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Abstract 

Thermal comfort standards have suggested a number of physical indices which can be             
calculated from either building simulations or in situ physical monitoring to assess the             
long-term thermal comfort of a space. However, the prohibitively high cost of sensor             
technologies has limited the applications of these physical indices, and their usefulness has             
never been established using data collected in real buildings. This paper is the first assessment               
of the six types of existing indices (23 total) found in standards and five types of new indices (36                   
total) and their correlation with the long-term thermal satisfaction of building occupants.            
Correlation analyses were based on continuous thermal comfort measurements and          
post-occupancy evaluation surveys from four air-conditioned office buildings in Sydney,          
Australia. We found that the majority of existing indices, especially those based on predicted              
mean vote (PMV) and predicted percentage dissatisfied (PPD) metrics, have a weak correlation             
with thermal satisfaction. The percentage of time outside a temperature range was the             
best-performing index from the standards ( ). A new index based on the percentage of     − .63r = 0          
time that daily temperature range is greater than a threshold reported the strongest             
correlation ( ) with thermal satisfaction for this dataset. The results suggest that − .8r = 0            
occupants’ long-term thermal comfort is influenced more by pronounced excursions beyond           
some acceptable temperature range and large variations in daily temperature than the average             
experience over time. These findings support the use of continuous monitoring technologies for             
long-term thermal comfort evaluation and inform potential amendments of international          
thermal comfort standards. 
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Thermal comfort, Building performance, Continuous monitoring, Post occupancy        
evaluation (POE), Workplace satisfaction, Data driven methods 

Nomenclature  

 = air temperatureT a  

 = operative temperatureT o  

 = mean radiant temperatureT r  

 = globe temperatureT g  

RH = relative humidity 

PMV = predicted mean vote 

PPD = predicted percentage dissatisfied.  

Graphical abstract 

 

 

1 Introduction 

It is an oft-cited statistic that Americans spend up to 90% of their time indoors [1], with                 
building occupants in many other countries having similar exposure to indoor environments.            
This notion that we are an indoor species is increasingly relevant in light of the mounting                
evidence that Indoor Environmental Quality (IEQ) significantly impacts occupants’ health,          
well-being and productivity [2]. As one of the main components of IEQ, thermal comfort is               
known to be a key determinant in the overall evaluation of indoor environments. While its               
ranked importance relative to other IEQ factors is debated, it is usually considered as one of the                 
most important [3]. Yet 40% of occupants in US office buildings are dissatisfied with their               
thermal environment [4]. Thermal comfort has been shown to be a basic requirement for              
occupants, meaning it contributes overwhelmingly towards dissatisfaction but little towards          
positive evaluations when it is satisfactory [5]. Thermal comfort is also known to interact with               
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other IEQ factors such as indoor air quality [6,7]. It is clear, then, that efforts to improve IEQ                  
and increase overall satisfaction should carefully consider the thermal comfort of building            
occupants. 

The importance of thermal comfort to overall satisfaction with indoor environments is            
particularly relevant in commercial office buildings, where building managers are motivated to            
minimise any disruption or distraction resulting from thermal discomfort in the interest of             
employee productivity. A conventional practice is to tightly control the indoor environment            
within a range of conditions predicted to satisfy the majority of people. This is the approach                
adopted in thermal comfort standards such as ASHRAE 55 [8], ISO 7730 [9], and EN 16798 [10],                 
which all specify different temperature ranges or Predicted Mean Vote (PMV) ranges as design              
guidelines for different building types and seasons. 

Along with guidelines for the physical environment, assessing thermal comfort over time            
in existing buildings also requires subjective evaluations by occupants. Post-Occupancy          
Evaluation (POE) is a general approach of obtaining feedback about a building’s performance             
once it is built [11–17]. In commercial office buildings, it is common practice to assess the                
long-term satisfaction of occupants using POE surveys (e.g. BUS survey [18], CBE survey [19],              
BOSSA survey [20], etc.). Although these surveys are conducted at a point of time, their               
questions are often general and applicable for longer term insights (three to six months or               
more [8]). When combined with continuous IEQ data, these POE responses can be used to               
calculate long-term comfort indices designed to assess a thermal environment over time.            
Because of the prohibitive cost of installing and maintaining environmental sensors for            
continuous monitoring, previous application of long-term comfort indices has been limited to            
design phase assessments using data from building performance simulations. This led the            
majority of long-term comfort indices recommended by standards to be grafted with popular             
thermal comfort models such as PMV in order to increase their robustness and usefulness.              
While PMV [21] continues to be the dominant model used for thermal comfort assessments,              
researchers have reported inaccuracies of PMV model in predicting people’s thermal sensation            
in real buildings [22,23]. Besides the indices found in standards, other methods [24] suitable for               
design phase have been proposed such as the Exeedance​M index [25] and three indices to               
assess summer overheating risk [26–28]. Surprisingly, existing long-term indices from the           
standards have never been validated against long-term physical monitoring data in actual            
buildings nor against occupant feedback. 

The recent proliferation of low-cost sensors for building IEQ measurements [29] and the             
rise of smart buildings have dissolved the barriers to assessing building performance with ​in situ               
long-term monitoring during the operational phase. These new sensor technologies have           
coincided with increasing awareness of the importance of long-term physical monitoring of            
built environments. Version 2 of the WELL Building Standard [30] now requires HVAC systems              
to both monitor and control air temperature, mean radiant temperature, relative humidity, and             
air speed in all regularly occupied spaces for the purposes of performance reporting and              
verification. A similar emphasis on sensors can be seen in the new RESET building performance               
standard [31] designed to certify buildings using continuous IEQ data gathered over three             
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months. These new standards highlight the growing interest in long-term indoor environmental            
monitoring for understanding and evaluating building performance. 

There is a clear need to investigate the accuracy of the indices from standards in               
evaluating long-term thermal comfort in commercial office buildings. Do they reliably predict            
long-term subjective evaluations of thermal environments? If so, which index most closely            
corresponds with occupants’ actual levels of satisfaction? If not, are there better indices to              
evaluate long-term thermal comfort? The principal aim of this paper is to evaluate the              
predictive skill of existing long-term thermal comfort indices from standards and to propose             
new indices based on continuous, ​in situ physical monitoring and subjective evaluations from             
four air-conditioned office buildings.  

