
UC Irvine
Faculty Publications

Title
Models of soil organic matter decomposition: the SoilR package, version 1.0

Permalink
https://escholarship.org/uc/item/9h72f7hk

Journal
Geoscientific Model Development, 5(4)

ISSN
1991-9603

Authors
Sierra, C. A
Muller, M.
Trumbore, S. E

Publication Date
2012-08-24

DOI
10.5194/gmd-5-1045-2012

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9h72f7hk
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Geosci. Model Dev., 5, 1045–1060, 2012
www.geosci-model-dev.net/5/1045/2012/
doi:10.5194/gmd-5-1045-2012
© Author(s) 2012. CC Attribution 3.0 License.

Geoscientific
Model Development

Models of soil organic matter decomposition: the SOIL R package,
version 1.0
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Abstract. Soil organic matter decomposition is a very impor-
tant process within the Earth system because it controls the
rates of mineralization of carbon and other biogeochemical
elements, determining their flux to the atmosphere and the
hydrosphere. SOILR is a modeling framework that contains a
library of functions and tools for modeling soil organic mat-
ter decomposition under theR environment for computing.
It implements a variety of model structures and tools to rep-
resent carbon storage and release from soil organic matter.
In SOILR, organic matter decomposition is represented as a
linear system of ordinary differential equations that gener-
alizes the structure of most compartment-based decomposi-
tion models. A variety of functions is also available to repre-
sent environmental effects on decomposition rates. This doc-
ument presents the conceptual basis for the functions imple-
mented in the package. It is complementary to the help pages
released with the software.

1 Introduction

Soil organic matter decomposition is a fundamental process
within the Earth system (Swift et al., 1979; Schlesinger,
1997; Jacobson, 2000). Through this process, carbon and
other biogeochemical elements fixed by plants in the process
of photosynthesis are transferred to the atmosphere and the
hydrosphere in mineral form. This release of biogeochemical
elements is fundamental for other processes in the Earth sys-
tem, such as the global energy balance, with important con-
sequences for climate. Soil organic matter decomposition is
also a basic process for the availability of biogeochemical el-
ements necessary for plant growth, therefore it has important
consequences for agriculture and humanity.

Given the importance of soil organic matter decomposi-
tion, many models have been developed describing its dy-
namics (Manzoni and Porporato, 2009), but only few at-
tempts have been made to synthesize them (e.g.Paustian
et al., 1997; Wu and McGechan, 1998; Manzoni and Por-
porato, 2009). Although more than 250 different models of
soil organic matter decomposition have been proposed since
the 1930s, most of these models share common mathemati-
cal structures (Manzoni and Porporato, 2009). This suggests
that it is possible to develop models that can generalize most
of the models already proposed. In fact,Ågren and Bosatta
(1998) have made important contributions to a general theory
of organic matter decomposition with the development of the
continuous quality theory.

In most models, soil organic matter is usually charac-
terized by compartments with homogeneous decomposition
rates, which in the continuous quality theory are approx-
imated by a continuous function between a rank variable
denoted as quality and the decomposition rate. The con-
tinuous quality approach introduces a high level of gener-
ality, but it also introduces limitations in terms of finding
analytical solutions for complex representations of organic
matter heterogeneity (Sierra et al., 2011). For this reason,
the continuous quality theory has only been implemented
to describe the average dynamics of soil organic matter de-
composition. Furthermore, the description of microbial dy-
namics in the continuous quality theory lacks the generality
needed to encompass different mathematical representations
of microbial-substrate interactions.

A general theory of soil organic matter decomposition can
benefit greatly from a synthesis of the different modeling ap-
proaches already proposed. It would help to identify model
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1046 C. A. Sierra et al.: SOIL R v. 1.0

structures that have been used frequently with certain degree
of success to represent observed data.

Recently,Held (2005) has called to attention a growing
gap between high-end simulations and theoretical under-
standing in climate modeling, which we believe also applies
to Earth system modeling in general. Current models are
highly complex and use sophisticated algorithms to repre-
sent different processes within the Earth system. However, it
is difficult to obtain a basic understanding of system behav-
ior from these models due to their complexity. Furthermore,
these models include only one single set of functions to rep-
resent a specific process, which is equivalent to proposing
one single hypothesis to explain system structure and func-
tion. Therefore,Held (2005) proposed the development of
hierarchical models in which detailed models can be reduced
in hierarchies that help to better understand system dynam-
ics. On the one hand, the general model has a high level of
abstraction and helps to elucidate basic properties of the sys-
tem. On the other hand, detailed models are specific realiza-
tions of the general models that can help to predict system
behavior under specific conditions, such as climate change
or emission scenarios.

In this document we introduce SOILR, a modeling frame-
work to represent the process of soil organic matter decom-
position in terrestrial ecosystems. It was developed under
the idea of hierarchical models that synthesize different ap-
proaches to represent the decomposition process. The current
version is built under the mathematical formalism of linear
dynamical systems to represent, in a very general form, soil
organic matter as a state variable with time dependent inputs,
outputs, and internal transformations.

A dynamical system, in a broad sense, is a system that
evolves in time through the iterated application of an under-
lying dynamical rule (Jost, 2005). To describe the evolution
of a dynamical system over time, it is necessary to represent
the actual state of the system and a mathematical rule that
dictates the change of state. There are many different ways
to represent both the state of the soil system and its transition
rules. SOILR provides the basic framework to accommodate
different representations of state or system structure and its
dynamics. This is accomplished by a library of different nu-
merical functions that can represent many different possibil-
ities of soil organic matter dynamics.

This document presents the main structural characteristics
of SOILR and the quantitative tools that can be used to rep-
resent different soil biogeochemical processes. The first ver-
sion of this tool is focused on organic matter decomposition,
and other versions of the package will include nutrient dy-
namics and isotopic composition.

1.1 General information about SOIL R and R

The modeling framework we describe in this document is
implemented in theR environment for computing (R Devel-
opment Core Team, 2011). However, numerical ecosystem

models are frequently developed in low-level programing
languages such asC or Fortran. There are many advantages
of using these low-level languages, specially in terms of com-
putational efficiency; however, they are difficult to learn for
scientists not formally trained in programing. At a different
side of the spectrum of programing languages is theR en-
vironment; a high-level language in which ease of use may
compromise efficiency. For many applications in ecosystem
modeling, the nature and size of the problems are usually not
large enough for this to be an important issue. Ease of use
however, has been a major constraint for a wide adoption of
models in ecosystem science.

Another important issue for model development is acces-
sibility. Models coded in licensed software impose limita-
tions in accessibility and future developments of new tools
and models. Open-source software is ideal for guaranteeing
that code can be freely distributed, used, and modified by ev-
eryone.

