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Abstract: Salmonella Typhimurium is associated with foodborne diseases worldwide, including in
Peru, and its emerging antibiotic resistance (AMR) is now a global public health problem. Therefore,
country-specific monitoring of the AMR emergence is vital to control this pathogen, and in these
aspects, whole genome sequence (WGS)—based approaches are better than gene-based analyses.
Here, we performed the antimicrobial susceptibility test for ten widely used antibiotics and WGS-
based various analyses of 90 S. Typhimurium isolates (human, animal, and environment) from
14 cities of Peru isolated from 2000 to 2017 to understand the lineage and antimicrobial resistance
pattern of this pathogen in Peru. Our results suggest that the Peruvian isolates are of Typhimurium
serovar and predominantly belong to sequence type ST19. Genomic diversity analyses indicate an
open pan-genome, and at least ten lineages are circulating in Peru. A total of 48.8% and 31.0% of
isolates are phenotypically and genotypically resistant to at least one antibiotic, while 12.0% are multi-
drug resistant (MDR). Genotype–phenotype correlations for ten tested drugs show >80% accuracy,
and >90% specificity. Sensitivity above 90% was only achieved for ciprofloxacin and ceftazidime.
Two lineages exhibit the majority of the MDR isolates. A total of 63 different AMR genes are detected,
of which 30 are found in 17 different plasmids. Transmissible plasmids such as lncI-gamma/k,
IncI1-I(Alpha), Col(pHAD28), IncFIB, IncHI2, and lncI2 that carry AMR genes associated with third-
generation antibiotics are also identified. Finally, three new non-synonymous single nucleotide
variations (SNVs) for nalidixic acid and eight new SNVs for nitrofurantoin resistance are predicted
using genome-wide association studies, comparative genomics, and functional annotation. Our
analysis provides for the first time the WGS-based details of the circulating S. Typhimurium lineages
and their antimicrobial resistance pattern in Peru.

Keywords: antimicrobial resistance; multi-drug resistance; Salmonella Typhimurium; whole-genome
sequencing; resistance plasmids; antimicrobial susceptibility test; GWAS

1. Introduction

Salmonella Typhimurium, and other non-typhoidal Salmonella (NTS), are responsible
for foodborne illnesses worldwide [1]. NTS can cause gastrointestinal disease, progressing
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to systemic infections in some patients. The World Health Organization (WHO) recently
declared Salmonella a high-priority pathogen due to increased resistance to first-line antibi-
otics, fluoroquinolones, and third-generation cephalosporins [2]. In Peru, 234 foodborne
outbreaks were reported between 2014 and 2018. In 2019, 1,204,136 diarrheal cases were
reported mainly due to contaminated drinking water and food [3,4]. S. enterica serovars,
mainly Infantis, Enteritidis, and Typhimurium, were associated with gastroenteritis in Lima
hospitals during 2008–2013 and 2015–2017 [5,6]. Additionally, multi-drug resistant (MDR)
Salmonella Infantis isolates resistant to first-line antibiotics, third-generation cephalosporins,
and ciprofloxacin antibiotics are highly prevalent in Peru [7,8]. Unfortunately, limited
studies are using whole-genome sequencing (WGS) strategies to understand diversity,
alignment with antimicrobial resistance (AMR) phenotype and the AMR prevalence of
circulating Salmonella.

S. Typhimurium has a broad host range and emerging dominant MDR phenotypes.
For example, the MDR DT104 group disseminated rapidly globally [9], and ST313, an
MDR group, is responsible for invasive diseases in Africa [10]. Apart from chromosomal
mobile AMR genes mobile genetic elements, such as plasmids and pathogenic islands, are
essential in expanding AMR distribution among the population and are often associated
with hospital-acquired infections and foodborne outbreaks [8–12]. MDR Salmonella isolated
in various countries largely contain genes for β-lactam, tetracycline, aminoglycoside, and
quinolone resistance on plasmids [13,14].

The use of WGS in molecular epidemiology and AMR surveillance has several ad-
vantages as compared to conventional PCR, other molecular methods, or phenotypic
approaches [15–17]. Since S. Typhimurium exhibits a broad and diverse host range,
pathogenicity, and risk to human health [18–20]; WGS-based comparative and phylogenetic
analysis as part of AMR surveillance is a promising approach to rapidly predict resistances
that is much faster than phenotypic methods. Reports indicate that WGS-based approaches
to predicting antimicrobial susceptibility with a good correlation between genotype and
phenotype, detecting and tracing outbreaks, and determining the complement of AMR
determinants are essential resources in the appropriate selection of antibiotic treatment
in S. Typhimurium infections [8,21–24]. Furthermore, this approach allows the discovery
of new AMR genes, or alleles of known AMR genes, as reported in various pathogenic
bacteria [12,25,26]. Comparative genomics and genome-wide association studies (GWAS)
have identified these potential causal variants associated with virulence and with AMR in
multiple organisms [26,27].

In this study, we used whole genome sequences of S. Typhimurium isolates from
a Peruvian surveillance study to determine its Peru-specific lineage and antimicrobial
resistance pattern. More specifically, we classified the S. Typhimurium serovars using
serotyping, multi-locus sequence typing, and average nucleotide identity (ANI) analysis
approaches. Further, the nucleotide diversity, phylogenetic, pan-genome, and population
structure analyses were carried out to determine the genome diversity of the circulating
Peruvian S. Typhimurium isolates. Finally, identification and characterisation of AMR
genes, GWAS-based prediction of new non-synonymous single nucleotide variation (SNVs)
for AMR, prediction of AMR effect of newly identified SNVs, and genotype–phenotype
correlations were performed for antimicrobial resistome profiling of these isolates. The
overview of the methods applied, and the objectives of this study are represented in
Figure 1.
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Figure 1. The overview of methods and objectives of this study.

2. Materials and Methods
2.1. Samples and Collection Sites

We examined 90 pathogenic S. Typhimurium isolated from humans (n = 78), ani-
mals (n = 3) and the environment (n = 9). The isolates were collected between 2000 and
2017 from 14 cities in Peru, as shown in the global map (https://glenjasper.github.io/
leaflet-salmonella).

2.2. Antibiotic Susceptibility Test

The disk diffusion method [28] was used to determine AMR following Committee
for Clinical Laboratory Standards (CLSI) guidelines for ten commonly used antibiotics:
ampicillin (AM), chloramphenicol (C), ciprofloxacin (CIP), trimethoprim-sulfamethoxazole
(SXT), cefotaxime (CTX), nalidixic acid (NA), amoxicillin-clavulanate (AMC), nitrofurantoin
(N), tetracycline (TE), and ceftazidime (CAZ). MDR was defined as resistance to at least
three antibiotics. The intermediate or reduced susceptibility phenotype was considered a
susceptible isolate (Supplementary Table S1).

2.3. Whole Genome Sequencing

We used Peruvian Salmonella Typhimurium genome (90 isolates) sequence raw reads
generated under the 10K Salmonella Project (BioProject: PRJEB35182). After assembly and
annotation, we submitted these genomes to the BioProject (PRJNA635403) as “Peruvian
Salmonella spp. Genome sequencing and assembly”. The genome sequencing was per-
formed within the 10K Salmonella Project as described by Perez-Sepulveda et al., 2021 [29].
Additionally, a global set of 50 genomes were obtained from the Genbank database and
included in the further analysis to estimate the diversity and ancestry of Peruvian isolates
globally (Supplementary Table S2).