2 Methods 

To address the aim of this study, we conducted secondary data analyses using the              
Building Occupants Survey System Australia (BOSSA) database [20] and the Sentient Ambient            
Monitoring of Buildings in Australia (SAMBA) IEQ measurement database [29], both of which             
were developed by the Indoor Environmental Quality Lab at The University of Sydney. Figure 1               
outlines the overall methodology. The BOSSA survey is comprised of retrospective questions            
regarding occupant long-term thermal satisfaction, and SAMBA measures the relevant thermal           
parameters continuously over time. We used responses to the BOSSA surveys to estimate             
long-term thermal comfort. A variety of physical indices calculated from the SAMBA database             
were then compared to the subjective index of long-term thermal comfort using Pearson             
correlation analysis. The stronger the correlation is, the better the physical index predicts the              
true long-term thermal comfort. The following sections describe the databases and data            
analyses in detail. 

 

Figure 1 Methodology Diagram. The 3D render is the SAMBA IEQ Monitoring device. 

2.1 BOSSA survey database and subjective index 

BOSSA is a POE survey tool designed to automate the process of collecting occupants’              
subjective assessments of their indoor environment [20]. Respondents are asked to rate their             
satisfaction with core building elements and functions such as overall design, physical            
environments, building maintenance, etc. As of July 2019, 91 BOSSA survey campaigns have             
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been completed totalling 7974 questionnaires. A survey campaign is designed to collect            
responses over a short period—often less than a month—but the questions in the survey              
reflect occupants’ long-term thermal comfort. 

The BOSSA Time-Lapse survey is comprised of 58 questions concerning occupants’           
satisfaction with different aspects of their workspaces, including six questions on their thermal             
experience—satisfaction with the indoor temperature in winter, indoor temperature in          
summer, air movement, humidity, air movement control and temperature control. These           
questions use a 7-point Likert scale of satisfaction, ranging from ​Dissatisfied (1) to ​Neither (4) to                
Satisfied (7). Different combinations of the six thermal questions in the BOSSA survey were              
used to calculate a single subjective index. Our testing found the average score of the following                
two questions had the strongest correlation with the calculated physical indices. 

1. Please rate the temperature conditions of your normal work area in winter. 
2. Please rate the temperature conditions of your normal work area in summer. 

For each individual response, we calculated the average of the summer and winter             
satisfaction scores as occupants’ satisfaction with temperature throughout the year (temp year            
score). The final subjective index representing the overall evaluation of a space was calculated              
as the mean of the temp year scores for all respondents located on the same floor of a building. 

2.2 SAMBA IEQ monitoring database  

SAMBA is a low-cost wireless sensor network designed to be placed on office work desks               
for continuous monitoring of common IEQ parameters (see [29] for a detailed overview).             
Measurement data for thermal comfort, lighting, acoustics and indoor air quality are collected             
and transmitted back to base at five-minute intervals. The 3D render of SAMBA in Figure 1                
shows the device is separated into two units, with the smaller unit measuring the four physical                
thermal comfort parameters—air temperature, globe temperature, air velocity and relative          
humidity. The two personal factors—metabolic rate and clothing level—are either fixed (1.1            
met for office work) or estimated using the dynamic predictive clothing model proposed by [32]               
and endorsed by ASHRAE 55-2017. These six factors are used to calculate the PMV and               
Predicted Percentage Dissatisfied (PPD) indices for every 5-minute sample. Table 1 shows that             
the accuracy of the SAMBA device closely aligns with the ‘desired’ equipment classification in              
ISO 7726 [33]. Over 200 SAMBA devices have been installed in 46 office buildings in Australia,                
mostly within Sydney, since the phased roll-out began in 2016. The monitored buildings were              
nominated by participating industry partners and are generally representative of the           
premium-grade commercial building stock in Australia. By July 2019, the SAMBA database            
contained a total of 13.5 million observations of thermal comfort parameters.  

Table 1 Measurement accuracy of the SAMBA IEQ Monitoring device compared to the ‘desired’ performance level specified in                  
ISO 7726 ​[34] 

 SAMBA 
ISO 7726 desired 

Tested range Average standard error of estimate 

Air temperature 18-27 °C 0.26 °C ±0.2 °C 

Globe temperature 18-27 °C 0.16 °C ±0.2 °C 
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Air speed 0.00-0.40 m/s 0.015 m/s ±0.02 m/s 

Relative humidity 20-70% 1.04% ±2% 

2.3 Data preparation 

Records from both the BOSSA and SAMBA databases are time-stamped and spatially            
tagged to either a zone or a floor of a building to allow spatiotemporal pairing of subjective                 
data with physical measurements. For this study, we matched responses from BOSSA            
campaigns to SAMBA measurements made on the same floor of the same building at              
close-to-or-during the time of the BOSSA survey campaign. We identified 33 pairings of BOSSA              
campaigns and SAMBA time series data (Table 2) in four office buildings in the central business                
district in Sydney, Australia. A total of 970 individual survey responses and 2.3 million physical               
measurements of thermal comfort parameters were used in our analysis. Table 2 summarizes             
the time of the BOSSA survey campaign, number of responses for each survey campaign,              
periods of physical monitoring, and the number of workdays (excluding weekends) of            
monitoring. Four survey campaigns on level 28 in building D had less than ten responses, and                
subsequent analyses were designed to address the statistical significance from such low            
numbers. This will be discussed further in the results section. 

Comfort standards do not give clear guidelines to determine the minimum or ideal range              
of continuous measurements for this type of analysis. Long-term assessment criteria found in             
ISO 7730, EN 16798 and ASHRAE 55 simply state that the monitoring period should be               
representative of the conditions overall. To best address this, we prioritised instances where             
there was an entire year of SAMBA data (i.e. Building D) because the total variance in the                 
thermal environment can be captured over the typical annual certification period used by most              
rating systems. For buildings without a full year of measurements, we used any available              
SAMBA data beginning or ending within one month of a BOSSA campaign (i.e. Building A, B, and                 
C). 

