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� Beam- and surface-based lattice
topologies are all suitable for bone
implant design.

� In surface-based topologies, specific
area and implant stiffness can be
decoupled.

� Surface-based topologies are more
efficient at promoting bone growth
than beam-based topologies.

� Stochastic spinodal shell topologies
require the smallest safety factor.
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Large bone fractures often require porous implants for complete healing. In this work, we numerically
investigate the suitability of three topologically very different architected materials for long bone
implants: the octet truss-based lattice, the Schwartz P minimal surface-based lattice and the spinodal
stochastic surface-based lattice. Each implant topology (reinforcement) and its surrounding tissue (soft
matrix) are modeled as a composite system via finite element analysis. Performance metrics are defined
based on the Young’s modulus, the peak stress under service conditions, the interfacial surface area per
unit volume and the relative bone growth rate (estimated based on the strain transferred to the soft
matrix). We show that surface-based topologies are less prone to fatigue failure and may promote supe-
rior bone growth than conventional truss-based designs. Spinodal surface-based architected materials
have the best performance, and can be fabricated via self-assembly approaches followed by material con-
version, potentially allowing scalable fabrication of implants with unit cell sizes at the micro-scale, thus
dramatically amplifying surface area per unit volume and bone growth efficiency.
� 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction can self-heal through remodeling [3,4], via the process of mature
Defects in bones can happen due to diseases (e.g., cancer), acci-
dental damages (trauma or injuries) and surgeries (e.g., tumor
resection, revision surgery) [1,2]. If the defects are small, the bone
bone resorption by osteoclasts followed by new bone generation
by osteoblasts [5–8]. For large-scale bone defects (mostly bone
fractures), complete self-healing by the body is not possible
[9,10], and implants are often required to fixate and realign the
bones for proper healing [11].

For these implants to be safe and effective in facilitating bone
growth, they must be biocompatible with the tissues surrounding
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the bone defects. More specifically, the implants must be porous to
allow efficient transport of nutrients and removal of waste and
promote bone ingrowth (which is controlled by the surface area
and permeability of the implant) [12–16]; they must have suffi-
cient strength to support daily physical loadings and minimize
the occurrence of fatigue failure (which is governed by the peak
stress experienced in the implant) [13,17]; and they should have
similar stiffness (characterized by the effective Young’s modulus
of the implant) to the host bones, to prevent bone loss due to
post-surgery stress shielding [13,18–20].

Architected cellular materials, i.e. porous solids consisting of a
(generally) periodic repetition of an optimally designed unit cell,
have been extensively investigated over the past couple of decades.
Topology optimization of their unit cell provides a unique opportu-
nity to tailor the effective properties of the material to maximize
multifunctional performance for a wide range of applications. In
the case of implants, the amount of porosity u (defined as the vol-

ume fraction of the open space, and equal to u ¼ 1� q
�
, with q

�
the

relative density of the cellular material) and its topological
arrangement (i.e., the unit cell design) can be designed to facilitate
bone growth. Optimal implant designs match the stiffness of the
surrounding bone while providing constant mechanical stimula-
tion to evolving tissue in the pores, maximize surface area for
bone/implant adhesion [21,22], optimize fluid transport [14,23]
through the pores, and minimize stress intensification for optimal
fatigue life [24,25]. With the advancement of metal additive man-
ufacturing technologies, in particular selective laser melting (SLM)
and electron beam melting (EBM), it is now possible to accurately
and cost-effectively fabricate porous metallic implants made of
unit cells with nearly arbitrary topological complexity [26–31].

Strut-based architected materials have garnered significant
attention in the development of candidate bone implants [13,31–
35]; they are relatively well understood (at the unit cell level)
and provide a clear pathway to fill volumes through repetition of
unit cells. These advantages are considerable since implant perfor-
mance can be anticipated from well-established design principles
[36–38]. However, the intersections of struts lead to local stress
concentration that can severely limit fatigue life [39–41]. Further-
more, these intersections may play a role in inhibiting homoge-
neous bone growth [42–44], although additional in vivo studies
are required to assess the magnitude of this problem.

Surface-based topologies, characterized by very uniform near-
zero mean curvature and the lack of strut intersections (or
‘‘nodes”), offer an attractive alternative to strut-based geometries,
and may circumvent these shortcomings. The most notable exam-
ples of these surface-based topologies are triply periodic minimal
surfaces (TPMSs), such as Schwarz P (primitive) and Schwarz G
(gyroid) surfaces [45]. Over the past few years, TPMSs have
received significant attention and have been investigated for their
multifunctional performance in multiple fields [46–48]. For bone
implant applications, TPMSs are rapidly becoming topologies of
choice, thanks to their uniform curvature, high specific surface
area, high strength, and topological similarity to human trabecular
bones [49,50]. As thoroughly demonstrated in [51,52], a wide
range of TPMS-based topologies (primitive, I-WP, Gyroid, and F-
RD) possess ideal combinations of Young’s modulus, yield strain,
fatigue behavior, permeability and morphological characteristics,
rendering them excellent candidates for the fabrication of implant
scaffolds that best mimic the properties of human trabecular bone.

