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ABSTRACT OF THE DISSERTATION 

 

Informing Genetic Models of Autism via Transcriptional Network Analysis in Brain and Blood 

by 

 

Rui Luo 

Doctor of Philosophy in Human Genetics 

University of California, Los Angeles, 2014 

Professor Daniel Geschwind, Chair 

 

Autism Spectrum Disorders (ASDs) are a group of heritable neruodevlopmental 

disorders. Both common and rare genetic variants are known to play a role in ASDs. However 

the functional impact of genetic variants remains largely unexplored. In this study, we conducted 

transcriptome profiling analysis to uncover the expression alterations that are associated with 

autism. The transcriptome profiling also aids us exploring the regulatory patterns of genetic 

variants, and better understanding the genetic models of autism. Since brain tissue is not 

accessible on a large scale, we profiled mRNAs of lymphoblast cell lines (LCLs) from three 

independent cohorts to determine whether we could detect a reproducible blood gene expression 

pattern associated with ASD. RNA from a total of 978 patients, and 651 controls, including 607 

unaffected siblings analyzed for differential expression. Although few genes were consistently 
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differentially expressed between ASD and controls, we did find five (CMKOR1, 

DKFZP564O0823, PITPNC1, PRKCB1 and VIM) that were differentially expressed in at least 

two cohorts LCLs and previously published brain samples. Similarly, using LCL gene expression 

to classify subjects by disease status performed only slightly above chance. Using weighted gene 

co-expression network analysis (WGCNA), we were able to identify a module correlated with 

ASD in both AGRE and NIMH cohorts that overlapped with genes previously found to be mis-

expressed in post mortem brain from ASD cases. eQTL analysis identified SNPs that were 

associated with LCL gene expression, including several in AHI1, a Joubert Syndrome gene 

dysregulated in ASD brain and lymphoblasts. Four of the 23 SNPs that were significantly 

correlated with the expression level of AHI1 reside in the same haplotype block previously 

associated with ASD, suggesting that risk for ASD is mediated via AHI1 transcript levels.  

Overall, we found a weak, but consistent signal in LCLs further suggesting that peripheral 

lymphoblast gene expression may be useful for studying ASD. 

Rare variants including Copy Number Variants (CNVs) and Single Nucleotide Variants 

(SNVs) are found to play an important role to the etiology of ASD together with common 

variants. We next interrogated gene expression in lymphoblasts from 244 families with 

discordant siblings in the Simons Simplex Collection in order to identify potentially pathogenic 

variation. Our results reveal that the overall frequency of significantly mis-expressed genes 

(which we refer to here as outliers) identified in probands and unaffected siblings do not differ. 

However, in probands, but not their unaffected siblings, the group of outlier genes is 

significantly enriched in neural-related pathways including neuropeptide signaling, 

synaptogenesis and cell adhesion. We demonstrate that outlier genes cluster within the most 

pathogenic CNVs (rare de novo CNVs) and can be used to prioritize rare CNVs of potentially 
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unknown significance. Several non-recurrent CNVs with significant gene expression alterations 

are identified, including deletions on chromosome 3q27, 3p13 and 3p26, and duplications at 

2p15, suggesting these as potential novel ASDs loci. In addition, we identify distinct pathways 

disrupted in 16p11.2 microdeletions, microduplications and 7q11.23 duplications, and show that 

specific genes within the 16p CNV interval correlate with differences in head circumference, an 

ASDs relevant phenotype. This study provides evidence that pathogenic structural variants have 

functional impact on transcriptome alterations in ASDs at a genome-wide level, and 

demonstrates the utility of this approach for prioritization of genes for subsequent functional 

analysis. 

Genetic studies have identified dozens of ASDs susceptibility genes, yet the interaction 

between ASD risk genes are pooly understood. In the aim of identify the molecular mechanisms 

and potential convergening pathways of ASD risk genes, the last chapter of my research utilizes 

transcriptome profiling to answer two questions: 1) do these genetic loci converge on specific 

laminar expression patterns, and 2) where does the phenotypic specificity of ASDs arise, given 

its genetic overlap with intellectual disability (ID)? To answer these, we mapped ASDs and ID 

risk genes to non-human primate and human brain transcriptome. We found ASDs genes are 

enriched in superficial cortical layers and glutamatergic projection neurons at the circuit level. 

Furthermore, we show that the patterns of ASDs and ID risk genes are distinct, providing a novel 

biological framework for investigating the pathophysiology of ASDs. In this chapter, we 

demonstrated the importance of understanding ASD gene interaction with systems biology 

method. 
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Introduction 
 

ASD Background and Features 

Autism Spectrum Disorders (ASDs) are a group of neurodevelopmental disorders that 

include autism, pervasive developmental disorder not otherwise specified (PDD-NOS), and 

Asperger’s syndrome [1]. Based on the Diagnostic and Statistical Manual of Mental Disorder 

(DSM-V), a child is diagnosed with ASDs if he or she meets the following criteria: A) Persistent 

deficits in social communication and social interaction across multiple contexts, B) Restricted, 

repetitive patterns of behavior, interests, or activities. Severity is based on social communication 

impairments and restricted, repetitive patterns of behavior [2]. Additional features often 

comorbid with ASDs include sensory and motor abnormalities, ADHD, epilepsy, and 

developmental regression [1, 4]. Those with ASDs can range from being mentally disabled to 

having above average intelligence [5]. Currently, there is an increase in prevalence of ASDs, 

with estimated 1 out of 88 children as ASDs (CDC, ADDM network, 2012). Multiple 

sociocultural factors, including age at diagnosis, changing diagnostic criteria and broader 

inclusion rates but not biological factors, would contribute to this increased prevalence [6, 7]. 

Genetic studies of ASD 

Both family and twin studies indicate that ASDs are a highly heritable neruosychatric 

disorder. The monozygotic twins have a much higher concordance rate (50%-90%) compared to 

dizygotic twins (0%-30%) [8, 9]. Interestingly, the risk is 3-fold in second born male siblings 

versus females, supporting models of reduced penetrance in females [8, 10]. Current studies have 

reported a variety of genetic causes that account for roughly 20% of ASD cases. Recent exome 

sequencing studies indicate that the number of ASD-implicated genes is between 200 and 1000 
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[11-16]. Studies suggest a mixed genetic model of ASD, indicating that common variants as 

SNPs as well as rare variants as CNVs and SNVs, are playing a role together to cause the 

heterogeneity of ASD [17-19].  

The contribution of common genetic variation to ASDs has been evaluated by genome-

wide association (GWA) studies, which compare the frequency of single nucleotide 

polymorphisms (SNPs) in cases and controls. Three major GWA studies of ASDs have recently 

been completed: Wang et al, conducted a GWA study with about 2000 multiplex families from 

Autism Genetic Resource Exchange (AGRE), and found SNP: rs4307059 associated with ASDs 

at genome-wide significance, located in an intergenic region between cadherin 9 (CDH9) and 

cadherin 10 (CDH10)[20]. Weiss et al. utilized 1031 multiplex autism families for GWA and 

showed genetic association reaching the genome-wide significance threshold for SNP: 

rs10513025 located 80kb upstream of semaforin 5A, between SEMA5A and the bitter taste 

receptor TASR1[21]. Anney et al. identified SNP: rs4141463 located in an intron of MACROD2 

using 1558 ASDs families [22]. None of the above studies replicated each other’s findings, 

indicating the small effect sizes of common alleles in ASD. This may due to the relatively small 

sample size in each study comparing to other GWA stuidies. This also suggests that each of the 

common variants has a relatively minor effect size to disease, and many common variants, are 

necessary to lead the disease phenotype in each case.  

The effects of rare variants in ASD are evaluated by measuring the frequency of rare 

copy number variation (CNV) and single nucleotide variants (SNV) in cases and controls. 

Several studies have identified CNVs that are related to ASD [22-24]. Two studies [22, 23] 

found that de novo CNVs occur more frequently in ASD cases than controls. Although none of 
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the individual CNVs were proven to be causal, these studies highlighted the fact that de novo 

mutations could contribute a significant proportion of the genetic abnormalities in ASDs. The 

most frequent chromosomal aberrations observed in ASDs are the maternal duplication of 

chromosome 15q11-13 and a 600kb microdeletion/ microduplication at 16p11.2, each occurring 

in approximately 1% of sporadic ASD cases. In addition, several rare CNVs have been found in 

cased but not in controls. Although the association of the rare CNVs with ASDs is difficult to 

reach genome-wide significance due to their low frequency, the genes spanned by these CNVs 

are relevant candidates for further evaluation by functional studies and targeted gene 

resequencing. Here are the list of genes shown in recurrent CNVs and have been indicated to be 

ASD risk genes by functional studies: A2BP1, ANKRD11, C16orf72, CDH13, CDH18, DDX53, 

DLGAP2 [25, 26], DPP6, DPYD, FHIT, FLJ16237, NLGN4, NRXN1, SHANK2, SHANK3, 

SLC4A10, SYNGAP1, USP7 [12, 15]. 

 With the advances of next-generation sequencing techniques, four independent exome-

sequncing studies have been conducted [11, 13, 14, 16]. In one study [16], there is a significant 

increase in the number of non-synonymous and nonsense de novo SNVs in cases compared to 

unaffected sibs when looking across all genes [OR of 1.93 (all non-synonymous to silent SNVs); 

OR of 4.03 (nonsense/splice site to silent SNVs)] and brain-expressed genes only [OR of 2.22 

(all non-synonymous to silent SNVs); OR of 5.65 (nonsense/splice site mutations to silent 

SNVs)].  The other study reports a two-fold increase in frame shift, splice site, and nonsense de 

novo mutations in cases versus controls [11]. By combing SNVs of frame shift, splice site or 

nonsense de novo variants in cases across all four studies, five high-priority genes were 

identified that are recurrent in ASDs: DYRK1A, POGZ, SCN2A, KATNAL2 and CHD8. Based on 

the genetic findings, these genes are worthy of downstream functional analysis.  
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Transcriptome studies of ASDs 

Our studies of autism genetics indicate the fact that genetic variants may cause disease 

phenotype via affecting gene expression. Thus it becomes necessary to integrate the genetic 

findings with transcriptomic data. Ttranscriptom studies of ASD can also potentially identify the 

molecular mechnisam and uncover convergening signaling pathways of ASDs.  

With the hope of identifying gene expressions that are altered in ASD cases, several 

studies have analyzed genome-wide expression profiles of ASD cases using readily available 

peripheral tissues such as lymphoblast cell lines (LCLs) [27-29] and blood [30-33]. Several 

pathways have been identified that are associated with ASD in each study, including: steroid 

biosynthesis, oxidative stress and ubiquitination.  However, results shown little convergence in 

terms of the dysregulated pathways. The reasons for the non-overlapping could be following: (1) 

they used a relatively small sample size (smaller than 100), 2) each study utilized different study 

design and criteria to define dysregulated genes, (2) EBV transformation increased the variability 

of gene expression in LCLs.  

As a brain disorder, the ideal tissue to study expression patterns associated with ASDs is 

the postmortem brain. A recent study conducted by Voineagu et al. [34] examined trascriptome 

profiles from three different brain regions (frontal cortex, temporal cortex and cerebellum) of 19 

autism cases and 17 controls. By differential expression analysis of cortex samples, 444 genes 
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were identified as differentially expressed. Pathway analysis detected an up-regulation of genes 

involved in immune response, while a down-regulation of genes functioning at the synapse.  

By using a network-based approach, Voineagu et al. found two modules that are related 

with ASDs status. Each module contains a list of genes that are co-expressed cross samples. The 

module (M12) with the strongest ASDs correlation consisted of genes down-regulated in ASDs 

and is enriched in genes with synaptic function and vesicular transport. Interestingly, this module 

showed enrichment for ASDs genetic association signal as measured in the GWA study by Wang 

et al[20], as genes in M12 has a significantly lower p-value distribution compared to genome 

background. This initial exploration of autism brain transcriptome illustrates the possibility to 

find the converging pathways for ASDs in a disease-relevant tissue. 
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CHAPTER 1: Large-scale lymphoblast gene expression profiling of ASD and 

unaffected controls reveals weak shared signals across cohorts 

1.1 Abstract 

Autism Spectrum Disorders (ASDs) are a group of heritable neuro-developmental 

disorders, which result from multiple genetic and environment factors. Since brain tissue is not 

accessible on a large scale, we profiled mRNAs of lymphoblast cell lines (LCLs) from three 

independent cohorts to determine whether we could detect a reproducible blood gene expression 

pattern associated with ASD. RNA from a total of 978 patients and 651 controls, including 607 

unaffected siblings, was analyzed for differential expression. Although few genes were 

consistently differentially expressed between ASD and controls, we did find five (CMKOR1, 

DKFZP564O0823, PITPNC1, PRKCB1 and VIM) that were differentially expressed in two LCLs 

studies and previously published brain samples. Similarly, using LCL gene expression to classify 

subjects by disease status performed only slightly above chance. Using weighted gene co-

expression network analysis (WGCNA), we were able to identify a module correlated with ASD 

in both AGRE and NIMH cohorts that overlapped with genes previously found to be mis-

expressed in post-mortem brain from ASD cases. eQTL analysis identified SNPs that were 

associated with LCL gene expression, including several in AHI1, a Joubert Syndrome gene 
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dysregulated in ASD brain and lymphoblasts.. Four of the 23 SNPs that were significantly 

correlated with the expression level of AHI1 reside in the same haplotype block previously 

associated with ASD, suggesting that risk for ASD is mediated via AHI1 transcript levels.  

Overall, we found a weak, but consistent signal in LCLs further suggesting that peripheral 

lymphoblast gene expression may be useful for studying ASD. 

1.2 Introduction 

Autism spectrum disorders (ASDs) are a group of neuro-developmental disorders that are 

characterized by two core domains: deficits in social interaction, as well as restricted repetitive 

behaviors [1, 2] . Both family [3, 4] and twin studies [5] indicate ASDs are highly heritable 

neuropsychiatric disorders. The contribution of common and rare genetic variants to ASDs has 

been examined by different methods, including linkage analysis, genome-wide association 

studies (GWAS), copy number variation and exome-sequencing studies [6-14]. Heritability 

analysis indicates that 40%-60% of ASD is explained by common genetic variation [15]. CNV 

and exome sequencing analyses have identified rare variants that alter dozens of protein-coding 

genes in ASD. However, none of them individually accounts for more than 1% of ASD cases 

[16], although combined, rare variants are predicted to account for at least 15% of ASD [6, 17]. 

These results support an extremely heterogeneous genetic architecture for ASD, leading to its 

conceptualization as the ASDs [18].  

Despite the heterogeneity of ASD, studies suggest ASD converges on a few specific 

biological pathways. A recent study shows that ASD risk genes tightly coexpressed in modules 

that implicate distinct biological functions during human cortical development [19]. At a circuit 

level, ASD genes are enriched in superficial cortical layers and glutamatergic projection neurons 
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[19]. Transcriptomic analysis, the comprehensive study of genes and their functions, offers an 

approach to study ASDs because of the ability to measure global gene expression changes. Since 

ASDs are neurodevelopmental disorders, brain tissue is the primary choice for functional 

analysis. The first transcriptomic study of autism identified about 30 differentially expressed 

genes in cerebellum and highlights the glutamate receptor as related to ASDs [20]. The most 

comprehensive study (Voineagu et al. [21]) to date examines transcriptome profiles from three 

different brain regions in post mortem brain tissue (frontal cortex, temporal cortex and 

cerebellum) and identified over 400 differentially expressed genes between patients with ASD 

and controls. Pathway analyses detected an up-regulation of genes involved in immune response 

and a down-regulation of genes involved in synaptic function. By using a network-based 

approach, Voineagu et al. [21] found a module (M12) of co-expressed genes enriched in genes 

with synaptic function and vesicular transport and down-regulated in ASD. This work illustrates 

the utility of gene expression profiling for understanding the pathophysiology of ASDs. 

Since post-mortem tissue is hard to access on a large scale, several studies have analyzed 

genome-wide expression profiles of ASD cases using more readily available peripheral tissues 

such as lymphoblast cell lines (LCLs) [22-26] and blood [27-31]. An early study by Nishimura et 

al. [22] compared mRNA expression profiles in LCLs from males with autism due to a fragile X 

mutation (FMR1-FM) or a 15q11–q13 duplication (dup(15q)), and non-autistic controls. They 

identified 68 genes that are dysregulated in common between autism with FMR1-FM and 

dup(15q), as well as a potential molecular link between FMR1-FM and dup(15q), the 

cytoplasmic FMR1 interacting protein 1 (CYFIP1) [22]. Another study by Luo et al [32] used 

gene expression to annotate the pathogenicity of rare ASD-associated mutations and found 

distinct patterns of transcriptional dysregulation in several recurrent CNVs, including 
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(del)16p11.2 and (dup)7q11.23. There are several studies using LCLs which compare sporadic 

autistic cases with controls [22-26]. A few studies have been done by Hu et al in this field. In 

comparing gene expression profiles of LCLs from monozygotic twins discordant for autism 

severity, they identified 44 genes as differentially expressed in ASDs [25]. A comparison 

between sib pairs discordant for autism diagnosis identified 45 differentially expressed genes 

[24]. These genes are found to be involved in neural-development and steroid biosynthesis. 

Another study by Hu et al conducted expression profiling of 116 lymphoblastoid cell lines (LCL) 

from individuals with sporadic autism who are divided into three phenotypic subgroups 

according to severity scores [23]. Recently, Seno et al [26] used gene and miRNA expression 

profiling using LCL-derived total RNA to evaluate possible transcripts and networks of 

molecules involved in ASD. They identified several novel genes and miRNAs dysegulated in 

ASD compared with controls, including HEY1, SOX9, miR-486 and miR-181b. 