After data preparation, there was one year of measurements for Building A and D, 87               
workdays for Building B, and 108 workdays for Building C. We wondered if the shorter               
monitoring periods in Building B and C would sufficiently characterize the long-term conditions             
experienced by the occupants, and whether IEQ measurements collected after the BOSSA            
campaign are useful given that the long-term satisfaction questions are retrospective. Visual            
inspection of the SAMBA data from the building zones showed relatively stable conditions             
throughout the monitoring period. Comparing air temperature before and after the survey            
campaigns in the 10 pairs of datasets where the BOSSA campaigns overlapped the SAMBA              
measurements, the average difference in mean air temperature was 0.27 °C ± 0.26 °C (standard               
deviation). These small differences indicate that the shorter datasets available in Buildings B             
and C are sufficient for characterising the low temperature variance expected in            
premium-grade air-conditioned offices. They also suggest that retrospective survey responses          
are likely to be just as relevant to prospective physical measurements. We therefore included              
these datasets in our analysis. 
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Table 2 Matched BOSSA survey campaigns and SAMBA measurements included in our analyses 

Building Floor No. of survey 
responses 

BOSSA start BOSSA end SAMBA start SAMBA end Workdays 
of SAMBA 

A Level 19 20 2017-03-23 2017-03-30 2017-04-03 2019-03-15 270 

B Level 10 107 2018-04-20 2018-05-18 2018-07-16 2018-12-12 87 

B Level 9 74 2018-04-20 2018-05-17 2018-07-16 2018-12-06 86 

C Level 12 19 2018-02-22 2018-03-07 2018-01-26 2019-05-14 302 

C Level 2 31 2018-09-26 2018-10-08 2018-06-29 2019-04-29 217 

C Level 21 48 2016-11-21 2016-12-01 2017-02-01 2018-02-01 262 

C Level 21 45 2017-06-09 2017-06-22 2017-02-01 2018-02-01 262 

C Level 6 39 2016-11-21 2016-11-30 2016-09-09 2017-05-17 108 

C Level 6 44 2017-06-07 2017-11-27 2016-09-09 2017-05-17 108 

D Level 25 20 2016-12-06 2016-12-15 2016-09-15 2017-09-29 261 

D Level 25 11 2018-03-12 2018-03-14 2017-03-01 2018-03-20 186 

D Level 25 14 2018-08-14 2018-09-06 2017-08-01 2018-09-10 180 

D Level 25 18 2019-05-01 2019-05-08 2018-05-17 2019-07-02 287 

D Level 26 19 2016-12-06 2016-12-19 2016-09-15 2017-09-29 266 

D Level 26 15 2018-03-12 2018-03-15 2017-03-01 2018-03-20 275 

D Level 26 21 2018-08-14 2018-08-22 2017-08-01 2018-08-30 258 

D Level 26 22 2019-05-01 2019-05-20 2018-05-01 2019-07-16 230 

D Level 27 30 2016-12-06 2016-12-19 2016-10-11 2017-09-29 233 

D Level 27 19 2018-03-12 2018-03-16 2017-03-01 2018-03-20 257 

D Level 27 30 2018-08-14 2018-09-03 2017-08-01 2018-09-06 235 

D Level 27 10 2019-05-01 2019-05-06 2018-05-01 2019-07-17 219 

D Level 28 7 2016-12-06 2016-12-19 2016-10-10 2017-09-29 249 

D Level 28 3 2018-03-12 2018-03-14 2017-03-01 2018-03-20 275 

D Level 28 8 2018-08-14 2018-09-06 2017-08-01 2018-09-10 290 

D Level 28 3 2019-05-01 2019-05-06 2018-05-01 2019-07-16 316 

D Level 29 34 2016-12-06 2016-12-27 2016-10-10 2017-09-29 252 

D Level 29 25 2018-03-12 2018-03-19 2017-03-01 2018-03-20 275 

D Level 29 29 2018-08-14 2018-09-10 2017-08-01 2018-09-10 262 

D Level 29 23 2019-05-01 2019-05-06 2018-05-01 2019-07-16 272 

D Level 30 49 2016-12-02 2016-12-19 2016-08-09 2017-09-29 298 

D Level 30 40 2018-03-04 2018-03-19 2017-03-01 2018-03-20 275 

D Level 30 46 2018-08-14 2018-08-27 2017-08-01 2018-09-10 289 

D Level 30 47 2019-05-01 2019-05-27 2018-05-01 2019-07-16 315 
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To ensure reliable time series data from the SAMBA devices, the SAMBA datasets was              
cleaned following these steps: 

1. A subset of the SAMBA database was selected to include time series data from              
buildings and floors with paired BOSSA surveys.  

2. The SAMBA data was filtered, keeping records where , ,        00 < T a < 5  00 < T g < 5  
, to remove erroneous measurements caused by device00 < T r < 5  ≤PMV ≤3− 3         

malfunction. 
3. For each record, the operative temperature was calculated as the average of      T o        T a  

and . ASHRAE 55 states that simple averaging is an appropriate method when air T r              
speed is below 0.2 m/s, which was true in 95% of our dataset. 

4. Cases where were removed. Time series plots of in each zone  4T| o − T a| ≥        T || o − T a     
showed occasional spikes over 4 °C and up to 10 °C. It is difficult to determine why                 
this occurred in each instance, but it is likely attributable to noise from equipment              
error or highly-localised perturbations near the device that was not representative of            
the actual physical environment of the zone. 

We performed additional filtering and calculations required to conduct later analyses. In            
many cases, there are multiple SAMBA devices in different zones of a given floor, so the                
average of all the zones was used to summarise the thermal environment of the entire floor.                
Then, occupied hours (7:00 to 19:00 on weekdays) were determined by measured CO​2 level and               
used to remove data outside of occupancy. The hourly mean of , , PMV, and PPD was           T a  T o      
calculated because most of the suggested indices require use of hourly values. Finally, seasons              
were assigned to the dataset, with May to October labelled as winter and November to April as                 
summer. 