SOILR was developed in theR environment for comput-
ing to provide simple access of soil organic matter decom-
position models in an open-source platform where the code
is freely accessible. To see source code and examples of the
functions implemented in SOILR the user only needs to type
the name of the function in theR command shell. To ob-
tain more detailed documentation, the user can simply type a
question mark (?) followed by a function name.

R allows the integration of concepts from functional and
object oriented programing and can interface with many
other low-level programing languages (Chambers, 2008). R
also allows the development of software using concepts of
literate programing(Knuth, 1984), allowing the production
of code and documentation within the same environment.
Models and data analyzes inR are therefore easily repro-
ducible.

As an open-source tool, SOILR is also open for contri-
butions by users interested in improving the existing code,
make corrections on bugs in the code, add new functions,
improve efficiency and functionality, etc.

2 Theoretical framework

2.1 Brief history of SOM modeling

Although early models of soil organic matter decomposition
employed geometric series or difference equations (e.g.Niki-
foroff, 1936; Jenny et al., 1949), the predominant mathemat-
ical formalism since the 1940s is that of ordinary differential
equations (Manzoni and Porporato, 2009). Representing de-
composition of chemical substances by differential equations
was introduced much earlier than that (Van’t Hoff, 1884).
However, within the ecological disciplines,Olson (1963)
presented the first comprehensive treatment of mathemati-
cal models of organic matter decomposition, popularizing the
model
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dX

dt
= L − kX, (1)

whereX is either oven-dry weight, organic carbon, or energy
in organic matter;L is the income of organic matter; andk a
decay constant.

Equation (1) treats soil organic matter as one single com-
partment with an overall decomposition rate representative of
all substances within the soil matrix. It has been commonly
noted that soil organic matter is heterogeneous, and the single
exponential model of decomposition fails to account for this
heterogeneity (Minderman, 1968; Swift et al., 1979). Earlier,
Henin et al.(1959) proposed a model to account for the dif-
ferent rates of decomposition of labile and stable material,
also considering the process of humification, i.e. the transfer
of material from the labile to the stable pool. This model can
be expressed as

dX1

dt
= L − k1X1

dX2

dt
= αk1X1 − k2X2, (2)

whereX1 represents the labile pool andX2 the stable pool.
The parameterα represents the humification or transfer rate.
A different version of a two-pool model has been widely used
for studies of litter decomposition, in which the system of
equations takes the form (Minderman, 1968; Means et al.,
1985)

dX1

dt
= γL − k1X1

dX2

dt
= (1− γ )L − k2X2. (3)

In this case, the two pools decompose independently from
one another and the amount of litter inputsL is partitioned
between the pools according to the parameterγ .

Different variations of these models can be found in the
literature, with different number of pools and transfer among
compartments.

Two numerical compartment models have become stan-
dard in representing organic matter decomposition, these are
the RothC (Jenkinson and Rayner, 1977; Jenkinson et al.,
1990) and the Century (Parton et al., 1987) models. These
two models have been used successfully to represent soil car-
bon dynamics at different spatial and temporal scales (Paul
and Clark, 1996; Paustian et al., 1997). Although these mod-
els were developed on the grounds of pragmatism rather
than based on strict mathematical formalisms (Bolker et al.,
1998), they can be easily translated into systems of differ-
ential equations with the general model (Bolker et al., 1998;
Paustian et al., 1997)

dX1

dt
=f1(θ1k1X1, · · · ,θmkmXm)

...

dXm

dt
=fm(θ1k1X1, · · · ,θmkmXm), (4)

whereθ is a parameter set modifying the decomposition rate
k, andm the total number of compartments representing the
system.

In general, the number of compartments in this type of
models is less than 10 (Manzoni and Porporato, 2009), and
the decomposition rate constant may be a function of tem-
perature, moisture, and/or other edaphic conditions.

We make use of this mathematical abstraction (Eq.4), to
propose a general model of soil organic matter decomposi-
tion.

2.2 A general model of soil organic matter
decomposition

Models of soil organic matter decomposition are, in their
large majority, specific cases of linear dynamical systems
(Bolker et al., 1998; Manzoni and Porporato, 2009; Luo and
Weng, 2011). Making use of this property, we propose a
model that generalizes the majority of all previously pro-
posed compartment models. This general model is given by

dC(t)

dt
= I (t) + A(t)C(t), (5)

whereC(t) is a m × 1 vector of carbon stores inm pools
at a given timet ; A(t) is am × m square matrix containing
time-dependent decomposition rates for each pool and trans-
fer coefficients between pools; andI (t) is a time-dependent
column vector describing the amount of inputs to each pool
m.

The matrixA(t) is particularly important because it de-
fines both the model structure and the extrinsic effects on
decomposition and transfer rates. For this reason we rewrite
Eq. (5) as

dC(t)

dt
= I (t) + ξ(t)A C(t), (6)

whereξ(t) is a time-dependent scalar containing the extrin-
sic or environmental effects on decomposition rates. Notice
that the matrixA contains now constant coefficients defining
model structure.

From this general Eq. (6), it is possible to derive a large
variety of structures for compartment models.

2.3 The matrix A and model structure

Organic matter decomposition can be represented with a
large variety of model structures and levels of connectivity
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among compartments (Swift et al., 1979; Bruun et al., 2008;
Manzoni and Porporato, 2009). Different model structures
are determined by the matrixA in linear dynamical systems
(Bolker et al., 1998; Manzoni et al., 2009). For instance, the
parallel or pure decay structure (Fig.1) in compartment mod-
els is defined by a diagonal matrix of the form

A =


−k1 0 · · · 0

0 −k2 · · · 0
...

...
. . .

...

0 0 · · · −km

 ,

where the entries in the diagonal represent the decomposition
ratekj for each compartmentj . A required condition is that
all kj ≥ 0.

Compartments connected in series (Fig.1) can be repre-
sented with a matrix of the form

A =


−k1 0 0 · · · 0
a2,1 −k2 0 · · · 0
0 a3,2 −k3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −km

 ,

where the entriesai,j are the transfer coefficients of material
from poolj to pooli. A required condition is that allai,j ≥ 0.

Similarly, feedback between adjacent compartments
(Fig. 1) is defined by a matrix of the form

A =



−k1 a1,2 0 0 · · · 0
a2,1 −k2 a2,3 0 · · · 0
0 a3,2 −k3 a3,4 · · · 0
0 0 a4,3 −k4 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · −km


. (7)

More complex model structures are created by replacing
zero entries in the matrixA, representing transfers between
different compartments,i andj .

An important characteristic of the entriesai,j is that they
are proportional to the decomposition rate, i.e.ai,j = αi,jki ,
whereαi,j represents the proportion of the decomposition
rate that is transferred to pooli from pool j . Furthermore,
0 ≤ αi,j ≤ 1, and the column sum

∑
i αi,j ≤ 1, with

rj = 1−

∑
i

αi,j (8)

representing the proportion of the decomposed material that
gets released from the system from poolj .