Many questions relating to transcriptional profiling of peripheral tissues remain, most 

prominently whether there is a common “ASD” expression signal in ASD and whether this 

reflects changes occurring in the brain. Over the five ASD transcriptome profiling studies, 

several pathways have been identified that are associated with ASDs in each study, including: 

neuronal development and steroid biosynthesis [24], circadian rhythms [23] and nature killer 

cytotoxicity [27]. However, differentially expressed genes and pathways identified in each study 

show little overlap.  A recent review (Voineagu [33]) found 21 genes that were differentially 

expressed in both peripheral tissues and brain. This indicates the possibility of finding genes with 

shared expression alterations between brain and easily accessible peripheral tissues.  

In an attempt to overcome issues of power and comparability, we conducted a rigorous 

expression profiling analysis of lymphoblast cell lines derived from more than 1000 samples 



14 
 

collected from three independent cohorts: AGRE (http://agre.autismspeaks.org), NIMH 

(http://www.nimh.nih.gov/index.shtml) and SSC (http://sfari.org/resources/simons-simplex-

collection), the largest such gene expression analysis in any neuropsychiatric disease. We 

processed each cohort with the same criteria and an identical pipeline to make results comparable. 

Both standard differential expression and network-based methods were utilized to detect genes or 

gene clusters that are dysregulated in ASD across independent datasets. In addition, we 

compared our findings with differentially expressed genes identified in ASD post mortem brains 

to identify dysregulated genes shared between LCLs and brain tissue [21].  

We also leveraged this large dataset to derive a comprehensive eQTL map, so as to 

further assess the function of ASD-associated genetic variation. Overall, our study provides 

evidence that peripheral tissues may be useful for studying ASD. However, compared with brain 

tissue, the signal from generalized expression changes in lymphoblasts is relatively weak, 

consistent with ASD’s genetic heterogeneity. 

1.3 Several differentially expressed (DEX) genes in LCLs overlap with DEX genes in 

autistic brain  

We profiled the whole-genome mRNA of lymphoblast cell lines (LCLs) from three 

independent autism cohorts using Illumina microarrays. After pre-processing steps (Methods), 

627 samples (283 cases and 344 controls) from 333 multiplex families in the AGRE cohort, 142 

samples (99 cases and 43 controls) in the NIMH cohort, and 409 samples (221 cases and 188 

controls) from 241 simplex families in the SSC cohort remained for downstream analysis (Table 

1).  

We first conducted differential expression analysis in each cohort (Methods) and 

http://sfari.org/resources/simons-simplex-collection
http://sfari.org/resources/simons-simplex-collection
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identified 417 differentially expressed (DEX) genes in AGRE, 680 in NIMH, and only 4 in SSC 

(p-value < 0.01) (Figure 1, Table S2).  The proportion of genes identified in each cohort 

remained roughly similar regardless of the statistical cutoff used in these three cohorts (Figure 

1). To evaluate whether the small number of DEX genes identified in SSC is due to large de 

novo CNVs in this cohort [34], we reanalyzed these data by removing the 54 samples with at 

least one large de novo CNV, but did not find any DEX genes (p-value < 0.01). This indicates 

that the autistic cases in SSC are less likely to share genes that are differentially expressed. 

Instead, individual autistic cases may exhibit specific mis-expressed genes potentially caused by 

rare genetic variants [32]. We then examined overlap between the DEX gene lists from each 

cohort. Fourteen genes were differentially expressed (p-value < 0.01) in the AGRE and NIMH 

cohorts, although this overlap did not reach significance (hypergeometric test; p-value = 0.558). 

The shared DEX genes include TMPRSS3, which is involved in sodium channel regulator 

activity; MRPL41, functioning in apoptosis and cell cycle; and DKFZP564O0823, which is also 

dysregulated in post mortem ASD brain [21]. 

To carry out a comprehensive comparison between LCLs and brain gene expression, we 

compiled a list of LCLs DEX genes reported in seven studies [22-25, 32] together with DEX 

genes (p-value <0.01) identified from this study. By comparing the comprehensive DEX gene 

list with the 444 DEX genes identified in autistic brain [35], we identified 56 genes as 

differentially expressed in both tissues (Table 2). Interestingly, there were five genes (CMKOR1, 

DKFZP564O082, PITPNC1, PRKCB1 and VIM) which were altered in more than one study of 

peripheral blood or LCLs and brain.  

To assess the convergence of DEX genes at the pathway level, we ran DAVID GO for the DEX 
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genes (p-value < 0.01) from AGRE and NIMH (Methods), but not the SSC, since there were too 

few genes in the latter. Mitochondrial related pathways were identified in both cohorts (in 

AGRE: Mitochondrial substrate/solute carrier (p-value = 1.1e-02); in NIMH: mitochondrial 

ribosome (p-value = 1.6e-02)). Interestingly, this pathway has been reported previously to be 

associated with ASD [36-39].  

1.4 Prediction of autism using LCLs gene expression signatures  

Several studies have assessed the potential to distinguish ASD cases from controls using 

either SNP or expression data [29, 40]. To test whether genes differentially expressed in LCLs 

could be used as molecular diagnostic biomarkers for ASDs, we utilized the DEX gene lists from 

each cohort to build prediction models (we call DEX_prediction model) with two powerful 

prediction methods: Random Forest (RF) and Support Vector Machines (SVM) (Methods). By 

using the DEX genes to classify samples from the cohort in which the DEX genes were 

identified, the Area Under Curve (AUC) in AGRE was 0.67, in NIMH was 0.76, while in SSC 

0.69, all of which were slightly higher than the background AUC value (Figure 3), indicating a 

slightly higher classification power to distinguish cases from controls compared to background. 

However, when applying the classifier derived from one cohort to the other two independent 

cohorts, none of the DEX-predictions performed better than chance (Figure 3).  

1.5 Network analysis identifies a neural-related module that is associated with ASDs in 

AGRE and NIMH cohorts 

Weighted gene co-expression network analysis (WGCNA) is a systems biology method 

for leveraging the correlation patterns among genes across microarray samples which are used 

for finding clusters (modules) of highly correlated genes that correspond to shared biological 
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function [41]. This method has been successfully applied in various biological contexts including 

cancer , mouse genetics [41-43] as well as ASD brain [35]. To find discrete clusters of co-

expressed genes showing transcriptional differences between autistic cases and controls, we built 

co-expression networks in each cohort (Methods). The expression levels of each module were 

summarized using the first principal component (the module eigengene (ME)). MEs were used to 

assess whether modules are related to clinical phenotypes, experimental variables or 

confounders. Here we assessed ME relationship to disease status, age, or sex as well as batch 

effects. In the NIMH cohort, five additional measured confounders were also included 

(Methods). In AGRE, we detected two modules: brown module (AGRE_Mbrown, correlation = 

0.094, p-value = 0.02) and lightgreen module (AGRE_Mlightgreen, correlation = 0.11, p-value = 

0.006) that were ASD-correlated with a significant nominal p-value (p-value < 0.05). In the 

NIMH cohort, the modules magenta (NIMH_Mmagenta, correlation = 0.16, p-value = 0.04) and 

purple (NIMH_Mpurple, correlation = -0.16, p-value = 0.04) were significantly correlated with 

ASD, but none of the confounders were correlated with disease. In the SSC, none of the modules 

were related to ASD, consistent with the differential expression analysis results in SSC cohort. 

Even in AGRE, the correlation value between the brown and lightgreen modules and ASD was 

relatively minor and was not significant after Bonferroni correction.  

We next examined network and module reproducibility and their trait relationships across 

data sets. Supplemental Figure 2 shows that most of the modules are preserved (z summary > 2) 

at the network level, indicating that the modules detected represent groups of genes with robust 

co-expression patterns.  

To explore whether the module –trait relationships were preserved, we focused on the 
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four modules (AGRE_Mbrown, AGRE_Mlightgreen, NIMH_Mmagenta, NIMH_Mpurple) that 

show significant correlation with ASD (Methods). We detected that AGRE_Mbrown module 

was the only module that was significantly correlated with disease status in both AGRE 

(correlation = 0.094, p-value = 0.02) and NIMH (correlation = 0.32, p-value = 3.5e-05), but not 

SSC (correlation = 0.0015, p-value = 0.97). Interestingly, this module overlapped significantly 

with M12 – an ASD-associated module identified in ASD post mortem brain co-expression 

network analyses (hypergeometric p-value = 5.5e-03). Furthermore, GO enrichment show genes 

in AGRE_Mbrown were enriched in neural-related pathways, such as neurological system 

processes (p-value = 4.2e-09), neuroactive ligand-receptor interaction (p-value = 3.7e-06) and 

cell-cell adhesion (p-value = 1.9e-04). One of the hub genes (genes with highest connectivity in a 

module) in AGRE_Mbrown was KCNJ10, a major player in astrocyte-mediated regulation of 

[K(+)](o) in brain, which harbors recurrent mutations in ASD [44].  

1.6 eQTL identifies SNPs that are associated with gene expression patterns  

 

To explore the potential genetic cause for the expression alteration in ASD versus 

controls, we conducted expression quantitative trait loci (eQTL) analysis. In our three cohorts, 

AGRE contained the largest number of samples with both expression and genotyping data. So a 

genome-wide eQTL analysis was conducted in the AGRE cohort using efficient mixed-model 

association (EMMAX) [45], which utilizes a kinship matrix to control for the population and 

family structure (Methods). After Bonferroni correction (p-value < 4.5e-12), 8813 cis-eQTL and 

878 trans-eQTL remained significant. 

Among the significant eQTLs, SNPs identified in gene AHI1 were of particular interest, 

since mutations in AHI1 cause specific forms of Joubert syndrome [46-48], and AHI1 was down-
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regulated in cases in both AGRE and ASD brain data sets [35]. Common variants in AHI1 have 

been previously associated with schizophrenia and ASD [47, 48] and a high proportion of 

Joubert patients have an ASD. In our eQTL analysis, 23 SNPs were associated with the 

expression level of AHI1 (cis-eQTL) (Figure 4). Previous work identified a linkage 

disequilibrium block associated with ASD [47], which contains four of the 23 SNPs influencing 

AHI1 transcript levels (rs6931735, rs2064430, rs7772681 and rs13208164).  

1.7 Discussion 

Our results show that there are a few genes that were differentially expressed in LCLs in 

at least two independent ASD cohorts or previously published brain samples. Given the genetic 

heterogeneity observed in ASD, the lack of a strong gene expression signal shared across all 

patients and cohorts is unsurprising.  Similarly, a gene expression-based classifier performed 

only slightly above chance within individual cohorts and consistent with chance across cohorts. 

Using WGCNA, a powerful network-based method, we were able to identify a module correlated 

with ASD in both the AGRE and NIMH cohorts which overlapped with genes previously found 

to be mis-expressed in post mortem brain from ASD cases. This suggests that there are shared, 

albeit weak signals identifiable in peripheral tissue that may reflect changes occurring in the 

brain, but that sophisticated analytic techniques may be needed to identify them more robustly.  

eQTL analysis identified multiple SNPs associated with ASD risk genes, including AHI1, 

whose ASD association is supported by multiple lines of evidence [46-48]. The eQTL analysis 

links the previously identified genetic association signals in ASD and schizophrenia with 

transcriptome changes via the identification of significant eQTL within this gene.  These data 

suggest that AHI1 common variants exert their functional effects on ASD susceptibility [47] via 
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modulating AHI1 transcript levels. This is consistent with recessive mutations in AHI1 leading to 

a syndromic form of ASD and the significant reduction of AHI1 transcript levels observed in 

ASD brain [21]. 

There are several issues for previous LCLs transcriptome studies, which may result in 

little convergence: (1) they used a relatively small sample size (total number of samples is 

smaller than 100); (2) Instead of a network-based method, they analyzed individual genes using 

t-tests, in which multiple testing problems are very conspicuous and results are easily 

contaminated by false positive discovery; (3) each analysis has a different study design, which 

makes the results less comparable. The three cohorts analyzed here are by far the largest datasets 

used for study of the transcriptome in ASD. To avoid the confounder of different microarray 

platforms and analyses, all of the samples were run on the Illumina platform and analyzed using 

the same pipeline. Thus, the confounding factors which may have limited consistency in results 

between previous studies cannot account for the lack of overlap observed here. The lack of 

significant overlap in the differentially expressed genes between these cohorts is likely due to 

multiple factors. Firstly, these cohorts are heterogeneous and were recruited with different 

objectives. The SSC consists of simplex families with the goal of enriching for rare, non-

inherited genetic variation [6, 7], so common shared expression changes might not be expected 

in SSC, consistent with our observations. AGRE is a multiplex cohort recruited to identify 

heritable contributions [49] and the NIMH cohort is recruited without regard to family structure 

and contains single incidence and multiplex families. The non-significant overlap of DEX gene 

lists with this large sample size indicates the difficulty in finding convergening molecular 

alterations for sporadic ASD cases in LCLs. One interesting observation for the differential 

expression analysis is that we identified more differentially expressed genes in NIMH than in 
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AGRE and SSC. One possible reason is the different controls involved. In NIMH, the typically 

developing children were collected, while the other two cohorts used as controls unaffected 

siblings, which potentially carry some autistic features and likely reduce our power to detect the 

transcriptome changes related to autism. In AGRE, 50% of samples are gender matched while 

this is not the case for SSC cohort. This may bring additional heterogenicity for SSC cohort.  

 Secondly, LCLs are a peripheral tissue, not brain and furthermore represent a clone of 

EBV-transformed B cells. The transformation process can cause transcript and epigenetic 

alterations [50], thus adding another layer of variability. Only 60% of the genes expressed in the 

brain are also expressed in LCLs or blood [51]. This limits our power to detect brain-specific 

genes in peripheral tissues, especially when the genetic alterations present across samples are 

highly variable, as is the case here. This is in contrast to studying major gene forms of ASD 

where a shared LCL expression profile has been observed [22]. Thirdly, given the genetic 

heterogeneity of ASD, finding mutation- or patient-specific alterations may be a more powerful 

approach, as we have previously shown [32]. Outlier analysis, which detects mis-expression 

from the mean in specific individuals, has been shown to be able to detect ASD related pathways 

as well as the functional impact of rare CNVs [32]. Meanwhile, a systems biology method is 

preferred over a simple t-test to uncover the molecular etiology of ASD considering its 

complexity. The work by Parikshak et al [19] demonstrates the power of integrating multi-level 

evidence including genetic variation, transcriptome profiling and protein-protein networks using 

a systems biology method to detect converging pathways for ASD. Our results also show that by 

applying WGCNA, we were able to identify a module enriched in neural-related genes that are 

correlated with ASD.  
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Although few genes were consistently differentially expressed between ASD and 

controls, we did find five genes (CMKOR1, DKFZP564O0823, PITPNC1, PRKCB1 and VIM) 

that were differentially expressed in LCLs from at least two cohorts and previously published 

brain gene expression studies. Among them, the PRKCB1 gene was found to be associated with 

ASD [52]. Thus, several forms of evidence, none conclusive, support PRKCB1 as a candidate 

gene for ASD. The other four genes have not been associated with ASD or studied extensively in 

other brain disorders. 

Biomarkers that would facilitate earlier autism spectrum disorder diagnosis are crucial, 

thus several studies have assessed the potential to identify a classifier that can distinguish autism 

cases from controls using either SNP or expression data [29, 40]. A recent study reported a 

classifier with 70% accuracy if an individual has an autism spectrum disorder using 237 single-

nucleotide polymorphisms (SNPs) [40]. However, further analyses show that ancestral origins is 

a potential confounding factors [53], so careful study design and reproducibility test in 

independent samples are critical to define any universal classifiers.  

Considering its easily accessible nature, one aim is to find biomarkers in peripheral 

tissues for ASD diagnosis. In our study, we were unable to find a universal classifier that can 

predict disease status in multiple cohorts. Although previous studies have reported potential 

biomarkers for ASD in LCLs or blood, none have been replicated independently [22-31]. This 

indicates the difficulty of finding general biomarkers in peripheral tissues for ASD. Based on 

this, we suggest that identifying subgroups with more homogeneous etiologies may be the most 

productive way to conduct classifier analysis in ASD. Multi-level information (including 

genetics, transcriptomics and proteins) and more advanced statistical methods may also be 

needed to build a predictive model. This is supported by the current analyses, as with a network-
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based approach, we were able to identify one module: AGRE_Mbrown that is ASD related 

(nominal p-value in AGRE and NIMH cohorts). Although the relationship between LCL gene 

expression and ASD is small compared to the correlation in brain tissue between M12 and ASD 

affection status [21], this is not unexpected considering we are using peripheral tissues. In the 

SSC, none of the modules correlated with ASD, and the AGRE_Mbrown was not preserved in 

SSC either. This suggests as expected that rare genetic variants including CNVs and SNVs [6, 7] 

make it difficult to detect any group difference between ASD and non-ASD samples in this 

cohort. These data call for future independent validation of the AGRE_Mbrown module in other 

cohorts to replicate its ASD association in AGRE and NIMH. 

To take full advantage of this large data set, we conducted eQTL analysis to find any 

regulatory variants related to gene expression and ASD. Using a stringent statistical cutoff 

(Methods), we found only a small number of significant eQTLs. In our study, we detected more 

significant cis-eQTLs than trans-eQTL. This agrees with the previous observation that the large 

proportion of the intraspecific differences in transcript level is due to cis-effects on the gene [54-

59]. Remarkably, the expression of AHI1, which is down-regulated in both AGRE LCLs and 

ASD post-mortem brain [35], is shown to be regulated by 23 of cis SNPs. One of the cis SNPs, 

rs6931735, has a high correlation (R2=0.88) with SNP rs11154801, which is significantly 

associated with schizophrenia at the genome-wide level [48]. Also, this SNP is in the LD block 

identified to be associated with autism [47]. The convergence of the genetic association with 

ASD and the eQTL within AHI1 is intriguing and provides the first link between this association 

and disease mechanism.  

