UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Backward reasoning through AND/OR trees to solve problems

Permalink
https://escholarship.org/uc/item/9h4863xm

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Olieslagers, Jeroen
Bnaya, Zahy

Li, Yichen

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9h4863xm
https://escholarship.org/uc/item/9h4863xm#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Backward reasoning through AND/OR trees to solve problems

Jeroen Olieslagers (jeroen @nyu.edu)
Center for Neural Science, New York University
New York, NY, United States

Yichen Li (yichenli@fas.harvard.edu)
Department of Psychology, Harvard University
Cambridge, MA, United States

Abstract

Whether travelling, playing games, or debugging code, any
situation where an agent desires change can be framed as a
problem. Despite this ubiquity, there is no unifying frame-
work describing how people reason backwards when solving
problems. We introduce AND/OR trees, which chain together
subgoals and actions to attain them, as a way to represent this
process. To investigate whether actions from AND/OR trees
were predictive of human behavior, we conducted a study in
which participants solved deterministic, long-horizon puzzles.
AND/OR trees were able to explain most of the actions the
participants took. Next, we modeled search through these trees
using a psychologically plausible, single-parameter search al-
gorithm. We fit this model to the data of individual participants
and found that it captures trends in summary statistics of hu-
man play. Our results show the promise of AND/OR trees as a
representation for backward reasoning in problem solving.

Keywords: problem solving; backward reasoning; subgoals;
AND/OR trees; Rush Hour

Introduction

The field of human problem solving, popularized by Newell
and Simon (1972), has a long and distinguished history in
the field of cognitive science. One of the central pillars
of human problem solving is search (Simon, 1983; Wang
& Chiew, 2010). This process can happen forward, as is
commonly studied in the planning literature (Callaway et al.,
2022; Correa, Ho, Callaway, Daw, & Griffiths, 2023; Russek,
Acosta-Kane, van Opheusden, Mattar, & Griffiths, 2022; van
Opheusden et al., 2023), or backward, as is commonly stud-
ied (in tandem with forward search) in the problem solv-
ing literature (Choi, Kaufman, Langley, Nejati, & Shapiro,
2004; Kobylarz, DeBar, Reeve, & Meyer, 2020; Larkin, Mc-
Dermott, Simon, & Simon, 1980; Park, Lu, & Hedgcock,
2017). However, these studies focused on either developing a
broader, phenomenological problem solving framework or in-
vestigating in which situations people reason backwards, and
not on creating a parameterized process model fit on human
data to predict behavior.

The field of automated planing has a long history of us-
ing and contributing to theories of human problem solving
(Fikes & Nilsson, 1971; Newell, Shaw, & Simon, 1959;
Shapiro, 1979). However, many modern day automatic prob-
lem solvers have shifted away from modeling human problem
solving in order to better solve problems. Instead, they are
designed to push the frontier of what problems computers are
capable of solving, without much regard to human cognition

Zahy Bnaya (zahybnaya @gmail.com)
my WhatIf foundation
Tel Aviv, Israel

Wei Ji Ma (weijima@nyu.edu)
Center for Neural Science and Department of Psychology,
New York University
New York, NY, United States

(Georgievski & Aiello, 2016; Nau, Cao, Lotem, & Munoz-
Avila, 2001; Raad et al., 2024; Trinh, Wu, Le, He, & Luong,
2024).

Backward reasoning

If you are presented with a model of the world (transi-
tion probabilities in the framework of Markov Decision Pro-
cesses), but little information about where exactly you wish
to end up, then forward search is an efficient method to men-
tally explore the state space until you find a desirable state.
However, in forward search, actions that have no connection
to the goal state(s) might be considered, which can be a waste
of computation.

If you do have information about the goal state: where you
wish to end up, then you should leverage that to make search
easier. This is what backward search aims to address. In
backward search, every action considered is linked to reach-
ing the goal state. This is because the process starts at the
goal and works backward to where the agent is. If this pro-
cess is done in the state space of the problem, then the agent
might consider states that are unreachable, also wasting com-
putation.