2.4. Genome Assembly, Annotation, and Plasmid Detection

The raw fastq sequences from the Illumina 150 bp paired-end were checked for quality
using FastQC v0.11.8 [30]. De novo genome assembly was performed using Unicycler

https://glenjasper.github.io/leaflet-salmonella
https://glenjasper.github.io/leaflet-salmonella
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v0.4.5 [31], and the quality of the assembly was evaluated using Quast v3.2 [32] and
BUSCO v4.0.6 [33]. Contigs < 200 bp were removed, and the assembled genomes were
submitted under BioProject: PRJNA635403. For further analysis, the annotation was
performed using PROKKA v1.11 [34], and only the genome sequences with >20× depth
coverage were considered. We considered 20× to be the minimum coverage to include
the maximum number of our isolates (n = 90 out of a total n = 109) for core genome
analysis, variant determination, and monitoring of infectious outbreaks in other previous
studies [35–37]. Plasmids were predicted and reconstructed from the assembled genomes
using MOB-suite [38] and classified as conjugative, mobilisable, and non-mobilisable
plasmids. PlasmidFinder [39] and ABRicate (https://github.com/tseemann/abricate;
accessed on 4 April 2022) were also used to crosscheck the MOB-suite results.

2.5. In Silico Serotyping, MLST, and ANI Analysis

The serovar and sequence types were predicted using SeqSero [40] and MLST (https://
github.com/tseemann/mlst; accessed on 5 April 2022) [41], respectively. Pairwise average
nucleotide identity (ANI) values were calculated using FastANI v.1.1 [42] to determine the
degree of genomic relatedness. Results were visualised using the ggplot2 V.3.3.5 (https:
//ggplot2.tidyverse.org/reference/index.html; accessed on 5 April 2022). The respective
tools’ assembled genomes and default parameters were used for these analyses.

2.6. Pan-Genome and Phylogenetic Analysis

Core and accessory genes were identified using Roary v3.12 [43] with default settings.
The R package micropan v.2.1 [44] was used to model the openness of the pan-genome
using Heaps’ law as described by Tettelin et al., [45] with the number of permutations set
to 1000. Values α ≤ 1 representant an open pan-genome, where adding new genomes will
increase the pan-genome substantially. For this analysis, we used our Peruvian samples
and 50 S. Typhimurium isolates from 29 countries distributed on six continents (Asia,
Europe, Africa, Australia, and North and South America). We used S. Typhimurium (LT2,
GenBank: NC_003197) as the reference. Core genome-SNPs were predicted using Snp-
sites [46] from the Roary v3.12 [43] core genome output. Phylogenetic analysis was based
on core genome genes of the Peruvian and 140 global samples. The RaxML v8.2.12 [47],
maximum likelihood method, GTR + Gamma model, and 1000 bootstrap replicates were
applied to create the Phylogenetic trees that were visualised using the ggtree package in R
(R Development Core Team, 2016).

2.7. Population Structure and Diversity Analyses

The population structure for two sample sets was determined separately using core
gene SNPs: (i) Peruvian and (ii) Peruvian + 50 global samples. The Bayesian analysis of
population structure (BAPS) [48] model was defined using RhierBAPS v1.0.1 [49]. The
nucleotide variation analysis within the Peruvian and global S. Typhimurium populations
was calculated using the pairwise similarity (inverse diversity calculation) and median
pairwise similarities using the core genome SNPs and the MEGA-X tool [50]. Ggplot2
package in R (R Development Core Team, 2016) was used to visualise the results. These
analyses allow estimating the diversity and ancestry of Peruvian isolates from global
representative isolates.

2.8. Identification of Known Antimicrobial Resistance Genes and Single Nucleotide Variations

For each genome, the AMR-associated genes were identified in the chromosome and
plasmids using ABRicate (https://github.com/tseemann/abricate; accessed on 4 April
2022) using CARD [51] and ARG-ANNOT [52] databases. More than 85.0% of sequence
coverage and identity were considered the lower limit. Additionally, AMR Finder [53] and
ResFinder [54], contain a large number of Salmonella spp. sequences, and were included to
corroborate the results. The AMR genes were classified according to resistance mechanisms
and drug class using the CARD database and manual curation [51].

https://github.com/tseemann/abricate
https://github.com/tseemann/mlst
https://github.com/tseemann/mlst
https://ggplot2.tidyverse.org/reference/index.html
https://ggplot2.tidyverse.org/reference/index.html
https://github.com/tseemann/abricate
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To identify the SNPs in the AMR genes from the chromosomal DNA, first, we extracted
the AMR gene sequences using Roary [43], followed by analysis with MAFFT v7.307 [55] for
sequence alignment. Finally, SNP-sites [46] was used for the variant calling. Subsequently,
we used PointFinder [56] to identify alleles and associate them with AMR.

2.9. Genotype–Phenotype Correlation

We performed the genotype–phenotype correlation (GPC) analysis using disc diffusion
antimicrobial susceptibility test results in combination with the WGS-informed AMR
analysis. These assays were compared with the occurrence of known AMR genes and
alleles associated with the resistance to the respective drug. False-positive, false-negative,
sensitivity, specificity, and accuracy of the GPC were calculated as described previously [21].
Finally, phenotypically resistant isolates that did not contain known genes for this resistance
were identified as candidates for use in finding new variants that may confer resistance.

2.10. Genome-Wide Association Study to Identify New Single Nucleotide Variations Associated
with Resistance Phenotype

In isolates where genotype–phenotype association did not match, we used the genome-
wide association study (GWAS) approach to identify possible genes and alleles for specific
AMR. A similar approach, as described by Bandoy and Weimer [57], was used for the GWAS
analysis with a chi-square test in R (R Development Core Team, 2016) to identify mutant
alleles that conferred a specific phenotype. In this process, the variant calling was performed
for all the isolates using LT2 isolate as the reference. Only the phenotype observed for
the ten tested drugs was considered. The Snippy v3.2 (https://github.com/tseemann/
snippy; accessed on 16 April 2022) was used for variant calling, and the SNPs and indels
were filtered considering a minimum sequencing depth > 20x and minor allele frequency
less than 0.02 were removed. A significant association was considered when p < 0.05,
and the values were automatically corrected for multiple testing using the Bonferroni
method [58]. The results were visualised with the Manhattan plot in R (R Development
Core Team, 2016) using the “qqman” package. To minimise the false positive association in
the GWAS analysis, we applied the population structure as a covariable in Firth’s logistic
regression analysis using the “logistf” v1.24 package in R (https://github.com/vicbp1
/Genetic-Arquitecture-of-Zika; accessed on 16 April 2022). The population structure was
predicted using principal component analysis (PCA) and PLINK v1.90b6.9 [59], considering
the first six principal components (PC1–PC6) as continuous covariables.

2.11. Association of New Single Nucleotide Variations and Drug Resistance

The GWAS represent a powerful approach to identifying new genetic variants in
isolates that demonstrated phenotypic drug resistance but did not contain determinants
associated with known antimicrobials. We examined the potential for additional gene
variants that may explain the specific drug resistance in those isolates. When found, we
adopted the strategy described by Ferla et al. [57,60]. Additionally, we modelled the 3D
structure of the protein harbouring the variation using the corresponding amino acid
sequence and Swiss Model homology server [61]. The 3D structure was then used to
predict the stability of these proteins for the new variations using the Dynamute2 tool [62].
Finally, the stability/instability property of the new allele was correlated with the observed
drug resistance phenotype.

3. Results
3.1. Genomic Characterisation Shows Peruvian Salmonella Samples Belong to Typhimurium
Serovar and Sequence Type ST19

Ninety WGS samples passed the quality metrics and were used for further analysis
(Supplementary Table S1). The SeqSero and MLST analysis confirmed that 83 belong to
serovar Typhimurium and 85 belong to sequence type ST19, respectively (Supplementary
Table S1). For the global samples, the majority were serovar Typhimurium and sequence
type ST19. Use of ANI analysis found the Peruvian genomes were >99.6% identical, while

https://github.com/tseemann/snippy
https://github.com/tseemann/snippy
https://github.com/vicbp1/Genetic-Arquitecture-of-Zika
https://github.com/vicbp1/Genetic-Arquitecture-of-Zika
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the global samples (n = 140) were >99.4% identical (Supplementary Figure S1). These
analyses confirm that both samples belong to serovar S. Typhimurium and use all the
isolates in subsequent analyses.