In summary, we present the largest and most comprehensive genome-wide expression 

profiling study in ASDs. With three independent datasets, we are able to evaluate the 
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convergence of DEX gene list and the reproducibility of our predictions. Only weak signals are 

seen shared across cohorts, reflecting the genetic heterogeneity of the disorder. However, we do 

identify a handful of genes and a co-expression module shared by LCLs and brain tissue. Based 

on these results and others [21-26, 32], we are cautiously optimistic that LCLs may be useful for 

studying ASD. However, careful attention needs to be paid to study designs and objectives.  So 

far, peripheral tissues appear most powerful for studying the impact of individual genetic 

variants, rather than shared, generalizable patterns [22, 32]. Whether whole blood would be more 

consistent than LCLs remains to be determined, since whole blood includes multiple cell types 

and is not EBV transformed. High throughput, efficient transformation of peripheral somatic 

cells to neural progenitors and neurons would likely provide the most optimal tissue for 

biomarker discovery.  Until such tissue is available, LCLs remain a viable alternative. 

1.8 Materials and Methods 

 

Individuals and lymphoblast cell lines (LCLs) analyzed in this study 

AGRE cohort was created by merging two large collections. The first collection 

contained 311 cases and 203 controls from 200 multiplex families; the second one contained 305 

cases and 190 controls from 202 multiplex families. Multiplex families are defined as families 

with more than one affected sibling in a family while simplex families only contain one affected 

sibling. For Simon Simplex Collection cohort: we analyzed individuals from Simon Simplex 

Collection (SSC) in two stages. In the first stage, we collected 386 individuals from 196 simplex 

families (190 matched sib pairs plus 5 siblings and 1 proband). In the second stage, we 

prioritized 53 samples with de novo CNVs (42 probands, 8 siblings and 3 mothers who carry 

16p11.2 events) [7]. Phenotype information can be found at Simons Foundation Autism 
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Research Initiative (SFARI) database and is shown in supplemental Table S1. This study was 

approved by the Institutional Review Boards at all participating institutions, including UCLA 

and Yale University. The NIMH cohort encompassed children enrolled in an ongoing 

longitudinal study of autism clinical subtypes who received clinical genetics testing. A total of 

106 children with autism were included in this analysis. Typically developing children were 

included if they did not show signs of an ASDs or developmental delay. 

The lymphoblast cell lines (LCLs) of the subjects were grown in RPMI 1640 medium 

with 2 mM L-glutamine and 25 mM HEPES (Invitrogen, Carlsbad, CA, USA), 10% fetal bovine 

serum, and 1 × Antibiotic-Antimycotic solution (Invitrogen) at 37°C in a humidified 5% CO2 

chamber. Cells were grown to a density of 6 × 105/ml. Special attention was given to maintain all 

the cell lines in the same conditions to minimize environmental variation. 

Microarray experiments 

A total of 9 × 106 of lymphoblasts were seeded in a T-75 flask in 30 ml of fresh medium. 

After 24 h, total RNA was extracted from the cells using an RNeasy Mini Kit with DNase 

treatment (Qiagen, Valencia, CA, USA) according to the manufacturer's protocol. RNA quantity 

and quality were measured by ND-100 (Nanodrop, Wilmington, DE, USA) and 2100 

Bioanalyzer (Agilent, Santa Clara, CA, USA), respectively. For AGRE samples, mRNA was 

hybridized on the Illumina Whole Human Genome Array Human REF-8 version 2.0 according to 

the manufacturer’s protocol. For SSC and NIMH samples, mRNA was hybridized on the 

Illumina Whole Human Genome Array Human REF-8 version 3.0 according to the 

manufacturer’s protocol.  

Sample quality control 
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GenomeStudio was used to convert image to numerical data as per our typical protocols 

[35, 42, 43]. SampleNetwork function in R was applied for pre-processing, which including the 

following steps: 1) Samples (chips) were cross-correlated using expression levels for all probe 

sets. These inter-array correlations (IACs) [60] were averaged for each array and compared to 

the resulting distribution of IACs for the dataset [43]. Samples with an average IAC < 2.0 

standard deviation below the mean IAC for the dataset were removed. 2) Following sample 

removal, quantile normalization [60] was performed in R. 3) To eliminate batch effects, 

additional normalization was performed using the R package ComBat [61] with the default 

parameters. ComBat successfully eliminated batch effects as evidenced by hierarchical clustering 

and significant improvement of mean IAC. We only used probes with evidence of robust 

expression (detection p-value <= 0.05 in at least 50% samples).  

In each cohort, there are potential cofounders as gender and age that can affect the 

analysis. So we applied linear regression to regress out gender and age effects in each cohort and 

used the residuals for follow up analysis. In NIMH cohort, additional five cofounders are 

reported including fasting status, medication, special diets, supplement taken status and sedation 

status (Table S1). To keep consistent between the NIMH and other two cohorts, we only regress 

out the gender and age in NIMH as well, but utilized Limma package to detect the differentially 

expressed (DEX) genes for each cofounder in NIMH. We then removed genes that are altered (p-

value < 0.005) in any of the five cofounders. One special case is for sedation status since it’s 

highly cofounded with the autistic case status: 90 out of 99 (91%) autistic cases are sedated while 

none of the controls are sedated. If we used Limma to detect the DEX genes between sedated and 

un-sedated in the cohort, it’s likely we will also find genes that are potentially associated with 

autistic trait. To overcome this issue, we applied differential expression analysis for sedation in 
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autistic cases only (compare the 90 sedated cases versus 9 un-sedated cases). In total, 1330 out of 

9096 (15%) DEX genes were identified in least one cofounder and are removed from the NIMH 

gene list.  

Genome-wide differential expression (DE) analysis 

The Limma [62]  package in R was applied for standard differential expression analysis 

each cohort.  

Classification analysis 

We utilized differentially expressed (DEX) gene lists from each cohort to build prediction 

models with two popular prediction methods: Random Forest (RF) and Support Vector Machine 

(SVM) (Methods). We first used the DEX genes to classify case from control in each cohort. 

This is called classification step. At this step, 10-fold cross validation is applied to measure the 

classification accuracy (area under curve (AUC) value to indicate the accuracy). After that, DEX 

gene lists from one certain cohort were used to predict the disease status in the other two cohorts. 

This can help to test the prediction power of a model in independent cohorts, which is called 

prediction step. Classifier with all expressed genes as features was used as background test. 

Weighted co-expression network analysis 

To identify clusters of co-expressed genes that are potentially related to ASD, WGCNA 

was applied to three cohorts respectively following the standard procedure for generating a 

signed network[63, 64].  In short, pairwise Pearson correlation coefficients were calculated for 

the expressed probes across all samples, and converted to connection strengths, defined as 

[(1+correlation)/2]  where β=10 [63].  These adjacency matrices were then used as the basis for 
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defining topological overlap (TO), which measures the common connections between a pair of 

genes.  For each network, we then used average linkage hierarchical clustering to group genes on 

the basis of TO dissimilarity measure (1 – TO). Finally, modules were defined using a dynamic 

tree-cutting algorithm[64].  The module eigengene (ME), defined as the first principle 

component of a given module, was used to represent characteristic expression patterns of 

individual modules. Module preservation was done by using the modulePreservation function 

(with default settings) in R. This function applies a permutation-based method to evaluate the 

robustness of the connections within a module in independent datasets.  

Pathway analysis 

DAVID GO database and MetaCore by GeneGO (Thompson Reuters) were used for 

pathway analyses. For both analyses, the background was set to the total list of genes expressed 

in our dataset. The statistical significance threshold level for all GO enrichment analyses was 

p<0.05.  

eQTL analysis 

Genome-wide e-QTL analysis was conducted on AGRE cohort using efficient mixed-

model association (EMMAX). All expressed probe (10773 probes) and 1040268 SNPs were used 

as the input. To remove the gender and age effects, the residuals of the expression values were 

used after regressing out gender and age. Kinship matrix was measured using the standard 

EMMAX parameters to control for the population and family structures. The output of eQTL had 

a lamda = 0.98, indicating the population and family structures were well controlled. We define 

SNPs spanning in the transcript boundary plus the 500kb upstream and downstream regions as 

cis-eQTL. Bonferroni corrected p-value (4.5e-12) is used as cutoff.  
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Figure 1-1 
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Figure 1-1. Differential expression analysis between ASD cases and controls. A) Barplot 

shows the number of genes as differentially expressed in AGRE, NIMH and SSC with different 

cutoffs: p-value < 0.05, p-value < 0.01, p-value < 0.005 and FDR < 5%. B) Barplot shows the 

pathways with significant p-value (p-value < 0.05) from DAVID GO enrichment analysis based 

on differentially expressed genes (p-value < 0.01) in AGRE and NIMH.  
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Figure 1-2 
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Figure 1-2. Classification analysis reveals weak signals for predicting ASD status based on 

LCLs expression. A) Each ROC curve shows the RandomForest classification signals based on 

differentially expressed genes and background gene list in AGRE, NIMH and SSC cohort 

respectively. Area under curve (AUC) value is reported for each classification model. B) Each 

ROC curve shows the Support Vector Machine (SVM) classification signals based on 

differentially expressed genes and background gene list in three cohorts. AUC value is reported 

for each classification model. 
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Figure 1-3 
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Figure 1-3. Network analysis identified AGRE_Mbrown module to be ASD related. A) 

Venn-diagram shows the significant overlap (hypergeometric p-value = 5.5e-03) between 

AGRE_Mbrown module and M12, an ASD module identified in brain samples [21]. B) The list 

of overlapped genes between AGRE_Mbrown and M12. C) Selected top GO enrichment 

pathways associated with AGRE_Mbrown.   
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Table 1-1. Summary table of sample information.  

Source NO. of samples NO. of cases NO. of controls Family structure 

AGRE 627 283 344 Multiplex families 

NIMH 142 99 43 

 Mixed 

multiplex+simplex 

families 

SSC 409 221 188 Simplex families 
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Table 1-2. List of genes as differentially expressed in both LCLs and brain.  

Gene.Name LCLs Resource 

CMKOR1 

15q dup vs. control; Nishimura et al. (2007) Human 

molecular genetics [22] 

FMR1 vs. control; Nishimura et al. 2007 Human 

Molecular Genetics [22] 

DKFZP564O0823 
AGRE cohort 

NIMH cohort 

PITPNC1 

Hu et al. (2006) BMC Genomics [25] 

15q dup vs. control; Nishimura et al. (2007) Human 

molecular genetics [22] 

FMR1 vs. control; Nishimura et al. (2007) Human 

molecular genetics [23] 

PRKCB1 

15q dup vs. control; Nishimura et al. (2007) Human 

molecular genetics [22] 

FMR1 vs. control; Nishimura et al. (2007) Human 

molecular genetics [22] 

VIM 

AGRE cohort 

FMR1 vs. control; Nishimura et al. (2007) Human 

molecular genetics [22] 

15q dup vs. control; Nishimura et al. (2007) Human 

molecular genetics [22] 

ALDH4A1 AGRE cohort 

ARMC8 Hu et al. (2009) Autism Res. [23] 

ATP2B2 Hu et al. (2009) PLOS ONE [24] 

ATP6V0D1 NIMH cohort 

CCDC50 Hu et al. (2009) Autism Res. [23] 

CD44 Hu et al. (2009) Autism Res. [23] 

CD74 NIMH cohort 

CIRBP NIMH cohort 

CPNE3 AGRE cohort 

DNAJB1 16p11.2 del vs. control; Luo et al. (2012) AJHG [32] 

DNAJB1 7q11.23 dup vs. control; Luo et al. (2012) AJHG [32] 

ELMOD1 Hu et al. (2006) BMC Genomics [25] 

FCGBP Hu et al. (2009) Autism Res. [23] 

GNA12 NIMH cohort 

GNA13 NIMH cohort 

HIST2H2AC NIMH cohort 

HSPB1 AGRE cohort 

IFITM3 Seno et al. (2011) Brain Res. [26] 

INPPL1 16p11.2 dup vs. control; Luo et al. (2012) AJHG [32] 
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ITGB5 7q11.23 dup vs. control; Luo et al. (2012) AJHG [32] 

ITPR1 AGRE cohort 

KIF1C NIMH cohort 

LCP1 Hu et al. (2009) Autism Res. [23] 

LOC400566 Seno et al. (2011) Brain Res. [26] 

LY96 NIMH cohort 

LYPD1 16p11.2 dup vs. control; Luo et al. (2012) AJHG [32] 

MSI2 AGRE cohort 

NAP1L5 AGRE cohort 

NEFM AGRE cohort 

NQO1 NIMH cohort 

PFTK1 Hu et al. (2009) Autism Res. [23] 

PLEKHC1 7q11.23 dup vs. control; Luo et al. (2012) AJHG [32] 

PLOD2 NIMH cohort 

PLTP AGRE cohort 

PNKD NIMH cohort 

PREPL 16p11.2 del vs. control; Luo et al. (2012) AJHG [32] 

RHBDF2 NIMH cohort 

SAT NIMH cohort 

SLC16A9 AGRE cohort 

SLC29A1 16p11.2 dup vs. control; Luo et al. (2012) AJHG [32] 

SLC2A5 AGRE cohort 

SMYD2 AGRE cohort 

SOX9 Seno et al. (2011) Brain Res. [26] 

TARBP1 NIMH cohort 

TESC NIMH cohort 

TNFRSF1A 16p11.2 dup vs. control; Luo et al. (2012) AJHG [32] 

TNPO1 NIMH cohort 

TRIM37 NIMH cohort 

UCHL1 Seno et al. (2011) Brain Res. [26] 

VHL NIMH cohort 

ZFP36 
FMR1 vs. control; Nishimura et al. (2007) Human Molecular 

Genetics [22] 
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Table 1-3. eQTLs significantly associated with AHI1 expression.  
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Figure 1-S1 
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Figure 1-S1. Module Eigengene correlation with ASD trait in AGRE, NIMH and SSC 

cohort respectively. X-axis is the trait and other variables including age, gender and batch. In 

NIMH, five confounders are also included. Y-axis is the module labels in each network. Red 

indicates positive correlation while blue indicates negative correlation. 
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Figure 1-S2 
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Figure 1-S2. Module preservation analysis across cohorts. ModulePreservation function in R 

is used to measure the preservation level of modules. In each panel, reference cohort is labeled 

firstly in the title followed by test cohort. Y-axis shows Z summary scores based on multiple 

network statistics and x-axis shows the module size.  
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CHAPTER 2: Genome-wide transcriptome profiling reveals the functional 

impact of rare de novo and recurrent CNVs in autism spectrum disorders 

2.1 Abstract 

Copy Number Variants (CNVs) are a major contributor to the pathophysiology of autism 

spectrum disorder, but the functional impact of CNVs remains largely unexplored. Since brain 

tissue is not available from most samples, we interrogated gene expression in lymphoblasts from 

244 families with discordant siblings in the Simons Simplex Collection in order to identify 

potentially pathogenic variation. Our results reveal that the overall frequency of significantly 

mis-expressed genes (which we refer to here as outliers) identified in probands and unaffected 

siblings do not differ. However, in probands, but not their unaffected siblings, the group of 

outlier genes is significantly enriched in neural-related pathways including neuropeptide 

signaling, synaptogenesis and cell adhesion. We demonstrate that outlier genes cluster within the 

most pathogenic CNVs (rare de novo CNVs) and can be used to prioritize rare CNVs of 

potentially unknown significance. Several non-recurrent CNVs with significant gene expression 

alterations are identified, including deletions on chromosome 3q27, 3p13 and 3p26, and 

duplications at 2p15, suggesting these as potential novel ASDs loci. In addition, we identify 

distinct pathways disrupted in 16p11.2 microdeletions, microduplications and 7q11.23 

duplications, and show that specific genes within the 16p CNV interval correlate with differences 

in head circumference, an Typically developing children were included if they did not show 

signs of an ASDs or developmental delay ASDs relevant phenotype. This study provides 

evidence that pathogenic structural variants have functional impact on transcriptome alterations 
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in ASDs at a genome-wide level, and demonstrates the utility of this approach for prioritization 

of genes for subsequent functional analysis. 

2.2 Introduction 

Autism, also known as autism spectrum disorders (ASDs [MIM 209850]), is a 

heterogeneous syndrome defined by impairments in three core domains: social interaction, 

language and range of interests [1, 2]. Autistic disorder is not viewed in isolation, but rather as 

one of several entities collectively referred to as the autism spectrum disorders (ASDs) [1]. Both 

family [3, 4] and twin studies [5]  indicate ASDs are highly heritable neuropsychiatric disorders. 

A growing body of literature reveals that rare mutations or structural variations dramatically 

increase disease risk [6-11]. This evidence suggests rare genetic variation plays a larger role in 

ASDs than previously suspected [2, 12-14]. 

The discovery of rare and recurrent copy number variation (CNV) as important 

pathogenic mutations in ASDs was a watershed in ASDs genetics [7, 8]. Recurrent CNVs such 

as those at 16p11.2, 22q11.2, 1q21.1, 7q.23 and 15q11-q13 show statistically significant 

association with ASDs [15-17],[18, 19]. However, the functional impact of these CNVs on 

downstream RNA expression at both a collective and individual level remains largely unknown. 