2.4 The environmental termξ(t)

The majority of organic matter decomposition models in-
clude functionsf (x) that modify decomposition rates ac-
cording to a set of time-varying environmental conditions

No. Pools 1 2 3

Parallel

Series

Feedback

Fig. 1.Basic model structures implemented in SOILR. Squares rep-
resent the compartments, and arrows represent inputs and outputs
to and from the compartments. These model structures are special
cases of the matrixA.

{x1(t) . . .xn(t)}, such as temperature, moisture, evapotranspi-
ration, etc. (Burke et al., 2003; Adair et al., 2008). In our
model (Eq.6), the representation of these environmental ef-
fects is done with the termξ(t), which is the result of the
evaluation of the function or set of functionsf (xi(t)), yield-
ing a scalar value that can be directly multiplied to the matrix
A. In this case,

ξ(t) = f (x1(t), . . . ,xn(t)). (9)

The values off (xi(t)) are determined by different func-
tions that depend on temperature, precipitation, and other en-
vironmental variables. Time-dependence is, therefore, intro-
duced with time series of these environmental variables as
input in the model. SOILR contains a library of functions
that calculate environmental effects on decomposition rates
based on functions reported for different models (Table1).

More complex functions are also introduced in SOILR but
are not included in Table1 due to space limitations. The doc-
umentation and help files of SOILR contain a more detailed
description of all functions.

2.5 Initial conditions

The linear dynamical system represented by Eq. (6), has
many different solutions, but we are only interested in the
solution that satisfies

C(t = 0) = C0, (10)

whereC0 is am×1 vector with the value of carbon content in
the different compartmentsi. C0 must be specified in SOILR
to run any possible model structure.

2.6 The vector of inputs

Inputs to the system from above and belowground compo-
nents are represented by the vectorI (t). This vector can also

Geosci. Model Dev., 5, 1045–1060, 2012 www.geosci-model-dev.net/5/1045/2012/
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Table 1. Functions implemented in SOILR to represent the effects of temperatureT , and moistureW on decomposition rates.

f (x) Terms Function name Source

f (T ) =

Q
(T −10)/10
10 T : mean temperature fT.Q10

47.9
1+exp( 106

T +18.3 )
T : monthly temperature (◦C) fT.RothC Jenkinson et al.(1990)(

Tmax−T
Tmax−Topt

)0.2
exp

(
0.2
2.63

(
1−

(
Tmax−T

Tmax−Topt

)2.63
))

T , Tmax Topt:
monthly average, maximum,
and optimal temperature

fT.Century1 Burke et al.(2003)

3.439exp

(
0.2
2.63

(
1−

(
Tmax−T

Tmax−Topt

)2.63
)(

Tmax−T
Tmax−Topt

)0.2
)

T , Tmax Topt:
monthly average, maximum,
and optimal temperature

fT.Century2 Adair et al.(2008)

0.8exp(0.095Ts) Ts : Soil temperature fT.Daycent1 Kelly et al. (2000)

0.56+ (1.46arctan(π0.0309(Ts − 15.7)))/π Ts : Soil temperature fT.Daycent2 Parton et al. (2001); Grosso
et al.(2005)

0.198+ 0.036T T : monthly temperature fT.linear Adair et al.(2008)

exp
(
308.56

(
1

56.02 −
1

(T +273)−227.13

))
T : monthly temperature fT.LandT Lloyd and Taylor(1994)

exp(−3.764+ 0.204T (1− 0.5T/36.9)) T : mean temperature fT.KB Kirschbaum(1995)

exp((ln(Q10)/10)(T − 20)) T : mean temperature.Q10:
temperature coefficient

fT.Demeter Foley(2011)

exp(−(T /(Topt+ Tlag))
Tshape)Q

(T −10)/10
10 T , Tmax Topt:

monthly average,
maximum, and optimal
temperature

fT.Standcarb Harmon and Domingo(2001)

f (W) =

1
1+30exp(−8.5W)

W = P/PET,P :
monthly precipitation, PET:
monthly potential
evapotranspiration

fW.Century Parton et al.(2001); Adair et al.
(2008)

(
W−b
a−b

)d((b−a)/(a−c)) (
W−c
a−c

)d
W : water filled pore space.a, b, c, d:
empirical coefficients

fW.Daycent1 Kelly et al. (2000)

5(0.287) + (arctan(π0.009(RWC − 17.47))/π) W : volumetric water content fW.Daycent2 Grosso et al.(2005)

0.25+ 0.75(M/Msat) M: soil moisture.Msat:
saturated soil mositure

fW.Demeter Foley(2011)

(1− exp(−(3/Mmin)(M + a)))b exp(−(M/(Mmax+ c))d ) M, Mmin, Mmax: average, minimum
and maximum moisture
content in litter pool.
a,b,c,d: empirical coefficients

fW.Standcarb Harmon and Domingo(2001)

be expressed as

I (t) = I (t)



γ1
...

γi

...

γm

 (11)

whereI (t) is a time-dependent scalar representing the total
amount of inputs and the coefficientsγi represent the par-
titioning among the different pools. In this representation
0 ≤ γi ≤ 1, and

∑m
i=1γi = 1.

2.7 Carbon release

A variable of interest in modeling soil organic matter decom-
position is the amount of carbon leaving the system over time

either in the form of CO2 gas or as dissolved organic carbon.
We represent this flux with the general termr, which is given
by

r = RC(t), (12)

wherer is am×1 vector containing the instantaneous release
of carbon for all pools, andR is am×m diagonal matrix with
the release coefficientsrj in its diagonal calculated from (8).

2.8 Analytical solution

Analytical solutions to Eq. (5) are implemented in SOILR
only with the purpose of testing the performance of the nu-
merical methods. However, we can only test cases under cer-
tain simplifications of the general model of Eq. (5). In partic-
ular, for a homogeneous system with constant coefficients,
which is analogous to the decomposition of a single cohort

www.geosci-model-dev.net/5/1045/2012/ Geosci. Model Dev., 5, 1045–1060, 2012
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of organic matter (̊Agren and Bosatta, 1998); Eq. (5) simpli-
fies to

dC(t)

dt
= AC(t). (13)

With initial conditions as in Eq. (10), the analytical solu-
tion to this problem is given by

C(t) = eA(t−t0)C0. (14)

If I (t) is not identically zero, then the solution of the linear
system

dC(t)

dt
= I (t) + AC(t),

with initial conditions as in Eq. (10), is given by

C(t) = eA(t−t0)C0 +

t∫
t0

eA(t−τ)I (τ )dτ. (15)

3 Numerical implementation

The solution to the dynamical system described by Eq. (6) is
discretized over time, withh denoting the time step andn the
number of steps. The time steph may or may not be constant.
Initial conditions are given at timet0 = 0. The solution to the
system is then given by

Cn+1 = Cn + Dr [f
′(Cn),h], (16)

whereDr [f
′(Cn),h] is anr order finite difference approxi-

mation to the system of ODEs of Eq. (6) for each time steph
(LeVeque, 2007); in other words, an ODE solver.