2.4 Long-term physical indices 

ISO 7730, EN 16798, and ASHRAE 55 recommend a number of physical indices to              
evaluate a thermal environment over time. For each of the 33 SAMBA datasets, we calculated               
existing indices recommended by ISO 7730, EN 16798, and ASHRAE 55, and five new types of                
indices that we brought to test (Table 3). 

Table 3 Existing and new physical indices tested in this study for long-term thermal comfort evaluation  

Index ISO 7730 EN 16798 ASHRAE 55 

Percentage of time outside a PMV range • • • 

Percentage of time outside an operative temperature range • • • 

Degree-hours • •  

PPD-weighted • •  

Average PPD •   

Sum PPD •   

Mean temperature 

Newly proposed 

New temperature ranges for percentage-hour and degree-hours 

Temperature variance 

Daily range outlier 
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Combined index 

 

2.4.1 Existing long-term physical indices  

The six existing types of indices recommended by comfort standards contain a total of 23               
individual physical indices. The calculation methods for them are given in Equations 1 – 10. 

1) Percentage of time outside a PMV range 

ndex ×100#i =  total number of  occupied hours
number of  hours that PMV >limit | | (1)   

ISO 7730 and EN 16798 prescribe three PMV classes (Table 4), leading to three indices in                
this type: , , and .|PMV | .2% > 0 |PMV | .5% > 0 |PMV | .7% > 0   

Table 4 Comfort classifications based on PMV ranges and corresponding PPD levels prescribed in ISO 7730 and EN 16798  

 PMV range PPD (%) 
ISO 7730 class A, EN 16798 class I –0.2 < PMV< +0.2 <6 
ISO 7730 class B, EN 16798 class II –0.5 < PMV< +0.5 <10 
ISO 7730 class C, EN 16798 class III –0.7 < PMV< +0.7 <15 

 

2) Percentage of time outside a specified operative temperature range 

ndex ×100#i =  total number of  occupied hours
number of  hours that T  outside the range o (2)   

ISO 7730 and EN 16798 recommend operative temperature ranges for different building            
types (i.e. different activities) and seasons (i.e. different clothing level). Table 5 shows the              
operative temperature ranges recommended for offices, and thus there are six indices            
corresponding to six temperature ranges. 

Table 5 Comfort classifications based on operative temperature ranges for summer and winter in office buildings in European                  
standards 

  Summer (°C) Winter (°C) 
ISO 7730 class A 23.5 – 25.5, 4.5T o.optimal = 2  21 – 23, 2T o.optimal = 2  

ISO 7730 class B 23 – 26, 4.5T o.optimal = 2  20 – 24, 2T o.optimal = 2  

ISO 7730 class C 22 – 27, 4.5T o.optimal = 2  19 – 25, 2T o.optimal = 2  

EN 16798 class I <= 25.5 >= 21 
EN 16798 class II <= 26 >= 20 
EN 16798 class III <= 27 >= 19 

 

3) Degree-hours 

The degree-hours index is calculated as the product sum of the weighting factors and              
exposure time (Eq 5). The weighting factor for each hour is associated with the exceedance               
magnitude of operative temperature beyond the specified range. The weighting factor is            
calculated differently in ISO 7730 (Eq 3) and EN 16798 (Eq 4). This type includes six indices                 
corresponding to the six different ranges in Table 5. 
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1 ,  T  or T  0,  T  #wf ISO = { + T −T| o o.limit|
T −T| o.optimal o.limit|  o ≥ T o.limit.upper o ≤ T o.limit.lower  o.limit.lower < T o < T o.limit.upper (3)   

|T |,  T  or T  0,  T  #wfEN = { o − T o.limit  o > T o.limit.upper o < T o.limit.lower  o.limit.lower ≤ T o ≤ T o.limit.upper (4)   

ndex f ·t#i = ∑
 

 
w (5)   

4) PPD-weighted 

The hours during which PMV exceeds the range are summed and weighted by a factor               
determined by PPD. The calculation of weighting factors is different between ISO 7730 (Eq 6)               
and EN 16798 (Eq 7) but the formula for the PPD-weighted index is identical (Eq 8)—product                
sum of the weighting factors through time. There are three PMV classes and two calculation               
formulae resulting in six indices for this type. 

,  |PMV |≥|PMV | 0,  PMV | #wf ISO = { PPDPMV .limit

PPDPMV .actual  actual limit  PMV|
| actual

|
| < | limit (6)   

,  |PMV | PMV | 0,  |PMV | #wfEN = { PPDPMV .limit

PPDPMV .actual  actual > | limit  PMV|
| actual

|
| ≤ limit (7)   

ndex f ·t#i = ∑
 

 
w (8)   

is the PPD corresponding to the actual PMV. is the PPDPPDPMV .actual          PPDPMV .limit     
corresponding to  as listed in Table 4.PMV limit   

5) Average PPD 

ndex #i =
PD∑

 

 
P

total number of  occupied hours (9)   

6) Sum PPD 

ndex PD#i = ∑
 

 
P (10)   

The different time series lengths of the 33 SAMBA datasets effects the calculation of the               
time-dependent indices i.e. degree-hours, PPD-weighted, and Sum PPD. To address this, we            
normalized those indices by dividing them by the total number of hours measured. 

2.4.2 New long-term physical indices 

We tested a variety of new physical indices based on different IEQ parameters, many of               
which were not correlated with long-term comfort survey responses, i.e. those based on air              
speed and humidity. This section describes new physical indices that showed correlation with             
subjective evaluation to some degree. Existing indices found in standards use operative            
temperature as an input, but air temperature is more readily available in almost any building.               
For this reason, we decided to test the performance of the new indices using both operative                
and air temperature. The calculation of the new indices are as follows. 

1) Mean temperature 
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This type of indices uses the mean  and mean  of each SAMBA dataset.T a T o   

ndex #i =
 or  ∑

 

 
T a ∑

 

 
T o

total number of  occupied hours (11)   

2) New temperature ranges 

In this category, percentage-hour and degree-hour indices are calculated using Eq 2, Eq 4              
and Eq 5 but with different temperature ranges to those defined in ISO 7730 and EN 16798. The                  
new temperature ranges for and are derived using percentiles, mean, and standard    T a   T o         
deviation of the SAMBA time series data. A total of 20 indices of this type were tested and are                   
summarised in Table 6. 