Since CNVs alter copy number and presumably must act via changes in downstream gene 

expression, an initial study that explored the transcriptome-wide effects of CNVs in human 

lymphoblast cell lines reported that changes in gene copy number explained roughly 20% of 

detected transcriptional alterations [20]. Although widely assumed, it remains unknown whether 

rare CNVs identified in autistic individuals have similar effects on transcription levels and 

subsequent pathophysiology. Evidence certainly exists for the association of rare CNVs as a 
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group in ASDs, but the paucity of cases prohibits proof of genetic association for most individual 

rare CNVs. Alternative lines of evidence, such as gene expression data may provide converging 

evidence for functional alterations related to a particular CNV, and would thus be of significant 

utility.  

No risk locus has been identified with a frequency exceeding ~1% in affected samples, 

consistent with heterogeneity [18, 21]. Our experimental strategy is predicated on the assumption 

that, instead of treating ASDs cases as a group, analyses of individuals at the resolution of the 

single gene would yield valuable insight. First, we analyzed gene expression variance in families 

with discordant siblings (one affected and one unaffected) from the Simons Simplex Collection 

(SSC). Since brain or neuronal tissue is not available from large numbers of individuals with 

ASDs, we used lymphoblasts, which although not expressing all relevant central nerve system 

(CNS) genes, do provide useful data for a significantly overlapping set of genes expressed in the 

CNS [22-24].  To assess which dysregulated genes could direct us to pathogenic mutations, we 

investigated expression variance in each subject and identified genes with significant deviations 

in expression in individuals’ lymphoblasts. To explore the functional impact of CNVs in ASDs 

at a genome-wide scale, our interrogation utilized the overlap of structural variation data in a 

recently published manuscript [18] with transcriptional data in a subset of the same population. 

Our data support the notion that the intersection of gene expression with mutation data, such as 

CNV calls, or SNVs derived from exome sequence data, represents an efficacious approach for 

identifying new mutations and prioritizing autism susceptibility genes associated with 

chromosomal structural variation.  
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2.3 Neural-related pathways are altered in the lymphoblast cell lines (LCLs) of probands, 

but not siblings  

Gene expression profiling was performed using LCLs from 439 individuals in 244 

Simplex families, consisting of one proband and their unaffected sibling. Data collection 

occurred in two stages: first, we analyzed 386 individuals from 196 families, and then we 

prioritized 53 individuals with de novo CNVs from Sanders et al. 2011 (42 probands, 8 siblings 

and 3 mothers who carry 16p11.2 events) (Methods). Data was cleaned to control confounding 

factors such as batch, race and gender effects (Methods, Figure 2-S1). Four hundred and twelve 

microarrays, accounting for 221 probands, 188 siblings and 3 mothers, containing a total 11,150 

expressed probes remained for analysis (360 from stage 1, 52 from stage 2) (Figure 2-1). Since 

the genetic contribution to ASDs includes rare mutations of intermediate to large effect size, 

differential gene expression is more likely to occur as a consequence within the CNV region in 

those specific cases, relative to other cases and controls. Based on this, a simple statistical 

framework was applied to identify “outlier genes” in individuals, defined as those whose 

expression is either two or three standard deviations (SDs) from the overall mean expression for 

that gene across the cohort (Methods) [23]. We initially took a strict, conservative approach by 

defining an outlier gene as having a ±3SD deviation (99.7% confidence interval) from the mean 

expression of that gene across all samples (Methods). Probands and siblings had a similar 

number of outlier genes per individual (8.1 vs. 10.2, p = 0.60 for down-regulated genes, and 16.6 

vs. 17.6, p = 0.76 for up-regulated genes; un-paired t-test), similar to what is observed when all 

CNVs are treated as a homogeneous class of events [18]. Restricting analysis to brain-expressed 

genes[25] demonstrated a modest, but significant enrichment of outlier genes expressed in 

human fetal brain[25] in probands versus siblings (77% vs. 73%, Chi-square p = 1.5E-03). 
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However, no such enrichment was observed in human adult brain [26] (76% vs 76%, Chi-square 

p = 0.95; 81% vs. 81%, Chi-square p = 0.93). This agrees with most models of ASDs origin that 

posit a fetal or prenatal origin in most cases [1, 27-30].  

We next used MetaCore by GeneGO and DAVID GO to explore whether the outlier 

genes had divergent biological functions, or were related to specific pathways (Methods). To 

control for effects related to transformation, we removed differentially expressed genes (DEX) 

known to be caused by EBV transformation [31]. Remarkably, in addition to several non-neural 

pathways, a significant enrichment of neural-related pathways in probands was observed. 

GeneGO (Figure 2-2) captured signal transduction, neuropeptide signaling pathways (p = 1.3E-

06), development, neurogenesis, and synaptogenesis (p = 3.8E-03). DAVID GO (Table S2) also 

captured enrichment of similar CNS-related pathways, none of which were enriched in siblings 

(Table S2). This is not solely due to CNV (see below overlap analysis), as >90% of the genes in 

GeneGO neural pathways are outside CNV.  Analyses of the stage-one samples in isolation 

revealed the same enrichment phenomena, a clear indication that sample selection bias had no 

impact on the results, confirming the robustness of the GO observations. Thus, despite profiling 

a peripheral non-neural tissue, we identified significant neural pathways previously related to 

ASDs [32], including some identified in a recent pathway analysis of SCC CNVs [33]. Our 

investigation also identified several previously known ASDs susceptibility genes to be classified 

as outliers, including OXTR [MIM 167055], PCDH9 [MIM 603581], CNTN4 [MIM 607280] and 

UBE3A [MIM 601623] (Table S3).  

2.4 Copy number variation affects transcript levels in both probands and siblings 
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We next asked whether CNVs result in transcriptional changes and, conversely, can 

dysregulated genes aid in characterizing structural chromosomal variation? We compared CNVs 

identified in the Simons Simplex Cohort, which represents the most extensively validated cohort 

of CNV calls in ASDs [18].  In this study, three independent algorithms were used to identify a 

robust set of CNVs. Over 500 qPCR were done in random selected individuals representing 403 

de novo and 120 transmitted events, providing a high confidence group of CNVs. These CNV 

data were integrated with microarray gene expression data, resulting in 330 samples 

characterized by both genotyping data and expression data (Figure 2-1).  

To analyze the functional impact of CNVs on expression, linear regression was employed 

to interpret the relationship between copy number and the standard expression value (Z score) by 

taking a random sample, conditional on copy number status (Methods). We found a significant 

correlation between copy number and extreme expression ( = 0.524, p-value = 1.30E-05); that 

is genes in regions of duplication or deletion were far more likely to show extreme expression 

values compared with the genome background. We increased statistical power with a larger 

sample of outliers by assessing the percentage of CNVs bearing dysregulated genes in 330 

samples, using a cutoff of  2SD (95% confidence interval) (Methods). By calculating the 

percentage of CNVs with dysregulated genes, 238 out of 2215 CNVs (10.7%) were found to 

contain at least one dysregulated gene, with a similar ratio between probands (11.5%) and 

siblings (9.7%) (Methods). Next, we calculated an Odds Ratio (OR) by comparing the average 

ratio of outlier genes among all expressed genes in the genome to the average ratio of outlier 

genes from expressed genes within CNVs of the 330 cases and siblings (Methods). We observed  

increased odds that outlier genes would be present in CNVs versus elsewhere in the genome (In 

probands: OR=4.3, Bonferroni p = 2.97E-102; In siblings: OR=2.6, Bonferroni p = 2.16E-21). 
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Moreover, in both probands and siblings, the direction of differential expression strongly 

correlated with the direction of copy number change. This presents further evidence that outliers 

are not random. The expected direction of dysregulation was observed in 92% of events (down-

regulation in deletions and up-regulation in duplications) (Table S5).  

Previous studies have suggested that CNVs can affect not only the transcriptional level of 

genes within them, but also genes in nearby regions up to 500kb on either side [20, 34]. We 

observed that 18.3% of CNVs have dysregulated genes within 500kb 5’ or 3’ in both probands 

and siblings, a significant enrichment compared to the rest of the genome (Bonferroni corrected 

p = 1.4E-07 for probands; Bonferroni corrected p = 1.5E-06 for siblings; Fisher’s Exact test) 

(Methods). Interestingly, these changes were less likely to show the expected directionality shift 

compared with those inside the CNV. Only 43% changed in the direction of CNV dosage, 

indicating a more complex mechanism of regulation (Table S5). Furthermore, our linear 

regression model did not capture a significant relationship between copy number and the 

expression value of these nearby genes ( = 0.029, p-value = 0.234) (Methods), indicating that 

the relationship between cis gene expression and copy number is not linear. 

2.5 Outlier genes are enriched in large rare de novo CNVs 

Previous studies have shown that rare CNVs, especially rare de novo CNVs, are 

associated with autism [7, 18, 35].  Here, in general, the rarer the CNV, the higher the chance 

that it harbors an expression outlier (p = 4.9e-19; Methods). Based on the degree of CNV 

pathogenicity suggested by previous studies (rare de novo>rare transmitted>common), we next 

investigated whether there was an observable gradient in transcriptional change. Since rare de 

novo CNVs may be larger or contain more genes than rare transmitted CNVs and common 
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CNVs (Sanders et al. 2011; Levy et al. 2011), we used two methods to control for the potential 

confounding effect of CNV size (Methods). We calculated the proportion of dysregulated genes 

within a given CNV by dividing the number of dysregulated genes by the number of expressed 

genes within CNVs. This yielded a significantly higher proportion of dysregulated genes in rare 

de novo CNVs versus rare transmitted CNVs and common CNVs in probands (p < 2.0E-16, 

Kruskal-Wallis test) (Figure 2-3A). We then compared an arbitrary cohort of CNV matched for 

gene number in probands (16 rare de novo CNVs, 18 rare transmitted CNVs and 31 common 

CNVs). This comparison detected significantly more dysregulated genes in probands’ rare de 

novo CNVs compared with the other two CNV classes (p = 1.5E-05, Kruskal-Wallis test) (Figure 

2-3B). The results signify that, not only are genic segments enriched in rare de novo CNVs in 

probands, but these rare de novo CNVs are enriched in dysregulated genes even after correction 

for gene number within the CNV.  

We next performed an independent assessment of predictions of CNV pathogenicity 

based on the gene expression data, employing a recently developed bioinformatics method for 

the assessment of haploinsufficiency (HI) [36].  To assess haploinsufficiency on a gene-by-gene 

level and correct for the potential confound of CNV size, we calculated HI probabilities (pHI), 

which estimate the likelihood of being haploinsufficient for each dysregulated gene involved in 

rare deletions in probands versus siblings [36]. We combined rare de novo CNVs with rare 

transmitted CNVs to increase statistical power, and focused our analysis on deletions because 

deletions, not duplications, are associated with HI. A significantly higher pHI probabllity was 

observed in probands than in siblings, consistent with increased pathogenicity of CNV in 

probands (Figure 2-3C). We also compared dysregulated to non-dysregulated genes within the 

same CNV. Importantly, the pHI of genes that are down-regulated in probands is significantly 
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greater than in those genes that do not change expression within rare deletions, showing a 

relationship between expression dysregulation and predicted pathogenicity (Bonferroni p = 4.4E-

02, Mann Whitney U test) (Figure 2-3C). In contrast, down-regulated genes in siblings actually 

have a lower HI than non-differentially expressed genes within rare deletions, as would be 

predicted based on the presumed relative non-pathogenicity of these expression changes 

(Bonferroni p = 0.25, Mann Whitney U test; Figure 2-3C). As a control, we tested the gene pHI 

in common deletions in probands versus siblings as a control. No difference was observed as 

expected based on the presumed lack of pathogenicity of these events (Figure 2-3D).  

2.6 Transcriptional data aids prioritization of small and non-recurrent CNV 

We next reasoned that gene expression could help prioritize the potential pathogenicity of 

rare non-recurrent CNV, an important step, since even large de novo CNVs occur in 1-2 % of 

controls. To identify whether genes within a defined genomic region were significantly 

dyregulated, the percentage of dysregulated genes within each CNV was compared to random 

expectations on the genome background (Methods). Twenty-seven out of 40 rare de novo CNVs 

identified in probands have significantly more dysregulated genes in comparison with the 

genome background (p < 0.05, permutation test) (Table 1). Our analysis highlights a number of 

non-recurrent CNVs that have not previously been shown to be associated with ASDs, including 

deletions at 3q27, 3p13 and 3p26, and duplications at 2p15 and 13q14. To verify the altered 

expression detected by microarrays, we selected 12 genes in 8 corresponding non-recurrent 

CNVs to validate by qPCR (Methods). Nine of 12 (75%) genes were confirmed by qPCR, 

supporting the robustness of these analyses (Figure 2-S5A, B). 
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We next examined whether expression data could inform our analysis of small, 

potentially pathogenic CNVs. Figure 2-4 shows four examples of small rare CNVs observed in 

probands with a relatively high ratio of outlier genes. Both the copy number variations and 

expression alterations in these four examples were validated by PCR (Methods). One example 

involves a case with both a 16p11.2 deletion event (Figure 2-4D) and a small rare deletion at 

Xq28, affecting the expression level of gene TMLHE [MIM 300777][37]. Although not 

previously reported as associated with autism, TMLHE is an outlier gene in two affected siblings, 

but not in the unaffected sibling in one family from AGRE [38], suggesting TMLHE as a putative 

autism candidate gene. Since transcription levels are affected within these CNVs, the data 

presented in Figure 2-4 clearly warrant follow up in additional cohorts.  

2.7 Transcriptional alterations in recurrent CNVs 16p11.2 duplications and deletions and 

7q11.23 duplications 

To determine whether gene expression analysis could help differentiate 16p11.2 deletions 

and duplications [MIM 611913] and identify dysregulated candidate genes, we conducted an 

examination of the effects of the 16p11.2 CNV on gene expression within the interval (Figure 2-

5). First, we validated the dysregulation of 3 genes of interest from across the interval, ALDOA 

[MIM 103850] MAPK3 [MIM 601795] and CORO1A [MIM 605000] in 5 cases of 16p11.2 

deletion using qPCR to provide technical validation of a cross-section of the microarray results 

(Figure 2-S5C).  

This examination generated several notable observations. Using a multivariate linear 

regression model, we observed a positive correlation between transcription level and 16p11.2 

copy number, highlighting the group of genes most correlated with 16p11.2 dosage: MAPK3 (p < 
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2E-16), YPEL3 [MIM 609724] (p < 2E-16), CORO1A (p = 6E-15) and KCTD13 [MIM 608947] 

(p = 1E-13) (Figure 2-5A) (Methods). Second, deletions had a larger effect on transcriptional 

level, and contained more genes with altered expression compared with duplications (Figure 2-

5), in agreement with a recently published 16p11.2 mouse model [39].  We also studied the 

expression pattern in the 3 mothers carrying 16p11.2 events (2 duplications and one mosaic 

deletion) (Figure 2-S3). Consistent with their lack of clinical ASDs diagnosis, carriers look 

similar to controls, with few changes in gene expression relative to cases (p = 8.5E-05, Kruskal-

Wallis test) (Figure 2-S3). This suggests that changes in expression levels may at least partially 

explain the molecular mechanism of incomplete penetrance of 16p11.2 events observed in 

parents and some offspring.  

To determine trans-regulation of 16p11.2 events and explore whether 16p11.2 

duplications and deletions affected similar or divergent biological pathways, we performed 

genome-wide differential expression (DEX) analysis, focusing on changes outside of the CNV 

region (Methods). Seventy DEX genes were observed in 16p11.2 deletion cases, and 135 genes 

DEX in 16p11.2 duplication cases (p<0.01). Strikingly, no overlap was evident in DEX genes 

between the two conditions. GO enrichment analysis revealed that in deletions, pathways 

containing DEX genes were enriched in neural-related ontologies, whereas no such enrichment 

was observed in duplications (Figure 2-7A,B)(Methods). This suggests that 16p11.2 deletions 

and duplications interrupt distinct molecular pathways, providing a functional basis for the 

different phenotypes observed in these two conditions.  

Previous studies indicate that 16p11.2 deletion cases have significant macrocephaly while 

cases with duplications have microcephaly [40-47]. To explore if variance in gene expression in 
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the 16p11.2 region can be related to variance in head circumference, we applied a multivariate 

linear regression model (Methods). The most significantly associated genes within the CNV are 

TAOK2 [MIM 613199], CORO1A, KCTD13 and QPRT [MIM 606248] (Figure 2-S4). This is not 

a circular association reflecting the confounding of DE with gene dosage and HC, as several of 

the genes most associated with HC, including TAOK2, are not among the most DE genes in the 

region. Remarkably, the changes in these genes’ expression accounted for more than 50% of the 

variance in HC. Given the sample size, this should be treated as a preliminary observation that 

warrants follow-up. But, it suggests that alterations in gene expression in peripheral blood can be 

related to disease-relevant central nervous system phenotypes. 

Another recurrent event associated with autism is the 7q11.23 William-Beuren Syndrome 

[MIM 194050] region duplication [18, 19]. Similar to the 16p11.2 events, we observed multiple 

dysregulated genes in this region consistently changing in all three cases including BCL7B [MIM 

605846], EIF4H [MIM 603431] and LAT2 [MIM 605719] (Figure 2-6). Outside of the region, 

we observed 85 genes to be differentially expressed (DEX) genes in individuals with 7q11.23 

duplications (p < 0.01). GO analysis identified several developmental pathways enriched in this 

gene list including forebrain development, determination of bilateral symmetry, and 

hippocampus development, providing another demonstration that CNS relevant pathways can be 

recovered from peripheral blood.  

