just a risk modifier, of AD that constitutes one of the most frequent human 
Mendelian disorders ( 8 ). APOE4 proteins differ in cholesterol transport capabilities com-
pared to its allelic counterparts, and, contrary to its heightened association with AD risk, 
it is linked to decreased susceptibility to age-related macular degeneration ( 9   – 11 ). Genetic 
variations including non- APOE4  variant alleles of APOE  have also been shown to be 
associated with reduced mortality in rare long-lived human centenarians ( 12 ). APOE4  
may increase AD risk through a gain of abnormal function, with APOE loss-of-function 
variant carriers showing resilience to cognitive decline and AD pathology ( 13 ). These 
studies have provided intriguing cases of how genetic variations may link to mortality and 
age-related diseases and AD in humans. However, despite these advances, establishing 
causal and mechanistic relationships among genetic variations, cellular processes, envi-
ronmental impacts, and mortality rates remains a formidable challenge.

 To identify causal genetic factors that drive or modify age-related neurodegeneration 
and mortality and to elucidate their underlying mechanisms, the nematode Caenorhabditis 
elegans  represents a well-suited model organism ( 14     – 17 ). Its amenability to genetic manip-
ulation, short lifespan, and well-characterized genome provide an ideal platform for dis-
covering novel genetic modifiers of age-related mortality and pathologies within the 
context of a whole organism and with well-controlled environmental conditions ( 17   – 19 ). 
In addition, the relatively simple and transparent anatomy of C. elegans  allows for direct 
observation of cellular and physiological changes throughout its lifecycle, facilitating the 
identification of cellular mechanisms and their impact on mortality and pathologies. 
Pioneering investigations of longevity mutants in C. elegans  have underscored the impor-
tance of the insulin, PI3K, and the mechanistic target of TOR (mTOR) pathways, leading 
to discoveries of their evolutionarily conserved roles regulating key aging processes and 
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age-related pathologies across various eukaryotic organisms, 
including humans ( 20   – 22 ). Besides the trajectory of aging under 
normal culture conditions, C. elegans  is also subject to rapidly 
increased mortality when exposed to severe environmental stresses, 
including elevated temperature, pathogen infection, and abiotic 
stress ( 17 ,  23 ,  24 ). While mild stress can extend longevity through 
the mechanism of hormesis, it remains largely unknown how 
mortality accelerates when C. elegans  is severely stressed ( 17 ,  23 , 
 25 ,  26 ).

 Genetic studies in C. elegans  have identified reduction- or loss- 
of-function (LOF) alleles, including those of daf-2  and vhl-1 , 
which can extend longevity and confer broad stress resilience 
( 27     – 30 ). daf-2  encodes a homolog of insulin receptors that orches-
trate anabolic metabolism, autophagy regulation, and somatic 
maintenance program during aging. daf-2  mutants are exception-
ally long lived and stress resistant. vhl-1 , the ortholog of the Von 
Hippel–Lindau tumor suppressor gene, encodes an E3-ubiquitin 
ligase that targets the hypoxia-inducible factor HIF-1 for degra-
dation. Loss of Von Hippel–Lindau (VHL)-1 stabilizes HIF-1 
and activates a genetic program linked to both longevity extension 
and stress resilience. While HIF-activating VHL mutations in 
humans increase risks to various cancers, including clear cell renal 
cell carcinoma, HIF, and its target gene activation in nonprolifer-
ative cells, such as neurons and cardiomyocytes, can be protective 
against ischemic insults, reperfusion injuries, and metabolic stress 
( 31   – 33 ). Although previous transcriptomic and proteomic studies 
unveiled many transcriptional targets of HIF, specific mechanisms 
underlying the protective effect of the VHL–HIF axis in the con-
text of neural pathologies, organismal stress resilience, and lon-
gevity still remain unclear.

 In light of the escalating mortality rates associated with aging 
and exacerbated by diverse intrinsic and extrinsic factors, our study 
aimed to identify factors and mechanisms capable of mitigating 
these outcomes. We find that vhl-1  loss or stabilized HIF-1-regulates 
genes that contribute to guarding against cellular processes mech-
anistically linked to APOE4-induced neural pathologies and mor-
tality in C. elegans . We further used APOE4﻿-humanized mice to 
show the evolutionarily conserved action of VHL inhibition in 
mitigating APOE4-induced tissue injury and neural pathologies. 

Results

Roles of VHL-1 in Suppressing Mortality. We showed previously 
that transgenic gain-of-function neuronal expression of 
human APOE4 (vxIs824) in C. elegans specifically exacerbated 
neurodegeneration (34). To study potential effects of APOE4 
on neural pathologies and mortality using a fast, reproducible, 
and robust model, we examined the mortality trajectory (lifespan 
curve) of APOE4-transgenic C. elegans under various constant 
conditions of temperature stress beyond the normal range (15 °C 
to 25 °C). When subjected to a constant temperature of 28 °C, 
wild-type (WT) animals died within a few days (median lifespan 
of 4 d post-L4), whereas neuronal APOE4 expression drastically 
shortened the lifespan (median lifespan fewer than 2 d post-L4) 
(Fig.  1A). Under such constant heat stress, APOE4 expression 
also led to profound morphological deterioration of the PVD 
neuron (Fig. 1B).

 Elevated temperature stress causes increased levels of ROS and 
HIF-1 activation in C. elegans  ( 35 ,  36 ). Loss of VHL-1 leads to the 
stabilization of HIF-1, providing a defense mechanism against 
hypoxic and oxidative stresses ( Fig. 1C  ). As we previously discovered 
that VHL-1 inactivation mitigates the morphological degeneration 
of dopaminergic neurons in C. elegans  complex I mutants ( 37 ), we 
examined how a vhl-1(ok161)  deletion allele affected the mortality 

of APOE4﻿-transgenic C. elegans  under 28 °C. We found that vhl-1  
deletion abolished the effect of APOE4  on increased mortality under 
28 °C and extended lifespan in WT animals under 28 °C ( Fig. 1D  ). 
These results establish a C. elegans  model for rapid APOE4-induced 
mortality and identified potent mortality-suppressing effects of 
﻿vhl-1(ok161)  LOF mutations.