3.2. Pan-Genome Structure and Nucleotide Diversity of Peruvian Samples

The pan-genome analysis examined the content of gene diversity, and the core genome
was used as input data to analyse the phylogeny, population structure, and nucleotide
variation within these isolates. The pan-genome of 140 S. Typhimurium was open (α = 0.53)
and contained 11,168 orthologous genes with 3455 core genes and 7713 accessory genes
(softcore = 495, shell = 1000, and cloud = 6218) that represent the 30.9% and 69.1%, respec-
tively (Figure 2A,B). Specifically for the Peruvian isolates (n = 90), the core and accessory
genome constitutes 42.6% and 57.4%, respectively, where there are 7462 orthologous genes,
3181 core genes and 4281 accessory genes (softcore = 889, shell = 781, and cloud = 2611)
(Figure 2C,D). We identified values > 85.0% and 70.0% of pairwise nucleotides dissimilarity
(Supplementary Figure S2) between the overall and within-population nucleotide diversity
to be 0.057 and 0.135 for global and Peruvian samples, respectively, indicating that our
Peruvian isolates are more genetically diverse and present an open pan-genome with α

value minor to 1 (α = 0.73).
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Figure 2. Pan-genome analyses of S. Typhimurium isolates. (A,C), Pie charts showing the proportion
of repertoire genes in the core, soft-core, shell, and cloud of the pangenome of the global (n = 140)
and Peruvian S. Typhimurium isolates (n = 90). (B,D), Gene presence-absence matrix shows the
gene distribution in each genome. Heatmap legends on the right of panels (B,D) indicate the
cluster sequence to which each sample belongs. The accessory genome of 69.1% and 57.4% presents
a high diversity of gene content distinguished by sequence clusters (lineages) for Peruvian and
global samples.
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3.3. Ten Lineages of S. Typhimurium Classified under Two Major Clades Are Circulating in Peru

The un-rooted phylogenetic tree based on the core genome clustered similarly for
both the global and Peruvian samples. The Peruvian isolates were analysed with the other
global samples and contained ten distinct sub-clades (Supplementary Figure S3). It is
also observed that the lineages of Peruvian isolates are distributed across the continents
(Figure 3). When analysed exclusively for the 90 Peruvian isolates, the phylogenetic tree
shows a similar number of sub-clades (Figure 3). Both analyses also found that the Peruvian
samples are mostly distributed in two major clades. When we determined the population
structure as sequence clusters (SC, assigned as lineages) by a two-level hierarchical Bayesian
approach (BAPS) using the core gene SNPs, we observed at least 19 sequence clusters for
the global samples and 10 sequence clusters for the 90 Peruvian samples within this global
sample pool (Supplementary Figure S3). The first clade (n = 47) includes the sequences
cluster SC13 (n = 24), SC14 (n = 9), SC15 (n = 7), SC16 (n = 4), and SC9 (n = 3); while the
second clade (n = 43) includes SC2 (n = 6), SC3 (n = 4), SC8 (n = 6), SC17 (n = 26), and SC18
(n = 1) (Figure 3).

While we further analysed the sequence clusters only for the 90 Peruvian samples, we
identified four additional sub-populations without much phylogenetic difference, where
SC2 consists of three sub-sequence clusters and SC3 and SC8 had two sub-sequence clusters
each (Figure 3). Therefore, ten sequence clusters or lineages are circulating in Peru. The
major clonal group CG-I (SC3) consists of 24 isolates, distributed in seven different Peruvian
cities, mostly isolated during 2005–2006, and closely related to a Switzerland sample. The
second crucial clonal group, CG-II (SC17), consists of 26 isolates, is found in eight different
Peruvian cities, isolated during 2000–2001, and is closely related to a Chilean sample
(Figure 3).

3.4. The Phenotypic Profile Shows 48.9% Resistance to at least One Drug in Isolates Circulating in
Peru for Ten Drugs

Out of the 90 Peruvian samples, 44 isolates (48.9%) contained resistance to at least
one drug from the tested drugs using the disc diffusion assay. Out of these 44 isolates, the
highest phenotypic resistance profile was for NA (n = 18, 40.9%; or 20.0% considering total
90 isolates), TE (n = 17, 38.6% or 18.9% considering total 90 isolates), AM (n = 14, 31.8%; or
15.6% considering total 90 isolates), N (n = 13, 29.6%; or 14.4% considering total 90 isolates),
and 11 samples (25.0%; or 12.0% considering total 90 isolates) show MDR (Supplementary
Table S1, Figure 4). These MDR isolates mostly belong to SC8 (n = 5), followed by SC9
(n = 2), SC15 (n = 2), SC17 (n = 1). In sample collection site-based analysis, Lima shows
most (n = 10) of the MDR isolates and only one from Huánuco (Supplementary Table S1).
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Figure 3. The phylogenetic tree was generated using a maximum likelihood method with 1000 repli-
cates of bootstrap using GTR + GAMMA to estimate the evolutionary distance between Peruvian
isolates (n = 90). The phylogenetic tree was clustered into at least two large clades and separated into
nine sub-clades. Each sub-clade corresponds to a population group, except for SC18. Two emerging
clades (CG-I and CG-II) are also found. Additionally, we identified subgroups based on the prediction
of only the Peruvian population structure, but they did not show the phylogenetic distinction.
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Figure 4. Individual antibiotic resistance profile of Peruvian isolates and their genotype–phenotype
correlations for our ten tested antibiotics. Antibiotic abbreviation: ampicillin (AM), chloramphenicol
(C), ciprofloxacin (CIP), trimethoprim-sulfamethoxazole (SXT), cefotaxime (CTX), nalidixic acid (NA),
amoxicillin-clavulanate (AMC), nitrofurantoin (N), tetracycline (TE), and ceftazidime (CAZ). AMR
profile abbreviation: Gen, genotypic; Phen, phenotypic; Gen-Phen, genotypic-phenotypic.

3.5. Genotypic Profile Showed 31.0% of Drug Resistance Isolates Are Circulating in Peru

The genotypic profile for 90 isolates showed the presence of a total of 63 (chromosomal
+ plasmid) different AMR genes as per drug class and resistance mechanisms. We found
31 were chromosomal, 32 were acquired in the 90 samples (Supplementary Table S3).
However, since we have only the DNA sequence data, we over-ruled the expression-
based drug resistance mechanism and have considered only the genes that confer drug
resistance if it is present or when alleles were present. Based on these criteria, we found
19 isolates containing mobile AMR genes, two isolates harboured known single nucleotide
variations in chromosomal AMR genes that conferred drug resistance, and seven isolates
contained both the mobile AMR gene as well as variations in chromosomal AMR genes
(Supplementary Table S3). Therefore, 28 isolates (31.0%) showed resistance to at least one
drug gene/variation, including an untested drug.