We propose that backward reasoning (distinct from back-
ward search), can mitigate this inefficiency in backward
search. Backward reasoning is similar to backward search,
but instead of a search over states, it is a search over
(sub)goals. The agent starts at the goal, and breaks it down
into subgoals, which themselves get broken down into sub-
goals. This process continues until the problem is sufficiently
subdivided. From this point on, the agent selects one of the
subgoals, and either immediately attains it, or performs for-
ward/backward search to find an action to attain it. We con-
tribute to the field of human problem solving by providing a
representation to explain the human thought process during
backward reasoning.

To describe the process of backward reasoning in problem
solving, imagine that you are hungry. Solving this problem
involves eating something, which becomes your goal. To at-
tain this goal, you may consider eating a salad, burger, or
lasagna. If you decide on lasagna, then the new problem is
that it is not immediately available to you, which creates a
subgoal: in order to eat lasagna, you must first cook it. To
accomplish this subgoal, you could heat up store-bought mi-
crowave lasagna, or you could make lasagna from scratch in

4402
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

the oven or air fryer. Since you already have all the ingredi-
ents, you decide to cook lasagna in the oven. The action of
putting lasagna in the oven and cooking it is not available to
you. This time, multiple subgoals present themselves: you
must preheat the oven, prepare the sauce and boil the pasta.
Only after accomplishing all these subgoals may you proceed
to cook the lasagna in the oven. Going down this train of
thought, you decide that the first action you will take to solve
the problem of sating your hunger is to preheat the oven.

AND/OR trees

We propose that the process of chaining subgoals to-
gether during backward reasoning can be represented using
AND/OR trees. AND/OR trees were first used by Slagle to
automatically solve analytical integration problems (Slagle,
1963). They were then used in other artificial intelligence
efforts such as theorem proving (Amarel, 1967; Kowalski,
1972; Vanderbrug, 1976), language recognition (VanderBrug
& Minker, 1975), two player games (Pearl, 1984; Slagle &
Dixon, 1969), optimizing decision tables (Martelli & Mon-
tanari, 1978), and more recently in constrained optimiza-
tion (Marinescu & Dechter, 2004) as well as solving games
(Kishimoto, Winands, Miiller, & Saito, 2012).

AND/OR trees are similar to decision trees in that they
have a root node that is connected to child nodes by directed
edges, ending at leaf nodes. In AND/OR trees, however, there
is a distinction between AND nodes and OR nodes. AND
nodes are considered ‘satisfied’ if all of their child nodes are
satisfied. OR nodes are satisfied if any child node is satisfied.
In the context of problem solving, OR nodes are subgoals and
AND nodes are actions that attain subgoals. These are then
chained together as follows: a subgoal has as child nodes a
set of possible actions that each attain the subgoal. These
actions might not immediately be available to the agent (just
like eating lasagna isn’t possible if you haven’t cooked it yet),
but if any one is taken, it will result in the attainment of the
subgoal. If an action is immediately available to the agent, it
is a leaf node and will have no child nodes. However, if the
action is not immediately available, a set of subgoals will be
created. This can be thought of as asking “What has to be
done before I can take this action?”. The actions are AND
nodes since all subgoals have to be attained before the action
becomes available.

The whole process starts at the root node, which is the over-
all goal of the problem and is hence an OR node. Taking any
action that is a child node of the root will result in the prob-
lem being considered solved. AND/OR trees provide a useful
representation because every action considered contributes to
attaining the overall goal that solves the problem.

Task

To investigate whether people reason backward through
ANDY/OR trees to solve problems, we want a task that (1) has
a clear goal; (2) naturally breaks down into subgoals; (3) has
a tractable state space and computable optimal solutions; (4)

Figure 1: Rush Hour example puzzle (left) with associated
AND/OR tree (right). The goal of the puzzle is to move the
red car labeled ‘R’ all the way to the right of the board.

is complex enough to require multiple steps of thinking; (5)
has minimal learning, perceptual, social and language com-
ponents; and (6) has deterministic transitions and is set in a
deterministic environment. While we propose AND/OR trees
generalize to all tasks that satisfy (1), we wish to focus on
investigating the structure of the tree, and avoid any possible
confounds through (2-6).