A recently introduced minimal surface-based topology is the
spinodal shell, a stochastic surface derived from the interface of
two spinodally decomposing phases [53]. While naturally stochas-
tic, these spinodal shells exhibit fully isotropic properties, excep-
tional specific stiffness and strength (almost on par with those of
topologically optimized TPMSs), combined with high imperfection
2

insensitivity (unique for surface-based systems) [53]. Spinodal
surface-based architected materials can be computationally
designed and additively manufactured with commercially avail-
able approaches (e.g., laser powder bed fusion or electron beam
melting), with pore sizes comparable to those of existing implants.
Unlike all regular implant topologies, though, this novel class of
shell metamaterials is uniquely amenable to self-assembly via
spinodal decomposition of suitable precursors, followed by mate-
rial conversion techniques [54,55]; this emerging manufacturing
approach allows cost-effective fabrication of cm-scale implants
with micro-scale porosity, yielding combinations of specific sur-
face area and pore topology optimization that are unavailable in
any regular metamaterial topology. While the mechanical perfor-
mance (stiffness, strength, toughness and failure mechanisms)
[53,56–59] and the transport properties [60,61] of these spinodal
surface-based architected materials have been recently investi-
gated for structural and energy applications, to the best of our
knowledge their effectiveness as metamaterials for bone implants
(and in particular, their potential to promote bone growth) has not
been explored.

In this work, we numerically investigate and compare the per-
formance of three distinct implant topologies for long bones, at

three relative densities (q
�
r ¼ 0:1;0:2 and 0.3): the octet truss-

based lattice (one of the most mechanically efficient periodic
truss-based lattices), the Schwartz P surface-based lattice (a peri-
odic and minimal surface-based design) and the spinodal
surface-based lattice (a stochastic near-minimal surface-based
design). Each implant topology (reinforcement) and its surround-
ing soft tissue (matrix) are modeled as a composite system via
finite element analysis, for calculation and analysis of stress fields
in the metallic implant and strain fields in the soft evolving tissue.
Based on the stress and strain fields, three performance metrics are
defined to assess the relative performance of different implant
topologies: (i) the effective elastic modulus of the implant (rele-
vant to stiffness matching to connecting bone), (ii) the load safety
factor (relevant to fatigue life in service conditions), and (iii) a new
metric (strongly related to the well-established osteogenic index
[62–64]), which captures the complex distribution of strains in
the tissue into a scalar parameter and provides a heuristic but rig-
orous estimate of the implant’s ability to promote bone growth.
Naturally, there are a host of factors that impact bone growth,
and the metric should be regarded as a foundational attempt to
assess the relative performance of implant designs.

Inspired by previously-published work on minimal surface-
based implants [51,52], this study introduces two novel concepts:
(i) the definition of a simple scalar parameter, which can be readily
extracted from finite elements calculations of the strain fields in
the evolving soft tissue and provides a basis for the assessment
of implant topology effect on bone growth, and (ii) a class of
stochastic surface-based architected materials, spinodal shells,
which are amenable to scalable fabrication via self-assembly,
allowing controlled introduction of microscale porosity and
unprecedented surface area per unit volume.

For q
�
r ¼ 0:1� 0:3, we show that all topologies fabricated from

common constituent materials for metallic implants (Ti-6Al-4 V,
316L SS, and Co-Cr-Mo) can be stiffness-matched to long bones.
However, surface-based topologies can be realized with larger
and nearly shell thickness-independent surface area per unit vol-
ume, and may promote significantly more bone growth than con-
ventional truss-based designs; this makes them optimally suited
for long bone implants. Spinodal shell designs share the same
advantages as all TPMS-based topologies, while exhibiting less sen-
sitivity to fatigue failure and being compatible with fabrication
processes that enable orders of magnitude increase in surface
area.
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2. Materials and methods

2.1. Synopsys of approach

We use four measures of biomechanical efficiency to assess
implant performance: the Young’s modulus of the implant, the
safety factor of the implant under service load, the specific surface
area of the implant and an index to assess the relative bone growth
rate between implants (to be defined subsequently). Whereas the
first three measures could be extracted by finite elements analyses
of the porous metallic implant alone, the fourth one requires mod-
eling of the tissue occupying the pores of the implant material.
Hence, we model each implant as a composite material consisting
of a metallic phase (the actual implant structure) with the desired
topology, surrounded by a softer phase simulating the bone-
forming tissue. Finite element meshes for each implant design
(varying implant topology and relative density) are constructed
as detailed in Section 2.2, and interfacial surface areas per unit vol-
ume are extracted as explained in Section 2.3. The models are then
loaded in uniaxial compression, and the Young’s modulus, the
safety factor and the bone growth rate index are calculated as
described in Section 2.4 and Appendices A and B.

2.2. Generation of composite topologies

Each of the three distinct implant topologies is generated
numerically to fill a cubic volume of length Ls with 3 � 3 � 3 unit
cells. (The number of unit cells was chosen based on a previously
reported convergence study that ensures minimal edge effects
[65]; incidentally, a larger number of unit cells in a typical implant
would require printing resolution beyond state-of-the-art powder-
bed fusion capabilities.) The void space in the cubic unit cells is
subsequently filled with a soft matrix to build the topology-
reinforced composite. The generation process is illustrated in
Fig. 1 (a)-(c) and is explained in detail below.