 APOE4 represents a lipoprotein variant characterized by a 
diminished capacity for lipid recycling, resulting in intracellular 
accumulation of cholesterol that is highly susceptible to oxida-
tion ( 38   – 40 ). Because C. elegans  cannot synthesize cholesterol, 
its cholesterol levels are determined, and can be controlled, by 
its diet. We developmentally synchronized and cultured the 
﻿APOE4(vxIs824)﻿-transgenic strain on culture plates deficient in 
exogenous cholesterol (SI Appendix, Fig. S1A﻿ ), a procedure to 
reduce overall cholesterol intake during larval development ( 41 ). 
Such cholesterol-reduction conditions markedly restored the 
lifespan of APOE4﻿-transgenic animals, without affecting that of 
wild type ( Fig. 1E  ) or the mortality-decreasing effect of 
﻿vhl-1(ok161)  deletion ( Fig. 1F  ). Exogenous supplementation 
with N-acetyl-cysteine (NAC), a precursor of glutathione and 
scavenger of ROS previously used and validated in C. elegans  
( 42     – 45 ), dose-dependently suppressed the mortality effect of 
APOE4 ( Fig. 1 G  and H  ), suggesting causal effects of oxidative 
stress. We also observed that body size was reduced in 
﻿APOE4﻿-transgenic C. elegans  when compared to wild type at nor-
mal 20 °C, while vhl-1(ok161)  deletion mutation or reduction of 
cholesterol uptake starting at embryonic stages was sufficient to 
rescue body sizes (SI Appendix, Fig. S1 B  and C ).

 We used a heat-independent approach to generate excessive 
oxidative stress based on a transgenic strain with blue light-induced 
production of superoxide from neuronal expression of a genetically 
encoded miniSOG transgene ( 46 ,  47 ). We observed that blue light 
exposure in this strain induced a rapid and robust increase of 
population mortality that was strongly suppressed by dietary cho-
lesterol reduction or NAC supplementation ( Fig. 1I  ). vhl-1(ok161)  
deletion recapitulated such mortality-suppressing effects ( Fig. 1J  ). 
Furthermore, we found that APOE4(vxIs824)  also increased the 
mortality of C. elegans  under 20 °C normal culture conditions and 
﻿vhl-1(ok161)  deletion or cholesterol reduction strongly suppressed 
the mortality effect of APOE4  ( Fig. 1 K  and L   and SI Appendix, 
Fig. S1D﻿ ).

 Taken together, these results identify VHL-1 as a potent mod-
ifier of APOE4 in mortality and suggest that APOE4  expression 
may cause abnormal accumulation or distribution of intracellular 
cholesterol, oxidation of which by ROS contributes to an increase 
in population mortality suppressible by vhl-1  deletion.  

Roles of HIF-1 in Suppressing Mortality Caused by APOE4. We next 
examined roles of HIF-1 in suppressing mortality. We monitored 
hypoxic and redox stress responses using the well-characterized 
HIF-1-dependent transcriptional reporter, cysl-2p::Venus (48–50). 
As would be predicted for stabilized HIF-1, vhl-1 deletion strongly 
activated cysl-2p::Venus in a HIF-dependent manner (Fig.  2 A 
and B and SI Appendix, Fig. S2A). Under normal 21% oxygen 
conditions, elevated temperature at 28 °C caused a time- and 
temperature-dependent activation of cysl-2p::Venus (SI Appendix, 
Fig. S2 B and C), consistent with elevated oxidative stress and 
HIF-1 activation by heat (35). LOF hif-1 fully suppressed the 
mortality-reducing effects of vhl-1 under both normal culture 
conditions (29, 51) and on APOE4 at 28 °C (Fig. 2 A and C). 
We further characterized the effects of a stabilized form of HIF-1 
using a transgene otIs197 that expresses a nondegradable (VHL-
resistant) P621A variant and driven by the unc-14 promoter 
(52) (Fig. 2D). Testing thermal stress, we found that stabilized 
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Fig. 1.   Loss of vhl-1 suppresses neural pathologies and mortality induced by oxidative stress–causing factors (miniSOG, heat, and APOE4). (A) Lifespan curves of 
N2 WT and pan-neuronal APOE4(vxIs824) transgenic animals at 28 °C starting at L4 on normal NGM, showing a 50% median and 50% maximal survival decrease 
in APOE4(vxIs824) compared to WT. **** indicates P < 0.0001 (WT: n = 62 animals, APOE4: n = 36 animals). (B) Representative confocal microscopic images of PVD 
neurons (wyIs592[ser-2prom-3p::myr-GFP]) in WT and pan-neuronal APOE4(vxIs824) animals at the young adult stage on normal NGM, showing PVD abnormalities 
with an apparent loss of third and fourth branches. (Scale bar: 10 μm.) (C) Schematic of the vhl-1(ok161) loss-of-function deletion allele (with exons 2 and 3 
deleted) that leads to impaired ubiquitination and stabilized HIF-1 to counteract oxidative stress. (Scale bar: 100 bp.) (D) Lifespan curves of WT, pan-neuronal 
APOE4(vxIs824), vhl-1(ok161) mutants, and APOE4(vxIs824); vhl-1(ok161) animals at 28 °C starting at L4 on normal NGM. **** indicates P < 0.0001 [WT: n = 40 animals, 
APOE4: n = 44 animals, APOE4(vxIs824); vhl-1(ok161): n = 49 animals, vhl-1(ok161): n = 45 animals]. (E) Lifespan curves of WT, APOE4(vxIs824), and APOE4(vxIs824); 
vhl-1(ok161) animals with or without early-life cholesterol-free NGM (starting at embryos) to L4 on cholesterol-free NGM, followed by picking to normal NGM 
and culturing at 28 °C. **** indicates P < 0.0001; n.s. indicates nonsignificant [WT: n = 51 animals, APOE4(vxIs824): n = 45 animals, APOE4(vxIs824); vhl-1(ok161): 
n = 54 animals, WT + cholesterol-free: n = 49 animals, APOE4(vxIs824) + cholesterol-free: n = 35 animals, APOE4(vxIs824); vhl-1(ok161) + cholesterol-free: n = 52 
animals]. (F) Lifespan curves of WT, APOE4(vxIs824), and APOE4(vxIs824); vhl-1(ok161) grown to L4 on normal NGM, followed by picking to cholesterol-free NGM 
and culturing at 28 °C. **** indicates P < 0.001 [WT: n = 48 animals, APOE4(vxIs824): n = 37 animals, APOE4(vxIs824); vhl-1(ok161): n = 47 animals]. (G) Lifespan 
curves of WT and APOE4(vxIs824) starting from early life (embryos) with the indicated NAC diet concentrations (0 mg/mL, 1 mg/mL, and 10 mg/mL) to L4 on 
normal NGM supplemented with the indicated NAC concentration, followed by picking to normal NGM supplemented with the indicated concentration of NAC 
and culturing at 28 °C. **** indicates P < 0.001; n.s. indicates nonsignificant [WT + 0 mg/mL: n = 340 animals, WT + 1 mg/mL: n = 357 animals, WT + 10 mg/mL: 
n = 122 animals, APOE4(vxIs824) + 0 mg/mL: n = 78 animals, APOE4(vxIs824) + 1 mg/mL: n = 29 animals, APOE4(vxIs824) + 10 mg/mL: n = 74 animals]. (H) Lifespan 
curves of WT and APOE4(vxIs824) grown to L4 on normal NGM, followed by picking to normal NGM supplemented with the indicated concentration of NAC 
(starting at L4) and transferred to 28 °C. *** indicates P < 0.001; n.s. indicates nonsignificant (n > 40 animals per condition). (I) Percent survival of miniSOG animals  
[unc-25p::tomm20::miniSOG::SL2::RFP], grown to L4 starting at early life (embryos) with NAC supplement, starting at early life (embryos) with cholesterol-free NGM, 
or normal NGM, followed by room light or blue light treatments for 45 min (n > 40 animals per condition). (J) Percent survival of miniSOG animals [unc-25p::t
omm20::miniSOG::SL2::RFP] or LOF mutant vhl-1(ok161); miniSOG animals grown to L4 on normal NGM, followed by room light or blue light treatments for 45 
min or 90 min (n > 40 animals per condition). (K) Lifespan curves of WT, APOE4(vxIs824), and APOE4(vxIs824); vhl-1(ok161) animals at constant 20 °C on normal 
NGM. ** indicates P < 0.01; **** indicates P < 0.0001 (n > 40 animals per condition). (L) Lifespan curves of WT, APOE4(vxIs824), and APOE4(vxIs824); vhl-1(ok161) 
animals with or without (starting at embryos) cholesterol diet to L4, followed by picking to normal NGM and culturing at 20 °C. * indicates P < 0.05; **** indicates  
P < 0.0001 (n > 40 animals per condition).
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HIF-1(otIs197) extended the lifespan of wild type grown at 28 °C 
(Fig. 2E) and suppressed the mortality effect of APOE4(vxIs824) 
to the same level as vhl-1 deletion (Fig. 2F). Testing cholesterol 
as a stressor, we found that reducing cholesterol during larval 
development but not during adult stage occluded negative effects 
of APOE4 in both wild type and stabilized HIF-1 transgenic 
animals (Fig. 2 G–I). In addition, supplementation with NAC 
dose-dependently reduced mortality of APOE4 but to a lesser 