Table 6 Temperature ranges derived from time series data that were used in the calculation of the new comfort indices. Four are                      
based on percentiles and one on standard deviation, with different temperature ranges specified for summer and winter                 
seasons. Measured temperatures were quite stable in the monitored offices so the derived temperature ranges are similar. 

  Operative temperature °C Air temperature °C 

Range name Meaning Summer Winter Summer Winter 

P20 The 40th to 60th percentile 23.6 – 24.0 23.3 – 23.6 23.3 – 23.7 23.1 – 23.5 

P40 The 30th to 70th percentile 23.4 – 24.2 23.1 – 23.8 23.1 – 23.9 22.9 – 23.7 

P60 The 20th to 80th percentile 23.2 – 24.5 22.9 – 24.0 22.9 – 24.2 22.7 – 23.9 

P80 The 10th to 90th percentile 22.9 – 25.0 22.6 – 24.4 22.6 – 24.8 22.4 – 24.3 

1sd Mean ± 1sd 22.9 – 25.0 22.7 – 24.2 22.6 – 24.8 22.5 – 24.2 

3) Temperature variance 

This index is based on the sample variance of the hourly average temperature for each               
SAMBA dataset and calculates the index as: 

ndex  or #i = n−1

∑
n

i=1
(T −T )a, i a

2

n−1

∑
n

i=1
(T −T )o,i o

2

(12)   

where n = total number of occupied hours; and are the sample mean        T a   T o      
temperatures. 

4) Daily range outlier 

The range of temperatures measured over each business day is used to calculate the              
index as the percentage of days where that range exceeds a nominal threshold. 

ndex ×100#i = total number of  occupied days
number of  days that T  or T  daily range>a threshold a o (13)   

For this analysis, we set the threshold based on percentiles of the observed daily ranges               
in the SAMBA time series data. Ten different values were tested (Table 7) to determine the                
threshold with the strongest correlation to thermal satisfaction. Weekly ranges were tested but             
reported weaker correlations than daily variance and were therefore dropped from the            
analysis. 
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Table 7 Percentile thresholds tested for the daily range outlier indices. Stable conditions in the monitored offices results in a daily                     
variance of less than 2.5°C in most cases 

Percentile 50th  60th  70th  80th  90th  
 daily range (°C) T a  1.31 1.48 1.69 2.00 2.48 

 daily range (°C) T o  1.20 1.36 1.56 1.83 2.29 

5) Combined index 

We combined the best-performing existing index and the best-performing new index in            
Eq 14. This normalised index from 0 to 100 considers if the absolute temperature is within an                 
acceptable range and whether the daily variance in temperature exceeds the percentile            
threshold.  

ndexi = ( total number of  occupied hours
number of  hours that T  or T  outside ISO B ranges a o + total number of  occupied days

number of  days that T  or T  daily range>the 80th pera o (14)  

2.5 Correlation analysis 

Pearson correlation analysis was used to investigate the linear relationship between the            
subjective index and physical indices. We chose to report the Pearson coefficient ( ) because it            r    
is independent of the unit of measurement and is symmetric between X and Y, removing the                
need to scale the input data. There is no consensus on what is considered a strong linear                 
relationship. Interpretation of the Pearson coefficient varies between fields and depends on the             
stated aims of the study. For clinicians, 0.2, 0.5, and 0.8 were suggested as the thresholds to                 
differentiate weak, moderate, and strong associations [35]. For psychological analysis, even           
lower thresholds may be used i.e. 0.1, 0.2, and 0.3 [36]. In general statistics, threholds can be                 
0.3, 0.5, and 0.7 [37], or 0.1, 0.3, and 0.5 [38], or 0.3 and 0.5 [39]. Regardless of the differences                    
between disciplines, a higher correlation coefficient is more desirable as it indicates a stronger              
relationship between the physical index and the subjective index. In this analysis, we use              
absolute coefficient values of 0.3, 0.5, and 0.7 (the 30​th​, 50​th​, and 90​th percentiles of the resulted                 
59 coefficients) to indicate weak, moderate, and strong linear relationships respectively, and            

 as indicating statistical significance of the correlation..05p < 0  

Given the small sample size (N = 33) we used 10-repeated-10-fold-cross-validated linear            
regressions for all correlation analyses to improve the robustness of the results. In 10-fold              
cross-validation, the original sample is randomly partitioned into ten equal size subsamples.            
Nine subsamples were used to train a linear regression model, and the remaining single              
subsample was the validation data for testing the model. This process was repeated ten times               
(the folds), with each of the ten subsamples used exactly once as the validation data. The                
10-fold cross-validation was then repeated 10 times, generating 100 (10*10)          
training-and-testing subsamples for each of the physical indices. Mean Absolute Error (MAE),            
the average absolute difference between observed and predicted outcomes, measures the           
performance of the indices such that the lower the MAE, the better the index. 

All analyses were performed using R Studio and R version 3.6.1 (2019-07-05) [40], along              
with the ​dplyr v0.8.3 [41], ​tidyr v0.8.3 ​[42], ​reshape2 ​v1.4.3 [43], ​lubridate v 1.7.4 [44], ​zoo v                 
1.8.6 [45], ​caret v6.0.84 [46], ​ggplot2 v3.2.0 [47], ​ggpubr v0.2.1 [48], and ​gridExtra v2.3 [49]               
packages. 
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3 Results 

Figure 2 presents the Pearson correlation coefficients between the physical thermal           
comfort indices and the subjective index. The physical indices may be understood as types of               
severity measures, where higher values indicate greater dissatisfaction with the thermal           
environment. For this reason, we expect negative correlations between the physical indices and             
the subjective index.  