While we considered the use of 10 antibiotics and DNA-based criteria, we found 26 iso-
lates that have at least one AMR gene/variation in the genome. Out of these 26 isolates,
17 isolates contained mobile AMR genes, two isolates had known variations in chromo-
somal AMR genes, and seven isolates had both the mobile AMR gene and variations
in chromosomal AMR genes (Supplementary Table S3). In this analysis, the resistance
genotypic profile was observed: nalidixic acid was (n = 17, 65.4% or 18.9% considering
total 90 isolates), tetracycline (n = 13, 50.0% or 14.4% considering total 90 isolates), and
ampicillin (n = 10, 11.0%) (Figure 4). These MDR isolates mostly belong to SC8 (n = 5) and
SC9 (n = 3) (Supplementary Table S3). The details of the mobile AMR gene and variations
in chromosomal AMR genes of our samples are given in Table 1 and Table S3.
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Table 1. The genotype to phenotype concordance using accuracy, sensitivity, and specificity for Peruvian isolates for ten tested drugs.

Antibiotic New Variations in Chromosomal Genes Known Variations in
Chromosomal Genes Mobile Resistance Genes

Susceptible Phenotype Resistant Phenotype
Accuracy Sensitivity Specificity

Resistant
Genotype

Susceptible
Genotype

Resistant
Genotype

Susceptible
Genotype

FP TN TP FN (TP + TN)/TOTAL TP/(TP + FN) TN/(TN + FP)

Tetracycline (T) - - tetA (n = 15), tetB (n = 2),
tetD (n = 3), tetR (n = 4) 1 72 13 5 94.4% 72.2% 98.6%

Ampicillin (AM)

ompA (n = 90), ampH (n = 46), golS (n = 90), mdsA (n = 87), mdsB (n = 90), mdsC
(n = 69)

-

blaTEM-176 (n = 1),
blaTEM-181 (n = 9),
blaSHV-134 (n = 1),
blaTEM-181 (n = 1),
blaCTX-M-15 (n = 1)

5 71 5 9 84.4% 35.7% 93.4%

Amoxicillin-clavulanate
(AMC) -

blaCTX-M-15 (n = 1),
blaSHV-12 (n = 1),
blaSHV-134 (n = 1)

2 86 0 2 95.6% 0.0% 97.7%

Cefotaxime (CTX) - 0 85 2 3 96.7% 40.0% 100.0%

Ceftazidime (CAZ) - 1 88 1 0 98.9% 100.0% 98.9%

Chloramphenicol (C) golS (n = 90), mdsA (n = 87), mdsB (n = 90), mdsC (n = 69) - florR (n = 5) 2 81 3 4 93.3% 42.9% 97.6%

Ciprofloxacin (CIP) mdtK (n = 90), crp (n = 90), emrA (n = 90), emrB (n = 87) [p.G509D, G510D
(n = 1)], emrR (n = 90), gyrB (n = 89) p.S347P (n = 1), parC (n = 89) [p.A554T

(n = 3), p.R360H, R365H (n = 1), p.T571S (n = 1)]

gyrA (n = 90)
p.S83Y (n = 6), p.S83F (n = 1),
p.D87G (n = 1), p.D87Y (n = 1)

qnrB5 (n = 8), qnrE2
(n = 3), qnrB19 (n = 2)

3 85 2 0 96.7% 100.0% 96.6%

Nalidixic acid (NA) 3 69 14 4 92.2% 77.8% 95.8%

Trimethoprim-
sulfamethoxazole

(STX)
- -

dfr1 (n = 5), dfr12 (n = 2),
dfr14 (n = 1), sul2 (n = 4),

sul3 (n = 5)
2 84 3 3 96.7% 50.0% 97.7%

Nitrofurantoin (N) nfsA (n = 90), nfsB (n = 88), ribE (n = 89) - - 0 77 0 13 85.6% 0.0% 100.0%

Aminoglycoside aac(6′ )-Iaa (n = 90), kdpE (n = 74) [p.A115G, A115E (n = 2), p.L39P (n = 3),
p.R81H, S100R (n = 1)]

-

aac(3) IIe (n = 6), aph(3′ )-Ia
(n = 4), aac(3)-Iie (n = 6),

aac(6′ )-Ian (n = 2),
ant(3”)-Iia (n = 1),

aph(3”)-Ib (n = 7), aph(6)-Id
(n = 6)

Aminocoumarin and
Aminoglycoside baeR (n = 90), cpxA (n = 86) - -

aminocoumarin
mdtB (n = 84) [p.T69A (n = 5), p.S157A (n = 5), p.N199H (n = 1), p.R512H
(n = 3), p.Q315R (n = 1), p.R590H (n = 5)], mdtC (n = 90) [p.T81S (n = 1),

p.N113K (n = 1), p.N133D (n = 1)]
- -

Multiclass
acrB2 (n = 90) [p.L332F (n = 3), p.V482A, A491T (n = 1)], sdiA (n = 90), tolC

(n = 89), H-NS (n = 90), marA (n = 90), acrB1 (n = 90) [p.T599P (n = 27), p.R418H
(n = 4), p.L845F (n = 1)], mdtC, marA

- kpnH (n = 3)

Bacitracin bacA (n = 89) - -

Nitroimidazole msbA (n = 90) - -

Microcin yojI (n = 90) [p.H431Y (n = 6), p.A366D (n = 2)] - -

Lincosamide - - linG (n = 3)

Bleomycin - - BLMT (n = 1)

Fosfomycin - - fosA3 (n = 1)

Colistin - - mcr-1 (n = 3)
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3.6. Ciprofloxacin and Ceftazidime Resistance Shows the Best Genotype–Phenotype Correlation,
but Nitrofurantoin Does Not

While we compared our genotype-based drug resistance isolates to the phenotype data
for ten tested antibiotics, we observed that 22 isolates were phenotypically resistant; they
did not contain a known AMR plasmid or mobile gene or any mutation in the chromosomal
AMR gene. On the other hand, out of the 28 genotypically resistant isolates, four isolates
did not demonstrate phenotypically correlation to NA (n = 2), multi-drug resistance (n = 2)
and additional drugs not testing (n = 2). Therefore, we considered a total of 50 isolates
(44 phenotypically and 4 genotypically resistant to 10 tested drugs, and 2 genotypically
resistant to untested antibiotics) for our further analysis (Table 2).

While we considered the genotype and phenotype data for ten drugs, 22 (n = 44–22)
isolates had no correlation between the genotype and phenotype. In these 22 phenotypically
drug-resistant isolates, ten isolates showed resistance exclusively to N, 3 to AM, 2 to CTX,
and one each to NA, TE, AMC, AM + N, AM+ CTX+ C, AM + C+ TE, and AM+ SXT
(Table 2, Supplementary Table S3). According to our calculation, as described in the
method, the genotype–phenotype correlations for the ten tested antibiotics, the accuracy
was 84.4% to 98.9%, specificity is between 93.4% and 100.0%, and the sensitivity reached
up to 100.0% only for ciprofloxacin and ceftazidime resistance (Table 1). Ciprofloxacin and
ceftazidime show >96.0% accuracy, specificity, sensitivity, and the lowest values were for
beta-lactam resistance, followed by chloramphenicol and trimethoprim-sulfamethoxazole.
In addition to that, we did not obtain a good sensitivity for nitrofurantoin as most of
the phenotypical nitrofurantoin resistance isolates do not have any known nitrofurantoin
resistance marker (Table 1).

3.7. Seventeen Different Plasmids Carrying 30 AMR Genes Were Identified in Peruvian Isolates

We identified a total of 47 different plasmids in the 90 Peruvian isolates of which
30 plasmids did not carry any AMR gene, while 17 contained at least one AMR gene. A total
of 30 AMR genes were found in the 17 plasmids from 28 isolates. A maximum occurrence
of eight AMR genes was found in one plasmid (lncHI2A family, isolate-FD01846422)
(Supplementary Table S4). These isolates mainly belong to SC9, SC2 and SC8 lineages.
Among the 90 isolates, 83 isolates had the lncFIB virulence plasmid, and this lncFIB plasmid
was observed in all the sequencing clusters except the isolates that belong to SC18 and one
isolate under SC2 (Supplementary Table S1, Figure 5). The details of the isolates and their
corresponding plasmid AMR genes are given in Table 3 and Table S4.