All these desiderata are satisfied by the game of Rush Hour:
a game created by Nob Yoshigahara in the 1970s and part of
the family of “sliding block™ puzzles (Spaans, 2009). It is
played on a 6 x 6 board where “cars” are pieces occupying
either two or three squares, arranged vertically or horizontally
(Fig. 1). You may move cars only forward or backward in the
direction they are facing. The goal of the game is to move
the target car (the red car) out of the board by moving it all
the way to the right. The key constraint is that cars may not
overlap and you may not move a car through another (or lift it
from the board). In the simple example from Fig. 1, the opti-
mal solution (solution requiring the fewest actions) is to move
Car 1 down one or two spots, clearing the way for the red car
to move all the way to the right. Moving a car any number
of spots at once is considered a single action. For this puz-
zle, the ultimate goal is to move the red car one space to the
right. This is depicted in the top (root) node in the AND/OR
tree next to the puzzle (each unique board state has its own
AND/OR tree). The goal is to free the red car (first OR node)
and to do this, it must be moved one spot to the right (first
AND node). You will find that this action which solves the
puzzle is not immediately available, since Car 1 is blocking
the way. Hence, the new and only subgoal that needs to be
attained to make this action possible is to move Car 1 out of

4403

the way. To do this, you can move Car 1 downwards (one or
two spaces) or upwards (two spaces). If you wish to move
the car downwards, there is nothing blocking you from doing
so, and hence you will have reached a leaf node. Otherwise,
if you wished to move Car 1 upwards, you will find that is
blocked by both Car 2 and Car 3. In this very simple case, it
is clear that moving Car 1 downwards instead of upwards in
order to unblock the red car is the better move, but in more
complicated puzzles, it is not always so clear. Rush Hour has
been studied in the context of determining the complexity of a
puzzle (Bennati, Brussow, Ragni, & Konieczny, 2014; Bock-
holt & Zweig, 2015; Jarusek & Pelanek, 2011) as well as the-
ory of mind (Berke, Tenenbaum, Sterling, & Jara-Ettinger,
2023). However, the field lacks any mechanistic explanation
of how people solve Rush Hour puzzles, and to our knowl-
edge there have been no process models of human behavior
in this paradigm.

Experiment

We implemented a web-based version of the game to recruit
n = 42 participants through Amazon Mechanical Turk. In
the experiment, we asked participants to solve any number of
70 Rush Hour puzzles. They could skip puzzles if they found
them too hard but received a bonus for completing more puz-
zles. Puzzles were split into four groups of differing optimal
solution length (5, 9, 12, or 14). Every puzzle contained 9
cars. Participants attempted 52 + 17 (S.D.) puzzles, with a
completion rate of 86 + 14% (S.D.). Across the 42 partici-
pants, we obtained a total of 46,965 board states. Analysis of
the raw data suggests that participants find it harder to solve
puzzles which have a greater optimal solution length (Fig. 2).

Model

To model how people might be traversing AND/OR trees, we
assumed a person stops at any given OR node with probabil-
ity 7. This parameter is directly related to how deep into the
tree a participant explores. It also aims to incorporate factors
such as attention, motivation, and working memory capac-
ity, without explicitly representing these in the model. The
motivation for having a stopping probability is the assump-
tion that people prefer shorter trains of thought compared to
longer ones. From a resource-rational point of view (Lieder
& Griffiths, 2020), this makes sense: to save on memory and
computation, people should prefer to solve the puzzle in as
few actions as possible (even if they don’t have this as an ex-
plicit goal). A stopping probability like this can also be found
in planning algorithms where it serves to limit the depth of
planning (van Opheusden et al., 2023).