Octet lattices of relative densities q
�
r = 0.1, 0.2, and 0.3 (defined

as the material-filled volume divided by the unit cell volume) are
generated by manually merging cylindrical beams of equal radius
d and length l, connected through their identical end points at
common intersections (as shown in the red box of Fig. 1 (a)), in
the Dassault Systèmes CAD software Solidworks. The relative den-
sities can be approximated by [66]:

q
�
r ¼

3
ffiffiffi
2

p
p

2
ðd
l
Þ
2

� C1ðd
l
Þ
3

ð1Þ

where C1 is a constant depending on nodal geometry and deter-
mined to be 5.75 for the current study by fitting the Solidworks-

calculated q
�
r to d=l. The octet lattices are exported to the Dassault

Systèmes finite element software Abaqus where a Boolean opera-
tion is performed to fill the open space with a matrix. The resulting
octet-reinforced composites are subsequently meshed with approx-
imately 1,200,000 to 1,700,000 tetrahedron elements in Abaqus, fol-
lowing a mesh sensitivity analysis (Appendix C).

Schwartz P shells-based lattices of q
�
r = 0.1, 0.2, and 0.3 are gen-

erated using the 3D image processing tool SimpleWare ScanIP.
First, the mask generator function (a thresholding process that sep-
arates a portion of a given volume from the rest by assigning values
to its voxels) of the built-in lattice factory is used to generate two
masks, for the solid and its inverse, by infilling the two equally
divided sub-domains separated by the level set surface equation
[43,67,68]:

/ ¼ cos
2pxnx

Ls

� �
þ cos

2pyny

Ls

� �
þ cos

2pznz

Ls

� �
¼ l ð2Þ
3

wherex, y, and z (each bounded in [0, Ls], with Ls the domain size)
represent the coordinates of points on the surface; nx, ny, and nz

are the number of unit cells in the x, y, and z-direction respectively;
and l is a level-set constant, here set to zero. Second, the shell active
mask function is used to generate a thin shell on the boundary of the
two masks obtained above; this step is conceptually equivalent to
thickening the minimal surface approximated by Eq. (2) to a desired
shell thickness. Third, Schwartz P shell-reinforced composites are
generated using Boolean operations and meshed in ScanIP with
about 3,500,000 mixed tetrahedron and hexahedron elements, fol-
lowing a mesh sensitivity analysis (Appendix C), and subsequently
exported to Abaqus for mechanical analyses.

Spinodal surface-based lattices are generated by solving the
Cahn-Hillard equation (the governing equation to model spinodal
decomposition) [69]:

@u
@t

¼ D½df ðuÞ
du

� h2Du� ð3Þ

where �1 � u � 1is the concentration difference between the
material and the void phase (u ¼ 1 denotes full material and
u ¼ �1 denotes void space); h is the interfacial width between the
two phases; f is a double-well free-energy function, chosen as

f ðuÞ ¼ 1
4 ðu2 � 1Þ2; and time t describes the coarsening process and

time evolution of topologies (with t ¼ 0 representing a nearly
homogeneous system, and the final value of t chosen to result in
a unit cell size, m). Eq. (3) is solved over a cubic domain ofMx
M � M nodes using a finite difference approach with periodic
boundary conditions, as detailed in [53,70], to obtain the profile
of u. Stochastic spinodal solids with various unit cell sizes and rel-
ative densities can then be generated by thresholding the u profile

(refer to [53] for numerical details). Spinodal cellular solids with q
�
r

= 0.5 at ‘‘early” and ‘‘late” generations (corresponding to relatively
early and late coarsening stages of spinodal decomposition with
time, and topologically corresponding to M=m = 6 and M=m = 3,
respectively) are obtained and resampled into 2-dimensional image
slices for further image processing (schematic shown in Fig. 2);
detailed topological characterization of early- and late-generation
spinodal solids can be found in [53]. Note that the images of
early-generation (M/m = 6) spinodal solids are cropped in half
along x, y and z-directions, to result in 3 � 3 � 3 unit cells (see
Fig. 2), consistently with all the other topological samples discussed
above. Subsequently, we mask these images in ScanIP, where spin-

odal shells of q
�
r = 0.1, 0.2, and 0.3 are subsequently generated by

adjusting the shell thickness pixel values via the shell active mask
function between the two masks; this is equivalent to assign a finite

thickness to the interface of spinodal solids at q
�
r = 0.5. Finally, Boo-

lean operations and image stacking are performed where spinodal-
reinforced composites are generated, smoothed, and finally meshed
with 3,000,000–3,500,000 mixed tetrahedron and hexahedron ele-
ments, following a mesh sensitivity analysis (Appendix C). The
meshed spinodal-reinforced composites are imported into Abaqus
for mechanical analyses.

2.3. Investigation of interfacial morphology

The interfacial surface area ðSAÞ between the two phases (im-
plant reinforcement and tissue matrix) of a composite is propor-
tional to the number of unit cells n and the unit cell volume V ,
and inversely proportional to the unit cell size m in the composite.
We can write the topological relation as follows:

D ¼ SA �m
V � n ð4Þ

where D is a constant that uniquely depends on the interfacial sur-
face topology.



Fig. 1. The numerical generation process of (a) octet lattice, (b) Schwartz P shell and (c) spinodal shell-reinforced composites. The magnified view of a beam intersection is
highlighted in the inset in (a), where the red dot represents identical beam end points. By contrast, all surface-based topologies (b and c) have no defined intersections. For
illustration purposes, only 10%-reinforced composites are shown. Insets are not drawn to scale.

