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O. Botner,26 J. Böttcher,11 E. Bourbeau,4 J. Bourbeau,27 F. Bradascio,2 J. Braun,27 S. Bron,6

J. Brostean-Kaiser,2 A. Burgman,26 J. Buscher,11 R. S. Busse,28 T. Carver,6 C. Chen,29 E. Cheung,22

D. Chirkin,27 S. Choi,30 L. Classen,28 A. Coleman,31 G. H. Collin,10 J. M. Conrad,10 P. Coppin,32 P. Correa,32

D. F. Cowen,8, 33 R. Cross,21 P. Dave,29 C. De Clercq,32 J. J. DeLaunay,8 H. Dembinski,31 K. Deoskar,5

S. De Ridder,34 P. Desiati,27 K. D. de Vries,32 G. de Wasseige,32 M. de With,35 T. DeYoung,36 A. Diaz,10
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F. G. Schröder,31, 13 L. Schumacher,11 S. Sclafani,47 D. Seckel,31 S. Seunarine,48 S. Shefali,11 M. Silva,27

R. Snihur,27 J. Soedingrekso,25 D. Soldin,31 M. Song,22 G. M. Spiczak,48 C. Spiering,2 J. Stachurska,2

M. Stamatikos,17 T. Stanev,31 R. Stein,2 P. Steinmüller,13 J. Stettner,11 A. Steuer,15 T. Stezelberger,24
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ABSTRACT

Adopting the Standard Halo Model (SHM) of an isotropic Maxwellian velocity distribution for dark

matter (DM) particles in the Galaxy, the most stringent current constraints on their spin-dependent

scattering cross-section with nucleons come from the IceCube neutrino observatory and the PICO-60

C3F8 superheated bubble chamber experiments. The former is sensitive to high energy neutrinos from

the self-annihilation of DM particles captured in the Sun, while the latter looks for nuclear recoil

events from DM scattering off nucleons. Although slower DM particles are more likely to be captured

by the Sun, the faster ones are more likely to be detected by PICO. Recent N-body simulations suggest

significant deviations from the SHM for the smooth halo component of the DM, while observations

hint at a dominant fraction of the local DM being in substructures. We use the method of Ferrer et al.

(2015) to exploit the complementarity between the two approaches and derive conservative constraints

on DM-nucleon scattering. Our results constrain σSD . 3×10−39cm2 (6×10−38cm2) at & 90% C.L. for

a DM particle of mass 1 TeV annihilating into τ+τ− (bb̄) with a local density of ρDM = 0.3 GeV/cm
3
.

The constraints scale inversely with ρDM and are independent of the DM velocity distribution.

1. INTRODUCTION

Based on inferences from observations of gravitational

effects, it has long been believed that a significant frac-

tion of the Universe is made up of dark matter (DM)

(see van den Bergh et al. (1999)). However, very little is

known about its properties and interactions. A weakly

interacting massive particle (WIMP), whose relic abun-

dance from a state of thermal equilibrium can make up

DM has been the subject of considerable theoretical at-

∗ Email: analysis@icecube.wisc.edu
† now at Brookhaven National Laboratory
‡ now at Canadian Nuclear Laboratories
§ now at Argonne National Laboratory
¶ Email: analysis@picoexperiment.com
∗∗ also at National Research Nuclear University, Moscow

Engineering Physics Institute (MEPhI), Moscow 115409, Russia

tention and experimental focus (see Bertone et al. (2004)

for a comprehensive review).

Various complementary approaches have been pur-

sued to detect the WIMPs that may constitute the DM

halo of our Galaxy. Terrestrial direct detection (DD) ex-

periments search for nuclear recoil events from the elas-

tic scattering of WIMPs with the target nuclei of their

detectors. Neutrino and gamma ray telescopes search for

directional excesses over astrophysical backgrounds that

may indicate the pair-annihilation of WIMPs, while col-

lider searches look for the signatures of WIMPs being

created in high-energy interactions of Standard Model

particles.

Although the different search strategies have attained

the sensitivity to probe the physically-motivated WIMP

parameter space over the past few decades, they have

failed to detect any signal. In the absence of a con-

vincing detection, constraints have been derived on the
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interaction cross-sections of these hypothetical particles

with Standard Model particles. Such an inference re-

quires knowledge both of the density of DM ρDM and of

its velocity distribution function (VDF) f(~v).

In the Standard Halo Model (SHM) (Drukier et al.

1986), the DM of the halo is a collisionless gas in hy-

drostatic equilibrium with the stars, retaining the ve-

locity distribution obtained during the formation of our

Galaxy. An isotropic Maxwell-Boltzman velocity distri-

bution in the Galactic rest frame is usually adopted.