The choice for the ODE solver is flexible in SOILR. Cur-
rently, we provide the option to use a simple Euler forward
method or an interface to thedeSolve package ofSoetaert
et al. (2010). The functiondeSolve.lsoda.wrapper
in SOILR, is a wrapper to the functionlsoda in package
deSolve .

3.1 TheModel class

The general numerical model described by Eq. (6) is rep-
resented in SOILR by an object oriented design centering
around the classModel . Nearly all computations possible in
SOILR are facilitated byModel itself or its building blocks.
The class defines the information allModel objects contain
and how those objects behave when (generic) functions are
applied to them (Chambers, 2008). Any model constructed
with SOILR provides then a stable and consistent interface
that encapsulates details about its implementation. This in-
terface provide a number of advantages to the user:

1. A level of abstraction close to the mathematical descrip-
tion of the model being implemented, focusing on the
scientific content rather than on technical details.

2. Stability of code generated by the user based on SOILR
output. We believe that the more essential and less re-
dundant the interface, the less likely it is to change in
future revisions.

3. Safeguards against unreasonable (and therefore prob-
ably unintentional) input, from simple dimensional
checks to mathematical consistency of all arguments of
the general model described in Sects.2.2through2.7.

4. Smaller programs that are easier to read.

Developers also benefit from this implementation design by:

1. Freedom to change the implementation behind the
scenes without breaking user code.

2. Easier maintenance, testing, bug tracking, and exception
handling by reduced duplication

Objects of classModel are initialized in SOILR by vari-
ous functions, which are listed with the command?Model .
Most of them provide shortcuts for the construction of stan-
dard models such as those in Fig.1. These functions usually
do not require the user to consider the real building blocks of
aModel object, but rather infer the needed information from
objects more common inR such as data frames. However,
all these high-level functions callGeneralModel , which is
the most general constructor. The functionGeneralModel
initializes theModel object after applying various validity
checks, but does not run the model itself, which instead is
done by specific functions (methods) applied to objects of
classModel .

The functionGeneralModel takes five arguments rep-
resenting a specific case of Eq. (6).

1. A vector t which contains the time values where the
solution to the ODE system is sought. It can be of any
length but must be of class"numeric" .

2. An object of class"TimeMap" which implements the
matrix A of Eq. (5) as a function of time (including its
domain) thus allowing the same level of abstraction as
the most general ODE solvers (Soetaert et al., 2010).
The classTimeMap is native to SOILR and simply ex-
tends a commonR function to a mathematical valid
function definition that includes the time domain where
the function is defined. Thus it contains the necessary
information to prevent extrapolations beyond the range
of input data. Details aboutTimeMap are discussed in
AppendixA.

3. A vector of class"numeric" containing the initial
valuesC0 of the ODE system.

4. Again an object of class"TimeMap" containing the
inputs I (t) to the system as a vector valued function
of time. The length of this vector must be equal to the
dimension of the matrixA, and is checked as well as the
time domain.

Geosci. Model Dev., 5, 1045–1060, 2012 www.geosci-model-dev.net/5/1045/2012/
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5. A string choosing the solver to be used.

Once a new object of classModel is intialized from a call
to GeneralModel , or one of its various wrappers, the new
object can be queried by several generic functions. For ex-
ample, to obtain the amount of carbon over time solving the
system of ODEs, any object of classModel (and therefore
all its subclasses) can be used as argument of the function
getC . The call to this function returns an × m matrix with
the amount of carbon for each poolm at each time stepn.
Similarly, to obtain the amount of carbon release over time,
the functiongetReleaseFlux can be called with any ob-
ject of classModel as argument. The result will be an × m

matrix with the amount of released carbon for each poolm

at each time stepn. It is also possible to use the typical op-
erators[ ] and $ for our Model class given access to
methods even easier. For example,getC(mod) is equiva-
lent tomod$Cand something like:

df=as.data.frame(cbind(getTime(mod),
getC(mod)))

can also be expressed as

df=mod[c("time", "C")]

This avoids the necessity of the somewhat dangerous use of
the @operator in user code, which we strongly discourage,
since it attaches the code to implementational details that
may change in the future.

The implementation of specific models as subclasses of
Model with methods for the generic functions will allow the
integration of new functionality without major modifications
to our current implementation. For example, once nutrient
cycling and isotope dynamics are incorporated into SOILR,
new methods will be developed independently without major
modifications to the current implementation of carbon stocks
and release.

The vignette GeneralModel provided with SOILR
presents some further insight in the implementation of spe-
cific model structures with the help of the general tool-set
provided by theModel class. The examples therein may
also serve as templates to implement new model structures
as desired by the user. Examples on how to use these model
structures as a function are presented in Sect.4.

3.2 Version control system, unit testing, and automatic
documentation

The development of SOILR is aided by a significant amount
of existing open- source software. To solve the ordinary dif-
ferential equations produced by our framework, we rely on
the well tested and documenteddeSolve package devel-
oped bySoetaert et al.(2010). We also use the open-source
symbolic python library SymPy (SymPy Development Team,
2008) to compute analytical solutions for the models for
which this is possible. The analytical solutions obtained from

SymPy are used to automatically create unit tests for SOILR.
To constantly run these tests, we use another open-source
software, theRunit package (Burger et al., 2009). The tests
are distributed with the release version of SOILR and thus
add to the transparency of its development. In addition, we
useSweave (Leisch, 2002, 2003) and theinlinedocs
package (Hocking et al., 2012) to produce documentation
and encourage a literate programing style (Knuth, 1984).
As a version control system, we use Mercurial (O’Sullivan,
2009) and the Trac (Edgewall Software, 2011) online project
management tool, which includes ticket system, wiki, and
online access to our source code.

3.3 Documentation

There are different types of documentation for SOILR. The
first source of information is this document, which intro-
duces the science and some general technical details. A
second source of information is the documentation to each
function provided within the package itself. To view this
documentation, the user only needs to openR and type
help.start() . This will open a help window on a web-
browser. There the user only needs to go to Packages/SoilR to
view a list of all the functions implemented. Clicking on each
function will show details about the arguments of each func-
tion and examples on how to use them. For specific functions,
the user can also just type the name of the function preceded
by the question mark on theR command shell. For example,
typing ?TwopParallelModel in the R command shell
will open a help window with the description of the function.
To view the source code of the function, the user only needs
to type the name of the function (without the question mark)
on theR command shell.