Fig. 2. The schematic of the image processing approach to generate spinodal-shell reinforced composited with early (M/m = 6) and late (M/m = 3) coarsening stage
topologies . M/m corresponds to the number of unit cells along the x, y, and z-directions.
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For octet-reinforced composites, D can be approximately
obtained as:

D ¼ 24pdl� C2d
2

m2 ð5Þ

where d and l are the diameter and length of the truss members,
respectively;C2depends on the beam intersection geometry and is
determined to be 115.8 by fitting the Solidworks-calculated SA at

various reinforcement phase densities (q
�
r = 0.1, 0.2, and 0.3) in this

study.
For Schwartz P shell-reinforced composites, we first construct

the interfacial surface according to equation (2) using MiniSurf, a
triply periodic minimal surface STL file generating software
[71,72]. The generated interfacial surface is composed of many tri-
angular patches, rather than tetrahedra or hexahedra as produced
in ScanIP, hence allowing a simple calculation of the interfacial sur-
face area. SA can then be obtained as:

SA ¼
XH
i¼1

ka� bki ð6Þ

where H is the total number of triangular patches, i is the patch
index that goes from 1 to H, a and b are the two edge vectors of
patch i, k k is the norm operator, and � stands for the cross product.
Finally, D is extracted using Eq. (4).

For spinodal-reinforced composites, SA can be calculated by
similar procedures (MiniSurf cannot be used as it currently cannot
generate spinodal topologies): The two-dimensional slices of spin-
odal images generated in Section 2.2 are imported into Matlab as
binary three-dimensional matrices (entries of 0 and 1 only). (ii)
The Matlab built-in function isosurface is used to generate a trian-
gularly discretized three-dimensional interfacial surface between
the 0’s and 1’s of the matrices followed by sufficient smoothing
to eliminate zig-zag pixel-like surfaces; the triangular discretiza-
tion provides us with the information about the nodal connectivity.
(iii) Eq. (6) is used to obtain SA of spinodal-reinforced composites
and finallyD is calculated using Eq. (4). Note that the number of tri-
angular patches is ensured to be sufficient to obtain a consistent SA
value.
Fig. 3. Illustration of the applied boundary conditions in the y

5

2.4. Mechanical simulations

All mechanical simulations are performed using quasi-static
solvers in the commercial finite element package Abaqus. All con-
stituent materials are modeled as linearly elastic solids. The denser

phase (q
�
m = 0.9, 0.8, and 0.7; subscript m stands for ‘‘matrix”) of

each composite is modeled as a soft matrix with Young’s modulus,
Em ¼ 1 MPa and Poisson’s ratio, tm ¼ 0:3 (representing the elastic
response of weak cartilage tissue, which generally forms at the sur-

gery site), while the less dense phase (q
�
r = 0.1, 0.2, and 0.3; sub-

script r stands for ‘‘reinforcement”) is modeled as a stiff implant
reinforcement with Er ¼ 123 GPa and tr ¼ 0:3 (representing the
elastic response of the commonly used titanium alloy Ti-6Al-4 V).

We simulate the mechanical response of each composite under
a displacement-controlled uniaxial compression by applying the
following boundary conditions (Fig. 3):

(1) A downward displacement d (corresponding to an effective
strain e ¼ d

Ls
¼ 1%, with Ls the cube side length) in the z-

direction is applied on the top surface, while the bottom sur-
face is constrained from moving in the same direction. We
ensure that the applied displacement is smaller than all
the strut or shell thicknesses of all implant topologies; hence
nonlinear kinematics can be ignored in all simulations under
the applied strain. Both surfaces are free to translate in
the x and y-directions.

(2) All the side surfaces are free to translate in all directions.
(3) Two corner nodes are constrained to prevent rigid body

translations and rotations: one node is fixed in the y-
direction and the other node is fixed in the x-direction.

To obtain the effective Young’s modulus, E, we extract the reac-
tion force F in the z-direction such that,

E ¼ F
Lsd

ð8Þ

The maximum allowable load in a porous implant is limited by
the resulting peak stress Speak, subjected to a desired safety factor,
SF (SF > SFmin ¼ ry=Speak, where ry is the yield strength of the por-
ous implant’s constituent material, taken to be 932 MPa in this
case). For highly complex implant topologies, Speak could be
-z and x-y plane. The triangles represent roller supports.
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strongly affected by the underlying irregular mesh; hence we
adopt a more robust measure of Speak as the upper 1% Mises stress
threshold, as described in Appendix A.

Finally, the relative bone growth (a purely mechanical parame-
ter used in this work as an indicator of the qualitative extent of
endochondral ossification, the process by which cartilage is gradu-
ally turned into bones) in the tissue matrix phase is estimated by
calculating the combined effect of maximum shear strain and com-
pressive volumetric strain, following the procedures summarized
in Appendix B. While this metric, based on established concepts
in the bone community [62–64], should not be interpreted as an
exact estimate of bone growth, it nonetheless allows us to rigor-
ously and quantitatively compare the bone growth potential of dif-
Fig. 4. (a) Effective Young’s modulus E of composites with four different implant
topologies (represented by the markers) — octet, primitive, early- and late-
generation spinodal — with three different implant constituent materials (repre-
sented by colors) — Ti-6Al-4 V, 316L SS, and Co-Cr-Mo — at implant relative density
q
�
r = 0.1, 0.2 and 0.3. The typical Young’s modulus range for human long bones are

bounded by the dashed lines [76–89]. (b) The Mises stress field in both the
encompassed tissue and the implant phases of the composites under 1% uniaxial
compressive strain. The stress legend bar is limited by a stress limit rlimit(chosen to
allow a more visible comparison between topologies) such that all stresses above it
are colored in red. Er and Em are the Young’s modulus of the reinforcement and
matrix constituent material, respectively.