When a person comes to a point where an AND node re-
quires multiple subgoals to be attained, we assume that they
form a probability distribution over these subgoals, where
the probability of choosing any one subgoal depends on the
heuristic function h”, the properties of the subgoal in ques-
tion OR;, and the parameters #*. These three factors allow
us to represent heuristic functions people might use to pre-
fer one subgoal over another (e.g. one subgoal might on the

Length 5 Length 9

goal
o

AN
0+

0 5

Distance to
)
/ /|

10 15 20 0 10 20 30

Length 12 Length 14

Distance to goal

60 0 50 100 150
Move #

Figure 2: Trajectories from all participants in four randomly
selected puzzles, one from each difficulty category. Distance
to goal represents the minimum number of actions it takes to
reach a goal state, and length is the optimal solution length
from the starting state. Darker lines mean more trajectories
overlap.

surface appear easier, making it more or less appealing). Sim-
ilarly, for choosing an action to attain a subgoal, we assume
a heuristic function h®, the properties of the action in ques-
tion AND;, and the parameters #© influence the probability
a person chooses one action over another to attain a specific
subgoal (e.g. people might select an action that moves a car
fewer spaces over an action that moves a car more spaces).
These two types of heuristics likely play a significant role in
how people arrive at their chosen action. However, since the
space of possible heuristic functions is infinite, we started by
investigating the simplest case where the heuristic functions
are uniform over all options. This means that the only pa-
rameter in our model is the stopping parameter v which we
fit on a per-participant basis. We experimented with other pa-
rameters such as a lapse rate as well as more problem specific
parameters but found that these did not provide sufficient im-
provement to warrant separate investigation.

Since the AND/OR trees we are dealing with are fairly
small (none have more than a few hundred nodes, and most
have on the order of tens), we don’t have to simulate trajec-
tories through the AND/OR tree as is common in forward
search planning algorithms (van Opheusden, Acerbi, & Ma,
2020). We can find the probability of reaching each leaf node
by starting at the root node, propagating probabilities down-
ward by breadth-first search. If a cycle were about to form,
we terminate the process and the resulting propagated prob-

4404

A B

(Choosingtostop)
v
Ona o
1 -
\ 4 J
Choosing a subgoal
4

hA(oRy, 6%) @ hA(ORy, 64)

HCICHE

(Choosing an action)

20 4
: CC
hO(ANDl,QO)ho(ANDZs 00) }

6o | @@

Figure 3: A. Probability propagation rules. Top: stopping
probability v. Middle: choosing which subgoal to pursue
using heuristics. Bottom: choosing which action to take to
attain the subgoal using heuristics. B. Probability propagation
for example puzzle from Fig. 1 where heuristics are uniform
over all options.

O
(-)<

.

ability gets spread proportionally over all other leaf nodes.
Behaviourally, this is equivalent to reaching a cyclic train of
thought and starting over.

The propagation process (Fig. 3) works as follows: at the
root node, we start with full probability. Since the root is an
OR node, we assume people stop with probability v and take
arandom action. This would be considered a lapse, where the
person simply took a random action without thinking about
the problem at all. With probability 1 — -, the person contin-
ues down the AND/OR tree, looking at which actions attain
the overall goal of moving the red car out of the board. They
then reach the next subgoal (which in this example is mov-
ing Car 1 out of the way of the red car, Fig. 1), where they
again stop with probability . Since they will reach this node
with probability 1 — ~, the resulting probability of stopping
at this node is v(1 —), and the probability of moving on is
(1 — +)2. Since there are three ways to move Car 1 out of
the way of the red car, and since we have assumed a uniform
heuristic function, each child AND node gets a third of the
probability: (1?)2 . This process continues until all nodes in
the AND/OR tree have been visited. The result of the process
is a probability distribution over actions, where the probabili-
ties of the green nodes get assigned to their respective action,
and the summed probability from the red ‘random’ nodes gets
spread over all possible actions (as if picking an action at ran-
dom). We call the green nodes (the AND/OR tree leaves) the

sensible actions of the current board state, since each of these
actions attains a subgoal that is connected to solving the main
goal of the problem. See Fig. 1 for an example: try and make
an argument for any of the actions not in the AND/OR tree.