extent in stabilized HIF-1(otIs197) or vhl-1 deletion mutant 
animals (Fig.  2J). Furthermore, stabilized HIF-1(otIs197) also 
recapitulated the effect of vhl-1 deletion on reducing the mortality 
of APOE4 transgenic animals at 20 °C (SI Appendix, Fig. S2 D–G).

 To test whether HIF-1 played a similar role beyond C. elegans , 
we generated a HEK293T cell line by expressing stabilized HIF-1 
by lentiviral infection (SI Appendix, Fig. S2H﻿ ). We found that it 
similarly protected HEK293T cells against thermal stress 
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Fig. 2.   Stabilized HIF-1 recapitulates the effects of VHL-1 inactivation. (A) Schematic of the hif-1(ia4) LOF deletion allele (1,231 bp deletion of the second, third, 
and fourth exons) and its impaired capacity to counteract oxidative stress. (Scale bar: 100 bp.) (B) Representative epifluorescence images and quantification 
showing that cysl-2p::Venus constitutive upregulation in vhl-1(ok161) LOF mutants is blocked by hif-1(ia4) LOF mutants. (Scale bar: 100 μm.) **** indicates P < 0.0001  
(n > 30 animals per condition). (C) Lifespan curves of WT, vhl-1(ok161) LOF mutants, and vhl-1(ok161); hif-1(ia4) double LOF mutant animals at 28 °C starting at L4 
on normal NGM. **** indicates P < 0.0001 (n > 40 animals per condition). (D) Schematic of the nondegradable form of HIF-1 (P621A) expressed by the unc-14 
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WT, nondegradable form of HIF-1 (P621A) (otIs197), or vhl-1(ok161) LOF mutant animals at 28 °C starting at L4 on normal NGM. **** indicates P < 0.0001; n.s. 
indicates nonsignificant (n > 40 animals per condition). (F) Lifespan curves of WT, APOE4(vxIs824); HIF-1 (P621A) (otIs197), and APOE4(vxIs824) animals at 28 °C 
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conditions and suppressed the mortality-increasing effect of 
APOE4 (SI Appendix, Fig. S2I﻿ ). The abundance, subcellular local-
ization, or secretion of APOE4 was not affected by stabilized 
HIF-1 or thermal stress in HEK293T cells (SI Appendix, Fig. S2 
﻿J  and K ). Exogenous supplementation with APOE4﻿-expressing 
HEK293T cell supernatants did not affect the mortality of C. 
elegans  under 28 °C (SI Appendix, Fig. S2L﻿ ).

 Together, these results demonstrate roles of HIF-1 in mediating 
effects of vhl-1  loss in mortality and that a stabilized HIF-1 trans-
gene is sufficient to suppress APOE4-induced increase in mortality 
during normal aging and under heightened heat stress conditions.  