In addition, we detected plasmid-mediated resistance to third-generation cephalosporin,
lncI-gamma/k1_P7 plasmid (n = 1/SC8) carrying blaCTX-M-15 gene and IncI1-I(Alpha)_P14
plasmid (n = 1/SC3), blaSHV-12 and blaSHV-134 genes (Supplementary Table S4). Eleven iso-
lates (n = 5/SC8, n = 3/SC2, n = 2/SC16, and n = 1/SC13) showed presence of Col(pHAD28)
plasmid carrying fluoroquinolone-resistant either qnrB19 or qnrB5 gene. The fluoroquinolone-
resistant qnrE2 gene was found in three isolates belonging to the SC9 group that contained
the IncHI2_P1 plasmid (Supplementary Table S4). Another critically important antibiotic-
resistant gene, fosA3, for fosfomycin was identified in IncFIB(pN55391)_P12 (n = 1/SC15),
and mcr-1 gene for colistin resistance was found in IncHI2_P1 (n = 1/SC9), lncI2_P3
(n = 2/SC9) (Supplementary Table S4).
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Table 2. Profile of 50 Peruvian drug resistance isolates (44 phenotypically and 4 genotypically resistant to 10 tested drugs, and 2 genotypically resistant to untested
antibiotics).

SC Isolate Resistance Genes Profile Resistance Plasmids
Profile

Resistance
Phenotypic Profile Institution/Hospital City Year

SC9

FD01846446
tetA, tetD, sul3, linG, floR,

dfrA12, blaTEM-181, qnrE2,
mcr-1, aph(6)-Id, aph(3”)-Ib,

aadA2, dfrA1

IncHI2_P1, IncI2_P3,
P6, P8, IncFIB(S)_P11 - Hospital Emergencias

Pediátricas Lima 2017

FD01846422
tetA, tetD, sul3, linG, floR,

dfrA12, blaTEM-181, qnrE2,
mcr-1, aph(6)-Id, aph(3”)-Ib,

aadA2, dfrA1, sul2
IncHI2_P1, P6 NA, C, SXT, TE Hospital Emergencias

Pediátricas Lima 2017

FD01872670
tetA, tetD, sul3, linG, floR,

dfrA12, blaTEM-181, qnrE2,
mcr-1, aph(6)-Id, aph(3”)-Ib,

aadA2, dfrA1, sul2, tetR

IncHI2_P1, IncI2_P3,
P6, P8, IncFIB(S)_P11 NA, C, SXT, TE Hospital Emergencias

Pediátricas Lima 2017

SC8

FD01852492

aac(3)-Iie, blaTEM-181, gyrA
p.S83Y, aph(3”)-Ib, dfrA1, floR,
qacL, sul3, qnrB5, ANT(3”)-Iia,

blaTEM-176

P4,
IncI-gamma/K1_P7,

P6, Col(pHAD28)_P13
NA, N LRR Apurimac Apurimac 2015

FD01852476
aac(3)-Iie, blaTEM-181, gyrA

p.S83Y, aph(3′)-Ia, tetA, qnrB19,
blaCTX-M-15

P4,
IncI-gamma/K1_P7,

P10,
Col(pHAD28)_P13,

P16

NA, TE, AM, CTX,
CAZ INSN Lima 2015

FD01852484
aac(3)-Iie, blaTEM-181, gyrA

p.S83Y, aph(3′)-Ia, dfrA1, floR,
qacL, sul3

P4, P6,
IncI-gamma/K1_P7,
Col(pHAD28)_P13

NA, C, SXT Hospital Emergencias
Pediátricas Lima 2015

FD01852637 aac(3)-Iie, blaTEM-181, gyrA
p.S83Y, tetA, qnrB5 P9, Col(pHAD28)_P13 NA, CIP, TE, AM Hospital Emergencias

Pediátricas Lima 2015

FD01852500 aac(3)-Iie, blaTEM-181, gyrA
p.S83Y, aph(3′)-Ia, tetA P4, P15, P16 NA, TE, AM INSN Lima 2016

FD01852499 aac(3)-Iie, blaTEM-181, gyrA
p.S83Y, qnrB19 P4, Col(pHAD28)_P13 NA, CIP, AM, AMC Hospital Emergencias

Pediátricas Lima 2016
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Table 2. Cont.

SC Isolate Resistance Genes Profile Resistance Plasmids
Profile

Resistance
Phenotypic Profile Institution/Hospital City Year

SC2

FD01852647 aph(3”)-Ib, aph(6)-Id, sul2, tetA,
tetR P2 TE INEN Lima 2015

FD01852582 aph(3”)-Ib, aph(6)-Id, sul2, tetA,
tetR P2, IncN_P17 TE Hospital Emergencias

Pediátricas Lima 2013

FD01851394 aph(3”)-Ib, aph(6)-Id, sul2, tetA P2 TE Hospital Emergencias
Pediátricas Lima 2013

FD01852653 qnrB5, tetA, tetR Col(pHAD28)_P13,
IncN_P17 NA, TE DISA Lima Ciudad Lima 2012

FD01852523 qnrB5, tetA IncFIB(S)_P11,
Col(pHAD28)_P13 NA, TE INEN Lima 2016

FD01852539 qnrB5, tetA IncFIB(S)_P11,
Col(pHAD28)_P13 NA, TE, AM, C, SXT Hospital Emergencias

Pediátricas Lima 2016

SC18 FD01851477 aph(3′)-Ia, dfrA14 IncFIB(pN55391)_P12 NA DIRESA Trujillo La Libertad 2008

SC16 FD01852549 qnrB5, gyrA p.S83F Col(pHAD28)_P13 NA UNMSM Lima 2017

SC16 FD01852587 gyrA p.D87Y - NA INEN Lima 2014

SC14 FD01852461 gyrA p.D87Y - NA INEN Lima 2015

SC16 FD01852535 qnrB5 Col(pHAD28)_P13 - Cusco Cusco 2016

SC13 FD01852545 qnrB5 Col(pHAD28)_P13 - INEN Lima 2017

SC15

FD01852865 sul2, tetB, aac(6′)-Ian IncC_P5 AM, C, TE Hospital Dos de Mayo Lima 2010

FD01852857 sul2, tetB, aac(6′)-Ian IncC_P5 STX, NA, TE, N DIRESA Huanuco Huanuco 2010

FD01852558 fosA3 IncFIB(pN55391)_P12 NOT TESTED DIRESA Callao Callao 2013

FD01852530 KpnH - SXT, NA INEN Lima 2016

SC13 FD01851538 KpnH - N INEN Lima 2016

SC3 FD01852748 blaSHV-12, blaSHV-134 IncI1-I(Alpha)_P14 AM, CTX INEN Lima 2011

FD01852600 aph(3′)-Iia, BLMT IncI1-I(Alpha)_P14 NOT TESTED INEN Lima 2014

SC17 FD01851425 - - NA CENAN/INS Lima 2007

SC16 FD01852548 - - TE Hospital Emergencias
Pediátricas Lima 2017
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Table 2. Cont.