We found the value of ~ for a given participant by maxi-
mum likelihood estimation. Before any optimization, we set
~v = 0 and noted the resulting probabilities as well as depths
of the leaf nodes. Subsequently, we defined a likelihood func-
tion which takes in a value for 7y (between 0 and 1), and mul-
tiplies the probability of each leaf node by (1 —)%= where
dyee 18 the depth of the leaf node in the AND/OR tree. The
probability of taking a random action was then calculated as
one minus the sum of the probabilities in all the leaf nodes.
This allowed us to quickly calculate the likelihood of any ac-
tion without needing to propagate the probabilities through-
out the AND/OR tree over and over. This was only possible
since we were not optimizing any heuristic function parame-
ters. The log-likelihoods of all actions from a given partici-
pant were summed and maximized using Brent’s method. By
plotting the log-likelihood for a fine grid of values of v be-
tween 0 and 1, we confirmed that the objective surface was
smooth, and that there was a unique maximum for each par-
ticipant (mean = 0.07, S.D. = 0.025).

To validate this model of backward reasoning, we com-
pared performance against a baseline model called the Eu-
reka model. This model aims to capture the trend seen in the
data in Fig. 2 that participants appear to behave randomly up
to a point where they seem to have gained some insight (the
eureka moment). Similarly to JaruSek and Peldnek (2011),
the model assumes that if the person is more than d steps
away from the nearest goal state, they are unable to see deep
enough into the forward search tree to find a goal state. When
this happens, the person is assumed to act randomly. If they
are d steps or fewer away from the nearest goal state, they
are assumed to have found a goal state by looking into the
decision tree far enough. In these states, they act optimally
with probability 1 —)\, otherwise they act randomly. This is
to model any lapses that might occur. These two parameters
are fitted on a per-participant basis as before.

Results

To measure the strength of our AND/OR tree model, we look
at its 5-fold cross-validated negative log-likelihood (NLL)
relative to the Eureka baseline model. We found a signifi-
cant improvement, ¢(41) = 90.7, p = < .001 (Fig. 4A). From
this we can conclude that even though the Eureka model has
more parameters, it does a poorer job of predicting partici-
pants’ moves. The other problem with the Eureka model is
that it fails to explain how a person would know which move
is optimal once they are within d steps from the goal.

Since Rush Hour board states are abstract, high-
dimensional objects, we use summary statistics to capture
key information about states and actions. The key summary
statistic describing a state is the minimum number of actions
it takes to reach a goal state, called the “Distance to goal”.

4405

24+
A B e Subjects e Random
10 emmw Eureka model e AND/OR model
204 . T 0.12 1
.E 008 IIIIIII .g)
- to £ .50.08 A I I
o a 0.6 1 Qc
3 o€ © 50,04 - 1 IIII
= o 0.4 - o I
z] I
— 0.00
z 5
()
9 55071 §, Frme,
E o C 4 1 II
8 0.1 {L T =
Swm IIII R I
oo IT g
I, @) 3
0-0 T T 1 2 T T T 1
AND/OR Eureka Random 15 10 5 0 15 10 5 0
tree Distance to goal Distance to goal
emSubjects @emRandom D @ \orse @mm» Same @mm» Better
@emEureka model @»AND/OR model
c Subjects Random
0 02qT 1.0
£ =% g
£0.14 o S 0.5 A
o o
0 0_ T T T T T = -
2 4 6 & 10 0.0
Depth in tree Eureka model AND/OR model
1.0
§044T é
§- = 8-0 5 -
S 0.2 \ o
o ™ % 00 -
0.0- T 5 5 4 5 &5 3 3 15 10 5 0 15 10 5 0
Ranked depth Distance to goal Distance to goal

Figure 4: A. 5-fold cross-validated negative log-likelihood across N = 42 subjects. Errorbars represent 95% confidence
intervals. B. Summary statistics for each quantile binned distance to goal. Top left: proportion of actions that were part of the
AND/OR tree. Top right: proportion of actions that undid the previous move. Bottom left: proportion of actions that moved
the same car as previous move. Bottom right: average depth of actions which were part of the AND/OR tree (actions that were
not part of the tree were excluded). Error bars and shaded areas are 95% confidence intervals around the mean across subjects.
C. Histograms of actions by depth in AND/OR tree (top) and ranked depth (bottom). Error bars and shaded areas are 95%
confidence intervals around the mean across subjects. D. Proportion of ‘worse’ (push agent farther from goal), ‘same’ (leave
agent at same distance from goal) and ‘better’ (push agent closer to goal) actions for each quantile binned distance to goal.
Random agent shows the proportions available to participants and models.