 

Figure 2 The statistical relationships between the long-term comfort physical indices and reported thermal satisfaction index for                 
23 existing indices on the left (purple) and 36 new indices on the right (green). Indices are grouped by type, and the Pearson                       
correlation coefficients for each index are given. Darker shading denotes statistical significance of the correlation (p<0.05). 
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Of the existing indices found in thermal comfort standards, only two—​degree-hours           T o  
outside ISO B ​and ​% outside ISO B—​have a strong linear relationship with the subjective    T o            
index. This indicates that the more times and the larger deviations that was outside a            T o     
specified temperature range, the more occupants felt dissatisfied over time. Besides, physical            
indices based on PMV/PPD all reported weak linear relationships with thermal satisfaction. This             
may be due to the inaccuracies of steady-state heat balance models in non-uniform and              
dynamic environments. 

The performance of the new indices shown in Figure 2 indicate that those based on               
mean temperatures, modified temperature ranges, and overall temperature variance have          
weak to moderate linear relationships with the subjective comfort measure. However, the daily             
range outlier indices show strong negative relationships to thermal satisfaction and           
out-perform most of the existing indices. The highest correlation coefficient is 0.8 for the daily               
air temperature variance above the 80​th percentile (2 ​°​C). In other words, increases in the daily                
occurrences of an air temperature range greater than 2 ​°​C are highly correlated with lower               
occupant thermal satisfaction for this dataset. 

Combining the better-performing existing index with the new range outlier index for            
both and ​resulted in slightly lower correlation coefficients than the range outlier indices T o   T a             
alone. However, the combined indices still report strong linear relationship for both the             
operative ( and air temperature ) variants. The slight decrease in − .74) r = 0    r − .71( = 0       
correlation strength in the air temperature index may be due to ISO class B ranges being                
specified for operative temperatures. ​Nevertheless, the new combined indices outperform any           
of the existing indices and have the advantage of defining a static temperature range              
modulated by a dynamic component. 

To ensure robustness and further validate the results of the correlation analysis, we             
performed 10-repeated-10-fold-cross-validated linear regression on both the existing indices         
and the newly proposed indices. The results of the linear regressions are shown alongside the               
best performing indices from each index type to aid comparison in Table 8. The ranked               
performances of the old and new indices are the same in both regression analyses, indicating               
that the simple linear regression results are robust.  

Table 8 Results of the simple linear regression and cross-validated linear regression of long-term comfort physical indices and                  
thermal satisfaction subjective index. ​Underlined​ is the best performing existing index. ​Bold​ is better performance than baseline.  

Index Type Parameter 
Used 

Linear Regression 10 Repeated 10-Fold Cross-Validation of 
Linear Regression Models 

Strongest Index Name r Strongest Index Name MAE 

Existing 
indices  

T a   %  outside ISO BT a  -0.45 %  outside ISO BT a  0.385 

T o   %  outside ISO BT o  -0.63 Degree-hours  outside ISO BT o  0.325 

Mean 
temperature 

T a    meanT a  -0.49  meanT a  0.357 

T o    meanT o  -0.43  meanT o  0.366 

New 
temperature 
range 

T a   Degree-hours  outside P20T a  -0.55 Degree-hours  outside P40T a  0.354 

T o   Degree-hours  outside P20T o  -0.59 Degree-hours  outside P20T o  0.318 

Temperature 
variance 

T a    varianceT a  -0.5  varianceT a  0.373 
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T o    varianceT o  -0.37  varianceT o  0.366 

Daily range 
outlier 

T a   %  daily range > 2 °CT a  -0.80 %  daily range > 2 °CT a  0.266 

T o   %  daily range > 1.83 °CT o  -0.74 % daily range > 1.83 °CT o  0.268 

Combined 
index 

T a   %  outside ISO B + %  dailyT a T a  

range > 2 °C 

-0.71 %  outside ISO B + %  dailyT a T a  

range > 2 °C 

0.326 

T o   %  outside ISO B + %  dailyT o T o  

range > 1.83 °C 

-0.74 %  outside ISO B + %  dailyT o T o  

range > 1.83 °C 

0.286 

We investigated the effect of outliers on the results of the linear regression using the               
Cook’s distance test [50] to identify high leverage points. The Cook’s distance measures the              
change in regression models when each of the observations is removed. Higher values in the               
Cook’s distance indicate that removing a given observation will lead to a large change in the                
regression. When the Cook’s distance is greater than 4/N (N = 33 in our analysis), the                
observation is deemed a high leverage point, also known as an outlier. Figure 3 presents               
scatterplots for the 12 best performing indices from each index type listed in Table 8.               
Coefficients are inset for both the regression with all data points (r) and with outliers removed                
(r.new). As expected, removing high leverage points increased correlation strength in most            
cases. Though not marked in Figure 3, most outliers are from building D level 28 where the                 
number of survey responses was small. 
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Figure 3 Scatterplots of the best-performing physical indices for each type and the thermal satisfaction subjective index (N = 33).                    
Circles are data points used in both regressions and crosses are high leverage points (outliers) that were removed for the                    
“r.new” regressions. 

4 Discussion 

In the following section we address some of the key findings that emerged from this               
analysis, including lessons learned when preparing time series data from a continuous IEQ             
monitoring system. We discuss some interpretations of the results along with the limitations of              
the study. 

4.1 Preparing time series data 

Removing any IEQ measurements made during unoccupied hours seems an obvious part            
of the data preparation procedure but is surprisingly absent from any of the reviewed              
standards or guidelines. We found that applying rules to filter out unoccupied hours in the time                
series data meaningfully changed the correlation analysis results. If data from occupied hours             
(7:00 to 19:00) including weekends are used, then the best-performing existing index has a              
Pearson coefficient of -0.48. If the complete time series data is used without any time filters,                
then the coefficient reduces further to -0.35. In both cases, the relationship is weaker than the                
one we reported using occupied hours from weekdays only (-0.63). The reason for this is               
because buildings management systems are programmed to tightly control indoor          
environments during occupied hours but then cut back as occupant loads reduce, i.e. at night               
and on weekends. It is therefore important to carefully select the occupied hours when              
calculating long-term comfort indices for pairing with subjective evaluations so that the IEQ             
measurements reflect the actual conditions experienced by occupants. 