A third source of information are the so called Package Vi-
gnettes. These are short documents illustrating the use of the
package for specific purposes. Currently, we provide one vi-
gnette with version 1.0 of SOILR. This vignette illustrates
the implementation of any model structure within SOILR.
For future versions, we will provide vigenettes about fitting
specific model structures to data and how to use SOILR for
modeling radiocarbon.

3.4 Installing and loading SOIL R

SOILR can be obtained from the ComprehensiveR Archive
Network (CRAN), the official repository forR packages
with mirrors in places all over the world. Packages stored
in CRAN can be downloaded directly from anR ses-
sion. It can also be obtained from R-Forge, a repository
for package developers. To install SOILR from CRAN,
the user simply needs to type in theR command shell
install.packages("SoilR") . To install from R-
Forge, the statement isinstall.packages("SoilR",
repos="http://R-Forge.R-project.org") .
After installing the package, simply type
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library(SoilR) and the package is loaded into
yourR session.

4 Examples

In this section we present examples on how to run
some of the functions implemented in SOILR based
on the theoretical framework presented previously. Ad-
ditional details about the implementations of each func-
tion and instructions on how to implement new model
structures are presented in the vignette ‘Implementing
Compartment Models in SOILR: the GeneralModel
Function’ provided with the package. To view this
vignette, simply typevignette("GeneralModel",
package="SoilR") in theR command shell.

4.1 Implementation of a two pool model with
connection in series: the ICBM model

One of the first models ever proposed to represent soil or-
ganic matter dynamics was a two-pool model with connec-
tion in series (cf. Eq.2, Henin et al., 1959). More than
50 yr later,Andren and Katterer(1997) proposed the ICBM
model, which is practically the same model proposed earlier
by Henin et al.(1959), but including a term for temperature
and moisture dependence of decomposition rates. The set of
differential equations of the ICBM model are given by

dC1

dt
= I − k1ξC1

dC2

dt
= αk1ξC1 − k2ξC2, (17)

whereα is a humification or transfer coefficient andξ a pa-
rameter representing external effects on decomposition rates.
In the ICBM model,C1 represents a “young” pool andC2 an
“old” pool. This set of equations can be rewritten using our
model formulation, which gives

dC

dt
= I

(
1
0

)
+ ξ

(
−k1 0
αk1 −k2

)(
C1
C2

)
, (18)

with initial conditions(C1,0,C2,0)
T , and where

A =

(
−k1 0
a2,1 −k2

)
,

with a2,1 = αk1, γ = 1, andξ(t) = ξ .
The function ICBMModel in SOILR implements this

model structure requiring as its arguments: (1) a vector of
any length with the points in time when we are interested in
finding a solution, (2) a column vector of decomposition rates
(k1,k2)

T , (3) the value ofα, (4) the value ofξ , (5) a column
vector with the initial amount of carbon at the beginning of
simulation(C1,0,C2,0)

T , and (6) the mean annual carbon in-
put to the soilI . Andren and Katterer(1997) provided values

for these arguments from a 35-yr field experiment manipu-
lating carbon and nitrogen inputs to an agricultural soil in
Sweden. For the case of a treatment in which the soil was
left as bare fallow without N or C inputs, the ICBM model
can be parameterized as

dC

dt
= 0

(
1
0

)
+ 1.32

(
−0.8 0

0.13× 0.8 −0.00605

)(
C1
C2

)
, (19)

with initial conditions(0.3,3.96)T .
Assuming SOILR is already installed, it is only necessary

to write the following lines of code to run the ICBM model

library(SoilR)
times=seq(0,20,by=0.1)
Bare=ICBMModel(t=times, ks=c(k1=0.8,

k2=0.00605), h=0.13, r=1.32,
c0=c(C10=0.3,C20=3.96), In=0)

The call toICBMModel simply initialize, the model and
checks for consistency on its arguments. In this example, the
decomposition rates are given in units of year−1 and the ini-
tial amounts of carbon in units of kg C m−2.

To obtain the amount of carbon over time it is necessary to
invoke the functiongetC storing the output into an object.
For example, to store the amount of carbon from the object
Bare the user can type

CtBare=getC(Bare).

This new object,CtBare , is a matrix with 2 columns
(2 pools) and 201 rows (201 points in time, from 0 to 20
in increments of 0.1). To obtain the total amount of carbon,
i.e. the sum of the pools, the R functionrowSums can be
used. For example, plotting the total amount of carbon over
time as well as the carbon on each pool only requires these
lines of code

plot(times, rowSums(CtBare),type="l",
ylim=c(0,5), ylab="Topsoil carbon
mass (kg m-2)",xlab="Time (years)",
lwd=2)

lines(times, CtBare[,1],lty=2)
lines(times,CtBare[,2],lty=3,col=2,lwd=2)
legend("topright",c("Total carbon",

"Carbon in pool 1", "Carbon in pool 2"),
lty=c(1,2,3),col=c(1,1,2),lwd=c(2,1,2),
bty="n")

If the total amount of carbon is needed for further calcula-
tions, the output ofrowSums() can be stored in an object
with any name.

We implemented the different N and C treatments reported
in Andren and Katterer(1997) from the set of parameters
reported by those authors. The code necessary to reproduce
Fig. 2 inAndren and Katterer(1997) is provided as an exam-
ple with the functionICBMModel and can be accessed by
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Fig. 2. Model predictions with the version of the ICBM model
implemented in SOILR. This graph reproduces Fig. 2 inAn-
dren and Katterer(1997). This figure can be reproduced typ-
ing example(ICBMModel) or attr(ICBMModel,"ex") in
SOILR.

typing example(ICBMModel) , or from the html help in
R. This code produces Fig.2, which is identical to Fig. 2 in
Andren and Katterer(1997).

4.2 Alternative two-pool models

The ICBM model described in the previous section, although
useful, does not offer too much flexibility in terms of the in-
put arguments. For example, the litter inputs to the system
could vary over time as well as the temperature and moisture
effects on decomposition rates. In addition, there are other
possibilities to implement a two pool model depending on
the type of connection between pools (Fig.1).

The parallel pool model structure can be implemented with
the functionTwopParallelModel , while a more gen-
eral version of a series model structure can be implemented
with the functionTwopSeriesModel . Similarly, the feed-
back model structure can be implemented with the function
TwopFeedbackModel . The inputs of litter and the mod-
ification of decomposition rates by external factors can be
either constant or a function of time. Furthermore, the func-
tions presented in Table1, and their combinations, can be
used as arguments in the different model structures provid-
ing a large variety of options to model decomposition with
just two pools. In fact, the same flexibility can be obtained
with any number of pools with the application of the more
general functionGeneralModel .