We calculated this summary statistic for every state by per-
forming breadth-first search starting at the state in question,
finishing when a goal state is reached (puzzles usually have
multiple goal states). We also investigated other summary
statistics describing the board state such as the number of
available actions, but found these to be uninformative.

We first looked at the proportion of actions participants
took that were part of AND/OR trees (the proportion of sensi-
ble actions the participants took). We find that this proportion
is high: going from 80% in states far from the goal to 90% in

states close to the goal (Fig. 4B). However, if the AND/OR
tree included 80-90% of all possible actions into its structure,
this would not be a surprising result. In this case, 80-90%
of the actions taken by a random agent would be included in
the AND/OR tree, suggesting the representation is no more
useful than a random selection of actions. In reality, the pro-
portion of all possible actions that are part of the AND/OR
tree is much smaller (Fig. 4B, blue area). This shows that
actions obtained from reasoning through the AND/OR tree
are predictive of human actions (up to some noise ceiling).

4406

We also find that the proportion of all possible actions that
are part of the AND/OR tree drastically reduces closer to the
goal. This means that near goal states, there are few sensi-
ble actions, while far from the goal, more actions are sensible
since there are more ways to reach a goal state. Our model
faithfully captures these trend seen in the data (Fig. 4B, over-
lapping errorbars).

In Rush Hour, state transitions are bidirectional, meaning
that actions can always be undone. An optimal agent would
never do this, but humans do. Furthermore, the proportion
of undos (moving a car back to where it just came from),
is found to decrease as participants get closer to a goal state
(Fig. 4B). More generally, we also investigated the proportion
of actions where the same car was moved as in the previous
action. This includes undos but also other erroneous actions
such as moving a car forward one space, and then moving it
forward one space again. We again find a decrease in these
types of moves the closer participants get to the goal. These
findings suggest that people make fewer mistakes the nearer
to the solution they get, a hypothesis we further investigated
below. Our model captures both of these behaviours.

Next, we wanted to find out how the structure of AND/OR
trees changes over the course of solving a puzzle. We found
that the farther a state was from a goal state, the farther the
ANDY/OR tree leaf nodes were from the root (measured by the
depth in tree). Intuitively, the farther a state is from a goal,
the more steps are required to reach that goal, and hence the
more subsequent subgoals and actions there are. We found
that actions nearest to the root of the AND/OR tree (main
goal) were most predictive of actions participants took (Fig.
4B). Our model is also able to replicate these trends. This re-
sult confirms our initial motivation for the stopping probabil-
ity parameter y: participants prefer shorter trains of thought
over longer ones. In our model, this is replicated by deeper
nodes going through more multiplications of 1 — -y, receiv-
ing smaller probabilities and becoming less likely. This ef-
fect of ~ induces an exponential distribution over depths in
the AND/OR tree. We can see this explicitly in the data by
ranking the depths of each leaf node in the tree and plotting a
histogram of the ranks of chosen moves by participants (Fig.
4C).

The directionality induced by measuring the distance to
goal allowed us to classify actions into three categories: ac-
tions that increase this distance by 1 which we call ‘worse’ ac-
tions, actions that leave the distance unchanged called ‘same’
actions, and actions that decrease the distance by 1 called
‘better’ actions. The latter of these describes optimal actions,
since by definition you cannot get closer to a goal state by
more than | through any one action. The reverse is true for
‘worse’ actions: you cannot get farther from the goal by more
than 1 through any one action. We will refer to the collec-
tion of ‘worse’ and ‘same’ actions as mistakes. What we see
is exactly what we predicted earlier: the proportion of ac-
tions which are mistakes decreases as participants get near
goal states (Fig. 4D). Closest to the goal, participants act

optimally ~85% of the time and take essentially no ‘worse’
actions. This could suggest that when near to the goal, partic-
ipants can accurately identify which actions are clearly wrong
and avoid them. This is further solidified by evidence that in
general, the proportion of actions available to participants that
are mistakes increases as they get closer to the goal (Fig. 4D,
Random). This is likely a property of broader problem solv-
ing since nearer goal states, the number of paths (defined as
trajectories through a forward-search decision tree) to reach
a goal state optimally is necessarily the same or smaller than
farther from goal states. The smooth qualitative trend seen in
the data is captured by the AND/OR tree model, but not by
the Eureka model, which has a sharp discontinuity caused by
the sharp cutoff d induces.