4.2 Use of air or operative temperature  

Most standards list operative temperature, , as the input parameter for long-term     T o        
comfort indices on the grounds that it is a better characterisation of the thermal environment               
that occupants are exposed to than air temperature, . Operative temperature encompasses        T a     
air temperature and mean radiant temperature. However, the results of the linear regressions             
in Table 8 show that half of the indices better predict occupants’ long-term satisfaction using               

and the other half using . This finding raises the important question of whichT a       T o          
temperature to use when evaluating the long-term performance of a thermal environment.  

It is difficult to explain why the correlation coefficients differ, albeit slightly, when using              
or . Figure 4 shows the comparison of both temperatures in the four monitored officeT a   T o               

buildings. Differences between and were small for most floors—less than 0.5 °C—with   T a   T o          
greater variance in than . An analysis [51] of field measurements in ASHRAE Global   T a   T o           
Thermal Comfort Database II [52] and additional laboratory testing reported similar differences            
in air and radiant temperatures, and they suggested as an appropriate estimate of mean        T a        
radiant temperature when it is not readily available. Moreover, recent studies have reported             
systematic errors when using traditional globe thermometers to measure radiant temperature           
[53,54]. For these reasons, it seems is sufficient as an input parameter for calculating      T a          
long-term indices when has not been measured. This has the added advantage of enabling   T o             
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the use of continuous temperature records from building management systems for long-term            
evaluation of existing buildings. 

 

 

Figure 4 Comparison of air temperature and operative temperature in the studied SAMBA datasets. Red dashed line is zero. The                    
lower and upper hinges of the boxplots correspond to the 25th and 75th percentiles. The middle black bars are the medians. 

4.3 Specifying index thresholds  

We reported a higher correlation between the middle temperature range specified in            
ISO 7730 (ISO class B) and occupants’ thermal satisfaction compared to both the narrower              
(class A) and the wider range (class C). A similar pattern was observed for the new daily range                  
outlier indices also, where the correlation with the 80​th percentile was stronger than with the               
70​th or 90​th percentiles. One possible explanation for this finding is that the index used to                
characterise the physical environment needs to have an appropriate level of sensitivity to             
distinguish periods when thermal conditions in an office are satisfactory from periods when it is               
unsatisfactory. If the temperature range or the threshold for the daily range outlier indices are               
too narrow, then the likelihood of a false negative classification is increased (i.e. conditions are               
measured to be outside the range or threshold even though occupants report satisfaction).             
Conversely, setting the boundaries too wide increases the likelihood of a false positive             
classification (i.e., conditions are measured to be within the range or threshold even though              
occupants report dissatisfaction).  

Results from the monitored buildings in this study showed that ISO class B temperature              
range and a 2 °C threshold for daily range are the best indices to estimate occupant thermal       T a            
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satisfaction. It is possible, however, that the most appropriate index range or thresholds may              
vary with occupancy type, floor layout, and/or building design. For this reason, we caution              
against prematurely prescribing those specific range or threshold values as design guidelines for             
all buildings. Doing so would encourage excessive HVAC energy use to maintain stable indoor              
conditions during building operation. Instead, careful attention should be given to correctly            
specifying the index thresholds to best align with the thermal expectations of occupants for a               
given building. 

4.4 Occupant adaptation and sensitivity to variation 

The results of the correlation analysis showed mean operative temperature has a            
moderate linear relationship with the subjective evaluation ( ), yet the frequency that       − .43r = 0      
operative temperature is outside a range is a better predictor of thermal (dis)satisfaction (             

). Furthermore, absolute variation in operative temperature has a lower .63r =  − 0           
correlation with the long-term thermal satisfaction ( ) than the frequency with       .37r =  − 0      
which daily temperature changes exceed a wide range ( ). These findings indicate the        − .74r = 0      
possibility of more extreme excursions beyond some acceptable temperature range holding           
greater influence over occupants’ long-term satisfaction than the average experience over           
time. Although the monitored buildings are centrally conditioned, the following section will            
explore the results within the framework of adaptive comfort theory. Doing so allows us to               
connect our findings to the idea that occupants’ thermal expectations and the availability of              
adaptive opportunities can shape long-term thermal satisfaction in a building. 

One of the central tenets of adaptive comfort theory is that occupants actively respond              
to changing indoor environments by adjusting their behaviors and expectations [55]. The            
efficacy of those adjustments is influenced by a number of factors ranging from building type               
and design, workplace culture, and thermal physiology. Occupants are generally forgiving of            
moderate temperature variations because they are able to successfully regulate their personal            
environment to achieve thermal comfort. A common example is putting on a sweater when it is                
cool or initiating a desk fan when it is warm. However, instances in which the magnitude of the                  
variation exceeds the adaptive ability of occupants is much more likely to lead to expressions of                
dissatisfaction. In such cases, the indoor environment did not meet the expectations of the              
occupant or their capacity to adapt. 

The results suggested that more extreme deviations in comfort may dominate           
occupants’ long-term evaluation of the space. The evidence supporting this statement is the             
strong negative relationship reported between the frequency that varies greater than 2 °C        T a       
in a day and the reported thermal satisfaction. Interestingly, this threshold is identical to field               
observations made by Humphreys in 1970s [56] who reported very similar findings. However,             
the four monitored buildings are premium-grade offices with HVAC systems designed to deliver             
a narrow temperature range. Measurements of air temperature reported in Table 6 and Table 7               
show that there is little variation in normal daily conditions in these offices. The majority of                
BOSSA survey respondents (76%) had worked in their building for more than six months, so it is                 
reasonable to assume that they had come to expect uniform temperatures considering the             
reported impact of thermal history on thermal expectations [57]. When unexpected deviations            
in those conditions occurred, those building occupants reported lower satisfaction. It is            
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possible, then, that the source of dissatisfaction is not with the variation in temperature from               
some absolute target range but rather with the fact that the indoor environment did not deliver                
the conditions that building occupants had come to expect.  