As an example, we show the differences obtained by run-
ning three different versions of a two-pool model with the
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Fig. 3. Examples of three different representations of a two-pool
model with different model structures and environmental effects on
decomposition rates. The upper panel shows carbon stocks and the
lower panel carbon release. Additional details about the implemen-
tation are given in the text.

same amount of carbon at the beginning of the simulation,
similar rates of litter inputs, and equal decomposition rates
(Fig. 3). As an illustration, we also ran the simulations with
different options for the time dependence of the litter inputs
and the decomposition rates. In the first simulation, we ran a
model with a structure of parallel compartments. In this sim-
ulation, the litter inputs and decomposition rates were con-
stant, but the decomposition rates were modified by average
values of temperature and moisture according to the func-
tions proposed in the Daycent model (Table1). For the sec-
ond simulation, we ran a two-pool model with connection
in series introducing temporal variability in the amount of
inputs using a sine function that artificially represents an an-
nual cycle. In the third simulation, we ran a two-pool model
with connection in series among compartments. The amount
of litter inputs over time were calculated using random num-
bers over time. In this simulation, we also produced ran-
dom numbers of temperature and moisture and applied the
functions to modify decomposition rates according to the
Century and the Demeter models (Fig.3). The code to re-
produce Fig.3 is provided in the example of the function
TwopFeedbackModel .

These simulations, without being necessarily realistic,
simply show that small differences in model structure can
produce very different predictions, even when the main pa-
rameters of the model remain unchanged. The simulations
also serve to illustrate different possibilities in the use of the
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basic functions of SOILR to represent the process of organic
matter decomposition over time.

To implement more sophisticated models with a higher de-
gree of complexity, it is possible to specify a larger amount of
pools with complex functions representing the dependence of
litter inputs, decomposition rates, and transfer between pools
with other external variables, such as temperature, moisture,
soil texture, nutrient status, among many other.

4.3 Implementation of the RothC model

RothC is a popular and widely used model for predicting or-
ganic matter dynamics over time. Although earlier versions
of the model included five active pools and one inert pool
(Jenkinson and Rayner, 1977), more recent versions only in-
clude four active pools plus the inert pool (Jenkinson et al.,
1990). RothC is implemented within SOILR and we provide
details here about this implementation to illustrate the use
and potential implementation of any other model. RothC can
be described by the following set of differential equations

dC1

dt
= γ I − k1C1

dC2

dt
= (1− γ )I − k2C2

dC3

dt
= α3,1k1C1 + α3,2k2C2 − k3C3 + α3,3k3C3 + α3,4k4C4

dC4

dt
= α4,1k1C1 + α4,2k2C2 + α4,3k3C3 − k4C4 + α4,4k4C4

dC5

dt
= 0 (20)

whereC1 represents the decomposable plant material (DPM)
pool,C2 the resistant plant material (RPM) pool,C3 the mi-
crobial biomass (BIO) pool,C4 the humified organic matter
(HUM) pool, andC5 the inert organic matter pool (IOM).
This set of equations can be rewritten in the form

dC

dt
= I


γ

1− γ

0
0
0



+


−k1 0 0 0 0

0 −k2 0 0 0
α3,1k1 α3,2k2 −k3(1− α3,3) α3,4k4 0
α4,1k1 α4,2k2 α4,3k3 −k4(1− α4,4) 0

0 0 0 0 0




C1
C2
C3
C4
C5


or as

dC

dt
= I


γ

1− γ

0
0
0



+


−k1 0 0 0 0

0 −k2 0 0 0
a3,1 a3,2 −k3 + a3,3 a3,4 0
a4,1 a4,2 a4,3 −k4 + a4,4 0
0 0 0 0 0




C1
C2
C3
C4
C5

 (21)

The values of the decomposition rates are constant and given
by: k1 = 10, k2 = 0.3, k3 = 0.66, andk4 = 0.02 (Jenkinson
et al., 1990; Coleman and Jenkinson, 1999). The value of
the transfer coefficients is determined by a function of soil
texture. For the microbial biomass pool, transfer coefficients
are calculated as

a3,j = kj

0.46

x + 1
(22)

wherex is a value that determines the proportion of decom-
posed material that is respired as CO2 and is given by

x = 1.67(1.85+ 1.60exp(−0.0786pClay)) (23)

wherepClay is percent clay in mineral soil (Jenkinson et al.,
1990). Similarly, the transfer coefficients for the humified
pool are given by

a4,j = kj

0.54

x + 1
. (24)

The partitioning of incoming plant material is determined
by the ratio DPM/RPM, which in RothC is set as 1.44. There-
fore,γ = 0.59. Now, the basic structure of the RothC model
can be written as

dC

dt
= I


0.59
0.41

0
0
0

+


−10 0 0 0 0

0 −0.3 0 0 0
1.02 0.03 −0.59 0.01 0
1.19 0.04 0.08 −0.02 0

0 0 0 0 0




C1
C2
C3
C4
C5

 .

(25)

The annual amount of inputs is set in the RothC model as
I = 1.7 Mg C ha−1 yr−1.

With this parameterization, it is possible to run the RothC
model without varying environmental effects on decompo-
sition rates and observe how the system approaches steady-
state for the different pools (Fig.4). Parameter values, ini-
tial conditions, and litter inputs can be changed easily within
SOILR to compare different predictions from this model.

Geosci. Model Dev., 5, 1045–1060, 2012 www.geosci-model-dev.net/5/1045/2012/



C. A. Sierra et al.: SOIL R v. 1.0 1055

0 100 200 300 400 500

0
5

10
15

20
25

Time (years)

C
ar

bo
n 

st
or

es
 (M

g 
C
ha

−1
)

Pool 1, DPM
Pool 2, RPM
Pool 3, BIO
Pool 4, HUM
Pool 5, IOM
Total Carbon

Fig. 4. Carbon accumulation for the different pools included in the
RothC model. DPM: the decomposable plant material pool, RPM:
resistant plant material, BIO: microbial biomass pool, HUM: humi-
fied organic matterpool, and IOM: inert organic matter pool.

4.4 Applications for large-scale modeling

R can handle a large variety of data structures, which offers
interesting possibilities for the application of the functions
implemented in SOILR. One important type of data structure
is spatial data with global coverage. There is a large number
of R packages to import and manipulate spatial data, which
facilitates the technical aspects for running SOILR functions
at the global scale.