Discussion

In this paper, we have introduced and shown the merits of
AND/OR trees as a way to represent the human thought pro-
cess of backward reasoning in problem solving. We have
also proposed a simple model for traversing these trees, and
demonstrated its ability to recapitulate behaviours seen in
humans. We showed that participants prefer actions that
arise from shorter trains of thought, a finding supported by
resource-rationality (Lieder & Griffiths, 2020). Furthermore,
we found that human behaviour is most predictable when they
are closest to solving a problem, where the number of (opti-
mal) paths to a goal state is smallest. Finally, we showed that
people make fewer mistakes the closer they are to solving a
problem.

A challenge in bridging our work to real-world problem
solving is that the latter often comes with strong heuristics.
For example, in the cooking example heuristics would be
used in deciding whether the person wanted to eat lasagna,
salad or a burger, and would determine whether the person
would choose to first cook the pasta or turn the oven on. In the
future, we would like to investigate the role heuristics play in
shaping the AND/OR tree search process. This would allow
us to ask questions about participant-specific biases and make
more accurate predictions about their exact thought process.

As is common in the field of cognitive modeling, we have
treated each state independently, making the model fitting
process simpler, but ignoring important structure present in
across-state correlations. Most importantly, people likely
form a train of thought, and then execute multiple actions
according to the same train of thought. It is unlikely that
people form an entirely new train of thought after every
action, and people likely carry over information from the
AND/OR tree across states. We would like to model this
in future work, making predictions about when people form
new trains of thought and validating this with reaction time
or eye movement data. Finally, we would like to investigate
how AND/OR trees can be combined with forward search al-
gorithms to provide a more holistic account for human be-
haviour across a wider range of tasks.

4407

References

Amarel, S. (1967). An approach to heuristic problem-solving
and theorem proving in the propositional calculus. Systems
and Computer Science, 125-220.

Bennati, S., Brussow, S., Ragni, M., & Konieczny, L. (2014).
Gestalt effects in planning: rush-hour as an example. In
Proceedings of the annual meeting of the cognitive science
society (Vol. 36).

Berke, M., Tenenbaum, A., Sterling, B., & Jara-Ettinger, J.
(2023). Thinking about thinking as rational computation.
In Proceedings of the annual meeting of the cognitive sci-
ence society (Vol. 45).

Bockholt, M., & Zweig, K. A. (2015). Why is this so hard?
insights from the state space of a simple board game. In
Serious games: First joint international conference, jcsg
2015, huddersfield, uk, june 3-4, 2015, proceedings 1 (pp.
147-157).

Callaway, F., van Opheusden, B., Gul, S., Das, P., Krueger,
P. M., Griffiths, T. L., & Lieder, F. (2022). Rational use
of cognitive resources in human planning. Nature Human
Behaviour, 6(8), 1112-1125.

Choi, D., Kaufman, M., Langley, P., Nejati, N., & Shapiro, D.
(2004). An architecture for persistent reactive behavior. In
Proceedings of the third international joint conference on
autonomous agents and multiagent systems, 2004. aamas
2004. (pp. 988-995).

Correa, C. G., Ho, M. K., Callaway, F., Daw, N. D., & Grif-
fiths, T. L. (2023). Humans decompose tasks by trading
off utility and computational cost. PLOS Computational
Biology, 19(6), e1011087.

Fikes, R. E., & Nilsson, N. J. (1971). Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence, 2(3-4), 189-208.

Georgievski, L., & Aiello, M. (2016). Automated planning for
ubiquitous computing. ACM Computing Surveys (CSUR),
49(4), 1-46.

Jarusek, P., & Pelanek, R. (2011). What determines difficulty
of transport puzzles. In Proc. of florida artificial intelli-
gence research society conference (flairs 2011) (pp. 428—
433).