To explore whether genome-wide expression changes were sufficient to separate the 

different genotypes from each other and controls, we performed principle component analysis 

(PCA) for 16p11.2 and 7q11.23 cases, and compared them with 20 controls and 20 sporadic 

cases in different families (Methods). This analysis (Figure 2- 7D) suggests that 16p11.2 
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deletions and duplications may be distinct from each other, consistent with the analysis of gene 

expression within the CNV and the GO analysis of trans effects of each mutation on genome-

wide expression. Furthermore, although the number is small, the 7q11.23 cases appear to cluster 

more with the 16p11.2 deletion cases, consistent with the observation that both disrupt CNS 

related gene ontology categories, whereas the 16p11.2 duplication cases do not. Interestingly, 

sporadic autism cases clustered with the controls (Figure 2-7D), consistent with the absence of 

significant shared genome-wide gene expression changes differentiating between randomly 

selected cases versus controls (Figure 2-S6). To further study the relationship between recurrent 

variants that are associated with autism, we compared the DEX genes from 16p11.2 

deletion/duplications, 7q11.23 duplications and DEX genes identified previously in 15q11-13 

duplications (15qdup) and fragile X mutation carriers with autism (FMR1-FM) [22].  

Interestingly, RIMS3 [MIM 611600] [48] is DEX in 16p11.2dup, 7q11.23dup, 15qdup and 

FMR1-FM, evidence for convergent dysregulation in multiple forms of ASDs.  

2.8 Discussion  

These results demonstrate the utility of gene expression analysis in evaluating the 

functional consequences of rare functional structural variations in a human neuropsychiatric 

disease, autism. Given the difficulty in interpreting whole genome level data in the context of 

rare variation, our data demonstrate a wealth of transcriptional alterations that are associated with 

structural variation. By integrating expression and genomic data, we show that the more 

pathogenic classes of CNVs are associated with increased odds of harboring transcriptional 

alterations either within or nearby the CNV, consistent with previous studies that demonstrate the 

impact of CNVs on genome-wide expression [20, 34]. We also found the CNVs only explain a 
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proportion of outlier genes; further studies are needed to identify potential mutations or 

epigenetic modifications within those outlier genes that may contribute to the expression 

alterations. Additionally, for recurrent CNVs known to be associated with autism, cis and trans 

expression analyses suggest distinct molecular mechanisms for 16p11.2 deletions and 

duplications.  

It is well recognized that any method based on expression profiling would be optimal in 

the tissue most involved in the disorder, the central nervous system (CNS), preferably during 

early brain development when ASDs unfold. There is no doubt that this analysis has missed 

some disease relevant genes that are not expressed in lymphoblasts [49]. Unfortunately, post 

mortem brain tissue is only available from a very small number of inidividuals and tissue from 

early developmental stages is not available. Thus, the use of lymphoblasts has the advantage that 

these cells are widely available and permit a high-throughput, genome-wide analysis. Advances 

in induced pluripotent stem cell (IPSc) technology may eventually permit analyses of neuronal 

development in vitro [50]. Our successful use of expression data in lymphoblasts supports the 

use of such an approach in the future for determining the functional consequences of rare SNVs 

and CNVs. This is especially germane given the recent results of exome sequencing in ASDs 

[51-54]. These studies reveal an excess of rare de novo nonsense SNVs in ASDs, and to a lesser 

extent missense SNVs. Except in a few cases, the extent to which a given variant is functional is 

hard to predict. Thus, integration of gene expression with SNV data would likely be helpful.  

Analysis of outliers was performed independently from analysis of CNV, with equivalent 

numbers of outliers in probands and siblings. However, GO analysis demonstrates that there is 

specific enrichment of CNS pathways in outliers detected in probands, supporting the hypothesis 
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that ASDs risk in simplex families is associated with the position and size of the CNV and not 

necessarily their overall burden. The GO pathways dysregulated specifically in probands also 

include known autism candidate genes, for example, the oxytocin receptor (OXTR) [55]  and 

ubiquitin protein ligase E3A (UBE3A) 17. We also observe enrichment of non-neural pathways in 

probands as well. Although some of these are not annotated as neural in GeneGO, they include 

signaling pathways that play crucial roles in neural development, such as BMP, TGF-

signaling.  Few pathways are enriched in siblings and all are non-neural, consistent with the 

interpretation that these likely represent noise, such as that introduced during the EBV 

transformation process [56] or based on the effect of variability in genetic background. 

The pathogenic role of de novo CNVs in ASDs has been previously established [7, 17, 

35, 57, 58]. Although it has been assumed that underlying changes in gene expression contribute 

to pathogenicity, previously this has not been demonstrated. If a CNV encompasses a region 

where biologically critical genes are more likely to be haploinsufficient, then it has a higher 

chance of having a functional impact on transcription [36]. We observed a higher pHI of genes in 

rare CNVs only in probands and not in sibling CNVs, providing independent validation of the 

outlier analysis by showing clear differences between the functional impact of these CNVs on 

expression. Previous studies have shown that many factors may contribute to pathogenicity of 

CNVs, including size, gene density, segmental duplication density, enrichment of certain 

functional pathways, and a higher than average expression correlation than the genome 

background [59, 60]. Here we show that analysis of peripheral blood gene expression can 

provide a useful and direct assessment of the functional consequences of chromosomal structural 

variation in a neuropsychiatric condition.  
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Assessment of the functional, potentially pathogenic impact of individual rare non-

recurrent CNVs in disease remains an important challenge. Here, we use the outlier approach to 

identify novel candidate ASDs loci at 12p11.22, 15q23, 1p34.3, 3q27 and 3p26.2. For example, 

the 3p26.2 deletion in one proband contains 3 expressed genes: the inositol 1,4,5-triphosphate 

receptor, type 1 (ITPR1 [MIM 147265]), SET domain and mariner transposase fusion gene 

(SETMAR [MIM 609834]), and sulfatase modifying factor 1 (SUMF1 [MIM 607939]), all of 

which are down-regulated. Although none of these genes have been previously associated with 

autism, they are all functionally linked to the nervous system. Another example is a 100kb 

deletion at 3q27.2, which includes only one gene, the SR-like splicing factor SFRS10/TRA2b 

(Htra2-beta1; also known as TRA2b [MIM 602719]), which was down-regulated in the 

probands. TRA2b has recently been implicated in activity dependent regulation of RNA-splicing 

via interaction with DARPP-32 [MIM 604399] [64]. This is particularly interesting given the 

involvement of another neuronal splicing factor regulated by neuronal activity [65], Fox1/A2BP1 

[MIM 605104] in ASDs [66], and previous data implicating activity dependent regulation of 

gene expression in ASDs [67].  

This study also provides the exploration of 16p11.2 micro-deletions and micro-

duplications. Previously, it was unclear which genes are dysregulated in or near the 16p11.2 

region, or if there is a common expression signature shared by 16p11.2 cases. Our analysis 

shows a significant positive correlation of expression level and copy number as recently 

observed in mouse models [39] and highlights genes with the most consistent alterations across 

all 16p11.2 cases, including the potassium channel tetramerisation domain containing 13 

(KCTD13), Aldolase A, fructose-bisphosphate (ALDOA), and MYC-associated zinc finger 

protein (MAZ [MIM 600999]). Potassium channel proteins like KCNJ3 [MIM 601534], 
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KCNMA1 [MIM 600150] have been associated with neurodevelopmental abnormalities [68, 69]. 

ALDOA is involved in glycolysis and energy balance, which is important for synaptic 

metabolism and neurotransmitter release [70]. MAZ enhances the NMDA receptor subunit type 1 

activity during neuronal differentiation [71]. This study provides a source for candidate gene 

prioritization for future functional and mutational analyses. Although our analysis of differential 

expression highlighted different molecular pathways disrupted in 16p duplications and deletion, 

one needs to also consider that we could be missing some common pathways that are only 

expressed in brain. In this regard, it is notable that 7q11.23 cases cluster with the 16p del cases in 

terms of global gene expression changes in lymphoblasts. Within the 7q11.23 duplications, we 

found that STX1A [MIM 186590], CLIP2 [MIM 603432] and LIMK1 [MIM 601329] are up-

regulated, but, we do not see alterations in GTF2I [MIM 601679] and CYLN2 [MIM 603432], 

which were previously shown to be dysregulated in 7q11.23 duplications by qRT-PCR [72]. This 

may be due to differences in techniques or the phenotypes assayed, and further studies in larger 

samples will permit more precise expression-phenotype correlations. We hypothesize that the 

observed expression differences are likely related to the phenotypic differences observed in 

reciprocal 7q11.23 events and provide a starting point for connecting specific genes to 

phenotypes in subjects with 7q11.23 CNV. 

We also provide the molecular correlates of a clinical phenotype, head circumference 

(HC), in ASDs [40-45]. This is especially interesting, since 16p11.2 deletions are highly 

penetrant for ASDs (associated with macrocephaly), while 16p11.2 duplication cases (associated 

with microcephaly) are less penetrant for ASDs. Here in 16p11.2 events, we demonstrate a 

significant correlation between HC and expression of several genes within the CNV including 

TAOK2, which showed the largest such correlation. TAOK2 interacts with the JNK mitogen-
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activated protein kinase pathway [73], which has been shown to control survival, proliferation 

and differentiation of cells composing the central and peripheral nervous system [74], providing 

a biologically plausible link between this gene and a brain growth phenotype that can be tested in 

future studies in neural tissues and model organisms. 

In summary, we present the largest genome-wide expression profiling study in ASDs and 

integrate this transcriptional data with genomic data. Each of these data sets, gene expression and 

CNV, is complementary and either alone is less powerful than the combination of the two. These 

data highlight the utility of this approach for prioritization of mutations and specific genes for 

further downstream functional or mutational analysis an approach that should have widespread 

utility given the proliferation of genome sequencing and analysis of structural variation. This is 

especially true for rare, non-recurrent variants for which standard statistical tests of association 

are underpowered. We show that the intersection of such events with expression permits a 

statistical analysis of individual events, facilitating prioritization of individual rare CNV. These 

results elucidate the genome-wide functional impact of CNVs, and may help to explain complex 

phenotypes related to brain growth, such as head circumference, all of which will help to link 

genotype to phenotype in complex neuropsychiatric disorders, such as autism.  

2. 9 Methods 

Individuals and lymphoblast cell lines (LCLs) analyzed in this study 

We analyzed individuals from Simon Simplex Collection (SSC) in two stages. In the first 

stage, we collected 386 individuals from 196 families (190 matched sib pairs plus 5 siblings and 

1 proband). In the second stage, we prioritized 53 samples with de novo CNVs (42 probands, 8 

siblings and 3 mothers who carry 16p11.2 events) [18]. Phenotype information can be found at 
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Simons Foundation Autism Research Initiative (SFARI) database and inclusion information is 

shown in supplemental Table 2-S1. This study was approved by the Institutional Review Boards 

at all participating institutions, including UCLA and Yale University. The lymphoblast cell lines 

(LCLs) of the subjects were grown in RPMI 1640 medium with 2 mM L-glutamine and 25 mM 

HEPES (Invitrogen, Carlsbad, CA, USA), 10% fetal bovine serum, and 1 × Antibiotic-

Antimycotic solution (Invitrogen) at 37°C in a humidified 5% CO2 chamber. Cells were grown 

to a density of 6 × 105/ml. Special attention was given to maintain all the cell lines in the same 

conditions to minimize environmental variation. 

Microarray experiments 

A total of 9 × 106 of lymphoblasts were seeded in a T-75 flask in 30 ml of fresh medium. 

After 24 h, total RNA was extracted from the cells using an RNeasy Mini Kit with DNase 

treatment (Qiagen, Valencia, CA, USA) according to the manufacturer's protocol. RNA quantity 

and quality were measured by ND-100 (Nanodrop, Wilmington, DE, USA) and 2100 

Bioanalyzer (Agilent, Santa Clara, CA, USA), respectively. mRNA was hybridized on the 

Illumina Whole Human Genome Array Human REF-8 version 3.0 according to the 

manufacturer’s protocol.  

Sample quality control 

GenomeStudio was used to convert image to numerical data as per our typical protocols 

[26, 75, 76]. Four hundred and thirty-nine samples (chips) were cross-correlated using 

expression levels for all probe sets. These inter-array correlations (IACs) [77] were averaged for 

each array and compared to the resulting distribution of IACs for the dataset [75]. Samples with 

an average IAC < 2.0 standard deviation below the mean IAC for the dataset were removed. 
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Those remaining were clustered using average linkage and 1-IAC as a distance metric to identify 

the 27 samples with poor quality (6%). Following sample removal, quantile normalization [77] 

was performed in R. To eliminate batch effects, additional normalization was performed using 

the R package ComBat [78] using the default parameters. ComBat successfully eliminated batch 

effects as evidenced by hierarchical clustering and significant improvement of mean IAC (Figure 

2-S1). After data pre-processing, 412 microarrays remained for follow up analysis, 333 of which 

had genomic array data and expression data. Three samples (of 333) are mothers of probands. 

We used the remaining 330 samples for all of the analyses except the 16p11.2 event analysis.  

Among 412 samples, we have 168 pairs of individuals (each pair is from the same family). 

Ninety-eight out of 168 pairs are gender-matched. To control for potential confounding factors, 

linear regression was used to remove gender and age effects. We checked the average CNV 

number per individual, and with the exception of African Americans (60 CNVs per individual), 

there was no effect of ancestry on CNV frequency (35 CNVs per individual). Since African 

American samples only comprise 3% of our cohort, we retained them to have more statistical 

power and a better overlap between microarray and genetic data.  

Probe quality control 

We only used probes with evidence of robust expression (detection p-value <= 0.05 in at 

least 50% samples). By filtering out non-expressed probes, 11150 probes (corresponding to 9524 

genes) remained for analysis. To study the functional impact of CNVs on expression, we filtered 

the 9524 genes by restriction to genes that had 30 or more markers (SNPs and monomorphic 

probes) covering them. For any of these “high-quality” genes that had multiple gene expression 
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reads, we took the average expression for each gene. This resulted in a set of 8006 unique genes 

with gene expression values.  

Outlier gene analysis 

For outlier gene analysis, we calculated the Z statistic for each gene using the scale 

function in R. We calculated the mean and standard deviation for each expressed gene in cases 

and controls separately. A cutoff (2SD/ 3SD) was selected to define whether a gene is an outlier 

gene in probands or siblings. For outlier analysis performed not in conjunction with CNV data, 

we used a more stringent cutoff (3SD). Subsequently, for the comparison of the overlap between 

CNV and transcriptional alterations, we used 2SD as a cutoff. These different thresholds were 

used for two major reasons. When analyzing expression changes in isolation, we used the more 

conservative 3SD cutoff to increase stringency. When we integrate genotyping and expression 

data, we relaxed the statistical threshold to 2 SD so as to increase power by increasing the 

number of potentially dysregulated, outlier genes.  We use the term “outlier genes” unless we 

have evidence that the gene is also affected at the genetic level by a CNV.  In that case, we call 

the gene dysregulated to reflect the concept that it is contained within a structural variantion and 

shows significant alteration in gene expression.  

Odds ratio analysis 

An odds ratio (OR) was calculated with the epitools library in R using the Wald method, 

an unconditional likelihood estimation method. For calculating the odds ratio of dysregulated 

genes within CNVs (or near CNVs) versus the genome background, the genes not within CNVs 

in a certain individual are used as the control group. The two-by-two contingency matrix was 

made for calculating the odds ratio: the two columns are: 1) sum of the gene number within 
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CNVs for all probands or all siblings; 2) sum of the gene number in genome elsewhere but not 

CNVs for all probands or all siblings; the two rows are: 1) sum of the dysregulated genes; 2) sum 

of the normally expressed genes. Bonferroni correction [79] was used to correct for multiple 

testing of the OR analysis.  

Integrating expression data with CNV data 

The CNV list was taken from Sanders et al. (2011) Table 2-S4 and Table 2-S8. The 

criteria for sub grouping CNVs were as described [18] and de novo CNVs are determined by the 

CNV calling algorithm descried therein. Rare CNVs are defined as CNVs with less than 50% 

overlap with those in the Database of Genomic Variants (DGV) [80].  

Multivariate linear regression analysis of expression and copy number 

For analysis of the relationship between gene expression (genes within CNVs and genes 

nearby [500kb]) and copy number, we applied a GEE [81] model using the geeglm function in R. 

We regressed out the effects of age and sex from the standardized gene expression data using a 

linear model. We then used the residuals obtained from the linear model as the continuous, 

predicted variable for our expression value analysis. Next, we: 1) obtained a biased sample of 

100 gene expression residuals in which the copy number variants were equally represented (50 

were duplications and 50 were deletions); 2) matched each subject with CNVs to a subject with 

no CNVs, matching by gene; 3) fit a GEE linear model (which in all instances that follow is used 

to account for any unknown, within-individual correlation amongst gene expressions) between 

the gene expression residuals and the two predictor variables, proband status and copy number ; 

4) repeated steps 1-3 for 500 runs to obtain a distribution of coefficients and p-values for each 

predictor. To measure the effects of rareness and size of CNVs on outlier status in gene 
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expression, we defined as outliers those standardized gene expression scores with absolute value 

2, which we then encoded as a binary variable. We then used a GEE model with a binomial link 

for a logistic regression to accommodate the binary nature of the outlier status variable. Rareness 

was defined as in Sanders et al. (2011). The contrast is with genes falling in CNVs that do not 

meet these criteria. The estimated size of the CNV was entered as a continuous variable. To 

study the cis-regulation of CNVs, we performed a similar analysis by using genes  500kb 

upstream and downstream of CNVs. The predictors are the same as for genes within CNVs.  