As an example, we show here a simple calculation of cli-
mate decomposition indexes (CDIs) (Adair et al., 2008) us-
ing a global dataset of temperature, precipitation, and po-
tential evapotranspiration available at 0.5 degree resolution
on NetCDF files from the WATCH dataset (Weedon et al.,
2011). The input dataset contained monthly average tempera-
ture, precipitation and evapotranspiration for the period 1958
to 2001. We calculated the CDIs as

CDI = ξ(t) = f (T )f (W) (26)

with f (T ) implemented by the functionfT.Century1 ,
andf (W) by the functionfW.Century as described in Ta-
ble 1. Results can be easily plotted on a map (Fig.5) and
exported again to NetCDF files. Different combinations of
the functions described in Table1 can be used to calculate
CDIs (Adair et al., 2008) and evaluate different hypotheses
about the response of decomposition rates to moisture, tem-
perature, and other variables.
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Fig. 5. Climate decomposition index (CDI) calculated as the prod-
uct of a function of temperature (fT.Century1 ) and a function of
precipitation and potential evapotranspiration (fW.Century ) us-
ing monthly data from the WATCH dataset (Weedon et al., 2011).

5 Discussion

Many models of soil organic matter decomposition have been
proposed previously, and there even exist some open-source
tools to implement some of these models (e.g.Easter et al.,
2007). We have developed a tool for implementing and run-
ning a large variety of these models with the idea of facili-
tating comparison among multiple models in an easy to use
interface. In this section, we discuss some of the advantages
and disadvantages of our approach.

5.1 Parameter space and structural domain

Models of organic matter decomposition are basically hypo-
thetical abstractions about the structure and dynamics of soil
organic matter. The multitude of models previously devel-
oped suggests that there exists a large number of hypotheses
about the structure and functioning of soil organic matter,
but there is basically little consensus on whether one model
structure (hypothesis) would have more support on observa-
tions than other model structures (Manzoni and Porporato,
2009).

The majority of modeling studies have focused on finding
the set of parameter values of a particular model that best
fit some observed data. This approach is useful and has pro-
vided much insight on understanding the rates of soil organic
matter decomposition. However, from the perspective of as-
sessing different hypotheses about the structure and dynam-
ics of soil organic matter, parameter estimation can only give
a narrow view of the more complex spectrum resulting from

www.geosci-model-dev.net/5/1045/2012/ Geosci. Model Dev., 5, 1045–1060, 2012



1056 C. A. Sierra et al.: SOIL R v. 1.0

the combination of structure domain and the parameter space
of models.

SOILR provides the possibility of assessing both model
structure and parameter values broadening the spectrum of
ideas that can be assessed within one single analytical frame-
work.

We believe this approach complements well, and could be
even more powerful than previous approaches to assess per-
formance of model structure with inter-comparisons among
different modeling groups (e.g.Melillo et al., 1995; Wu and
McGechan, 1998; Cramer et al., 2001; Randerson et al.,
2009). Multi-model inter-comparison projects do not neces-
sarily cover the whole domain of model structures, and may
be subject to important issues, such as independence of code,
bias of the whole model ensemble, inappropriate metrics to
define model performance, etc (Knutti et al., 2009; Knutti,
2010). SOILR can partially help to overcome some of these
problems for assessing the performance of model structure
through the option of using alternative functions to represent
the same process. Philosophically, this approach is also sim-
ilar to testing multiple working hypotheses.

5.2 Model hierarchies and functional programing

The gap between simulations and understanding described
by Held (2005) is currently exacerbated by the continuous
increase in detail and complexity of simulation models.Held
(2005) suggests that a way forward to close the gap be-
tween simulations and understanding is by the development
of model hierarchies in which large-scale complex models
are particular cases of general models that are more amenable
for understanding of system structure and behavior.

SOILR can also be viewed as a system for hierarchical
modeling of soil processes. Consider for example, the envi-
ronmental or external effects on decomposition rates, which
here are denoted by the termξ(t). In its more simple and
general case, the external effects can be simply a constant
(ξ(t) = c) that allows the understanding of model behavior
without changes in environmental conditions. Simulations
can then be run with a changing environment, for exam-
ple with variable soil moisture (ξ(t) = f (W(t))). Soil mois-
ture could depend on other variables, such as precipitation
and potential evapotranspiration (W(t) = f (P (t),PET(t))),
which in turn can be dependent on other functions. In this
form, a hierarchy of models is build with the dependence of
different functions on other functions.

In terms of programing, this concept of model hierarchies
can be easily implemented in a functional programing style.
A function that performs certain tasks can have as its argu-
ments other functions that perform other tasks. These func-
tions can be independent among each other so many different
functions that perform the same task can be available within
the same modeling environment. This is one of our goals with
SOILR, to provide a modeling environment that serves as a
repository of different functions that can perform the same

task so their performance can be easily compared. It also al-
lows building soil organic matter decomposition models in
a hierarchical framework because functions can have a large
number of dependences on other functions creating a bridge
between simple general models and detailed modeling con-
structions under the same basic principles.

5.3 Scope and limitations

Our approach to soil organic matter decomposition modeling
with SOILR may have some limitations. One potential limi-
tation is the use of a high-level programing language that can
have issues in terms of computational efficiency. This could
be an important problem if specific models structures with
a large number of computations per time step are applied to
a large number of points such as a large spatial grid. Other
programing languages such asC or Fortran may be more
suitable for these tasks, although a good programing style
can avoid many issues of computational efficiency inR. It is
important to keep in mind that the scope of SOILR is more
for the exploration of different model structures and hypothe-
ses about soil processes rather than for large computational
tasks; however, some parallelization tools withinR could be
used for this purpose. We recommend that once a specific
model structure is identified as useful for a large computa-
tion, the entire model object is translated to other language
or optimized for running inR. We are exploring these possi-
bilities to include in future releases of SOILR.

Another potential limitation is the incompatibility of our
conceptual framework to represent the decomposition pro-
cess as a non-linear dynamical system. Non-linear dynamics
are important for representing microbial processes such as
priming, and are very relevant for simulations at short time
scales (Wutzler and Reichstein, 2008; Manzoni and Porpo-
rato, 2007, 2009). Non-linear models however, can be eas-
ily implemented inR with the deSolve package. We are
considering two possibilities to include non-linear dynamical
systems within our theoretical framework. One possibility is
to provide a framework to specify and linearize non-linear
systems and solve the linear equations as presented here. An-
other possibility is to include a set of non-linear models solv-
ing them directly withdeSolve . We aim for further releases
to include this additional functionality.

6 Conclusions

We have developed a modeling environment for represent-
ing the process of soil organic matter decomposition. This
tool, SOILR, is an open- source package for the implemen-
tation and testing of different representations of the process
of soil organic matter decomposition. The main character-
istic of SOILR is its hierarchical structure in which we de-
scribe a general model that can accommodate any possible
model structure of a multi-pool model of decomposition.
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More detailed models can be implemented to simulate spe-
cific controls on the decomposition process. This allows for
testing of multiple working hypotheses about the structure
and functioning of soils and their behavior over time. SOILR
not only allows for exploring dynamics on the parameter
space of a model but also on the structural domain.