SC Isolate Resistance Genes Profile Resistance Plasmids
Profile

Resistance
Phenotypic Profile Institution/Hospital City Year

SC13

FD01851503 - - N DIRESA Trujillo La Libertad 2005

FD01848616 - - N LIMA CIUDAD Lima 2005

FD01851500 - - N Puno Puno 2005

FD01851509 - - N Direccion de Salud I Callao 2005

FD01851516 - - N LRR Chiclayo Lambayeque 2005

FD01851519 - - N Huaraz Huaraz 2005

FD01851527 - - N Direccion de Salud I Callao 2006

FD01851529 - - N Huaraz Huaraz 2006

FD01851530 - - N INEN Lima 2006

FD01851538 - - N LIMA Lima 2006

SC17
FD01848677 - - CTX Cajamarca Cajamarca 2000

FD01848679 - - CTX LIMA ESTE Lima 2000

FD01851388 - - AM INEN Lima 2010

SC15 FD01851386 - - AM Hospital Emergencias
Pediátricas Lima 2010

SC13 FD01851541 - - AM Hospital Santa Maria
Del Socorro Ica 2006

SC14 FD01851320 - - AMC CENAN/INS Lima 2009

SC13 FD01851499 - - AM, N LRR Chiclayo Lambayeque 2005

SC13 FD01848615 - - AM, SXT Hospital San
Bartolomé Lima 2005

SC17 FD01852858 - - AM, C, TE DISA Lima Ciudad Lima 2010

SC17 FD01848690 - - AM, C, CTX Hospital San
Bartolomé Lima 2001

Antibiotic abbreviation: ampicillin (AM), chloramphenicol (C), ciprofloxacin (CIP), trimethoprim-sulfamethoxazole (SXT), cefotaxime (CTX), nalidixic acid (NA), amoxicillin-clavulanate
(AMC), nitrofurantoin (N), tetracycline (TE), and ceftazidime (CAZ).
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3.8. Hospital Emergencias Pediatrica Shows the Presence of Most of the MDR Isolates in Peru

Out of the 26 genotypically AMR isolates, 21 were from Lima, and 1 was from Apuri-
mac, La libertad, Callao, Huanuco, and Cusco. Of these twenty-one AMR isolates from
Lima, ten are MDR isolates, with seven found at Hospital Emergencias Pediatrica, two
found at Instituto Nacional de Salud del niño, and one is present in LRR Apurimac. Out
of the phenotypically resistant 44 isolates, 12 were MDR (Lima n = 11, Huanuco n = 1).
From these twelve MDR isolates, six isolates were from Lima, Hospital Emergencias Pe-
diatrica, two were from Instituto Nacional de Salud del niño and another four MDR
isolates were distributed in four different hospitals in Lima. AM, NA and TE resistance
were the most prevalent in these MDR isolates. Three isolates showed phenotypic resis-
tance to maximum five antibiotics (FD01852539: AM + C + SXT + NA + TE; FD01852476:
AM + CTX + NA + TA + CAZ; and FD01852499: AM + CIP + NA + AMC + TE) and were
prevalent at Hospital Emergencias Pediatrica and Instituto Nacional de Salud del niño.
Importantly, we also found that Salmonella acquired MDR genes after 2015 (Tables 2 and S3).

3.9. Probable NA Resistance New Single Nucleotide Variations from Core AMR Gene Analysis

Based on the core genome analysis, we identified 30 non-reported non-synonymous
single nucleotide variations (SNVs) in 11 AMR genes in our samples. Among these,
four aminoglycoside resistance genes (acrB1, kdpE, mdtB, mdtC) had 17 SNVs and the
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microcin resistance gene (yojI) showed two SNVs. However, we were unable to pro-
ceed with these variations as we did not perform the phenotypic tests for these drugs
(Supplementary Tables S3 and S5). The other 11 new SNVs detected in 6 AMR genes (emrB,
parC, gyrB, acrB2, sdiA, nfsA) are associated with fluoroquinolone, multiclass, and nitrofu-
rantoin resistance were selected for further analysis. The isolates that showed a specific
drug resistance phenotype but had no known marker for that phenotype but had a new
variation were selected. Following this strategy, finally, a total of three SNVs in two genes
parC (A554T, T571S for NA), and sdiA (K104Q for NA), were selected for structure-based
functional annotation (Supplementary Table S5).

3.10. Probable Nitrofurantoin Resistance Eight New Genes and Their Variations from
GWAS Analysis

Out of the 44 phenotypically resistant isolates, 13 isolates showed N resistance but
had no known AMR markers for N. Therefore, in the GWAS analysis, we focused on these
13 isolates to predict the potential causal SNVs associated with N resistance. We observed
eight non-synonymous substitution variations in eight different genes in eleven isolates that
were significantly associated with N resistance (p < 0.0000526). It is also important to note
that these 11 isolates belong to SC13, and the SC13 group had 24 isolates. Therefore, any
SC13 isolate containing all eight variations has a 46.0% chance of showing the N-resistant
phenotype. The SNVs were MdtH L15P, hypothetical protein G6V, QseC1 L19V, PpnN
R116C, BioH A236T, WecA B284I, PurA A103G, and Tsr2 D161G. The details of these genes
and SNVs are provided in Table 3. The first logistic regression-based negative results (false
positive) of N resistance association are shown in Supplement Table S6.

Table 3. Potential nitrofurantoin resistance eight genes and their SNVs identified with GWAS.

Locus Gene Product Effect p-Value

NC_003197.2:1252216 mdtH Multi-drug resistance
protein MdtH

missense_variant c.44T > C
p. Leu15Pro 1.85112239616509e-06

NC_003197.2:2585776 hypothetical protein missense_variant c.17G > T
p. Gly6Val 3.9922233235481e-06

NC_003197.2:2933724 qseC_1 Sensor protein QseC missense_variant c.55A > C
p.Ile19Leu 1.85112239616509e-06

NC_003197.2:3119194 ppnN

Pyrimidine/purine
nucleotide

5′-monophosphate
nucleosidase

missense_variant c.346C >
T p.Arg116Cys 1.85112239616509e-06

NC_003197.2:3667964 bioH
Pimeloyl-[acyl-carrier
protein] methyl ester

esterase

missense_variant c.706G >
A p.Ala236Thr 1.85112239616509e-06

NC_003197.2:4127935 wecA

Undecaprenyl-phosphate
alpha-N-

acetylglucosaminyl
1-phosphate transferase

missense_variant c.850G >
A p.Val284Ile 1.85112239616509e-06

NC_003197.2:4609418 purA Adenylosuccinate
synthetase

missense_variant c.308C >
G p.Ala103Gly 1.85112239616509e-06

NC_003197.2:4790581 tsr_2 Methyl-accepting
chemotaxis protein I

missense_variant c.482A >
G p.Asp161Gly 1.85112239616509e-06

3.11. Functional Annotation of Nalidixic Acid and Nitrofurantoin Resistance Possible
New Variations

We tested the effect of the newly identified three SNVs from two core AMR genes
(for NA resistance) and eight new SNVs from eight genes (N resistance) from our GWAS
analysis following the methods we described.
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We determined the 3D structure of all these proteins, except the hypothetical protein
and tsr_2. Therefore, we succeed in checking the effect of twelve new SNVs in nine
genes (Supplementary material S1). Out of the four known fluoroquinolone resistance
SNVs in gyrA, we found three SNVs that are destabilising (Table 4), indicating that many
of the variations that have destabilising effects may be associated with drug resistance.
Only the new SNVs for parC p.T571S, A554T, and sdiA p.K104Q were present in strains
phenotypically resistant to NA and N, respectively, with no other known resistance gene.
While we tested the effect of the identified unknown SNVs in other genes, except ppnN
p.R116C, all 11 new SNVs were found to destabilise their corresponding protein. Therefore,
considering the destabilising effect of the gyrA mutations, we may conclude that our
identified new SNVs may be associated with NA and N resistance (Table 4).

Table 4. Most of the non-synonymous variations for the NA and N resistance are predicted to be
destabilising based on ∆∆G (Kcal/mol) calculation.