Cellular Consequences of APOE4 Suppressed by vhl-1 Loss 
or HIF-1 Activation. To understand mechanisms of APOE4 
toxicities and protection by vhl-1 and HIF-1, we assessed the 
molecular and cellular abnormalities in neuronal APOE4(vxIs824) 
transgenic animals. To identify pathways potentially dysregulated 
by APOE4, we performed bulk transcriptome profiling. RNAseq 
analysis revealed that APOE4 caused numerous alterations in 
genes involved in stress responses and proteostasis (SI Appendix, 
Fig. S3 A–D). To monitor proteostasis in vivo, we generated a 
transcriptional reporter for the heat shock protein-encoding hsp-
16.2 as a live indicator. We found that hsp-16.2p::GFP remained at 
low baseline levels throughout development in the wild type under 
normal culture conditions (Fig. 3A and SI Appendix, Fig. S4A). 
By comparison, APOE4 increased hsp-16.2p::GFP expression 
dramatically starting at the fourth larval stage and with the highest 
penetrance at day 5 post-L4 (Fig. 3 A and B). APOE4 elevated 
proteostatic stress, as revealed by this reporter, even without 
exogenous proteostasis-perturbing conditions, such as heat stress. 
High-magnification confocal microscopic analysis revealed the 
site of abnormally up-regulated hsp-16.2p::GFP expression 
predominantly in the body wall muscle, while its expression in a 
few unidentified neurons remained largely unaltered (Fig. 3 C–E). 
As a more direct readout of proteostasis (53), we also monitored 
length-dependent aggregation of polyglutamine(polyQ)-YFP 
fusion proteins in C. elegans. We found that APOE4 increased 
unc-54p::Q40::YFP (40 polyQ repeats) aggregation, but not 
shorter repeats of unc-54p::Q35::YFP (35 polyQ repeats) in the 
body wall muscle (Fig. 3F and SI Appendix, Fig. S3 B and C). To 
monitor the proteotoxic consequences of APOE4 and vhl-1, we 
used Western blot to assess oxidative stress-induced actin cleavage 
(Fig. 3G). While APOE4 caused dramatic accumulation of actin 
species with lower molecular weight indicative of protein cleavage, 
such proteotoxic effects were largely absent in vhl-1 LOF deletion 
mutants or stabilized HIF-1(otIs197) animals carrying APOE4 
(Fig. 3G). Actin cleavage also occurred in WT animals subjected 
to 28 °C heat stress and was similarly suppressed in vhl-1 deletion 
mutants or stabilized HIF-1(otIs197) animals without APOE4 
(Fig.  3G). Immunocytochemistry showed that the antibody 
used for actin stained mostly body wall muscles, consistent with 
hsp-16.2p::GFP activation in the same tissue (Fig.  3H). Given 
neuronal-specific APOE4 expression, these results suggest non-
cell-autonomous proteotoxic effects of APOE4 suppressible by 
vhl-1 loss or HIF-1 activation.

 We next examined potential consequences of APOE4 with 
respect to vhl-1  and HIF in neurons. Given the dramatic mor-
phological deterioration of the PVD neuron in APOE4 animals 
( Fig. 1B   and SI Appendix, Fig. S5 A –D ), we focused on a detailed 
longitudinal analysis of PVD morphological integrity in both 
﻿APOE4(vxIs824)  and APOE4(vxIs824) ; vhl-1(ok161)  animals. 
Confocal imaging analysis revealed that the morphological defect, 
including decreased dendrite numbers and complexity, of the PVD 
neuron manifested early in the fourth larval stage and persisted 

throughout adulthood (SI Appendix, Fig. S5 A –C ). We found that 
﻿vhl-1  deletion strongly suppressed the morphological defects of 
the PVD neuron in neuronal APOE4 transgenic animals ( Fig. 4 
﻿A –C  ). While APOE4 caused a nearly fully penetrant defect of 
PVD neurons at the larval L4 stage, vhl-1  mutants exhibited 
marked suppression of defects in all three stages examined ( Fig. 4 
﻿D –F  ). Together, these results show that APOE4 can cause both 
non-cell-autonomous and cell-autonomous cellular defects, both 
of which are suppressible by vhl-1  LOF.        

 In addition, we asked whether pan-neuronal expression of 
﻿APOE4  causes behavioral learning defects and memory loss in C. 
elegans  and whether such behavioral defects could also be rescued 
by vhl-1  LOF. To address these questions, we used a spaced, 
repeated conditioning paradigm ( Fig. 4G  ) in which C. elegans  
learns and remember to avoid butanone ( 54 ,  55 ), an innately 
attractive odor released by nutritious bacteria. We found that 
﻿APOE4  does not appear to affect initial attraction to butanone 
and avoidance learning, as quantified using a chemotaxis index 
( Fig. 4H  ). However, APOE4(vxIs824)  specifically and strongly 
decreased memory retention at 16 h posttraining ( Fig. 4I  ). Similar 
to rescue of PVD morphology, vhl-1  deletion markedly restored 
the APOE4﻿-induced loss of long-lasting memory ( Fig. 4 H  and 
﻿I  ). These results highlight the pathological role of APOE4  in caus-
ing behavioral memory loss in C. elegans  and demonstrate that 
﻿vhl-1  deletion functionally rescues APOE4﻿-induced memory loss.

 To further investigate cellular mechanisms underlying the neu-
ronal toxicity of APOE4 and protection by vhl-1  or HIF-1, we 
examined major organelles in live neurons, including mitochon-
dria, lysosomes, and endosomes. Using the neuronal 
organelle-specific fluorescent markers (schematic in SI Appendix, 
Fig. S6A﻿ ) for longitudinal imaging, we found that APOE4 caused 
a striking age-dependent increase of the fluorescent marker for 
mitochondria ( Fig. 5 A  and B  ) and decrease of the fluorescent 
marker for lysosomes ( Fig. 5 C  and D  ). The increase of mitochon-
drial markers did not manifest until the fourth larval stage and 
persisted throughout the adult stage ( Fig. 5B  ). The changes in 
organelle reporters could not be explained by APOE4 affecting 
transgene expression since RNAseq results (SI Appendix, Fig. S3 
﻿A –D ) indicated that APOE4 does not affect the expression of 
﻿ric-19 , the promoter of which drives the organelle markers. 
Strikingly, vhl-1  deletion or stabilized HIF-1 strongly suppressed 
the abnormally increased mitochondrial markers by APOE4 
( Fig. 5 E  and F  ). APOE4 did not appear to affect non-neuronal 
mitochondria or neuronal endosomes (SI Appendix, Fig. S6 B –D ). 
Reduction of cholesterol also suppressed the effect of APOE4 on 
such mitochondrial and lysosomal phenotypes (SI Appendix, 
Fig. S6 E –G ). These results reveal organelle-specific defects caused 
by APOE4 and suggest that APOE4 possibly exerts cellular tox-
icity through excess cholesterol, oxidation of which leads to lyso-
somal membrane disruption, impaired mitophagy, and 
mitochondria clearance, defects suppressible by vhl-1  inhibition 
and HIF-1 activation.          