Kishimoto, A., Winands, M. H., Miiller, M., & Saito, J.-T.
(2012). Game-tree search using proof numbers: The first
twenty years. ICGA journal, 35(3), 131-156.

Kobylarz, A. M., DeBar, R. M., Reeve, K. F., & Meyer, L. S.
(2020). Evaluating backward chaining methods on voca-
tional tasks by adults with developmental disabilities. Be-
havioral Interventions, 35(2), 263-280.

Kowalski, R. (1972). And-or graphs, theorem proving graphs
and bi-directional search. Machine intelligence, 7, 167—
194.

Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A.
(1980). Expert and novice performance in solving physics
problems. Science, 208(4450), 1335-1342.

Lieder, F., & Griffiths, T. L. (2020). Resource-rational anal-
ysis: Understanding human cognition as the optimal use

of limited computational resources. Behavioral and brain
sciences, 43, el.

Marinescu, R., & Dechter, R. (2004). And/or tree search for
constraint optimization. In Proc. of the 6th international
workshop on preferences and soft constraints.

Martelli, A., & Montanari, U. (1978). Optimizing decision
trees through heuristically guided search. Communications
of the ACM, 21(12), 1025-1039.

Nau, D., Cao, Y., Lotem, A., & Munoz-Avila, H. (2001). The
shop planning system. Al Magazine, 22(3), 91-91.

Newell, A., Shaw, J. C., & Simon, H. A. (1959). Report
on a general problem solving program. In Ifip congress
(Vol. 256, p. 64).

Newell, A., & Simon, H. A. (1972). Human problem solving
(Vol. 104) (No. 9). Prentice-hall Englewood Cliffs, NJ.
Park, J., Lu, F.-C., & Hedgcock, W. M. (2017). Relative
effects of forward and backward planning on goal pursuit.

Psychological science, 28(11), 1620-1630.

Pearl, J. (1984). Heuristics: intelligent search strategies
for computer problem solving. Addison-Wesley Longman
Publishing Co., Inc.

Raad, M. A., Ahuja, A., Barros, C., Besse, F., Bolt, A.,
Bolton, A., ... others (2024). Scaling instructable
agents across many simulated worlds. arXiv preprint
arXiv:2404.10179.

Russek, E., Acosta-Kane, D., van Opheusden, B., Mattar,
M. G., & Griffiths, T. (2022). Time spent thinking in online
chess reflects the value of computation.

Shapiro, S. C. (1979). The sneps semantic network process-
ing system. In Associative networks (pp. 179-203). Else-
vier.

Simon, H. A. (1983). Search and reasoning in problem solv-
ing. Artif. Intell., 21(1-2), 7-29.

Slagle, J. R. (1963). A heuristic program that solves symbolic
integration problems in freshman calculus. Journal of the
ACM (JACM), 10(4), 507-520.

Slagle, J. R., & Dixon, J. E. (1969). Experiments with
some programs that search game trees. Journal of the ACM
(JACM), 16(2), 189-207.

Spaans, R. (2009). Solving sliding-block puzzles. Special-
ization project at NTNU.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., & Luong, T. (2024).
Solving olympiad geometry without human demonstra-
tions. Nature, 625(7995), 476-482.

Vanderbrug, G. J. (1976). Problem representations and for-
mal properties of heuristic search. Information Sciences,
11(4), 279-307.

VanderBrug, G. J., & Minker, J. (1975). State-space
problem-reduction, and theorem proving—some relation-
ships. Communications of the ACM, 18(2), 107-115.

van Opheusden, B., Acerbi, L., & Ma, W. J. (2020). Un-
biased and efficient log-likelihood estimation with inverse
binomial sampling. PLoS computational biology, 16(12),
€1008483.

van Opheusden, B., Kuperwajs, 1., Galbiati, G., Bnaya, Z.,

4408

Li, Y., & Ma, W. J. (2023). Expertise increases planning
depth in human gameplay. Nature, 1-6.

Wang, Y., & Chiew, V. (2010). On the cognitive process of
human problem solving. Cognitive systems research, 11(1),
81-92.

4409