Detecting outlier genes within CNVs 

For 330 individuals, a total of 12,068 CNVs were identified by Sanders et al. (2011). 

Two thousand, two hundred and fifteen out of 12,068 CNVs contain at least one gene expressed 

in LCLs. This list of 2215 CNVs was used to study the functional impact of copy number on 

transcription. For expressed genes within these CNVs, we identified outliers, as genes that are 

2SD from the mean expression in all samples. With this method, 10.7% (238 out of 2215) 

CNVs contain at least one outlier gene.  

Enrichment analysis of outlier genes in rare de novo CNV  

To compare the dysregulated genes residing in rare de novo CNVs versus rare transmitted 

CNVs and common CNVs, we analyzed all CNVs containing as least one gene expressed in the 

LCLs, which led to 38 rare de novo CNVs from 37 probands, 419 rare transmitted CNVs from 

170 probands and 353 common CNVs from 184 probands. We used two methods to control for 

the gene number in each type of CNV: 1) we compared the ratio of dysregulated genes (number 

of dysregulated genes divided by the number of genes expressed) between these three groups. 

The Kruskal-Wallis test, a general form of multi-group non-parametric test was used; 2) we 
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matched CNVs for gene number content: 16 rare de novo CNVs, 18 rare transmitted and 31 

common CNVs matched for gene number. The Bonferroni correction was used to correct for 

multiple testing. 

To compare the dysregulated genes residing in rare de novo CNVs between probands and 

siblings, we compared 38 rare de novo CNVs found in 37 probands and 3 rare de novo CNVs 

found in 3 siblings. We calculated the ratio of dysregulated genes within each CNV and 

compared the rank difference of the ratio by the Mann Whitney U test.  

Permutation test of outlier genes in the whole genome 

To compute the empirical p-value of the significance of the number of dysregulated 

genes within each rare de novo CNV, a permutation test was applied. We randomly picked one 

individual, one chromosome region and selected the adjacent genes to match the number of 

expressed genes in each rare de novo CNV, and then calculated the number of dysregulated 

genes in this randomly picked region. A hundred thousand permutations were performed for each 

rare de novo CNV. 

Multivariate linear regression analysis of expression and copy number at 16p11.2 and 

7q11.23 

The geeglm function in R was used to fit a linear regression model between the copy 

number and expressed genes in 16p11.2 and 7q11.23 respectively: expression value ~ copy 

number + age + gender. General estimating equations were used to correct for family structure. 

For 16p11.2 events, we fitted the model by treating the copy number both as a quantitative 

variable and a factor variable; both methods provided similar results. The p-value from the 
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quantitative variable approach is reported in Figure 2-5. For 7q11.23 duplications, we fitted the 

model by treating the copy number as a quantitative variable.  

Genome-wide differential expression (DE) analysis 

The Limma [82]  package in R was applied for standard differential expression analysis in 

the cases of 16p11.2 deletions and duplications, and 7q11.23 duplications. Controls were chosen 

from the pool of all controls with a matched gender ratio to specific cases. In total, seven 

16p11.2 deletions (6 males and 1 female), and 120 controls (100 males and 20 females) were 

used for DE analysis, while six 16p11.2 duplications (5 males and 1 female), and 117 controls 

(100 males and 17 females) were used. In total, three 7q11.23 duplications (2 females and 1 

male) and 142 controls (46 males and 96 females) were used. 

Multivariate linear regression analysis of phenotype 

The lm function in R was used to fit a linear regression model between the expressed 

genes in 16p11.2 region and head circumference phenotype, adjusted for age and gender [83]. 

Age, gender and expression value were used together as predictors and the expression value of 

each gene was normalized by the scale function in R program before fitting the linear model.  

Principle component analysis (PCA) 

The prcomp function in R was used to calculate the first two principle components. 

Seven 16p11.2 deletions, six 16p11.2 duplications and three 7q11.23 cases were used. The 20 

sporadic cases and 20 controls were selected randomly in our samples. Samples were clustered 

by the differentially expressed genes (p<0.01) identified in 16p11.2 duplications and deletions, 

and 7q11.23 duplications. 
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Pathway analysis 

DAVID GO database and MetaCore by GeneGO (Thompson Reuters) were used for 

pathway analyses. For both analyses, the background was set to the total list of genes expressed 

in our dataset. The statistical significance threshold level for all GO enrichment analyses was 

p<0.05.  

qRT-PCR validation for copy number variation 

Quantitative polymerase chain reaction (qPCR) was used to confirm the presence or 

absence of predicted CNVs in lymphoblast DNA. Two control primers were designed within 

‘house-keeping genes’: RPP21 [MIM 612524] and ZNF80 [MIM 194553], genes in which no 

CNVs were reported in the Database of Genomic Variants (DGV). 1ul of DNA with the 

concentration of 0.2ug/ul was used for qPCR reaction by 2X MyTaq Red Mix (Bioline). A 

pooled sample from 96 normal siblings of Simons Simplex Collection was used as the control 

sample. Quantitative RT-PCR was performed on the ABI Prism 7900 (Applied Biosystems, 

Foster City, CA, USA) using Platinum SYBR Green qPCR SuperMix UDG with ROX 

(Invitrogen). Thermal cycling consisted of an initial step at 50°C for 2 min followed by another 

step at 95°C for 2 min and 45 cycles of 95°C for 15 s and 60°C for 30s. The primers used for 

qRT-PCR are listed in Table 2-S6. The following formula was used to estimate copy number 

[18]:  

Estimated copy number = 2(-∆∆CT) 

Where: 

 ∆∆CT = (CT Region:Sample – CT Ref:Sample) – (CT Region:Control – CT Ref:Control) 
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 CT Region:Sample = mean CT values for the region of interest and sample of interest 

(e.g. ExpPrimer1 and ExpSample1) 

 CT Ref:Sample = mean CT values for the reference region and sample of interest (e.g. 

RNase P Primer and ExpSample1) 

 CT Region:Control = mean CT values for the region of interest and the control sample 

(e.g. ExpPrimer1 and CT_pooled_control) 

 CT Ref:Control = mean CT values for the reference region and the control sample (e.g. 

RNase P Primer and CT_pooled_control) 

qRT-PCR validation for expression alteration 

Five hundred nanograms of total RNA was used to make cDNA by SuperScript III First-

Strand Synthesis SuperMix (Invitrogen) and random hexamers (Invitrogen). The qRT-PCR was 

performed on an ABI Prism 7900 (Applied Biosystems, Foster City, CA, USA) using Platinum 

SYBR Green qPCR SuperMix UDG with ROX (Invitrogen). Thermal cycling consisted of an 

initial step at 50°C for 2 min followed by another step at 95°C for 2 min and 45 cycles of 95°C 

for 15 s and 60°C for 30s. Data were normalized by the quantity of glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH [MIM 138400]).  The gene Ct value of targeted probands was 

compared to the average Ct values from 5 unaffected siblings, matched for gender and age. The 

primers used are listed in Table 2-S6. 

The Ct, Ct and fold change of the tested gene were calculated by following formula: 

   Ct for each sample: 

Ct= Ct (tested gene) – Ct (GAPDH) 
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   Ct for each sample: 

Ct= Ct of tested gene in the targeted proband – average Ct of test gene in siblings 

   Fold change for up-regulated genes:  

Fold change = 2 ^ (-Ct) 

   Fold change for down-regulated genes:  

Fold change = -2 ^ Ct 

 

Figure 2-1 
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Figure 2-1. Flow chart of expression data analysis and integration with CNV data in the 

Simons Simplex Collection (SSC). Quality control was done before any data analysis (Figure 

S1, Methods). The numbers of individuals and CNVs used for down stream analysis is shown in 

the flow chart.  
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Figure 2-2 
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Figure 2-2. Neural-related pathways are enriched in probands versus siblings. GeneGO was 

used to run the ontology analysis for outlier genes identified in probands and siblings 

respectively. The –log10 p-value is shown with the pathways that were significant (with 

uncorrected p-value <0.05) in either probands or siblings. 
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Figure 2-3 
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Figure 2-3. Outlier genes are enriched in rare de novo CNVs in probands. A) The boxplot 

depicts the ratio of dysregulated genes (number of dysregulated genes within CNV versus the 

total number of genes within that CNV) in the three types of CNVs (rare de novo CNVs, rare 

transmitted CNVs and common CNVs) respectively. The Krusakal-Wallis test p-value is shown. 

B) The boxplot shows the number of dysregulated genes in three types of CNVs with matched 

gene number. C) The boxplot of HI scores for down-regulated genes (2SD) in rare deletions in 

probands and siblings versus normal expressed genes within CNVs. The HI score of 

dysregulated genes in rare deletions in probands is significantly higher compared to the normal 

expressed genes, while the HI score of dysregulated genes in rare deletions in siblings is 

significantly lower compared to normal expressed genes (Mann Whitney U test). D) The boxplot 

of HI scores for down-regulated genes (2SD) in common deletions in probands and siblings 

versus normal expressed genes within CNVs. The Mann Whitney U test p-value is shown for 

each pair-wise comparison. A star indicates a statistically significant p-value after Bonferroni 

correction (p < 0.017 in A and B, p< 0.0125 in C and D). Error bars for these four panels are 

defined as the 1.5 times the interquartile range. 
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Figure 2-4 
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Figure 2-4. Outlier genes highlight small, but likely functional CNV. A) Depicts a small 

duplication with the high ratio of dysregulated genes.  B, C, D) Depicts small deletions with the 

high ratio of dysregulated genes. The Z scores of all expressed genes within the CNV interval 

and within 500kb upstream and downstream are shown. Outlier genes (2SD, red) within the 

CNV are shown. A barplot was used to show the qPCR validation for both copy number change 

and the expression alteration. Error bars show the standard deviation of three replicates of qPCR 

experiments.  
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Figure 2-5 
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Figure 2-5. Gene expression in the 16p11.2 duplication and deletion interval. A) For each of 

the expressed genes within the 16p11.2 interval, the Log2 expression level is shown for deletions 

(red), duplications (blue) and controls (grey). The p-value is calculated using a multivariable 

linear regression model with 16p11.2 cases and 398 controls without a known 16p11.2 event 

(Methods). Twelve out of 19 expressed genes in deletions have at least a 1.3-fold change, while 

8 out of 19 genes in duplications show a 1.3-fold or greater change. Group I represents genes that 

don’t reach 1.3 fold change in either duplications or deletions; Group II represents genes that 

have larger than 1.3 fold change in deletions only; Group III represents genes that have larger 

than 1.3 fold change in both duplications and deletions (dash line separated). Error bars for these 

four panels are defined as the 1.5 times the interquartile range. B) The –Log of the p-value (T-

test) for duplications and deletions respectively are shown on the y-axis for each gene within the 

16p11.2 region and within 500kb upstream and downstream. The dashed vertical line shows the 

p-value threshold after Bonferroni correction (corrected for 24 genes, p-value < 2.1E-03). C) 

Genes showing expression deviating by at least two standard deviations from the mean across 13 

samples (7 deletions, 6 duplications) with 16p11.2 CNVs.  
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Figure 2-6 
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Figure 2-6. Gene expression in the 7q11.23 interval. A) For each of the expressed genes 

within the 7q11.23 interval, the log2 expression level is shown for duplications (blue) and 

controls (grey). The p-value is calculated using multivariate linear regression with 7q11.23 

duplications and 411 controls without a known 7q11.23 event (Methods). Error bars for these 

four panels are defined as the 1.5 times the interquartile range. B) Genes showing expression 

deviating by at least two standard deviations from the mean across 3 samples with 7q11.23 

duplications. 
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Figure 2-7 
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Figure 2-7. GO enrichment analysis and principle component analysis highlight distinct 

molecular pathways in 16p11.2 duplications and deletions. A) GO enrichment analysis of the 

307 genes (p < 0.05) showing altered expression in deletions (DAVID). The –log of the 

uncorrected p-value is shown in A-C. B) GO enrichment analysis of the 698 genes (p < 0.05) 

showing altered expression in duplications (DAVID). C) GO enrichment of the 439 genes (p 

<0.05) showing altered expression in 7q11.23 duplications (DAVID). D) Scatter plot of the first 

two components of 16p11.2 cases, 7q11.23 cases, sporadic autism cases and controls. Samples 

are clustered based on Principle Component Analysis (PCA). Seven 16p11.2 deletions probands 

(red), 6 16p11.2 duplications (green), 3 7q11.23 duplications (purple) probands were included. 

As a comparison group, 20 randomly selected sporadic probands (blue) and 20 randomly 

selected controls (black) were included. The first two principle components were used to form 

two-dimensional space. The merged list of differentially expressed (DEX) genes (p<0.01) in 

16p11.2 duplications and deletions, as well as 7q11.23 duplications was utilized for PCA.  
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Table 2-1. Gene dysregulation in de novo CNVs.  

 

a p-value is calculated by permutation test (Methods).  

Individual Loci Type Size(kb) %Outlier genes Empirical p-valuea Outlier genes 

12184.p1 12p11.22 Deletion 13,000 63% 1.00E-05 >10 genes 

11233.p1 15q23 Deletion 5,000 53% 1.00E-05 
ADPGK,BBS4,KIF23,MYO9A,NPTN,PARP6,PKM
2,RPLP1 

11090.p1 16p11.2 Deletion 600 47% 1.00E-05 

ALDOA,BOLA2,C16ORF53,CORO1A,HIRIP3,KC
TD13, 

LOC606724,MAPK3,MAZ 

11540.p1 16p11.2 Deletion 600 58% 1.00E-05 >10 genes 

12451.p1 16p11.2 Deletion 600 62% 1.00E-05 

ALDOA,C16ORF53,CDIPT,CORO1A,HIRIP3,KC
TD13, 

MAPK3,MAZ,MVP,YPEL3 

11435.p1 16p13.3 Deletion 1,200 76% 1.00E-05 >10 genes 

11080.p1 1p34.3 Duplication 5,000 64% 1.00E-05 > 10 genes 

12239.p1 22q11.21 Deletion 1,400 93% 1.00E-05 >10 genes 

11129.p1 7q11.23 Duplication 1,400 57% 1.00E-05 

BAZ1B,BCL7B,EIF4H,LAT2,NSUN5,STX1A,TBL2
, 

WBSCR22 

12420.p1 1q21.1 Duplication 1,000 71% 3.00E-05 ACP6,BCL9,CHD1L,GPR89A,PRKAB2 

12032.p1 3p13 Deletion 5,000 67% 5.00E-05 
ARL6IP5,C3ORF64,SUCLG2,TMF1,FOXP1,LMO
D3 

11154.p1 7q11.23 Duplication 1,000 43% 0.00011 BAZ1B,BCL7B,CLIP2,EIF4H,LAT2,WBSCR22 

11046.p1 3p26.2 Deletion 700 100% 0.00012 ITPR1,SETMAR,SUMF1 

12343.p1 13q14.11 Duplication 500 75% 0.00039 ELF1,MRPS31,WBP4 

11551.p1 16p13.2 Duplication 500 75% 0.00039 CARHSP1,PMM2,USP7 

12594.p1 7q11.23 Duplication 300 75% 0.00039 BCL7B,NSUN5,TBL2 

12647.p1 16p11.2 Duplication 500 32% 0.00046 
BOLA2,CORO1A,KCTD13,MAPK3,MVP,SULT1A
3 

11353.p1 17q12 Deletion 1600 50% 0.00106 AATF,ACACA,TADA2L 

12235.p1 9q34.11 Duplication 600 36% 0.00108 ODF2,PTGES2,SET,SLC27A4 

12435.p1 16p11.2 Duplication 600 25% 0.00365 CORO1A,IMAA,MAZ,SPN 

11433.p1 16p11.2 Deletion 500 21% 0.006 ALDOA,KCTD13,MVP,SPN 

11555.p1 16p11.2 Duplication 700 21% 0.006 C16ORF53,LOC606724,MAPK3,QPRT 

11435.p1 9p24.2 Duplication 3,000 33% 0.01022 DOCK8,KIAA0020 

11962.p1 10q11.23 Duplication 1,700 100% 0.02 CSTF2T 

12339.p1 3q27.2 Deletion 100 100% 0.02 SFRS10 

12224.p1 22q13.1 Deletion 200 50% 0.035 ADSL 

11343.p1 2p15 Duplication 1,700 50% 0.035 XPO1 

12007.p1 15q11.2 Duplication 2,200 33% 0.05 UBE3A 

11680.p1 16p11.2 Deletion 500 12% 0.05 MAPK3,MVP 

12100.p1 16p11.2 Deletion 600 12% 0.05 C16ORF53,HIRIP3 

11532.p1 17p13.1 Duplication 800 33% 0.05 FAM64A 

12295.s1 19p13.3 Duplication 300 50% 0.00038 C19ORF22,POLRMT,PTBP1,RNF126 

12117.s1 17q23.1 Duplication 2,000 67% 0.0026 APPBP2,PPM1D 



97 
 

  



98 
 

Figure 2-S1 
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Figure 2-S1. Data pre-processing to remove outlier chips and correct for batch effects.  

A) Hierarchical clustering of samples before data quality control (QC). Color bars show the trait 

(case: magenta; control: cyan), gender (male: black; female: grey), race (Caucasian: yellow; non-

Caucasian: grey) and batch of each sample. Batch is defined based on the hybridization date. B) 

Hierarchical clustering after quality control including removing outlier chips, quantile 

normalization and combat for removing batch effects.  
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Figure 2-S2 
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Figure 2-S2. CNVs affect the expression of genes within CNVs and up to 500kb 

surrounding them. 