Transcriptional Targets of HIF-1 Mediating Effects of vhl-1 and 
HIF-1. We aimed to determine the transcriptional targets of HIF-
1 and their mechanisms of action underlying protection against 
heat stress and APOE4. Proteomic and transcriptomic studies have 
identified many genes differentially regulated in vhl-1 mutants 
(56–58). We used qRT-PCR and GFP reporters to validate many 
of these targets based on their dramatic upregulation in vhl-
1(ok161) mutants grown at 28 °C, under which condition HIF-
1 is both stabilized and activated in target gene transcriptional 
transactivation (Fig.  6A). We used deletion mutants or RNA 
interference (RNAi) (when deletion mutants were not available) 

http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
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Fig. 3.   APOE4 causes non-cell-autonomous proteostasis dysregulation and actin cleavage suppressed by vhl-1. (A) Representative confocal low-magnification 
images of hsp-16.2p::GFP in body wall muscles in WT and APOE4 (vxIs824) animals at different stages of L1, L2, L4, young adult (day 1 post-L4), and Day 5 post-L4 
on normal NGM. (Scale bar: 100 μm.) (B) Quantification of fluorescence intensities of hsp-16.2p::GFP in body wall muscles under conditions indicated. *** indicates 
P < 0.001; n.s. indicates nonsignificant (n > 30 animals per condition). (C–E) Representative confocal high-magnification images of hsp-16.2p::GFP in body wall 
muscles in WT and APOE4 (vxIs824) at different stages of L4, young adult (day 1 post-L4), and Day 5 post-L4 on normal NGM. (Scale bar: 10 μm.) (F) Representative 
confocal high-magnification images of unc-54p::Q40::YFP in body wall muscles in WT and APOE4 (vxIs824) at stages of L4 on normal NGM, and quantification of 
aggregation number of unc-54p::Q40::YFP in body wall muscles under conditions indicated. (Scale bar: 10 μm.) * indicates P < 0.05, **** indicates P < 0.0001, 
and n.s. indicates nonsignificant (n > 30 animals per condition). (G) Representative SDS-PAGE western blots of WT, APOE4(vxIs824), APOE4(vxIs824); vhl-1(ok161), 
and APOE4(vxIs824); HIF-1 (P621A) (otIs197). (H) Representative confocal high-magnification images in body wall muscles of WT, APOE4(vxIs824), APOE4(vxIs824); 
vhl-1(ok161), and APOE4(vxIs824); HIF-1 (P621A) (otIs197) animals immunostained with primary antibody against actin at young adult stages (24 h post-L4) on 
normal NGM. (Scale bar: 1 μm.)
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against these candidate genes to test whether any are functionally 
important for survival (measured as median lifespan) at 28 °C in 
both wild type and vhl-1(ok161) mutants. We found that genetic 
deletion or RNAi against each of two candidate genes, tgn-38 and 
Y70C5C.1, led to increased mortality at 28 °C (Fig. 6 B–E and 
SI Appendix, Fig. S7 A–C). tgn-38 encodes a C. elegans ortholog 
of human C5orf15 (chromosome 5 open reading frame 15) and 
TGOLN2 (trans-golgi network protein 2) with uncharacterized 
biological functions, whereas Y70C5C.1 encodes a C. elegans 
ortholog of human IDE (insulin degrading enzyme). Though 
mechanisms linking TGN-38 to mortality regulation remain 
unclear, the loss-of-function phenotype of Y70C5C.1 suggests that 
HIF-1 may activate expression of an insulin-degrading enzyme, 

leading to insulin receptor (DAF-2) inhibition and activation of 
the DAF-16 stress-responding pathway.

 Among the most dramatically up-regulated gene by HIF-1 (via 
stabilized HIF-1 or loss of vhl-1  at 28 °C), F22B5.4  encodes a 
predicted mitochondrial protein [with the probability of mito-
chondrial presequence of 0.967, mitoFate ( 59 )] of uncharacterized 
biological function. Although we did not observe the RNAi phe-
notype of F22B5.4  (possibly owing to a paralogous gene F36A2.7  
and/or low RNAi efficiency in tissue of expression), single-cell 
gene expression profiling by CeNGEN indicates its predominant 
expression in neurons ( 60 ). We generated a translational GFP 
reporter for F22B5.4  under the control of its endogenous pro-
moter and confirmed its specific expression in neurons ( Fig. 6F  ). 
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Fig. 4.   APOE4-induced neuronal and memory defects are restored by vhl-1. (A) Representative confocal images of PVD neurons in WT, APOE4(vxIs824), and 
APOE4(vxIs824); vhl-1(ok161) at L4 stages on normal NGM showing vhl-1(ok161) LOF mutants with rescued APOE4-induced PVD neurons (wyIs592[ser-2prom-
3p::myr-GFP]) morphological deterioration. (Scale bar: 10 μm.) (B) Representative confocal images of PVD neurons in WT, APOE4(vxIs824), and APOE4(vxIs824); 
vhl-1(ok161) at young adult stages on normal NGM showing vhl-1(ok161) LOF mutants with rescued APOE4-induced PVD neurons (wyIs592[ser-2prom-3p::myr-GFP]) 
morphological deterioration. (Scale bar: 10 μm.) (C) Representative confocal images of PVD neurons in WT, APOE4(vxIs824), and APOE4(vxIs824); vhl-1(ok161) at day 
5 post-L4 stages on normal NGM showing vhl-1(ok161) LOF mutants with rescued APOE4-induced PVD neurons (wyIs592[ser-2prom-3p::myr-GFP]) morphological 
deterioration. (Scale bar: 10 μm.) (D–F) Quantification of the percentage of PVD neurons that are abnormal (with the third and fourth branches of PVD neurons 
missing or severed) in WT, APOE4(vxIs824), and APOE4(vxIs824); vhl-1(ok161) under conditions indicated on normal NGM. *** indicates P < 0.001 (n > 30 animals 
per condition). (G) Schematic of the assay for training and subsequent analysis. WT, APOE4(vxIs824), and APOE4(vxIs824); vhl-1(ok161) at Day 1 old adult worm 
populations on normal NGM were subjected to repeated, spaced training with either butanone or buffer (control), then split into seconds and tested for learning 
(chemotaxis assays), placed on plates with food (Escherichia coli) for 16 h, and then tested for memory (chemotaxis assays). (H and I) Learning and 16 h memory. 
Chemotaxis indices (CIs) and learning indices (LIs) were calculated as indicated. n = 8 trials. **P < 0.001, ****P < 0.0001, and n.s. indicates nonsignificant.