The question emerging from the results of our study is whether dissatisfaction arises             
from variability in temperature ​per se​, or if it is because occupants were not able to properly                 
respond and adapt to conditions that did not meet their expectations. Simply concluding that              
occupants of these buildings prefer stable daily temperatures would contradict a large amount             
of extant literature on adaptation and variability. For example, a meta-analysis of ASHRAE             
Global Thermal Comfort Database II [58] showed that acceptable temperatures extend across a             
wide range of conditions, and vary depending on building type and climate/culture. And there is               
emerging evidence that building occupants adapt to the indoor temperatures they experience            
on a day-to-day basis irrespective of climate or building conditioning strategy [59]. These             
studies all highlight the importance of occupants’ expectations of a building in defining their              
comfort temperatures. Our results support this idea by showing that thermal satisfaction is less              
about the absolute indoor temperature than it is about exceeding some variability threshold. Or              
put another way, instances of dissatisfaction occur when the magnitude of variation exceeds             
the adaptive opportunities available to occupants. It may be that variability is only a problem               
when building occupants have come to expect constant, stable conditions that are afforded by              
modern HVAC systems. One practical solution would be to relax tight setpoint control and              
provide occupants with personal comfort systems to augment their ability to respond to             
variations in zone temperatures [60]. 

4.5 Proposed use of new index in standards 

Given that most of the existing indices found in current international comfort standards             
do not correlate well with long-term thermal satisfaction, there is a need to propose new               
indices that better predict occupants’ evaluations of indoor environments. Although the daily            
range outlier indices showed the strongest correlation coefficients, they do not explicitly set             
reasonable limits on permissible absolute indoor temperatures. Measurements from the          
monitored buildings clearly show that indoor temperatures fell within what most people would             
consider a comfortable range. However, it is unlikely that an indoor temperature of 10 °C               
controlled within ±1°C would result in higher thermal satisfaction. Therefore, the most logical             
method for standards bodies to adopt would be the combined index that consider both the               
comfort temperature range and the daily variability. Eq 15 shows the general form of the               
recommended new index. This index can be used to evaluate the actual performance of a               
thermal environment over time for either building certification or comparison with other            
buildings including benchmarking. 

ndex #i = 2
%T  outside specif ied ranges +%T  daily range >a thresholda a (15)   

For centrally conditioned office buildings, where occupants have less adaptive          
opportunities (respondents in our sample were on average slightly dissatisfied with their            
adaptive freedom), ISO class B temperature ranges of 23 °C to 26 °C in summer and 20 °C to 24                    
°C in winter are suitable for the temperature range component of the new index (Eq 16). 
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ndex )×100/2i = ( total number of  occupied hours
number of  hours that T  outside ISO class B ranges a + total number of  occupied days

number of  days that T  daily range>2 °C a (16)  

4.6 Study limitations 

The most obvious limitation of our study is the homogeneous building sample in our              
dataset. The four buildings are all centrally-conditioned, premium-grade offices located in the            
same city. Similar analyses performed for different building types, designs, and operations            
across other locations, climates, and cultures are necessary before generalizing the findings,            
particularly the value of the variance threshold. Another limitation is the slight mismatch             
between the records in BOSSA and SAMBA databases due to the phased roll out, resulting in                
only four buildings with paired subjective and objective measurements. Furthermore, the           
BOSSA survey recorded the floor on which the respondents were working but not the zone. This                
necessitated the aggregation and averaging of both survey responses and physical           
measurements at the floor level. An ideal research design would directly measure the             
conditions at each occupant’s desk over a year and routinely solicit surveys designed to              
evaluate their long-term thermal comfort. This presents significant logistical challenges and           
costs, and may become increasingly difficult considering the growing popularity of           
activity-based office design. Averaging by location is a simplified but realistic approach for a              
study of this kind. Future research efforts should aim to increase the sampling granularity by               
spatiotemporally tagging responses and IEQ measurements at the zone level of a building to              
improve the robustness of subsequent correlation analyses. 

5 Conclusion 

This paper presents the results of correlation analyses between continuous indoor           
thermal comfort measurements and long-term occupant thermal satisfaction in four          
air-conditioned office buildings in Sydney, Australia. We tested the performance of 23 existing             
indices found in international comfort standards and 36 new indices. The analysis yielded the              
following findings: 

1) Existing indices based on the PMV heat-balance model and the associated PPD do             
not correlate well with long-term subjective evaluations of the thermal environment           
( ).0.22r| | ≤   

2) The best-performing existing index is the percentage of time that operative           
temperature falls outside the ISO 7730 Class B temperature ranges ( ).− .63r = 0   

3) The mean and overall variance of temperature had moderate correlations with the            
thermal satisfaction measure ( ).0.5r| | ≤  

4) A newly proposed index based on daily temperature range had the strongest            
correlation ( ) and out-performed all existing indices. The frequency of daily − .8r = 0           
temperature range exceeding 2 °C was a good measure of thermal (dis)satisfaction in             
this dataset. 

5) Standards bodies should endorse a combined index to evaluate the long-term           
thermal comfort of indoor environments based on continuous monitoring of air           
temperature. The proposed combined index (section 4.5) includes both the          
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frequency of temperature falling outside a specified range and the daily variation in             
temperature beyond a threshold. 

As far as we are aware, this is the first evaluation of existing long-term thermal comfort                
indices using data collected in real office buildings. The results suggest that occupants’ thermal              
satisfaction with a space is dominated by the frequency and severity of temperature excursions              
outside an acceptable range and beyond a daily variability threshold. This implies that building              
managers should limit the number of days where temperatures move outside the range that              
occupants have come to expect. It may be possible to reduce HVAC energy consumption by               
providing greater adaptive freedom to occupants and promote a culture of self-resilience so             
that expected temperature ranges can be wider than the ones reported in this study. Lastly, we                
suggest removing PMV/PPD-based long-term comfort indices from comfort standards and to           
include the proposed combined index based on temperature range and daily range exceedance             
(Eq 15) for long-term comfort evaluations during building operation phase. The threshold value             
in the combined index should be context-specific, and we encourage researchers to conduct             
similar correlation analyses for other locations and building types to improve the robustness of              
this novel method. 
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