This first version of SOILR allows simulations of organic
matter decomposition and future versions will include rep-
resentations of other biogeochemical elements such as nitro-
gen and phosphorus as well as their isotopic composition. A
module for parameter fitting will also be included in future
releases.

Appendix A

Implementation details and design decisions regarding
SOIL R

A1 The choice of the object-oriented programing
(OOP) system

While in object oriented languages the implementation of ob-
ject oriented design principles is usually hardwired, inR it
is a choice between at least three different approaches, thus
forcing the user to explain why a particular system was used.
In our case the choice ofS4 is a compromise. On one hand
there is very limited support inS4 for real encapsulation, ex-
pressed most notably by the possibility to read and even write
the values of slots from outside the class by theslot func-
tion or the@operator, respectively. This default behavior is
actually not even trivially changed. On the other hand there
are some important advantages:

1. Compatibility with the functional paradigm ofR and its
associated benefits such as lazy evaluation, concurrency
and in the future maybe even automatic parallelization,
which depends on the absence of side effects (unavoid-
able with a reference based system likeR5).

2. The integration withR’s standard library, which in-
creases

a. the probability of future maintenance, and

b. acceptance by otherR users.

3. The relative seamless integration to commonR work-
flows without in depth knowledge of object oriented
programing.

Considering that ifR is capable to implement an OOP
system by means of on board tools it will probably be flexible
enough to change the default behavior of this OOP system
with on board tools as well. SOILR is a rather small package
and we thinkS4 is and appropriate choice for our needs.

A2 Comparison betweenSIMECOL and SOIL R

SIMECOL (Petzoldt and Rinke, 2007) an R package for the
implementation of ecological models, is an alternative to our
own implementation. Here we compare the two approaches
in terms of their design.

A2.1 Scope

SOILR is focused solely on soil organic matter decompo-
sition, while SIMECOL aims to be a general framework for
ecological modeling inR. SIMECOL represents an abstrac-
tion level somewhere between SOILR andR’s S4 system.
Hence, the obvious way for SOILR to make use ofSIMECOL

would be to implement ourModel class as a subclass of
SIMECOL ’s simObj . One motivation to do so consists in the
possibility to inherit functionality from the ancestor which is
usually additionally shared by other subclasses thus enabling
easier communication between them. Whether subclassing is
the appropriate strategy thus depends on the amount of in-
heritable code and the number of subclasses. We found that
within SOILR, Model would be the only one subclass of
SIMECOL’s model with nearly no code shared owing to dif-
ferences in functionality and design goals (see below).

A2.2 Functionality

One major difference withSIMECOL’s simObj is that
SOILR’s Model initialize method requires objects of class
TimeMap or its subclasses, thus guaranteeing that the dif-
ferent objects conforming a model share a common support
in the time domain; even if the creation ofTimeMap ob-
jects usually takes place far away from the initialization of a
Model object since this usually happens behind the scenes,
e.g. by conversion ofdata.frames the user provides as
input. This is a significant difference fromSIMECOL’s ap-
proach. Implementing this functionality in a subclass of
SIMECOL’s model would be misleading and would not con-
form well with our design goals.

A2.3 Design goals

The main aim of SOILR’s Model class is to provide a fence
between interface and implementation. While the interface
should change as little as possible to protect code using the
class, we want to have as much freedom as possible to change
its implementation. We strive to achieve this by avoiding ev-
ery possible syntactic distinction between references to ob-
ject data and object methods from the outside. WithR’s S4
system, one (and maybe the only) way to do so is to wrap
all access to object data with get and set methods. This is
one aspect of a concept often referred to asencapsulation
and regarded as one of the key components of OOP. In lan-
guages such asSmalltalk (Kay, 1993) or Ruby (Matsumoto
and Ishituka, 2002), fully dedicated to OOP, this approach is
mandatory: A method call (a message send to an object) is
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the one and only way for objects to communicate with each
other.

The S4 approach inR is much less strict and allows
direct manipulation of the data belonging to an object by
means of the operator@(or the slot function respectively),
thus revealing the implementation of an object to the out-
side code using this object. User code based on@will break
if the implementation changes and the desired slot disap-
pears, while a get method may be able to retrieve the de-
sired information from other data. The use of the slot op-
erator from outside should therefore be avoided (Genolini,
2008; Gentleman, 2003). Imagine for instance acircle ob-
ject c thatstoresits radius andcomputesthe diameter when
getDiameter(c) is called. If the radius is accessed solely
by calls ofgetRadius(c) the implementation of the circle
class can later be changed to store the diameter and compute
the radiuswithoutany affect to outside code using the class.

Applications to SOILR’sModel occur if one considers the
increasing number of constructors with redundant parameter
sets. The distinction between parameters and derived vari-
ables may even become difficult. Differing fromSIMECOL

we unify access toModel elements and avoid a syntactic
difference of parameters and derived values as expressed by
SIMECOL’s functionsparams andout . In addition to the
get... functions we provide for all data intended to be ac-
cessed from outside, access through the typical operators[]
and$ for our Model class. This gives access to all data the
model can provide, either during the initialization or com-
puted by the methods of the class. In fact,[] and $ inter-
nally use theget... methods and may perform any number
of checks and computations to provide a consistent output.
This facility is powerful enough to avoid the use of@com-
pletely for our class. This is exactly our intention, since the
implementation of the class may change, accessing its ele-
ments via@is strongly discouraged. While we will maintain
the defined interface via[] , $ and theget... functions
we cannot guarantee that code relying on@will work in fu-
ture versions of SOILR.

Another difference withSIMECOL is also related to the[]
operator. It enables the user to create the desired output on
demand, thus avoiding duplication between output objects.
If the user asks for"C" she/he gets"C" and not"time"
and"C" , which sometimes may not be intended if the user is
concerned about issues of memory or duplication. However,
it may be very useful to have both in other situations when
the "times" argument to the constructor that created the
model in the first place is not available anymore. With[]
the user can decide which fields the output should contain.

An additional intended feature of our[] operator is to al-
ways producedata.frames and not a"Result" object
that would (or at least should) be more protective of its data
against alterations post simulation than adata.frame . If
we provided code to post-process results we would certainly
implement such a"Result" class to make sure that our
post-processing is based on valid data. Since at the moment

we don’t, we also do not force a structured output object to
the user.

At the moment we do not even provide output as
deSolve objects, since every structured output is part of the
interface, and may be relied on by user code. Although we
are happy and thankful to usedeSolve extensively within
SOILR, making it a part of the interface would be a promise
to the user that we will keep on supporting it, which is a much
bigger commitment.

Until now the responsibility beyond the scope of class
Model stays with the user.

Supplementary material related to this article is
available online at:http://www.geosci-model-dev.net/5/
1045/2012/gmd-5-1045-2012-supplement.zip.
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