http://www.pnas.org/lookup/doi/10.1073/pnas.2417515122#supplementary-materials
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In addition, neuronal-specific gain-of-function of F22B5.4  by 
﻿ric-19  promoter-driven cDNA expression markedly reduced mor-
tality at 28 °C ( Fig. 6 G  and H  ). Neuronal-specific gain-of-function 
of F22B5.4  also partially suppressed the mortality phenotype 
caused by transgenic APOE4 ( Fig. 6I  ).

 These results identify three previously uncharacterized HIF-1 
targets that may functionally contribute to protection of neurons 
and suppression of animal mortality in C. elegans .  

Vhl Inactivation Suppresses APOE4-Induced Neurovascular 
Injuries in Mice. To further evaluate evolutionarily conserved 
mechanisms by which VHL inactivation may ameliorate toxic 
effects of APOE4, we assessed the neurovascular injuries in APOE4 
mice (mouse Apoe gene was replaced by the human APOE4 
allele by homologous recombination) and the protective action 

by Vhl inhibition in mice. Human APOE4 allele replacement 
in mice can lead to cerebral vascular and blood–brain barrier 
(BBB) lesions accompanied by compromised tight junctions, 
and neurodegenerative changes, including synaptic loss (39, 
61, 62). To investigate the potential neurovascular benefits of 
Vhl inactivation in APOE4 mice, we injected AAV-Vhl-shRNA 
bilaterally into the mouse hippocampus (Fig. 7A and SI Appendix, 
Fig. S8A). We found that the APOE4 mice exhibited marked loss 
of brain capillary pericyte coverage in the hippocampus compared 
to the WT control (C57BL/6 mice). Inhibition of Vhl by shRNA 
markedly restored pericyte coverage of brain capillaries (Fig. 7 
B and C). We also observed reduced abundance of the tight 
junction protein, Occludin, in the brains of APOE4 mice, which 
was mitigated by Vhl inhibition (Fig. 7 D and E). We assessed the 
integrity of the BBB by intravenous injection of Evans blue dye 
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Fig. 5.   APOE4 causes neuronal mitochondrial defects suppressed by vhl-1. (A) Representative confocal low- and high-magnification images of neuronal tissue-specific 
expression of the neuronal mitochondria reporter (ric-19p::mito::GFP) in WT and APOE4(vxIs824) animals at young adult (day 1 post-L4 stages) with indicated position. 
[Scale bar: 100 μm (low magnification) and 10 μm (high magnification).] (B) Quantification of the percentage of neuronal mitochondria reporter (ric-19p::mito::GFP) 
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1::mCherry) in WT and APOE4 (vxIs824) animals at different stages of L1, L2, L4, and young adult (day 1 post-L4 stages) on normal NGM. **** indicates P < 0.0001 (n 
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in mice (Fig. 7F). Following administration of Evans blue dye, we 
found that the APOE4 mice exhibited markedly weakened BBB as 
evidenced by higher optical density at 620 nm. In contrast, Evans 
blue content analyses showed that the BBB was largely intact when 
Vhl was knocked down in the brains of APOE4 mice, reaching 
levels comparable to those observed in control C57BL/6 mice 
(Fig. 7F). In addition, we observed that APOE4 caused a marked 
loss of hippocampal axons and decreased protein levels of the 
synaptic marker Synaptophysin in the brain, whereas inhibition 
of Vhl markedly reversed both axonal and synaptic degeneration 

phenotypes caused by APOE4 (Fig. 7 G–J). Collectively, these 
findings demonstrate that genetic inhibition of Vhl can strongly 
ameliorate APOE4-induced cerebrovascular injuries and neuronal 
synaptic damage in mice.

Discussion

 Age-related mortality represents a universal phenomenon influenced 
by intrinsic genetic factors, environmental stressors, and stochastic 
events. In this study, we investigated how the VHL–HIF axis 

T
20

 2
4 

h
T

28
 2

4 
h

H
ea

d 
ne

ur
on

s

F22B5.4::GFP Mcherry Merged

10 µm

A

F G H

Days post L4

WT
F22B5.4p::F22B5.4::GFP line1
F22B5.4p::F22B5.4::GFP line2
F22B5.4p::F22B5.4::GFP line3
ric-19p::F22B5.4 positive
ric-19p::F22B5.4 negative

EC D

WT
Y70C5C.1(ve718)

Heat
resilience
assay

Days post L4
0 1 2 3 4 5 6

Days post L4
0 1 2 3 4 5 6

WT
tgn-38(gk5592)

vhl-1;tgn-38
vhl-1(ok161)

WT
vhl-1

vhl-1+ Y70C5C.1 RNAi
vhl-1+ tgn-38 RNAi

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l
P

er
ce

nt
 s

ur
vi

va
l

Heat
resilience
assay

Heat
resilience
assay

Heat
resilience
assay

Normal NGMNormal NGM Normal NGM RNANN i NGM

P
er

ce
nt

 s
ur

vi
va

l

Days post L4
0 1 2 3 4 5 6 7

0

2

4

6

8

10

100

200

300

R
el

at
iv

e 
m

R
N

A
 le

ve
l

Y70
C5C

.1

tgn
-38

F22
B5.4

gs
t-1

9
ftn

-1

c4
9c

8.5
ch

s-1
lon

p-2

c2
5h

3.1

micu
-1

n.s

******

n.s

n.s
n.s

n.s

** **

n.s**

****
****

n.s

**** ****

** ****

**
** **

**

**
**

**
**

WT T20 24 h
vhl-1 T20 24 h

WT T28 24 h
vhl-1 T28 24 h
stable hif-1 T28 24 h

stable hif-1 T20 24 h

n.s

n.s

n.s n.s

I

0 1 2 3 4 5 6
Days post L4

WT
APOE4
APOE4;ric-19p::F22B5.4

P
er

ce
nt

 s
ur

vi
va

l

Heat
resilience
assay

Normal NGMNormal NGM

B

0 1 2 3 4 5 6
0

25

50

75

100

Days post L4

P
er

ce
nt

 s
ur

vi
va

l

WT
tgn-38(gk5592)