6

ferent implant topologies which subject the organic matter in their
porosity to different states of complex cyclic strains.
3. Results and discussion

3.1. Young’s modulus

As we assumed linearly elastic small strain response in all
mechanical simulations discussed in Section 2.4 and the reinforce-
ment dominates the mechanical response (the modulus of the
reinforcement is 105 times larger than that of the matrix), the
effective Young’s moduli of the Titanium implant can be readily
extrapolated to other implant materials (such as PEEK) by simple
scaling, as long as the ratio of reinforcement-to-matrix moduli
remains in a similar range. The Young’s moduli, E (summarized
in Table 2), of composites with octet lattice, Schwartz P surface,
and spinodal surface implant topologies in three different metallic
materials (Ti-6Al-4V, 316L SS, and Co-Cr-Mo) commonly used in
long bone implants [73] are plotted against the relative density
of the implant in Fig. 4 (a).
Table 1
The typical Young’s modulus of human long bones.

Long bones Young’s modulus (GPa)

Arms humerus 10 [76], 17 [77,82]
radius 16 [76], 19 [77,82], 9–14 [83], 10–19 [84]
ulna 16 [76], 18 [77,82], 13–16 [85]

Legs femur 17 [77], 15 [78], 8–22 [86], 13–21 [87], 15–22 [88], 15
[89]

tibia 18 [77], 8–23 [79], 17 [80], 15 [81], 18[82]
fibula 19 [77], 5 [80], 15 [81], 19 [82]

Fig. 5. Relative Young’s modulus E=Er versus interfacial surface area constant D for
implant topologies: octet, primitive, early- and late-generation spinodal, with
relative densities of 10%, 20%, and 30% (q

�
r ¼0.1, 0.2, and 0.3). Note that an increase

in shell and beam thickness increases q
�
r , and hence the Young’s modulus, E, for all

topologies; the same increase in thickness only increases the interfacial surface area
for truss-based topologies, though, with the relative density of surface-based
designs nearly independent on shell thickness. The implication is that interfacial
surface area and Young’s modulus can be effectively decoupled in surface-based
implants.
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For reinforcement/matrix moduli ratio approximately equal to

105 and q
�
r in the range of 0.1–0.3, minimal surface-based topolo-

gies (spinodal and Schwartz P) are consistently stiffer than the
truss-based topology (octet lattice). The superior mechanical effi-
ciency of the surface-based designs (primitive and spinodal) over
the octet lattice derives from the uniform double curvature of
the surface, which prevents bending deformation without in-
plane membrane stretching, resulting in stretching-dominated
response and uniform stress distribution across the surface. While
the octet lattice is also stretching dominated, practical implemen-
tations result in significant stress intensifications near the nodes,
which depresses the mechanical performance [53,74,75]. The lack
of long-range periodicity typical of the spinodal design results in
further reduction in stress intensifications, as previously noted in
Fig. 6. (a) Relative Young’s modulus E=Er versus minimum safety factor
SFmin ¼ ry=Speak (Speak is the Mises peak stress and ryis the yield strength of Ti-
6Al-4 V) for octet, primitive, early- and late-generation spinodal implants with
relative densities of 10%, 20%, and 30% (q

�
r = 0.1, 0.2, and 0.3). (b) Half-cut and

zoomed-in views of Mises stress distribution in octet implants at q
�
r = 0.1, showing

that the peak stress Speak is experienced in a significant fraction of the nodal volume
(stress values higher than Speak are shown in red). See Appendix A for more details.

Table 2
Summary of the performance metrics for all the implant topologies under
investigation.

Implant topology E/Es D SFmin I

Octet 0.0154–0.0707 3.96–5.76 2.22–6.68 0.0032–0.0039
Primitive 0.0138–0.0837 4.70 1.82–7.69 0.0048–0.0067
Early-generation

spinodal
0.0241–0.1070 5.85 1.92–7.69 0.0036–0.0053

Late-generation
spinodal

0.0253–0.1120 4.77 2.00–7.69 0.0045–0.0070

Fig. 7. Bone growth index Igrowth in the tissue (the green matrix phase in each
composite inset) surrounding octet lattice, Schwartz P shell and spinodal surface-
based implants versus effective Young’s modulus E=Er.
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[56]; as a result, spinodal shell topologies are the most efficient.
These effects are clearly illustrated in Fig. 4(b), which displays
the distribution of equivalent (Mises) stresses (limited by a chosen
stress limit rlimit = 800 MPa to allow a more visible comparison
between topologies) across the material in the topologies under
investigation. The area fraction of elements that exceed the limit
stress under a prescribed uniaxial strain are illustrated in red and
quantified near each topology. The larger this value, the larger
the fraction of the cellular material that supports the critical stress
and hence the higher its contribution to the Young’s modulus of
the composite. Notice that spinodal topologies have the largest dis-
tribution of critical Mises stress (31% and 29%), followed by the
primitive (21%) and the octet topology (13%). On the other hand,
the tissue matrix phase provides essentially no structural support
due to its high compliance (relevant to the earliest stages of bone
growth) compared to the implant reinforcement. (The Mises stress
is nearly zero everywhere in the tissue matrix phase providing lit-
tle contribution to the Young’s modulus of the composite as shown
in Fig. 4b.) As the result, the elastic properties of the composites are
nearly the same as those of the metallic cellular materials.