Meanwhile, N-body simulations have hinted that a

Maxwell-Boltzmann distribution does not accurately

represent even the smooth component of the halo

(Kuhlen et al. 2009; Lisanti et al. 2010; Mao et al.

2012). Recent observations point to the possibility that

a dominant fraction of the DM in the Solar neighbour-

hood (Necib et al. 2018) may not yet have achieved dy-

namical equilibrium, perhaps due to the infalling tidal

debris of a disrupted massive satellite galaxy of the

Milky Way. New data also suggest that a substantial

fraction of our stellar halo may lie in a strongly radially

anisotropic population, the ‘Gaia sausage’ (Evans et al.

2019).

If so, constraints on WIMP-nucleon interactions de-

rived assuming the SHM (from both direct and indi-

rect searches) may be weakened. Direct detection ex-

periments are preferentially sensitive to nuclear recoils

from high velocity DM particles, while capture in the

Sun is more likely for the slower fraction of the DM

population. In this work we use the method of Fer-

rer et al. (2015), which is independent of the velocity

distribution of the halo model to exploit this comple-

mentarity and derive conservative, upper limits on the

spin-dependent DM-nucleon scattering cross-section by

combining the results from Aartsen et al. (2017) and

Amole et al. (2017). Here the DM velocity distribu-

tion is taken to be a completely general superposition of

individual ’streams’ (delta functions in velocity), simi-

larly to the halo-independent analysis of direct detec-

tion experiments (Frandsen et al. 2012). Although

constraints from individual searches will now be de-

pendent on the stream velocity, by exploiting the com-

plementarity of the IceCube and PICO searches, con-

straints independent of the stream velocity can be ob-

tained. This method also improves on previous assess-

ments of halo model uncertainties on indirect DM detec-

tion (Choi et al. 2014), by allowing the velocity distri-

bution to be anisotropic. The resulting constraints are a

factor of 2 to 4 worse than the PICO SHM constraints at

low DM masses and up to an order of magnitude worse

at high DM masses, depending upon the annihilation

channel, but are independent of the halo model.

2. DETECTORS AND DATA SAMPLES

2.1. IceCube 3 year Solar WIMP search

IceCube is a cubic-kilometer neutrino detector in-

stalled in the ice at the geographic South Pole between

depths of 1450 and 2450 m. It relies on photomultiplier

tubes housed in pressure vessels known as digital optical

modules (DOM) for the optical detection of Cherenkov

photons emitted by charged particles traversing the ice.

The principal IceCube array is sensitive to neutrinos

down to ∼100 GeV in energy (Achterberg et al., 2006;

Abbasi et al., 2009; Aartsen et al., 2017). The cen-

tral region of the detector is an infill array known as

DeepCore optimized in geometry and DOM density for

the detection of neutrinos at lower energies, down to

∼10 GeV (Abbasi et al., 2012).

Over a detector uptime of 532 days corresponding

to the austral winters between May 2011 and May

2014, two non-overlapping samples of upgoing track-like

events, dominated by muons from charged current inter-

actions of atmospheric νµ and ν̄µ, were isolated (Aart-

sen et al. 2017). During austral summers, the Sun be-

ing above the horizon, is a source of downgoing neu-

trinos and the signal is overwhelmed by a background

of muons originating in cosmic ray interactions in the

upper atmosphere.

The first sample, consisting of events that traverse the

principal IceCube array, is sensitive to neutrinos in the

100 GeV – 1 TeV range in energy, while the second sam-

ple is dominated by events starting in and around the

DeepCore infill array, and is sensitive down to neutrinos

of ∼10 GeV in energy.

An unbinned maximum likelihood ratio analysis of the

directions and energies of the events that make up the

two samples was unable to identify a statistically signif-

icant excess of neutrinos from the direction of the Sun.

This enabled 90% C.L. upper limits on the DM annihi-

lation induced neutrino flux to be computed according

to the prescription of Feldman & Cousins (1998) as

presented in Aartsen et al. (2017).

This can be interpreted as both a constraint on the

annihilation rate of DM particles in the Sun, as well

as on the scattering cross-section of DM with nucleons,

although this has been usually done under the SHM as-

sumption. In particle physics models where the DM

couples to the spin of the nucleus and annihilates pref-

erentially into SM particles that decay to produce a large

number of high energy neutrinos (such as τ+τ−), the re-

sultant constraints are the most stringent for DM mass

above ∼ 80 GeV (Particle Data Group 2018).
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2.2. PICO

The PICO collaboration searches for WIMPs using

superheated bubble chambers operated at temperature

and pressure conditions which lead to being virtually

insensitive to gamma and beta radiation (Amole et al.