Analysis Gene
Non-

Synonymous
Variations

Isolates
Prediction

Stability ∆∆G
(Kcal/mol)

Stability Antibiotic
Resistance

Variants in core
AMR genes

parC
A554T 3 −1.82 Destabilising

Fluoroquinolone
(NA, CIP)

R360H,
R365H 1 −1.86 Destabilising

T571S, A554T 1 −1.01 Destabilising

gyrA

D87G 1 −0.84 Destabilising

D87Y 1 0.18 Stabilising

S83F 1 −0.85 Destabilising

S83Y 6 −0.91 Destabilising

sdiA K104Q 1 −0.18 Destabilising Multiclass

nfsA E99K 7 −0.61 Destabilising

NitrofurantoinNew SNPs
using GWAS

mdtH L15P 24 −1.34 Destabilising

hypothetical
protein G6V 24 - -

qseC_1 I19L 24 −0.09 Destabilising

ppnN R116C 24 0.24 Stabilising

bioH A236T 24 −1.04 Destabilising

wecA V284I 24 −0.47 Destabilising

purA A103G 24 −1.19 Destabilising

tsr_2 N161G 24 - -

4. Discussion

Our study is the first using WGS analysis and antimicrobial susceptibility test (AST)
of S. Typhimurium isolates (n = 90) between 2000 and 2017 from different cities in Peru to
examine the diversity, WGS-AST correspondence, resistome profile, and emerging lineages.
Our study concludes that a considerable nucleotide, gene, and phylogenetic group diversity
circulates in Peru.

Peruvian samples belong predominant to ST19, with a diverse accessory content,
constituted by plasmids and segregated by phylogenetic groups. We reported that 94.4% of
S. Typhimurium isolates in Peru belong to sequence type ST19. This was expected because
ST19 is among the most predominant ST associated with gastroenteritis cases world-
wide, and it is the most ancestral and diverse phylogenetically ST for the serovar Ty-
phimurium [11,19,20].
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The population contained an open pan-genome with many repertoire genes for global
and Peruvian isolates comparable to previous reports [19,63,64]. However, the core gene
content was smaller than previously reported (3672 genes) [19] Fu et al. (3846 genes) [64].
Likewise, we defined the accessory genome as constituted of diverse plasmids without
predicting other mobile elements. Other studies highlight that the composition of the
accessory genome for S. Typhimurium is mainly based on the diversity contribution of
prophage genes, up 23.4%, followed by other elements such as plasmids and mobile islands,
up 13.3% [19,64]. In addition, we did not corroborate that phylogenetic groups segregate
the accessory genome by PCA analysis (analysis not shown).

Initially, a low accumulation nucleotide of 400–600 SNPs was reported for the serovar [20].
Although, other studies showed a large accumulation of SNPs by isolate (1232 SNPs) [64]
and a total of 62,884 SNPs for the African population [10]. These studies are comparable to
the vast number of polymorphisms (3045 SNPs) within genomes circulating in Peru with a
moderate median pi value (0.135) at the intrapopulation diversity level described by Pons,
1996 [65].

The phylogenetic topology showed two high-order clades and population structures
identified at least 10 lineages supported by subclades with depth branches to multiple
branches. This topology has already been discussed previously in studies; this includes
an alpha clade basal with livestock samples with a diversity of terminal branches corre-
sponding to clonal expansions. A distinct beta clade is characterised by multiple lineages
from the vast host (including wild avian) that are deeply rooted [19,20]. Likewise, we
report the emergence of SC13 and SC17 lineages by their relative widespread in the country
and the prevalent MDR phenotype of SC9 and SC8 lineages. It has already been shown
that subclades are under different anthropogenic selection pressures. Antibiotic use might
provide the selection pressure driving the emergence of sub-lineages containing AMR
genes [10,11,19,66]. MDR strains harbour variable numbers of resistant plasmids reported
mainly from livestock samples and outbreaks in hospitals and foods [19,20].

S. Typhimurium presents considerable resistance to first-line antibiotics, susceptibility
to cephalosporins and ciprofloxacin, and low sensitivity value of phenotypic prediction due
to the unknown resistance mechanism. This study explored resistance trends, transmission,
profile genotypic and phenotypic, correlation, and discovery of new genetic bases for
resistance phenotypes with phylogeny. The study reports a high number of strains (48.8%)
with phenotypic resistance to at least one antibiotic compared to the variable prevalence
(26.0%/n = 95, 61.6%/n = 193, 37.3%/n = 3491) for NTS clinical and food samples from Peru,
US, and England, respectively [21,22,67]. We found considerable resistance to first-line
antibiotics (nitrofurantoin, tetracycline, nalidixic acid, and ampicillin); only 12.0% were
MDR strains. The persistence of resistance to first-line antibiotics over the years in this
study was expected due to the continued use of treatment in Salmonella [24].

Previous studies of NTS and S. Typhimurium strains show a significant number
(24.3%-43.0%) of MDR strains to first-line antibiotics except for nitrofurantoin, and with the
addition of sulphonamide, streptomycin, and chloramphenicol (in some cases) in American
Latin, USA, and England [21,22,24,66,68]. This minor prevalence of MDR strains compared
to other studies of NTS samples should include different serovars that present high and
diverse MDR. In recent years, S. Infantis has been the most predominant serovar detected
in clinical samples associated with high resistance to first-line antibiotics, third-generation
cephalosporins [7,8], and ciprofloxacin [8,68,69]. Although 85.0% of our samples were
clinical isolates, S. Typhimurium, compared to other serovars, still presents a reduced
resistance to priority antibiotics. On the contrary, S. Typhimurium is a relevant pathogen
in guinea pigs with distinct and moderate AMR profiles that include colistin and en-
rofloxacin [70], erythromycin and nitrofurantoin resistance [71]. In addition, Salmonella
isolates from chicken meat show high quinolone resistance (enrofloxacin and NA). Cur-
rently, the resistance spectra of the MDR strains of Salmonella serovars have been emerging
in farm animals [24]. Because quinolones, chloramphenicol, aminoglycosides, and nitrofu-
rantoin are exhaustively used as treatment and/or prophylactic in farm animals [68,70–74],



Antibiotics 2022, 11, 1170 19 of 26

constituting the leading resource of transmission on the emergence of resistant strains
is reported.

WGS showed the content of AMR chromosomal genes with an impact on the resis-
tance based on their expression. These AMR genes encoded most efflux pumps reported
by Seribelli [11]. Complementary, we identified 32 AMR acquired genes (Table 1, this
profile AMR genes were similar and minor to previous works [21–23,66,73]. These studies
detecting additionally other EBSLs, ribosomal protection mechanisms, PMQR genes, phos-
photransferase, efflux pump, and an acetyltransferase that confer resistance to spectrum
extended beta-lactam, tetracycline, fluoroquinolone, macrolides, and phenicol, respectively.
Genotypic AMR profile to priority antibiotics shows the nalidixic acid resistance associ-
ated with the presence of PMQR genes (qnrB5, qnrE2, qnrB19) or mutations (D87G, D87Y,
S83F, S83Y) in the gyrA gene, and presence combined of both markers are associated with
ciprofloxacin resistance [21]. Interestingly, the considerably reduced ciprofloxacin suscepti-
bility did not exhibit these markers. This is because the efflux pump’s overexpression was
related to intermediate resistance [75], and the disc diffusion test did not adequately detect
reduced susceptibility to fluoroquinolones [76]. In only two strains, extended-spectrum
beta-lactam resistance was associated with three EBSLs genes (blaCTX-M-15, blaSHV-12,
blaSHV-134). Additional WGS allowed the detection of genes associated with additional
drug resistance as aminoglycoside, aminocoumarin, bacitracin, nitroimidazole, microcin,
lincosamide, bleomycin, fosfomycin, colistin, and multiclass.

