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Abstract 

In this paper, we describe a timing model for clock estimation during high-level synthesis. In 
order to obtain realistic timing estimates, the proposed model considers all delay elements, 
including datapath, control and wire delays, and several technology factors, such as layout 
architecture, technology mapping, buffers insertion and loading effects. The experimental 
results show that this model can provide much better estimates than previous models. This 
model is well suited for automatic and interactive synthesis as well as feedback-driven syn­
thesis where performance matrices must be rapidly and incrementally calculated. 
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1 Introduction 

High-level synthesis generates a structural design that implements a given behavioral de­
scription of a system and satisfies design constraints such as performance, and area. Quality 
measures are needed to support high-level synthesis in two ways. First, measures are needed 
to determine the quality of the final synthesized design. In this way, the measures allow 
comparisons of the final design with given constraints and identify critical spots in the de­
sign. For example, delay measures of all register-transfer operations in the design are used to 
determine the minimal period of the system clock and pin point the critical register-transfer 
operations. Secondly, quality measures are needed to guide high-level synthesis tools in 
the search of the design space. For example, if the clock period of a design is too long, a 
nonpipelined multiplier must be replaced with a pipelined multiplier. 

Traditionally, design performance for high-level synthesis has been characterized by such 
measures as the clock frequency, the number of instructions or the number of additions/multi 
plications executed in a second. These individual measures do not characterize the actual 
design performance with respect to a particular description. Instead, the performance of 
a design for a particular description is measured by the total time ·needed to execute that 
description. Since a description may contain loops without fixed bounds and "if" statements 
in which "then" and "else" branches require different amounts of time, the execution time 
of such a description will depend on the input data. Thus, the execution time for any 
description is equal to the product of the number of control steps needed to execute the 
description and the duration of the control step (usually a clock period). Hence, the clock 
period is a good performance measure for a scheduled behavioral description with a fixed 
number of states. 

In high-level synthesis, clock-period measures (or performance measures) are typically 
performed at two levels: control/data flow graph and RT-structure. Jain et. al. [6, 7) 
use area/time models to predict design tradeoffs from the data-flow graph. Their models 
consider only functional units and do not include registers, interconnect, wires and control 
units. BUD [10] determines the clock period by finding the worst datapath delay. It considers 
registers, multiplexers, functional units and wire delays. The wire length is obtained from 
the floorplan and the wiring delay is computed using a simple RC model. SPAID [4] also 
determines the clock period by the worst datapath delay; however, it does not take into 
account wiring delay. Chippe [1] estimates clock period by examining control delay (using a 
PLA model) and datapath delay, but wiring delay is not considered. 

In general, none of the previous timing models consider all delay elements, including 
control delay, datapath delay and wiring delay, nor do they take into account technology 
factors such as layout architecture and technology mapping. Furthermore, they do not 
consider the impact of the logic and layout synthesis tools that are used to produce the 
final layout. Within the logic and layout synthesis tools, various optimization procedures, 
such as state encoding, logic minimization, and buffers insertion, are used to improve the 
performance or to minimize the area of the design. In one extreme, these procedures aim 
to produce designs with the smallest possible area. In the other extreme, their goal is to 
produce designs with the highest performance by reducing the clock period. 
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In this paper, we present a simple timing model for estimating the lower bound of the 
clock period, and the total execution time from the structural design (control-state table and 
datapath). The lower bound of the clock period is defined as the shortest clock period that 
can be obtained by applying all performance optimization procedures. The model considers 
all delay elements and several technology factors, such as layout architecture, technology 
mapping and loading effect, for delay estimation. 

The remainder of this report is organized as follows: In section 2, we describe the ele­
mentary delay models. Section 3 introduces definitions of notations that are used in this 
report. Section 4 describes timing models for each constituent of a chip. From these models, 
we derived timing models of the system clock in section 5. In section 6, we present results 
obtained from our experiments using eight different designs and design styles of a high-level 
synthesis benchmark. Finally, in section 7, we present the conclusions from our research 
effort, discuss applications of our model and how our model could be improved. 

2 Electrical Models 

Compi 
Wire 

Compj 

(a) 

Compi Comp; 

(b) 

Figure 1: Wire: (a) RT model, (b) equivalent RC delay model. 