2019). Events in PICO consist of the transition from liq-

uid to gas phase, signalled by the nucleation of a bubble

in the target material. This phase change is imaged

by the cameras surrounding the active area, which trig-

ger upon detecting the formation of a pocket of gas.

Additional background suppression is achieved through

the measurement of the acoustic signal generated by the

event, allowing alpha particles to be discriminated from

nuclear recoils. Details of the apparatus are available

in Amole et al. (2015). The data used in this study

were obtained from the PICO-60 detector, consisting

of a 52.2±0.5 kg C3 F8 target, operated roughly two

kilometres underground at SNOLAB in Sudbury, On-

tario, Canada. The results used here come from an

efficiency-corrected exposure of 1167 kg-days taken be-

tween November 2016 and January 2017 (Amole et al.

2017).

The response of the detector to WIMPs is dependent

on the thermodynamic conditions, and is calibrated us-

ing in situ nuclear and electronic recoil sources. Ad-

ditionally, the Tandem Van de Graaff facility at the

University of Montreal was used to determine the de-

tector response, using well-defined resonances of the
51V(p,n)51Cr reaction to produce mono energetic neu-

trons at 61 and 97 keV. The combination of these mea-

surements is simulated using differential cross-sections

for elastic scattering on fluorine to produce the detector

response.

3. DM VELOCITY DISTRIBUTIONS AND IMPACT

ON CONSTRAINTS: THE METHOD

Following the method of Ferrer et al. (2015), the ve-

locity distribution of the DM (WIMP) population in the

Solar system, f(~v) can be expressed as the superposition

of streams with fixed velocity ~v0 with respect to the So-

lar frame.

f(~v) =

∫
|~v0|≤vmax

d3v0δ
(3)(~v − ~v0)f(~v0) (1)

where vmax is the maximum velocity at which WIMPs

can be found, typically the escape velocity of the Galaxy.

For every stream with velocity ~v0 with respect to the

Sun, upper limits can be derived from the null results

of IceCube by requiring that the capture rate for the

stream C~v0 be less than or equal to Cmax, the upper

limit on the capture rate from the results of the experi-

ment. For a direct detection experiment, which sees the

same stream with velocity ~v0−~vE(t) with respect to the

Earth, similar constraints can be derived for each stream

velocity by requiring that the event rate for the stream

R~v0 be less than or equal to Rmax, the upper limit on the

event rate from the results of the experiment. C~v0 and

R~v0 are computed by evaluating the integrals of equa-

tions 2 and 3 of Ferrer et al. (2015). Since the PICO

exposure period was too short for the Earth’s velocity

~vE(t) to average out to zero, velocities are conservatively

shifted by 30.29 km s−1 (the velocity of the Earth around

the Sun at perihelion (Tollerud et al. 2017)) when com-

puting R~v0 . For the capture rates in the Sun, the inte-

grals were evaluated using the density profile and nuclear

abundances in the Sun for protons and nitrogen nuclei

(the second most abundant species with nuclear spin) in

the standard Solar model (Bahcall et al. 1988) as im-

plemented in sunpy (SunPy Comm 2015). Nuclear form

factors as implemented in dmdd (Gluscevic et al. 2015)

for spin-dependent scattering, corresponding to the Σ′1M
(Axial transverse electric response) and Σ′′1M (Axial lon-

gitudinal response), table 1 of Fitzpatrick et al. (2013)

were employed for the event rate calculations in PICO.

Figure 1 demonstrates the evolution of the constraints

on the spin-dependent DM-proton scattering cross-

section from both IceCube and PICO as |v0| is varied.

The individual constraints on the cross section are com-

puted from the constraints on the capture rate in the

Sun already derived in Aartsen et al. (2017) as well

as the constraint on the event rate within PICO pre-

sented in Amole et al. (2017). For a WIMP of mass

M scattering off a nucleus of mass m, the maximum

stream velocity at which capture is allowed is given by

(Ferrer et al. 2015):

vmax = 2vesc

√
Mm

|M −m|
(2)

where vesc is the escape velocity. Consequently, above

certain threshold values of the stream velocity, capture

by scattering off protons is kinematically impossible and

only nitrogen nuclei contribute to the capture rate.

Subsequently, the largest value of the scattering cross-

section allowed by both IceCube and PICO, σHI, can

be determined at the velocity of least constraint, vLC,

where σPICO
max (vLC) = σIceCube

max (vLC). This procedure is

illustrated in Figure 1 for two specific models, 40 GeV

and 700 GeV WIMPs annihilating to bb̄.