A) Odds ratio (OR) of the percentage of dysregulated genes (2SD) within CNVs compared to the 

percentage of dysregulated genes out of 9524 genes (11150 expressed probes) across the genome 

(background). Bar height shows the 95% confidence interval (CI).  The CNVs comprise all 

CNVs each individual has, including both rare and common CNVs. B) Odds ratio of the 

percentage of dysregulated genes in the 500kb surrounding region of probands and siblings 

compared to the ratio of dysregulated genes in the genome background. The OR is significant for 

both probands and siblings for genes within CNVs, as well as genes within 500kb nearby (p 

value by Fisher’s exact test).  
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Figure 2-S3 
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Figure 2-S3. Dysregulation of genes within 16p11.2 and the closely surrounding region in 

probands, carriers and controls. 

 A) Z scores of 18 expressed genes within 16p11.2 and 6 expressed genes residing 500kb 

upstream or downstream in probands (7 deletions: red; and 6 duplications: blue). Genes on x-axis 

are aligned based on their location on chromosome.  The 16p11.2 boundaries are shown with 

vertical dashed lines. 2SD is used as the cutoff to define outlier genes (horizontal dashed lines). 

B) Z scores of the same 24 genes in 3 mothers who carry the 16p11.2 events, but are unaffected 

(2 duplications: blue; and 1 mosaic deletion: red). C) Z scores of the same 24 genes in 20 

randomly picked individuals (either probands or siblings) without known 16p11.2 events. D) The 

boxplot shows the number of outlier genes within 16p11.2 region per individual in different 

sample groups (p value = 8.5 x 10-05, Kruskal-Wallis test).  
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Figure 2-S4 
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Figure 2-S4. Correlation of head circumference and gene expression within 16p11.2. 

The Z scores of 18 expressed genes within 16p11.2 region (x-axis) and adjusted head 

circumference (HC; y-axis) are shown. A multivariate linear regression model is fitted (variables 

used are standardized expression value (z score), age and gender; Methods). R-square of the 

linear regression model and p-value of the correlation between standardized expression value and 

HC is shown.  
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Figure 2-S5 
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Figure 2-S5. Confirmation of the outlier genes by qRT-PCR. 

A) Eight down-regulated genes in 4 probands tested by qRT-PCR (Methods). Seventy-five 

percent of them are validated, showing at least 1.3-fold change (*). The CNV harboring each 

gene is shown. B) Five up-regulated genes in 4 probands are validated by qRT-PCR. One 

hundred percent of them are validated (* highlights genes with at least 1.3-fold change by qRT-

PCR). C) Three genes down-regulated in 16p11.2 deletions are validated in 5 probands. Results 

represent the log 2 fold change of each gene on microarray and qRT-PCR (1.3-fold change: *). 

Error bars indicate the standard deviation of three replicates of qPCR results.  
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Figure 2-S6 
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Figure 2-S6. Differential expression analysis in the Simons Simplex Collection (SSC). 

A) Sample clustering analysis for all sporadic cases (blue), controls (black), 16p11.2 deletions 

(red), 16p11.2 duplications (blue), 16p11.2 carriers (orange) and 7q11.23 duplications. B) Venn 

diagram of the overlap of DEX genes (p value < 0.05) identified in different groups (DEX, 

differentially expressed genes) C) DEX overlap with autism brain[26], recurrent events: 15q11-

13dup, FMR1-FM [22] and LCLs [84, 85].   
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Table 2-S1 to Table 2-S6  

On line resources: http://www.cell.com/AJHG/retrieve/pii/S0002929712002674 
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CHAPTER 3: Understand autism risk genes at the transcriptomic network 

level 

The abstract introduction, results and methods quoted below are directly from published papers. I 

have the permission of all authors and the letters are appended at the end of my thesis: 

3.1 Abstract 

“ Genome-wide transcriptional profiling was used to characterize the molecular 

underpinnings of neocortical organization in rhesus macaque, including cortical areal 

specialization and laminar cell-type diversity. Microarray analysis of individual cortical layers 

across sensorimotor and association cortices identified robust and specific molecular signatures 

for individual cortical layers and areas, prominently involving genes associated with specialized 

neuronal function. Overall, transcriptome-based relationships were related to spatial proximity, 

being strongest between neighboring cortical areas and between proximal layers. We observed 

that laminar patterns were more similar between macaque and human compared to mouse, as 

was the unique V1 profile that was not observed in mouse. These data provide a unique resource 

detailing neocortical transcription patterns in a nonhuman primate with great similarity in gene 

expression to human. Meanwhile, genome-wide transcriptome profiling has been done at human 

fetal brain, in which the expression of each laminar was collected. Together these data provide a 

rich freely accessible resource for 1) understanding mechanisms of macaque and human brain, 2) 

study the brain-related diseases.  

Genetic studies have identified dozens of autism spectrum disorder (ASD) susceptibility 

genes, raising two critical questions: 1) do these genetic loci converge on specific biological 

processes, and 2) where does the phenotypic specificity of ASD arise, given its genetic overlap 
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with intellectual disability (ID)? To address this, we mapped ASD and ID risk genes onto co-

expression networks representing developmental trajectories and transcriptional profiles 

representing fetal and adult cortical laminae. ASD genes tightly coalesce in modules that 

implicate distinct biological functions during human cortical development, including early 

transcriptional regulation and synaptic development. At a circuit level, ASD genes are enriched 

in superficial cortical layers and glutamatergic projection neurons. Furthermore, we show that 

the patterns of ASD and ID risk genes are distinct, providing a novel biological framework for 

investigating the pathophysiology of ASD.  

3.2 Introduction 

The mammalian neocortex is characterized by its stereotyped laminar cytoarchitecture 

and regional variations in cellular architecture that differentiate cortical areas. As emphasized by 

Brodmann over a century ago through the creation of cytoarchitectonic cortical maps [1], cortical 

organization is conserved across species, particularly between humans and nonhuman primates 

[2]. Gene expression is increasingly used as an empirical means of differentiating and delineating 

cortical areas, for example through identification of area-specific gene markers [3] or boundary 

mapping based on differences in neurotransmitter receptor expression [4]. Whole-genome 

transcriptional profiling has particular potential to elucidate cortical areal specification and 

specialization through identification of differentially regulated genes and molecular pathways 

that underlie cytoarchitectural and functional areal identity [5]. 

The major factor that differentiates different cortical areas is their distinct laminar organization, 

reflecting the composition of specific cell types within each layer. Many gene markers have been 

identified through mining genome-wide cellular resolution gene expression data resources in the 
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Allen Mouse Brain Atlas [6] (http://www.brain-map. org) and by using targeted approaches [7]. 

In addition, transcriptional profiling using DNA microarrays or RNA sequencing has been 

successful in identifying molecular signatures for discrete cortical layers in mice [8-10] using 

punches or laser microdissection, as well as in specific excitatory and inhibitory cortical cell 

types using selective genetic or tracer-based cell labeling and live isolation methods [11-13]. 

Rhesus macaque provides a tractable nonhuman primate model system to analyze the 

transcriptional organization of the primate neocortex. Macaque is genetically and physiologically 

similar to humans, with a sequence identity of approximately 93% [14]. Many elements of 

cortical cytoarchitecture are similar in macaque and human, including specialized primary visual 

cortex and dorsal and ventral visual streams. In this study, we aimed to understand organizational 

principles of the primate neocortex using transcriptional profiling analysis of individually 

isolated cortical layers from a variety of well-defined cortical regions in the adult rhesus 

macaque and to compare rhesus gene expression patterns in homologous cortical areas and cell 

types in human and mouse. The entire microarray data set is also available through the NIH 

Blueprint NHP Atlas website (http://blueprintnhpatlas.org). 

Autism Spectrum Disorders (ASDs) are a heterogeneous neurodevelopmental disorder, in 

which hundreds of genes have been implicated [15, 16]. Analysis of copy number variation 

(CNV) and exome sequencing [17-20] have identified rare de novo variants (RDNVs) that alter 

dozens of protein coding genes in ASD, none of which account for more than 1% of ASD cases 

[21]. This, and the fact that a significant fraction (40-60%) of ASDs is explained by common 

variation [22], points to a heterogeneous genetic architecture.  

http://blueprintnhpatlas.org/
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These findings raise several issues. Based on the background human mutation rate [23], 

most genes affected by only one observed RDNV to date are likely false positives that do not 

increase risk for ASDs [24]. It is therefore essential to develop approaches that prioritize 

singleton variants, especially missense mutations. Furthermore, given the heterogeneity of ASD, 

it would valuable to identify common pathways, cell-types, or circuits disrupted within ASD 

itself. Recent studies combining gene expression, protein-protein interactions (PPIs), and other 

systematic gene annotation resources suggest some molecular convergence in subsets of ASD 

risk genes [25-28]. Yet, it remains unclear how the large number of genes implicated through 

different methods may converge to affect human brain development, which is critical to a 

mechanistic understanding of ASDs [15]. Additionally, ASDs have considerable overlap with ID 

at the genetic level, so identifying molecular pathways and circuits that confer the phenotypic 

specificity of ASDs would be of considerable utility [29, 30]. 

Here, we took a stepwise approach to determine if genes implicated in ASDs affect 

convergent pathways during in vivo human neural development, and whether they are enriched 

in specific cells or circuits. Here we assessed shared neurobiological function among these 

genes, including enrichment in layer-specific patterns from micro-dissected human fetal and 

adult primate cortical laminae. Our integration of large transcriptomic profiling data with disease 

relevant gene lists permits rigorous interrogation of biological convergence and specificity in 

ASDs that takes its heterogeneity into consideration and enables comparison of ASDs with ID.  

3.3 Transcriptome profiling of macaque and human brain 

To analyze transcriptional profiles associated with major laminar and areal axes of 

cortical organization, laser microdissection (LMD) was used to selectively isolate individual 
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cortical layers in ten discrete areas of the neocortex from two male and two female adult rhesus 

monkeys. These areas spanned primary sensorimotor cortices (S1, M1, A1, and V1), higher-

order visual areas (V2, MT, and TE), and frontal cortical areas (DLPFC, OFC, and ACG). In 

each cortical region, samples were isolated from layers definable on the basis of lightly stained 

Nissl sections used for the sample preparation, taking care to avoid layer boundaries. In most 

areas, 5 layers were isolated (L2, L3, L4, L5, and L6), although in M1, OFC, and ACG no 

discernible L4 could be isolated. Eight layers were sampled in V1 to include the functionally 

specialized and cytoarchitecturally distinct sublayers of L4 (4A, 4B, 4Ca, and 4Cb). For a 

nonneocortical comparator data set, samples were also isolated from subfields of the 

hippocampus (CA1, CA2, CA3, and dentate gyrus) and from the magno-, parvo-, and 

koniocellular layers of the dorsal lateral geniculate nucleus (LGN). Collectively, the selected 

regions allowed for interrogation of differences in gene expression between cortical areas and 

layers located distal or proximal to each other, and from regions that comprise specific functional 

types or streams. Representative pre- and postcut images from each structure are shown in Figure 

S1, available online, and stereotaxic locations of sampled cortical regions in Table S1. RNA was 

isolated from LMD samples, and 5 ng total RNA per sample was amplified to generate sufficient 

labeled probe for use on Affymetrix rhesus macaque microarrays. 

Multiple analytical methods were used independently to identify the most robust patterns 

of gene expression. Principle component analysis (PCA) can often illustrate the major 

organizational features of microarray data sets, and we initially applied it to the whole sample set 

comprising 225 cortical, hippocampal, and thalamic samples across all 52,865 probes. A 

significant proportion of the variance was ac- counted for by the first three components (12.5%, 

8.7%, and 6.8%, respectively; Figure S2). Samples from major structures (cortex, hippocampus, 
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and thalamus) cluster together, have highly distinct molecular signatures and appear well 

segregated. Considering the cortical samples alone, the first three components accounted for a 

similar proportion of variance (13.6%, 8.5%, and 6.6%, respectively), and plotting samples by 

areal or laminar class revealed striking organization along two orthogonal axes reflecting the 

areal and laminar dimensions of the neocortex. Remarkably, the spatial relationships between 

neocortical samples are recapitulated by the transcriptional relationships between samples. 

Samples align in a rostral to caudal orientation by cortical area (4,923), and individual animals 

(2,347; Table 3-S2). Importantly, there was a high degree of overlap between the sets of genes 

varying by cortical region and layer, suggesting that a substantial proportion of the genes 

differentiating cortical areas vary within specific cortical layers. Gene set analysis of both areal 

and laminar genes showed enrichment for genes associated with axonal guidance signaling and 

ephrin receptor signaling, synaptic long-term potentiation (LTP) and neuronal activities (Table 3-

S2). Gene expression patterns associated with gender and individual animals were also identified 

by ANOVA (Figure S2), and individual-associated differences were enriched with genes related 

to metabolism, mitochondria, and antigen presentation (Table 3-S2). Gender-specific gene 

expression was observed both on sex and autosomal chromosomes (Figure 3-S2), and there was 

significant overlap (p < 1e-09) between the individual-related genes identified here and gender-

related genes identified in human brain [31]. 

We next applied WGCNA to identify sets, or modules, of highly coexpressed genes by 

searching for genes with similar patterns of variation across samples as defined by high 

topological overlap [32]. Applied to the entire set of neocortical samples, WGCNA revealed a 

series of gene modules (named here as colors) related to different features of the data set. Gene 

assignment to modules and gene ontology analysis for the whole cortex network are shown in 
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Table 3-S3. The majority of these modules correlated with laminar and regional patterns as 

described below. Several modules were related to gender and individual differences, as 

previously observed in humans [33]. In Figure 3-1G, the lightyellow module was strongly 

enriched in male versus female samples (upper panel), while the grey60 module was selectively 

lowest in samples originating from one particular animal. The top (hub) genes in the lightyellow 

module were on the Y chromosome, including the putative RNA helicase DDX3Y and the 40S 

ribosomal protein RPS4Y1. 

The most striking features were the robust molecular signatures associated with different 

cortical layers. A wide variety of transcriptional patterns were associated with individual cortical 

layers or subsets of layers. For example, ANOVA of laminar expression in all cortical regions 

and clustering of these genes identified large gene sets enriched in specific subsets of (generally 

proximal) layers. Notably, the majority of these laminar patterns are consistent across different 

cortical areas, reflecting conserved laminar and cellular architecture across the cortex. Gene set 

analysis suggests these layer-associated clusters are associated with neuronal function, including 

neuronal activity, LTP/LTD, calcium, glutamate and GABA signaling. Consistent with 

functional studies of superficial layer synaptic plasticity, genes and pathways involved in LTP 

and calcium signaling were most represented in L2 and L3. Pathways related to cholesterol 

metabolism were enriched in deeper layers, likely reflecting the greater proportion of 

oligodendrocytes closer to the underlying white matter. Similarly, many of the gene modules 

identified through WGCNA of all cortical samples were correlated with specific cortical layers. 

By ANOVA-based clustering and WGCNA, proximal layers showed the strongest correlations, 

with superficial L2 and L3 highly correlated with one another, and the deeper L4–6 highly 

correlated as well (dendrograms in Figures 3-1B, 1E, and 1F). 
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Individual layers showed highly specific gene expression signatures. Layer-enriched 

expression patterns were identified by searching for genes with high correlation to layer-specific 

artificial template patterns [34] (Table 3-S5). Figure 3-1C shows cohorts of genes with 

remarkably layer-specific expres- sion that was relatively constant across all cortical areas. These 

observations demonstrate the specificity of the laminar dissec- tions with minimal interlaminar 

contamination, and also the constancy of laminar gene expression across the neocortex. 

WGCNA gene modules derived from the whole cortex network also showed highly layer-

enriched expression, demonstrating the robustness of our findings. For example, the black 

module contains genes enriched in superficial L2 (hub genes plotted in Figure 3-1D, top row). 

While some layer-specific genes could be identified by targeted analyses, the dominant patterns 

were more complex, with most network modules being associated with combinations of layers, 

typically proximal to one another. For example, individual modules were enriched in L2–4 

(salmon), L3–5 (greenyellow), L4–5 (royalblue) and in a gradient increasing from L2 to L6 

(red). This tendency for coexpression between adjacent layers is also apparent in the heatmap 

representation of gene clusters in Figures 3-1A and 3-1E. Gene ontology (GO) analysis of these 

modules provides some insight into their functional relevance (Table 3-S3). The greenyellow 

module was enriched for genes associated with axons and neuron projec- tions, potentially 

related to long-range pyramidal projection neurons in L3 and L5. The red module showed 

enrichment in genes associated with myelination, consistent with the presence of 

oligodendrocytes in deep layers, and this module was highly correlated with oligodendrocyte-

associated gene networks in other studies (data not shown). 

Interestingly, the expanded L4 of V1 displayed a distinct sig- nature from the rest of L4 

(see top of middle box in Figure 3-2A). To explore this further, we performed ANOVA and 
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WGCNA selectively on samples from V1 (Figures 3-2E and 2F; Tables 3-S6 and 3-S7). A 

comparison between V1 ANOVA-derived laminar differential expression and membership in 

whole cortex WGCNA modules is in Table S8. Similar to the whole cortex analysis, robust 

clusters and network modules were associated with individual cortical layers. As shown in the 

unsupervised hierarchical 2D clustering of ANOVA results in Figure 2E, individual samples 

from each layer cluster together, and neighboring cortical layers are most similar to one another. 

Interestingly, L4A clusters with more superficial layers, while L4B, L4Ca, and L4Cb display a 

distinct transcriptional pattern, most easily seen by the dendrograms based on ANOVA and 

network analysis in Figures 3-2E and 2F. 