The lumped RC model, also called the Elmore delay model [PeRu81], is widely used for 
delay calculation. In the lumped RC model, the propagation delay along a path from the 
start point to the end point, (tp(start,end)), is computed as a product of lumping all of the 
resistances Ri and capacitances Ck along the path, that is, 

'tp(start, end)= E Rj x Eck. (1) 
j k 

We can use Equation 1 to obtain delay of a connecting wire between two components as 
shown in Figure l(a). In CMOS technology we model a component with its input capacitance 
(Gin) and its output resistance (Rout), as shown in Figure l(b ). For the connecting wire, we 
use the well known Jr-model with input capacitance ( Cw/2), wire resistance (Rw) and the 
output capacitance ( Cw/2). Since a wire is a thin sheet of metal of fixed thickness defined 
by the fabrication process consisting of rectangular segments, the wire resistance is equal to 

4 



the product of the sheet resistance (Rs), in Ohm/square, and the ratio of the wire length 
(Lw) and wire width (Ww), that is, 

(2) 

The wire capacitance (Cw) is equal to the product of the wire area and the ratio of the 
dielectric constant (c) and the wire thickness (t), that is, 

(3) 

Using Equations 2 and 3, we can compute the propagation delay (twire(netk)) of a wire 
(netk) used by a component (compi) to drive load components (compj, 1 ~ j ~ n) as 

n 

ip-wire(netk) == (Rout( compi) + Rw)( Cw+ L Gin( compj )). (4) 
j=l 

Thus, the delay for signals from input of compi to propagate to input of compj via netk 
can be formulated as 

(5) 

where tp-gate( compi) is the internal delay of component com pi defined by the library of the 
targeted layout system. 

2.1 The Delay of Combinational Circuits 

Each combinational circuit consists of one or more components. The delay of a combinational 
circuit is the propagation delay on the critical path through the circuit, that is, the longest 
delay from any input to any output. We use the multistage graph algorithm (5] to identify 
the critical path of a combinational circuit. In short, the netlist of a combinational circuit is 
first transformed into a directed graph; each component is mapped to a node, a connection 
between two gates is mapped to a directed edge with the direction corresponds to the signal 
flows, inputs are mapped to a common source, and outputs are mapped to a common sink. 
Subsequently, tp(compi, ni), Equation 5, for each net (ni) is computed and assigned as a cost 
to its corresponding edge. Finally, a critical path is determined by finding the longest path 
from the source to the sink of the graph. 

Figure 2 shows an example that illustrates the critical path's identification process of 
a combinational circuit. The equivalent multi-stage graph of the circuit in Figure 2( a) is 
shown in Figure 2(b ). The highlighted path in Figure 2(b) is the longest path from the 
source to the sink. This path corresponds to the critical path in the circuit from the input 
13 to the output 0 2 that goes through components A, C, E and F and nets n1 , n4 , n6 , n7 and 
ns, Figure 2( c). 

Thus, the propagation delay of a combinational circuit, tp-comb, from a set of inputs, I, 
to a set of outputs, 0, can be computed as 

ip-comb(/, 0) == 
comp;ECOMP(Ic,Oc) 
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n12 
1--------0ut3 

(a) 

n1~ ................. ·" 

-- •Critical path 

(b) 

(c) 

Figure 2: Timing model of the combinational circuit: (a) an example circuit, (b) its equiva­
lent multi-stage graph, and ( c) the correspondent critical path. 

6 



where, 

L tp-wire(netj) 
net;ECON N(Ic,Oc) 

le is an input that lies on the critical path, 
Oe is an output that lies on the critical path, 

(6) 

COM P(Ie, Oe) and CON N(Ie, Oe) define all components and all nets on path from le 
to Oe. 

2.2 The Delay of Storage Elements 

Storage elements are typically composed of latches and flip-flops. In a common implemen­
tation of a latch, we can identify two different delay paths: the data-to-output delay (tnQ) 
and the clock-to-output delay (tcQ), as shown in Figure 3. 

Clock __ 

t..etup tnold ................... 
I I I 

l I : 
Data __ ..._ ____ __ i----__._.' 

Q 

I 
I 
I 
I I 
I' I 
i...,..___.., 

I ~Q ' 

Figure 3: Delays and constraints of a common latch. 