A worrying trend is an increase in resistance to treatment antibiotics (extended-
spectrum cephalosporins and ciprofloxacin) for Salmonella. Despite them, our study
shows susceptibility to ciprofloxacin and third-generation cephalosporins, reported in other
works [21,22,24,66–68,73] without co-resistance to both antimicrobial classes. Whereby the
use of third-generation cephalosporins for treatment in S. Typhimurium infections would
be recommended.

WGS strategy allows monitoring and complementing the prediction of phenotypic
AMR profiles [23,73]. We found good accuracy values (prediction of true positives and
negatives) and specificity (the absence of known markers predicting true negatives). Com-
parable successful correlation values were reported, 99.0% [73], 97.8% [21], 95.4% [22],
89.9% [23], and 85.4% [69]. Nonetheless, we found the best sensitivity values to predict re-
sistance to only ceftazidime and ciprofloxacin and the highest discrepancy values to predict
resistance to beta-lactam, chloramphenicol, SXT, and nitrofurantoin. Previous work also
found discord in the prediction of resistance to beta-lactams [66,73], sulfamethoxazole [23],
ciprofloxacin [73] and tetracycline [66]. Due to the high number of contradictions between
genotype–phenotype compared with previous reports cannot conclude that this would be
an alternative method of predicting antimicrobial susceptibility.

Mismatch categories with a lower sensitivity, where an isolate is genotypically pre-
dicted to be susceptible but exhibits phenotypic resistance, highlights limitations based on
sequence quality [77], partial assemblies, lack of updated AMR database, and rely on the
prediction based only on the genome [12,78,79]. Continuous findings should be carried out
to identify novel resistance mechanisms and be incorporated into the reference databases
to maintain a high level of prediction sensitivity. Other inconsistent results support the
need for combined AST strategies, such as the microdilution test, an efficient method
with quantitative results [28]. This study also highlights the performance of the routine
antibiotic susceptibility test and works with a balanced number of phenotypic samples and
population representations [80].

The diversity of plasmid families carrying AMR genes in isolates belong to SC8 and
SC9 lineages and was detected in two hospital centres considered the focus of transmission
of antimicrobial resistance. WGS also allows identifying AMR genes commonly present on
plasmids, primary transmission resources, and related to the emergency lineages. Here,
we reported at least 17 resistant plasmid families, including conjugative and mobilisable
plasmids, with the potential threat of spreading AMR genes in NTS [14,22]. These resistance
plasmids belong to F, ColE, I1, C, HI1, HI2, and N families, such as a previous work of
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Salmonella isolates from food animals in the USA predicted 212 resistance plasmids [22].
In Peru, a conservative virulence plasmid (pSV) in S. Typhimurium [67] and MDR Mega
plasmid in S. Infantis [8] have been described. In Peru, S. Typhimurium isolates are
prevalent that contains the virulence plasmid (pSV) [67,81]. However, the absence of
plasmids in the phylogenetic group could be due to the competence with other AMR
plasmids or other genetic and environmental factors that modulate the residence [81].

Interestingly, the genotypic profile is linked to family plasmid in some lineages. For
example, two only strains contain replicon plasmid carrying ESBLs genes and unnamed
replicon plasmid P4 carrying beta-lactamases genes in lineage SC8. Lineages S8 and SC2
harbour PMQR genes in Col(pHAD28) plasmid. Col(pHAD28) plasmids related to fluoro-
quinolone resistance were reported [82]. MCR-1-carrying lncI2 and IncHI2 belong to the
SC9 lineage. These dominant mobilisable plasmids show colistin resistance [83,84]. Like-
wise, only a strain carries fosA3-carrying IncFIB plasmid. Previous studies have reported
antibiotic’s last line resistance as the fosA3 gene in AMR plasmids [85] and IncFIB plas-
mids [86,87]. Intriguingly, SC9 isolates harbour the IncHI2 plasmid that carries many AMR
genes. This plasmid is a dominant mobilisable detected among MDR Salmonella, playing a
role in the acquisition of ARGs, and has been reported recently encoding ESBLs [10,88–90].
Thus, active surveillance is needed to minimise the global spread of lncIA-I(Alpha), IncI-
gamma/K1, lncFIB, lncI2, and IncHI2 resistant plasmids link an SC9, SC8, and SC2 lineage.
MDR strains were found mainly from the Hospital de Emergencias Pediátricas, and In-
stituto Nacional de Salud del Niño. The previous report shows the presence of MDR
isolates from serovar Infantis in the Hospital de Emergencias Pediátricas [91]. Therefore,
antimicrobial screening routines should be implemented to mitigate the spread of these
healthcare-associated MDR strains in Peruvian hospitals.

GWAS analysis allows us to identify new non-synonymous mutations that can po-
tentially improve resistance fitness; however other resistance confirmation strategies are
necessary. We reported new SNVs in parC p.R360H, R365H gene, and sdiA p.K104Q that
show destabilising effect protein with a possible impact on the protein function. Mutations
in gyrA-parC genes decrease the binding affinity of quinolones with DNA-topoisomerase
enzymes [92,93]. Efflux pumps are encoded in chromosomes and play intrinsic roles in
multi-drug resistant Gram-negative bacteria [25]. sdiA gene acts as a positive regulator of
the constitutive expression of the AcrAB–TolC pump system [94]. Nucleotide variations
in this regulator [25] act in high-level fluoroquinolone resistance and other antimicro-
bials [94,95]. Genetic variation targets could result in overexpression of these proteins.
For instance, SNVs in acrR regulator or multi-drug pump AcrAB were associated with
high-level fluoroquinolone resistance [94].

We found that considerable nitrofurantoin resistance could not be associated with
known AMR markers such as those previously reported [96]. This would happen because
the ARM databases have few AMR genes since the mechanisms of action of nitrofurans
are poorly studied [94]. Thereby, GWAS analysis identified eight non-synonymous substi-
tutions potentially associated with resistance to nitrofurantoin; six show the destabilising
effect protein. Genetic variation is within multi-drug efflux pump [97]; regulator purine
homeostasis and biosynthesis [98]; biotin ring assembly [99]; pathway LPS O-antigen
biosynthesis [100], and chemotactic-signal transducers added. However, we did not find
that the mutational effect on these functional mechanisms could confer nitrofurantoin
resistance. Likewise, these variants were present in the lineage SC13. To avoid spurious
associations, GWAS analysis using the population stratification covariate was performed
subsequently without associating any mutation to nitrofurantoin resistance. Hence, we
suggest that the maintenance of these combined mutations in phylogenetic group strains
would be fixed randomly and consequently could confer a resistance advantage.

5. Conclusions

Our work based on the WGS analysis has allowed us to understand the dynamics
and determinants of antimicrobial resistance distinguished by the population diversity
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for S. Typhimurium. However, due to low sensitivity values from genotype–phenotype
resistance correlation, it is still necessary to evaluate the use of WGS to predict AMR
susceptibility. We recommend the third-generation cephalosporin antibiotic as a potential
treatment against infection by S. Typhimurium. We can reinforce that WGS constitutes a
complement but not an alternative to traditional methods to infer antimicrobial suscep-
tibility, as a powerful tool that allows genome-based epidemiological study, monitoring
AMR genes, virulence, plasmid typing, outbreaks, understanding of resistance mechanism,
and transmission patterns. Pathogen genomic surveillance should be expanded globally
and continuously monitored for better treatment of Salmonellosis and control strategies
against the disseminating AMR. Future work should be based on better discordant predic-
tion due to the absence of AMR genes on resistance phenotypes, adding new resistance
mechanisms and improving the database’s reliability, replicating assay, large-scale samples,
and supplementary technical methods.
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