In terms of mechanical biocompatibility (degree of similarity in
mechanical properties between the porous implant and the sur-
rounding tissue), all topologies can generate implants that are
stiffness-matched to cortical bone, with a proper choice of relative

density of the reinforcement phase: q
�
r ¼ 0:1� 0:3 for the spinodal

shell,q
�
r ¼ 0:13� 0:3 for the primitive shell andq

�
r ¼ 0:2� 0:3 for

the octet, as shown in Fig. 4 (a) and summarized in Table 1. Since
E is one of the key factors affecting the design of bio-mechanically
compatible implants, it is cross-plotted with the other properties
under considerations in the subsequent sections.
3.2. Interfacial surface area

The interfacial surface area between an implant topology and
its surrounding tissue is another important factor that affects
mechanical biocompatibility, as larger interfacial surface area
allows more bone/implant contact and osseointegration [90,91].
In Fig. 5, the relative Young’s modulus E=Er, with Er the Young’s
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modulus of the reinforcement base metal, is plotted against the
interfacial surface area constant D (summarized in Table 2), a
non-dimensional measure of surface area defined in Section 2.2.
It can be immediately noticed that D of truss-based topologies
(octet) increases fast with increasing relative density, while D of
minimal surface-based topologies (both primitive and spinodal)
is essentially independent of relative density over the relative den-
sity range of interest. (Note that a change in the shell thickness
slightly increases the external surface area of the cubic samples,
but these sample size effects are not considered in the interfacial
area calculations.) The implication is that with minimal surface-
based topologies we can decouple E from surface area: the relative

density of the implant q
�
r can be chosen to match the desired long

bone modulus, while the implant can still exhibit large surface
area; by contrast, with truss-based topologies, the Young’s modu-
lus of an implant would need to be increased beyond that of
human long bones in order to obtain the same surface area. Impor-
tantly, the early-generation spinodal topology has the largest D,
about 1.05–1.5 times that of the octet topology. Its surface area
Fig. 8. The maximum shear strain emaxs and the volumetric strain evol field experienced
implant) of octet, primitive, early- and late-generation spinodal shell-reinforced compo
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can be potentially further increased by increasing the number of
pores while reducing the pore sizes to the microscale, an opportu-
nity only provided by self-assembly manufacturing approaches
unique to spinodal topologies.

3.3. Safety factor: Peak stress

The effective normalized Young’s modulus E=Er is plotted in
Fig. 6a against the safety factor SFmin ¼ ry=Speak (summarized in
Table 2) for the implants, resulting from an applied macroscopic
stress of 10 MPa (about one order of magnitude lower than the typ-
ical yield strength of cortical long bones, thus allowing a reason-
able physiological Speak comparison of different implant
topologies while ensuring the Speak in these topologies would not
reach the yield strength of the constituent material, ~1 GPa). As
metallic implants can redistribute highly localized stress intensifi-
cations via localized plastic deformation, with no measurable effect
on the overall mechanical response of the implant, we define Speak
as the stress level that is exceeded in 1% of the structure, and
in the q
�
m = 0.7 tissue matrix phase (analogous to the encompassed tissue of an

sites. The direction of the uniaxial compression is indicated by a red arrow.
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extract it with the procedure detailed in Appendix A. Using a
higher threshold (e.g., 2% or 3% of the structure) would result in
a less conservative measure, but have no effect on the conclusions

of this work (see Appendix A for details). At q
�
r ¼ 0:3, all minimal

surface-based topologies have similar and much larger SFmin (i.e.,
smaller Speak) than truss-based topologies; however, this difference

slowly diminishes as q
�
r is decreased to 0.2, where SFmin in both

minimal surface-based and truss-based topologies are essentially

the same. As q
�
r is decreased to 0.1, SFmin in truss-based topologies

is about 18% larger than (Speak is 15% smaller than) in minimal
surface-based topologies. Such difference in SFmin is attributed to

the fact that at q
�
r � 10% truss-based topologies often have very

large nonsmoothed nodal geometry and carry the majority of the
load through their connecting nodes resulting in high nodal stress
concentration (higher Speak); as the relative density becomes lower

(generally q
�
r < 10%), the nonsmoothed nodal geometry becomes

small and negligible such that the connecting beams contribute
to the majority of the load-carrying capacity resulting in a lower
Speak than minimal surface-based topologies [75,92,93]. In addition,

at q
�
r > 10%, the nodes, rather than the connecting beams, are often

the initial point of failure [94–96]. By contrast, there are no defined
nodes in minimal surface-based topologies [53,97], resulting in
much more uniform stress distribution. Furthermore, minimal
surface-based topologies also have higher Young’s modulus, for a
choice of SF and implant constituent material, than the truss-
based topologies; notably, E of spinodal topologies outperform all
others by almost 1.4–1.9 times. The implication is that with mini-
mal surface-based topologies (especially spinodal-shell topolo-

gies), we can choose a smaller implant relative density q
�
r

(resulting in less material) than with the truss-based topologies,
in order to achieve the same required Ewhile satisfying the desired
SF and the choice of the implant material. Note that Speak in octets
is experienced in significant fractions of the nodal region and not

merely at a few points, regardless of the value of q
�
r (Fig. 6b and

Appendix A); this confirms that truss-based designs are not
unfairly penalized in this comparison.
3.4. Relative bone growth index