0

2

4

6

10

15

20

25

F2
2B

5.
4 

re
la

tiv
e 

m
R

N
A

 le
ve

l

W
T
 lin

e 
1

 lin
e 

2

 lin
e 

3

 p
os

itiv
e

 n
eg

at
ive

ric-19p::
F22B5.4 

   F22B5.4p::
F22B5.4::GFP 0 1 2 3 4 5 6 7

Heat
resilience
assay

**
**

**
**

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

F22B5.4p::F22B5.4::GFP

Fig. 6.   Characterization of the functional roles of VHL-1/HIF-1 target genes. (A) Quantitative RT-PCR measurements of indicated gene expression levels in WT,  
vhl-1(ok161), and HIF-1 (P621A) (otIs197) animals upon sustained treatment at 28 °C or 20 °C for 24 h starting at L4 on normal NGM. ** indicates P < 0.01, *** indicates  
P < 0.001, **** indicates P < 0.0001, and n.s. indicates nonsignificant. (B and C) Lifespan curves of WT, tgn-38(gk5592) LOF mutants, vhl-1(ok161) mutants, and  
vhl-1(ok161); tgn-38(gk5592) double LOF mutants at 28 °C starting at L4 on normal NGM. **** indicates P < 0.0001 (n > 40 animals per condition). (D) Lifespan curves 
of WT and Y70C5C.1(ve718) LOF mutants at 28 °C starting at L4 on normal NGM. **** indicates P < 0.0001 (n > 40 animals per condition). (E) Lifespan curves of WT, 
vhl-1(ok161) mutants, vhl-1(ok161) mutants with RNAi against tgn-38 and Y70C5C.1 at 28 °C starting at L4. **** indicates P < 0.0001 (n > 40 animals per condition).  
(F) Representative confocal high-magnification images of the F22B5.4 translational reporter with GFP observed predominantly in head neurons in WT animals. (Scale bar: 
10 μm.) (G) Quantitative RT-PCR measurements of F22B5.4 gene expression levels under conditions indicated on normal NGM. **** indicates P < 0.0001; n.s. indicates 
nonsignificant. (H) Lifespan curves of WT, three representative F22B5.4 translational reporter lines, and ric-19p::F22B5.4 overexpression gain-of-function animals at 28 °C 
starting at L4 on normal NGM. **** indicates P < 0.0001 (n > 40 animals per condition). (I) Lifespan curves of WT, APOE4(vxIs824), and APOE4(vxIs824); Ex[ric-19p::F22B5.4, 
unc-54p::mCherry] animals at 28 °C starting at L4 on normal NGM. *** indicates P < 0.001 (n > 40 animals per condition).



10 of 12   https://doi.org/10.1073/pnas.2417515122� pnas.org

Control shRNA

  C57 WT
   mouse

WT mouse

  7 month
 old mouse

1 month
later

Assay analysis

AnalysisEvans blue

   C57 APOE4
transgenic mouse

C57 WT or APOE4
transgenic mouse

Hippocampal injection
 of control shRNA AAAA VAA
   or Vhl shRNA AAAA V  AA

Vhl shRNA Control shRNA

* *

*** *

0

20

40

60

C
D

13
+ 

pe
ric

yt
e 

co
ve

ra
ge

   
 (

%
 o

f l
ec

tin
+ 

ar
ea

)

Vhl shRNl A

Vhl shRNl AVhl shRNl A

A B C

E

F G H

Le
ct

in
C

D
13

M
er

ge

D

Occludin55

kDa

kDa

40

Control shRNA

  C57 WT
   mouse

1 2 3 1 2 3 1 2 3

   C57 APOE4
transgenic mouse 

Control shRNA

1 2 3

I J

Synapto-
physin

40

kDa

kDa

40 β-actin

Control shRNA

  C57 WT
   mouse

1 2 3 1 2 3 1 2 3

   C57 APOE4
transgenic mouse 

Vhl shRNl A Control shRNA Vhl shRNl A

1 2 3

Control shRNA

Control shRNA

S
M

I3
12

/N
eu

N
S

M
I3

12
/N

eu
N

  C57 WT mouse

   C57 APOE4 transgenic mouse

Brain homogenate

80

100

APOE4 mouse
Con

tro
l s

hR
NAA

Con
tro

l s
hR

NAA

0.0

0.5

1.0

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

   
 (

O
cc

lu
di

n/
ac

tin
)

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

(S
yn

ap
to

ph
ys

in
/a

ct
in

)

1.5

0.0

0.5

1.0

1.5

WT mouse APOE4 mouse
Con

tro
l s

hR
NAA

Con
tro

l s
hR

NAA

WT mouse APOE4 mouse
Con

tro
l s

hR
NA

Vhl 
sh

RN

Vhl

A

Con
tro

l s
hR

NA

Vhl 
sh

RN

Vhl

A

O
D

   
   

 /g
62

0
   

   
   

   

WT mouse APOE4 mouse
Con

tro
l s

hR
NAA

Con
tro

l s
hR

NAA
0.0

0.2

0.4

0.6

0.8

1.0 * *

0

10

20

30

WT mouse APOE4 mouse
Con

tro
l s

hR
NAA

Vhl 
sh

RN

Vhl

AA

Con
tro

l s
hR

NAA

Vhl 
sh

RN

Vhl

AA

S
M

I3
12

+ 
ax

on
 d

en
si

ty
   

 (
%

 o
f t

ot
al

 a
re

a)