To investigate whether layer specificity of gene expression may relate to selective 

patterns of connectivity, we examined the relationship between thalamocortical inputs and their 

targets in V1. L4Ca and L4Cb receive input selectively from magnocellular (M) and 

parvocellular (P) divisions of the LGN, respectively. Hypothesizing that there may be substantial 

shared gene expression patterns selective for specific pairs of connected neurons, we searched 

for genes that were differentially expressed between the thalamic inputs and between the cortical 

targets. One thousand two probes were differentially expressed between L4Ca and L4Cb (t test, p 

< .01) and 825 probes between M and P. Surprisingly, these gene sets did not significantly 

overlap (13/1,827; p = 0.08). Although the possibility certainly exists that specific ligand-

receptor pairs are associated with this selective connectivity, it would appear that the specificity 

of these connections is not associated with specific large-scale correlated gene expression 

patterns. 

To validate the specificity of the microarray findings and test hypotheses about laminar 

enrichment based on ANOVA and WGCNA, we examined a set of genes displaying layer-
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enriched patterns using in situ hybridization (ISH) in areas V1 and V2. Overall the laminar 

specificity of gene expression and variations between cortical areas predicted by microarrays 

were confirmed by cellular-level analysis and illustrate the high information content of layer-

specific expression profiling and gene specificity of the microarray probesets. For example, 

GPR83 is selectively expressed in L2 of all cortical areas, both by microarray and ISH analysis. 

Laminar specificity was confirmed for RORB (L3–5), PDYN (L4–5), CUX2 (L2–4), and SV2C 

(L3–4 enriched). Specificity for deep cortical layers was prominent, as shown for PDE1A (L5–

6), NR4A2 (L5–6), COL24A1 (L6) and RXFP1 (L5–6). Differences in laminar specificity were 

some- times apparent between V1 and V2 (generally V1 versus all other areas); CUX2 was 

expressed in L2 through L4Cb in V1 but more limited to L2 and L3 in V2, and SV2C was 

highest in L4B in V1, but highest in L3 in area V2. 

Both ANOVA and WGCNA analysis identified gene clusters enriched in specific subsets 

of cortical regions. As illustrated in the dendrograms from both methods, the strongest 

relationships between cortical areas were based on areal proximity rather than functionally 

connectivity. For example, the caudal visual areas V1, V2, and MT showed highly correlated 

patterns of gene expression, while the functionally related but distal visual region TE had greater 

transcriptional similarity to its proximal neighbor A1 in temporal cortex. Strong relationships 

were observed for the adjacent primary motor and sensory cortices M1 and S1 and for the frontal 

DLPFC and OFC regions. Differentially expressed genes showed enrichment in specific subsets 

of (generally proximal) cortical areas, generally related to neuronal development and function 

(axon guidance, neuronal activities, LTP/LTD; Table 3-S9). Areal expression also had a strong 

laminar signature, easily visualized by grouping these ANOVA-derived genes by cortical layer 

(Figure 3-S3). 
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Parallel relationships between cortical areas were observed by WGCNA demonstrating 

the robustness of these observations, with individual gene modules showing enrichment in 

specific cortical regions. Module eigengenes revealed additional patterning, including 

rostrocaudal gradients and laminar components to areal patterning. For example the tan module, 

reflected a caudal low to rostral high patterning enriched in deep L5 and L6. Another gene 

module (purple, upper right) had an opposite gradient from high caudal to low rostral, in this 

case enriched in L3 and L4. Other modules were more area-specific: in V2, MT, DLPFC, and 

OFC (blue) or lowest in V1, V2, and MT, with enrichment in L2 and L3 (pink). 

3.4 Laminar and cellular enrichment patterns of autism genes 

Deficits in cortical patterning and layering have been observed in ASD [28], we therefore 

tested whether ASD-affected genes are enriched in the developing laminae of fetal cortex and the 

terminally differentiated laminae of adult cortex (Experimental Procedures). We compared 

multiple ASD gene lists with the ID gene sets for enrichment in laminae of the developing and 

adult cortex, and found a sharp contrast in laminar enrichment between ASD and ID genes 

(Figure 3-3A-B). Additionally, in adult, asdM12 exhibits strongly significant enrichment in L3 

(Z > 2.7, FDR < 0.01), while other ASD lists follow a similar trend of superficial layer 

enrichment (Z > 2, p < 0.05). In contrast, the “ID all” and “ID only” gene sets follow a trend of 

lower layer enrichment (Figure 3-3B), an across-layer pattern that is significantly different from 

all of the ASD lists (Figure 3-3C-D, Extended Experimental Procedures). 

We also observed a similar trend in superficial layer enrichment for the modules that are 

enriched in asdM12 genes (M13, M16, and M17; Figure 3-3F). M13 and M16 also exhibit 

weaker enrichment in L5 and L6. Module-level analysis in fetal brain also highlighted a 
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difference between the RDNV enriched modules, M2 and M3. Although both M2 and M3 are 

most highly expressed in early human fetal development (prior to PCW 17), M2 reaches its peak 

later and is enriched in the cortical plate (CPi/CPo), whereas M3 peaks earlier, consistent with its 

enrichment in the germinal zone (VZ, SZi, SZo; Figure 3-3E). In adult, this distinction is no 

longer present (Figure 3-3F), with both M2 and M3 showing enrichment in superficial layers 

(L2, L4). We also asked whether any of these gene sets or modules were enriched for cell-type 

specific markers paralleling the observed laminar enrichment. We observed enrichment in this 

set of well-curated upper layer glutamatergic neuron markers among asdM12, M2, and M3 genes 

(Extended Experimental Procedures, Figure 3-S4C-D), which agrees with the L2-4 enrichment 

of asdM12 and ASD risk gene modules. 

Figure 3-4 highlights adult layer-level expression patterns of several strong ASD 

candidate genes with enriched expression in superficial layers (e.g. SHANK2, CNTNAP2) and 

shows that many genes affected by RDNVs recurrently in the 965 ASD probands (e.g. SCN2A, 

POGZ) also show superficial layer enrichment (Figures 3-4A-B). Although some prenatally 

expressed genes have low expression levels in adult cortex, we use these mature laminae for cell-

marker enrichment analyses because laminar expression patterns are more clearly delineated 

relative to PCW 15-21 (Figure 3-4A and 4E, Figures 3-S4A-B). Furthermore, neuronal migration 

in humans persists into the third trimester, and upper layer neuronal identity is not finalized until 

after PCW 28 [37]. Out of the 6 genes with recurrent RDNVs in probands in which we can detect 

layer preference, 5 are predominantly expressed in superficial layers in adult. Some of the genes 

in Figure 4 also show expression in a lower layer (NLGN1, SCN2A, ITPR1, MLL3), though 

superficial layer enrichment is stronger (larger differential expression t-value in Table 3-S1A). 

3.5 Discussion 
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Our analyses offer a genome-wide neurobiological context to begin to unify the genetics 

of ASD, providing robust evidence of both molecular pathway and circuit-level convergence. 

Integration of ASD genes with developmental co-expression networks and laminar expression 

data connects multiple ASD risk enriched modules to glutamatergic neurons in upper cortical 

layers (L2-L4), tying ASD risk genes to specific brain circuitry. The observation of convergent 

biology in ASD stands in striking contrast with ID, which does not show the same level of 

developmental or anatomical specificity. Laminar enrichment in the “ASD/ID overlap” genes 

show a similar pattern as the “ASD only” genes (in L2, Figure 3-4B). Therefore disruption in ID 

genes that also cause ASD likely affects superficial layers compared to disruption in genes 

causing ID only; our analyses lead to the prediction that specific disruption of cortical-cortical 

connectivity, for example by targeting upper layer glutamatergic neurons which predominantly 

comprise inter- and intra-hemispheric projections, is more likely to affect core ASD phenotypes 

such as social behavior, rather than general intellectual ability alone.  

Our analysis further links specific molecules and pathways to the cortical-cortical intra- 

and inter-hemispheric disconnection that has been hypothesized as a shared circuit-level deficit 

unifying diverse ASD etiologies [16, 38]. An illustrative example is the disruption of ARID1B, a 

BAF complex member, which harbors a RDNV and is a hub of M3. Severe mutations in 

ARID1B cause corpus callosum abnormalities, ID, and ASD [39, 40]. Another BAF complex 

member, SMARCC2, implicated by RDNVs in probands, controls cortical thickness by 

repressing the pool of intermediate progenitors, which preferentially contribute to forming 

cortical layers 2-4 [41], providing another molecular link to inter- and intra-hemispheric 

connectivity. Other single-gene examples linking M2 and M3 RDNV-affected genes to cortical 

cytoarchitecture and cortical connectivity exist, but our analysis makes the first systematic 
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connection between genes disrupted in ASD and this circuit-level disruption. As additional genes 

in the early fetal co-expression modules are found to harbor recurrent RDNVs, cortical-cortical 

connectivity will be a valuable phenotype to assess in both animal models and human patients. 

3.6 Methods 

Developmental expression data 

BrainSpan developmental RNA-seq data (obtained from www.brainspan.org) 

summarized to GENCODE10 [42] gene-level reads per kilobase million mapped reads (RPKM) 

values were used (Extended Experimental Procedures for data preprocessing, see Table S1D for 

sample details). Only neocortical regions were used in our analysis and only genes with a 

normalized RPKM value of 1 in at least one region at one time point for 80% of the available 

samples were considered expressed. 

Weighted Gene Co-expression Network Analysis 

We used the R package WGCNA [43] to construct co-expression networks, as previously 

done [28] and described in detail in Extended Experimental Methods. The modules were 

characterized using GO Elite to control the network-wide false discovery rate, with all enriched 

pathways comprising at least 10 genes at Z > 2 and FDR < 0.01 [44]. All network plots were 

constructed using the igraph package in R. 

Gene sets 

The SFARI ASD set was compiled using the online SFARI gene database, AutDB. We 

used the “Gene Score,” which classifies evidence levels, to restrict our set to those categorized as 

S (Syndromic) and evidence levels 1-4 (high confidence - minimal evidence). We obtained 
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asdM12 and adsM16 from a prior, independent gene expression study that profiled expression 

changes in ASD cortex and applied WGCNA to identify modules of dysregulated genes ASD 

[28]. We curated ID genes from four reviews cataloging genes causing “ID all” [45-48] resulting 

in 401 genes. For candidate lists, we used the HUGO gene nomenclature to find updated gene 

symbols. We obtained RDNVs from four publications [17-20], and split them into discovery and 

validation sets as discussed in the results (see Extended Experimental Procedures for further 

details about gene sets). 

Layer-specific and Cell-type Marker Enrichment 

We utilized human fetal neocortical laminar gene expression datasets from BrainSpan, at 

PCW 15/16   and PCW 21 and primate neocortical laminar gene expression data from a 

published study [49]. For laminar specificity, differential expression of each gene in each layer 

was calculated against background, resulting in t-values for each gene in each layer (Table S1A). 

We quantified the skew of differential expression t-values of each gene set in each layer, applied 

a FDR cut-off across all enrichments in all layers (Z = 2.7, FDR = 0.01), and computed 

bootstrapped confidence intervals to assess enrichment of gene sets in layers. To quantify cell-

marker relationships, we used an analogous method, replacing the t-value by the correlation of 

each gene to a set of known cell marker genes in the adult layer data (Table S1A). Statistical 

comparison of enrichment trends across layers between ASD and ID gene sets set was performed 

by comparing the distribution of scores across layers using a permutation analysis (Extended 

Experimental Methods).”  
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Figure 3-1 
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Figure 3-1. Robust Transcriptional Signatures of Cortical Laminar Structure. 

(A) 1D clustering of genes showing differential laminar expression (ANOVA p < 10−12) across 

all cortical samples, with selected enriched gene sets for each cluster (BF corrected p < .01). 

(B) Module versus layer relationships based on whole cortex WGCNA, with individual modules 

showing strong correlations to individual cortical layers (red indicates high correlations). Red 

arrows under module names indicate modules shown in (D). (C) Identification of genes 

selectively expressed in specific cortical layers. Displayed are genes with correlation coefficient 

> 0.7 (L2) or > 0.6 (L3–6) to artificial templates (red bars) in each layer across all cortical areas 

(see Experimental Procedures). (D) Layer-enriched network modules. Plotted are the top 30 

(black, salmon) or top 20 (greenyellow, royalblue, red) hub genes from 5 modules showing 

different patterns of laminar enrichment. Individual gene profiles in C and D were normalized by 

the mean expression value for that gene for display on same scale. ANOVA (E) and WGCNA 

(F) of V1 samples only. (E) 2D clustering of genes showing differential laminar expression 

among V1 samples (ANOVA, p < 10−3), with selected gene set enrichment results (BF corrected 

p < 0.1). (F) Module versus layer relationships based on V1 WGCNA. Dendrograms in (B), (E), 

(F) show strongest relationships between proximal layers, and a distinct signature associated 

with the specialized L4 sublayers of V1. Module assignment and gene set enrichment for 

WGCNA, ANOVA and template analyses are provided in Table S3. Whole-Cortex WCGNA 

Module Gene Assignment and GO Analysis, Table S4. Gene Set Annotation of Whole-Cortex 

ANOVA Laminar Gene Clusters, Table S5. Layer-Enriched Gene Sets Derived from 
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Correlations to Artificial Layer-Specific Gene Templates, Table S6. Gene Set Annotation of V1 

ANOVA Laminar Gene Clusters, Table S7. V1 WCGNA Module Gene Assignment and GO 

Analysis and Table S8. Comparison of V1 ANOVA Laminar Genes with WGCNA Whole-

Cortex Modules and Layer-Enriched Genes Derived from Correlation to Artificial Gene 

Templates. 
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Figure 3-2 
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Figure 3-2. Molecular Signatures of Cortical Regions. 

(A) 2D cluster of genes differentially expressed between cortical regions (ANOVA, p < 10−12), 

with selected enriched gene sets for specific clusters (BF corrected p < 0.01). (B) Module versus 

region relationships based on whole cortex WGCNA. Individual modules show strong 

correlations to subsets of cortical regions, and proximal regions show the strongest similarity. 

(C) Module eigengene plots for tan (upper left, caudal to rostral high gradient), purple (upper 

right, rostral to caudal high gradient), blue (lower left, V2, MT, DLPFC, OFC high), and pink 

(TE, A1, ACG high) modules. Further ANOVA is provided in Table S9 and Figure S3. 
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Figure 3-3 
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Figure 3-3. Enrichment for laminar differential expression of gene sets and associated 

developmental co-expression modules in fetal human and adult primate cortex. 

(A) In fetal cortex, ASD sets (SFARI, asdM12, and RDNV-affected) are enriched for differential 

expression in laminae containing post mitotic neurons, whereas genes implicated in ID are 

weakly enriched in germinal layers. A high Z-score for a gene set in a layer corresponds to 

differential expression across the gene set in that layer. (B) In adult cortex, asdM12 sets show 

strong enrichment in layer 3, whereas ID genes are weakly enriched in layer 5. (C) and (D) 

Summing the Z-score across layers in A) and B) and comparing to randomly permuted sets of 

genes of similar size demonstrates that, in both fetal and adult cortex, the laminar distribution of 

multiple ASD implicated gene sets is significantly distinct from that of genes implicated only in 

ID. (E) SFARI/asdM12 associated developmental co-expression modules M13, M16, and M17 

follow enrichment trends similar to the SFARI/asdM12 gene set in fetal brain. However, the 

modules strongly associated with the RDNV affected genes, M2 and M3, show distinct 

enrichment patterns. (F) ASD-associated modules are predominantly enriched in superficial 

layers 2-4 of adult cortex. Additionally, M16 shows weak enrichment in L5. In contrast to fetal 

cortex, M2 and M3 are in enriched in the same laminae in adult suggesting they serve distinct 

functions during cortical development that contribute to superficial cortical layers 2-4. 

Dashed lines in bar plots indicate Z = 2.7 (equivalent to FDR = 0.01), error bars indicate 95% 

bootstrapped CIs. Laminae: Marginal Zone (MZ), Outer/Inner Cortical Plate (CPo/CPi), 

Subplate (SP), Intermediate Zone (IZ), Outer/Inner Subventricular Zone (SZo/SZi), Ventricular 

Zone (VZ), and adult cortical layers 2-6 (L2-6). See also Figure S4. 
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Figure 3-4 
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Figure 3-4. Laminar patterns for genes implicated in ASD. 

(A) SFARI candidate genes for ASD. (C) Genes with strong recurrent RDNV evidence across 

studies. Genes not displayed include TBR1 (lower layer enriched), CHD8 (no layer enrichment 

detected), CUL3 (no layer enrichment detected), and KATNAL2 (not detected in these data). (B) 

Genes with high connectivity in M13, M16, and M17. (C) RDNV genes with high connectivity 

in M2 and M3.a indicates membership in SFARI ASD, b indicates membership in asdM12, c 

indicates the gene is affected by a RDNV, * indicates recurrent RDNVs. Color bar values 

represent scaled expression (standard deviation of the mean-centered expression value across 

layers). All genes shown have t > 2 for enrichment in an upper layer (L2 or L3) over background, 

and t < 2 for lower layers (L5 or L6). Regions: dorsolateral prefrontal (DLPFC), orbitofrontal 

(OFC), anterior central gyrus (ACG), primary motor (M1), primary somatosensory (S1), primary 

auditory (A1), higher-order visual area TE (TE), higher-order visual area MT/5 (MT), secondary 

visual cortex (V2), primary visual cortex (V1). 
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All supplementary figures and tables as listed in the following websites: 

http://www.cell.com/neuron/retrieve/pii/S0896627312002255 

http://www.cell.com/abstract/S0092-8674(13)01349-4 
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