The relative bone growth index Igrowth (summarized in Table 2),
an indicator of the relative endochondral ossification rate in the
tissue surrounding an implant topology subject to external peri-
odic loading, is estimated as detailed in Appendix B and plotted
against normalized effective Young’s modulus E=Er in Fig. 7. In gen-
eral, Igrowth scales with E=Er in a power-law fashion, with topology-
specific exponent: Igrowth of minimal surface-based topologies
decreases linearly with increasing E=Er, while it decreases parabol-
ically in truss-based topologies. Furthermore, minimal surface-
based topologies have much higher Igrowth; almost by a factor of
two, than truss-based topologies. This can be explained by examin-
ing two strain fields in the soft tissue matrix: (1) the maximum
shear strain emaxs (accelerating bone growth) and (2) the volumet-
ric strain evol (delaying bone growth when compressive), as shown
in Fig. 8. (While the implant with a matrix phase relative density

q
�
m ¼ 0:7 was chosen in this figure as the pronounced strain varia-

tions in this simulation enable a clearer comparison, the conclu-
sions apply to all densities under consideration.) Notice that
tissue matrices in truss-based topologies experience moderate
emaxs, but highly compressive evol; conversely, minimal surface-
based composites experience high emaxs and relatively low com-
pressive evol. (We emphasize that this finding is profoundly impor-
tant, clearly explaining the advantage of bone growth in minimal
surface-based implants over truss-based implants from a purely
9

mechanistic point of view. With a large number of TPMS topologies
available, we believe this finding will motivate investigations into
additional minimal surface-based implant designs in the bone
community.) Due to their stochastic nature, spinodal topologies
induce higher emaxs than other topologies; but in early-generation
spinodal topologies, this gain is offset by a decrease in evol, result-
ing in overall lower Igrowth than the primitive topologies.
4. Conclusions

The relative performance of both truss-based (octet) and mini-
mal surface-based (primitive and spinodal) implant topologies was
investigated numerically and presented in terms of four key design
factors: the Young’s modulus E, the interfacial surface area SA, the
peak stress Speak and the relative bone growth index Igrowth. Four key
results emerged:

(i) All metallic implant topologies, across a wide range of rela-
tive densities, can be designed to have similar Young’s mod-
ulus as human long bones (E = 5–22 GPa).

(ii) Unlike in truss-based topologies, E and SA are decoupled in
minimal surface-based topologies, allowing the choice of
the desired implant stiffness without compromising the
specific surface area.

(iii) Bone growth in the tissue surrounding the implant is
expected to be much higher in minimal surface-based
topologies than in truss-based topologies.

(iv) For a desired implant stiffness and a given external design
load, spinodal surface-based implants require the smallest
safety factor, resulting in minimal amount of metal required
to meet all design constraints. The advantage is particularly
pronounced over truss-based implants.

In summary, considering all the design factors discussed in this
study for long bone implants, minimal surface-based topologies
clearly emerge as superior candidates over truss-based designs.
Among minimal surface-based topologies, one must consider the
trade-offs between bone ingrowth (SA and Igrowth), safety (Speak),
and mechanical biocompatibility (E) of the implants, with
spinodal-shell designs often offering the best combinations of
properties. Although not explicitly investigated in the current
work, the potential of scalable fabrication via self-assembly of
spinodal surface-based micro-architected materials present a
unique opportunity for a dramatic increase in specific surface area
SA, without compromising any other attribute.
5. Data availability

The raw/processed data required to reproduce these findings
cannot be shared at this time as the data also forms part of an
ongoing study.
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Appendix A. Evaluation of peak stresses

The peak stress, Speak (i.e., the maximum stress) extracted by
finite element analysis of architected materials is in general very
localized and mesh sensitive. To allow a robust and unambiguous
estimation that allows comparison across different topologies, we
define the peak stress in a porous implant as the Mises stress that
is exceeded by exactly one percent of the implant volume (Fig. A1);
a similar implementation has been previously used in finite ele-
ment analyses of bones [98].

The procedure to obtain the peak stress in a porous implant
subject to an externally applied compressive effective stress of
10 MPa is as follows:

(1) The load-controlled stress field rl is obtained using the rela-
tion rd=rl ¼ rde=10 (all in MPa), where rd and rde are
displacement-controlled stress field and displacement-
controlled effective stress that can be found from mechani-
cal simulations in Section 2.3.

(2) The elemental volume and the Mises stress at the centroid of
each element are extracted as pairs.
Fig. A1. Determination of 1% Mises stress threshold as the peak stress in a porous
implant. The percentage of the porous implant volume is defined as the volume of
partial implant regions that have a specific Mises stress value divided by the total
volume of the implant.
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(3) The volume-Mises stress pairs are then fitted with the
weighted kernel density estimator [99–101]:

f ðsjpÞ ¼ 1
eh

Xe

j¼1

pj � K
s� sj
h

ðA:1Þ

where f is a probability distribution as a function of Mises stress

variable s and probability weight vector p = ½p1;p2; � � � ;pe�T; pjis
the volume of j-th element divided by the volume of all elements,
and e is the total number of elements. K is a symmetric kernel
smoothing function which takes the shape of a normal distribution
in this study. h is the bandwidth that controls the smoothness of the
resulting probability distribution.

(4) Speak (1% Mises threshold) is extracted by calculating the
inverse cumulative distribution of f such that the probability
that a random Mises stress variable s take on a value less
than or equal to Speak is 99%, P s � Speak

� � ¼ 0:99. Note that
for a lower Mises stress threshold (for example a ¼ 2% or
3%), Speak can be simply calculated from step (4) with
P s � Speak
� � ¼ 1� a.