In order to ensure proper operation of the latch, two timing constraints are imposed: the 
setup time (tsetup) and hold time (thold)· The setup and hold times specify time intervals 
before and after clock transitions during which a data signal must be stable to ensure proper 
operation of the latch (Figure 3). It is obvious from Figure 3 that, 

(7) 

Master-slave (MS) and edge-triggered (ET) flip-flops respond to the transition of the 
clock signal. In this section, let us assume that in the MS flip-flop, the master latch is active 
when the clock signal is high while the slave latch is active when the clock signal is low. 
The output of the MS flip-flop changes after the high-to-low transition of the clock and the 
propagation delay (tcQ) of the slave latch. Thus, the propagation delay of the MS flip-flop 
is equal to tcQ of the slave latch. Since the data signal must propagate through the master 
latch before a high-to-low clock transition and still satisfy tsetup of the slave latch, 

tsetup(MSFF) = tnQ(Master latch)+ tsetup(Slave latch). (8) 
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Li 
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~i [ 
t (M) I I 
DO I 

JL 
t (S) 
co 

Figure 4: Delay and constraints of a master-slave flip-flop. 

Note that the master latch (and hence the MSFF) is not sensitive to changes in the input 
data while the clock is low. For example, the glitch in the Data while clock is low does not 
affect the output Q of the MSFF (Figure 4). Hence the hold time for the MS flip-flop is 
equal to the hold time ( thotd) of the master latch. We can formulate similar definitions for 
an ET flip-flop which propagates data on the low-to-high transition of the clock signal. 

3 Definitions and Notations 

The delay computation is a hierarchical procedure. To compute delay of a signal, we can 
use Boolean equations or go as far as the physical material level. The more detail we take 
into account, the more likely we will obtain an accurate result, but with a higher compu­
tation complexity. In our layout timing models, the lowest level of timing informations are 
abstracted from the gate, the wiring resistance, and the wiring capacitance levels. However, 
if the timing delay of a block of gates, such as macrocells, memories, and functional units 
are available, we will utilize those informations. 

Each gate in the library of the targeted layout system is accompanied by the following 
informations: 

ip-gate(X) is the internal propagation delay of an X gate, where X is the type of a gate 
(e.g., 2-input AND, 4-input OR), 

Rout(X) is the output resistance of an X gate, and 
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Cin(X) is the input capacitance of an input to an X gate. 

From the same layout system, we assume that the following wiring informations are 
provided: 

Rs(l) is the sheet resistance of layer l routing in Ohm/square, 

C (l) == ~ where 
s t1 ' 

Cs(l) is the sheet capacitance of layer l routing in pF /square, 

e1 is the dielectric constant of the insulating material between the plates in layer 
l routing, and 

tz is the insulator thickness for layer l routing. 

W idth(l) is the nominal width of layer l routing. 

Furthermore, throughout the discussion of timing models for control unit, we use the 
following notations: 

S is the number of states in the state table, 

C is the number of conditional status signals, 

I is the number of inputs to the control unit, 

0 is an output of the control unit (i.e., a 'control or next-state signal), and 

Oprod is the number of product terms for the output signal 0. 

4 Timing models for constituents of a chip 

We model the layout of a chip as connected blocks of logic, Figure 5. Each block belongs 
to one of the following four classes: (1) control logic, (2) datapath, (3) macrocell, and ( 4) 
memories. A data path unit consists of a set of regular structured components such as 
adders/subtracters, ALUs, MUXs, and registers. A control-logic unit consists of a set of 
random gates or a PLA associated with the datapath to perform required data transfer. 
Macrocells include some predefined components, such as multiplier and barrel shifter. Mem­
ories include register files, RAMs, and ROMs. 

Consider a critical path for a signal 0 that is highlighted in Figure 5. Using Equation 
6, the delay of this path can be computed as the sum of the the delay through each logic 
block and the delay of each inter-block wiring. Thus, in this section we will first introduce 
timing models for different classes of the logic block, then followed by timing models for the 
inter-block wiring. Section 3.1 describes timing models for the control logic unit. Section 3.2 
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Control unit 

...... ~ .... : : Datapath unit 

!··········· 
Macrocell ; 
.. ·-· ...... . : : ................. f .. TT··~ 

........................ 
Macrocell : : 

....... t RAM 
I I •• It t \ ......,..____ ................. .. 