4. RESULTS AND CONCLUSIONS

The resultant DM velocity independent constraints

are illustrated in Figure 2 and presented in Table 1. For
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Figure 1. Constraints at & 90% C.L. on the spin-dependent DM-proton scattering cross-section from both IceCube and PICO
for different values of |v0|, for 40 (700) GeV WIMPs annihilating to bb̄ are shown on the left (right). For 40 GeV WIMPs, as the
efficiency of PICO falls off below stream velocities of c (the speed of light) ×10−3, Solar capture by scattering off hydrogen nuclei
provides a complementary bound, while for 700 GeV WIMPs, a bound is provided only by the much less abundant nitrogen
nuclei in the Sun.

the “hard” channels ( W+W−and τ+τ−), which pro-

duce a relatively large number of neutrinos at energies

just below the DM mass, the DM-velocity-independent

constraints are in general worse only by a factor of 2 to

4 compared to the PICO SHM constraints. However,

at a DM Mass of ∼250 GeV (∼700 GeV for bb̄), the

constraints are significantly worse because the DM par-

ticle velocities just below the PICO threshold are still

too high to be captured by scattering off protons in the

Sun (see Figure 1). At immediately higher masses, the

constraints improve because the IceCube sensitivity im-

proves with the DM mass in this range. The constraints

are in agreement with the findings by Ibarra et al.

(2017). The IceCube constraints were recomputed with

Monte-Carlo data sets under varying assumptions of all

systematic uncertainties as described in Aartsen et al.
(2017). The dominant uncertainties were found to orig-

inate in the photodetection efficiency of the photomul-

tiplier tubes that make up the DOMs, as well as the

optical properties of the ice. Since these constraints cor-

respond to the same annihilation rates of DM particles

in the Sun reported in Aartsen et al. (2017), capture-

annihilation equilibrium continues to be a valid assump-

tion. The dominant uncertainties in the detector ac-

ceptance of PICO originate in the uncertainties of the

neutron beam used in the calibration process. These

are propagated to the final level and shown as shaded

regions. Conservatively, the pessimistic efficiencies of

PICO have been used to derive the constraints. While

these constraints are robust with respect to any uncer-

tainties in the velocity distribution of DM particles, they

are still susceptible to uncertainties and/or fluctuations

in the local density of DM, and are presented for the

benchmark local density of ρDM = 0.3 GeV cm−3, and

scale inversely with this quantity.
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Table 1. Constraints on the SD DM-nucleon cross-section. SHM constraints from PICO and IceCube, as well as the DM velocity
distribution independent constraint are presented at & 90% C.L. The velocity of DM particles at which the cross-section is least
constrained (VLC) is also presented for each point. The constraints are conservative with respect to systematic uncertainties.

mχ annih. vLC PICO IceCube Combined Syst unc.

(GeV) channel (km s−1) σSHM
SD (pb) σSHM

SD (pb) σHI
SD(pb) (%)

20 τ+τ− 229.7 3.78×10−5 4.85×10−4 2.29×10−4 23.4

35 bb̄ 131.5 3.43×10−5 9.25×10−4 1.26×10−3 18.3

35 τ+τ− 236.8 1.35×10−4 9.74×10−5 10.2

50 bb̄ 137.3 3.72×10−5 6.39×10−3 8.24×10−4 8.0

50 τ+τ− 222.5 7.90×10−5 1.08×10−4 9.5

100 bb̄ 141.5 3.29×10−4 7.23×10−4 9.7

100 W+W− 167.8 5.36×10−5 9.52×10−5 3.56×10−4 11.4

100 τ+τ− 170.3 2.91×10−5 3.34×10−4 14.4

250 bb̄ 106.2 2.80×10−3 5.15×10−3 26.7

250 W+W− 108.3 1.09×10−4 5.30×10−5 4.85×10−3 31.8

250 τ+τ− 108.4 2.82×10−5 3.12×10−3 14.0

500 bb̄ 76.4 3.06×10−3 4.99×10−2 54.1

500 W+W− 122.7 2.06×10−4 3.76×10−5 3.04×10−3 10.2

500 τ+τ− 142.5 1.46×10−5 1.58×10−3 13.1

1000 bb̄ 72.07 2.59×10−3 5.72×10−2 9.1

1000 W+W− 126.0 3.90×10−4 6.80×10−5 4.81×10−3 8.6

1000 τ+τ− 145.3 2.07×10−5 2.57×10−3 10.8

3000 bb̄ 100.3 6.76×10−3 1.61×10−1 19.8

3000 W+W− 76.09 1.14×10−3 5.42×10−4 1.59×10−1 21.4

3000 τ+τ− 49.52 1.21×10−4 1.48×10−1 22.4

5000 bb̄ 89.23 1.58×10−2 3.11 25.4

5000 W+W− 46.41 1.89×10−3 1.37×10−3 3.16 16.5

5000 τ+τ− 46.41 3.28×10−4 2.66 19.1
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