The effective normalized Young’s modulus E=Er is plotted
against the safety factor SFmin ¼ ry=Speak in the implants in
Fig. A2 to show that the effect of the choice of threshold value,
while observable, has no impact on the relative performance of
the various topologies. Fig. A3 illustrates the regions of the implant
that exceed Speak for the three different threshold values. While
increasing the threshold values increases the Speak region (red),
the locations of Speak practically remain unchanged; notably, Speak
is experienced in major load-supporting paths in octet and primi-
tive topologies (prone to catastrophic failure), while Speak is dis-
Fig. A2. Relative Young’s modulus E=Er versus minimum safety factor
SFmin ¼ ry=Speak (ryis the yield strength of Ti-6Al-4 V, and Speak is chosen in turn
as the upper 1% [blue line], 2% [yellow line] and 3% [red line] Mises peak stress
threshold) for octet (diamond symbol), primitive (square symbol), early generation
(solid triangle symbol) and late geneartion (hollow triangle symbol) spinodal
implants with relative densities of 10%, 20%, and 30% (q

�
r ¼ 0:1;0:2;and 0.3).



Fig. A3. The half-section view of the Mises stress distribution (limited by the 1%, 2%, and 3%Mises upper threshold rthreshold; the regions with stresses above rthreshold are shown
in red and the regions with stresses below rthreshold are shown in blue) experienced in the q

�
r ¼ 0:3 porous implants with octet, primitive, early and late-generation spinodal

topologies.
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tributed more randomly in spinodal topologies (allowing a more
gradual failure response), as previously reported [56].
Appendix B. Prediction of long bone growth

Most of the bones in human bodies are long bones such as
femurs and tibias. These long bones grow longer through endo-
chondral ossification, the process by which cartilage is gradually
turned into bone tissue. It was shown that endochondral ossifica-
tion is related to the osteogenic index I (defined in [62]) as a linear
combination of shear stresses (bone growth facilitator) and com-
11
pressive dilatational stresses (bone growth inhibitor) experienced
in cartilage cells [62–64]. We can write a similar relation for the
relative bone growth in the tissues surrounding the implants as a

linear combination of average maximum shear strain e
�
maxs > 0

and average compressive volumetric strain e
�
vol < 0, experienced

in the tissue matrix phase of the composite models, as:

Igrowth ¼ Vm � ðe�maxs þ j � e�volÞ ðB:1Þ

where Vm is the volume of the matrix phase over the volume of the

composite and 0 � j � �e�maxs=e
�
vol is an empirical constant. e

�
maxs
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and e
�
vol are assumed to have equal weight (j ¼ 1) in the current

study. Note, Igrowth is only a relative index for comparative purposes.
In order to obtain the bone growth index Igrowth for the tissue

matrix phase, we perform the following procedures:

(1) The three normal strains e11, e22, e33, the maximum principal
strain emaxp and the minimum principal strain eminp are
extracted at the centroid of each element, together with
the volume fraction of the corresponding element — where
p is the ratio of the volume of the element to the total vol-
ume of the matrix phase.

(2) The quantity emaxs is calculated as
Fig. C1
(brown
converg
assume
converg
assess
reasona
emaxs ¼ ðemaxp þ eminpÞ
2

and evol is calculated as
evol ¼ e1 þ e2 þ e3
(3) We then produce two sets of data for all elements, with one
consisting of ½emaxs p� and the other consisting of ½evol p�,
where p = ½p1; p2; � � � ; pe�T , emaxs ¼ ½emaxs;1emaxs;2; � � � ; emaxs;e�T ,

evol ¼ ½evol;1evol;2; � � � ; evol;e�T , and e is the total number of ele-
ments in the matrix phase.

(4) In order to reduce the effect of extreme high local strains
(outliers) on the measures of central tendency, we eliminate
all rows in ½emaxs p� whose first component is less than the
0.5th or greater than the 99.5th percentile of emaxs. Similarly,
we eliminate all rows in ½evol p� whose first component is
less than the 0.5th or greater than the 99.5th percentile of
evol.
. Mesh sensitivity study of octet (blue line), primitive (green line), early-
line) and late-generation (red line) spinodal composites. Reasonable mesh
ence for each topology, denoted by a circle in its respective color, is
d when the reaction force in a compressive test is within 2% of the
ed value. All subsequent mechanical simulations performed in this work to
biocompatibility efficiency have a mesh density above the respective
ble mesh convergence value.
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(5) Weighted kernel density estimators (Eq. (A.1)) are used to fit
½emaxs p� and ½evol p� as fmaxs and f vol respectively.

(6) e
�
maxs and e

�
vol can be calculated as the mean of fmaxs and the

mean of f vol respectively. Igrowth ¼ Vm� (e
�
maxs þ j � e�vol) then

can be found.

Appendix C. Mesh sensitivity study

A mesh sensitivity study is performed on the composite materi-
als samples with each of the four reinforcement topologies (octet,
primitive, early- and late-generation spinodal), with sample size

100�100�100 mm and reinforcement relative density q
�
r ¼ 0:3,

to ensure that results are not affected by the mesh quality. Uniaxial
compression (see Section 2.4 for detailed boundary conditions) is
applied via a downward displacement of the top face along the z-
direction (dz ¼ �1 mm), and the resulting reaction force in the z-
direction is extracted. The convergence of the reaction force (nor-
malized by the converged value) as a function of mesh density is
plotted in Fig. C1. To find a suitable balance between accuracy
and computational efficiency, the reasonable mesh density for each
topology (indicated by a circle) is chosen when the reaction force is
within 2% of the final converged value. All subsequent mechanical
simulations performed in this work to assess biocompatibility effi-
ciency have a mesh density above the respective reasonable mesh
convergence value.
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