40
* *

** *

β-actin

Vhl 
sh

RN

Vhl

AA

Vhl 
sh

RN

Vhl

AA

Vhl 
sh

RN

Vhl

AA

Vhl 
sh

RN

Vhl

AA

Vhl shRNl A

Vhl 
sh

RN

Vhl

AA

Vhl 
sh

RN

Vhl

AA

Vhl shRNl A
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modulates mortality and neural cell damage in C. elegans  and mice. 
Our findings reveal that targeting VHL-1 remarkably suppresses 
mortality induced by various factors, including elevated ROS, tem-
perature stress, and the expression of the human APOE4  gene variant 
associated with neurodegeneration and mortality in humans. We 
established a C. elegans  model for rapid APOE4-induced neural 
pathologies and mortality and demonstrated the APOE4 toxicity-
suppressing effects of VHL-1 inactivation. We show that stabilized 
HIF-1 recapitulates the effects of VHL-1 inactivation, likely through 
orchestrating a genetic program that defends against various cellular 
dysfunctions linked to mortality, including mitochondrial abnormal-
ities, oxidative stress, proteostasis dysregulation, and endo-lysosomal 
rupture (SI Appendix, Fig. S9 ). We identified tgn-38, Y70C5C.1 , and 
﻿F22B5.4 , as HIF-1 and VHL-1-regulated genes and possible targets 
that may functionally contribute to suppression of mortality and 
neural pathologies.

 Extensive studies have investigated mechanisms of cellular tox-
icity associated with APOE4 in the context of neurodegeneration 
and AD ( 63       – 67 ). Emerging evidence suggests that neuronal APOE4 
may act as a crucial upstream trigger and likely a driver of late-onset 
AD pathogenesis, leading to downstream neuroinflammation, glial 
responses, and subsequent neurodegeneration ( 64 ). Our study sheds 
light on the cellular consequences of neuronal APOE4 expression, 
revealing intrinsic effects of APOE4 in promoting neuronal mor-
phological deterioration, mitochondrial dysfunction, and lysosomal 
disruption in neurons, but also cross-tissue actions on proteostatic 
abnormalities in body wall muscles. Neuronal APOE4 may inflict 
oxidative stress via excess ROS generation and intracellular choles-
terol accumulation by multiple mechanisms ( 63       – 67 ), which may 
separately and additively lead to the observed cellular defects in  
﻿C. elegans . Importantly, reduction of cholesterol from dietary sources 
or amelioration of excess oxidative stress through NAC or HIF-1 
stabilization strongly suppressed these defects, providing a causal 
link from cholesterol to mortality regulation by VHL–HIF. While 
hypoxia and oxidative stresses can facilitate AD pathogenesis 
through cell deleterious effects (ROS generation, energy depletion 
and redox imbalance, etc.), hypoxia-inducible activation of HIF-1 
is primarily adaptive and protective against hypoxic injury and oxi-
dative stress, representing a targetable pathway for alleviation of 
neurodegeneration in AD.

 In mice, we showed that Vhl  knockdown mitigated neurovas-
cular injuries induced by APOE4. Beneficial effects of targeting 
Vhl in neural tissues include enhanced pericyte coverage, preser-
vation of tight junction proteins, and protection against BBB 
compromise and synaptic loss. This evidence of a conserved mech-
anism in a mammalian system strengthens the potential clinical 
implications of targeting VHL–HIF for mitigating age-related 
mortality and neurodegenerative risks associated with APOE4. 
Although Vhl  loss or HIF-1 activation in dividing cells could be 
oncogenic, leading to tumor cell growth, specific targeting of 
VHL–HIF in nonproliferative tissues, such as postmitotic neu-
rons, might broadly protect against oxidative stress resulting from 
ischemia–reperfusion injuries, neurodegeneration, aging, or 
﻿APOE4  genetic predisposition. The integration of our findings 
across different species paves the way for future studies into con-
served mechanistic links underlying the complex relationships 
among genetic factors, cellular pathways, and environmental influ-
ences on mortality.

 Our studies are based on largely genetic, cell biological, and 
phenotypic analyses, demonstrating causal inferences, yet lacking 
molecular and biochemical mechanistic details. For example, the 
precise mechanisms by which the three HIF-1 targets protect 

against cellular damage and animal mortality in C. elegans  await 
further studies. Whole-animal genetic LOF of vhl-1  and consti-
tutive expression of stabilized HIF-1 preclude high-resolution 
dissection of the spatiotemporal requirement of VHL–HIF sign-
aling in protection against cellular damages and animal mortality. 
The proteostasis defects in body wall muscles and morphological 
deterioration of PVD neurons caused by pan-neuronal expression 
of APOE4  raise intriguing cell biological questions regarding 
mechanisms of cross-tissue interactions, but the relative contri-
bution of cell-autonomous and non-cell-autonomous effects of 
APOE4 to mortality in C. elegans  remain undetermined. Although 
loss of vhl-1  or HIF-1 activation protects against mortality in C. 
elegans , it remains unclear whether it is also true in mice or humans. 
In addition, the broader implications of VHL–HIF modulation on 
other aspects of organismal health and aging, such as behavioral 
outcomes and healthspan, warrant further investigations.  

Materials and Methods

C. elegans, transgenic arrays, compound and confocal imaging, western blotting, 
immunofluorescence, LTM and chemotaxis assay, RNAi, qRT-PCR, thermal resil-
ience and lifespan assays, miniSOG assay, NAC compound treatment, animal 
body size assay, cell culture and transfection, lentivirus and cell line generation, 
mammalian cell thermal resilience assay, mice and AAV injection, and Evans 
blue leakage experiments are described in detail in SI Appendix, SI Materials 
and Methods.

All animal experiments were performed in accordance with the Guide for the 
Care and Use of Laboratory Animals (Eighth edition). The animal experiments 
were approved by the Institutional Animal Care and Use Committee of China 
Pharmaceutical University.

For all representative data, scale bars apply to all panels in a set. All summary 
graphs show means ± SD unless otherwise specified, with P values calculated by 
unpaired two-tailed t tests (comparisons between two groups), one-way ANOVA 
(comparisons across more than two groups), and two-way ANOVA (interaction 
between genotype and treatment), with post hoc Tukey and Bonferroni’s 
corrections. The lifespan assay was quantified using Kaplan–Meier lifespan anal-
ysis, and P values were calculated using the log-rank test. *P < 0.05, **P < 0.01,  
***P < 0.001, and ****P < 0.0001.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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