0 

Figure 5: Constituents of a chip. 

introduces timing models for units in the datapath and wiring between those units. Macro­
cells and memories are usually available in a library as predesigned blocks. Hence, timing 
information for macrocells and memories is assumed to be provided by the library. Subse­
quently, section 3.3 describeds timing models for inter-block wiring that uses floorplanner to 
determine the wire length. 

4.1 Timing Models for the Control Unit 

There are two commonly used layout architectures for a control unit: random logic and PLA. 
Since the timing information for a PLA is usually provided by its generator, in this section, 
we will assume the random-logic layout-architecture when describing the timing model for a 
control. unit. 

A control unit can be described by a control state-table that specifies next-state and 
control signals as a function of present states and conditional/ status signals. We assume 
that the present states are encoded as binary values Pk .. ·P1 po, where k = flog2 Sl - 1 and 
S is the number of states. Similarly, next sta tes are encoded as binary values ni ... n1 n0 

(Figure 6(a)). Thus, the total number of inputs to the control unit I equals flog2 Sl + C, 
where C is the number of conditional/status signals. 

In reality, a number of optimization procedures, such as state minimization, logic min­
imization, and buffers insertion, are applied in order to improve the performance of the 
control logic. We consider the impact of these optimization procedures by deriving a sim­
plified model that is geared toward estimation of the lower bound delay of the control logic. 
In our model, each next-state and control signal is represented as sum of products of the 
present-state and conditional/status signals, as shown in Figure 6(b ). The product term is 
implemented with AND gates and the sum with OR gates. However, the target component 
library will usually provide AND and OR gates with a limited number of inputs. Thus, to 
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INPUT OUTPUT 

11 J2 13 14 jJ_ 01 02 03 04 
Present: Conditional Next Control 
state : status bits state signals 

ps1 psO ; cO c1 c2 ns1 nsO sO s1 

0 1:100 10 01 
~:101 1-0 1 0 
0 • 0 0 1 1 1 1 1 

(a) 

(c) 

01 = <i11213i4i5J V <11i213i41sl V <11i2i3i41sl 

02 = (11i2T31'41s) 

03 = (11°i2 t3'i4 IS) V (11i2i3i4 tS) 

04 = m 1213i4i5i v <11i2i3i41s> 

(b) 

'1rr-------t-----11---
12 12--------------13_,,,_ ____ _...~-----

1314 ----------++--
14 ,°if"::t=l=t:::t:;:::i:i:::i:n+i:::i::i:i: 

Clusters 01 

~~ 
11 TI 12 i2 13 ;13 14 14. 15 ~ 

: : ,.. .... .... .... ..... .. .. : 
: : : 

a2 

. == -
: 01 :: 02 ~- 03 .. ~ 04 .............................. : 

Outputs 

(•) 

Figure 6: Random-logic model: (a) encoded control state-table, (b) sum-of-product expres­
sions, (c) decomposition of a product term, (d) a multi-level implementation, (e) the layout 
model. 
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realize the impact of the technology mapping, the sum and product terms need to be decom­
posed into a multi-level implementation when the large AND or OR gates are not available 
in the target library. 

The multi-level decomposition aims to produce an implementation with the minimal 
number of levels. This is guided by the fact that a multi-level implementation of a product 
term with I number of literals using AND gates with a maximum of n inputs is in the form 
of an n-ary tree (in this paper, we will refer to this tree as the AND tree). Furthermore, 
an implementation that has a minimal number of levels is an n-ary tree with the following 
properties: 

1. Each internal node in the tree denotes an AND gate, each leaf denotes a literal, and 
each edge denotes a net in the gate-level implementation. 

2. All nodes in the tree have n children, except internal nodes at the highest level of the 
tree may have less than n children. But for simplicity, we assume that all nodes in the 
tree have exactly n children, 

3. The height of the tree equals flogn Jl, 

4. The critical path of the tree network of AND gates is depicted by the path that defines 
the height of the AND tree. 

5. If the tree height is greater than 0, the critical path comprises flogn Jl - 1 internal 
nodes. Otherwise there is no internal node on the critical path. For latter reference, 
let AN Di-node be the number of internal nodes on the critical path of an AND tree. 

6. If the tree height is greater than 1, the cdtical path contains flogn Jl - 1 nets each of 
which connects two internal nodes. Otherwise, the critical path contains only one node 
and no net. For latter reference, let AN D1-net be the number of nets on the critical 
path of an AND tree. 

Similarly, the same decomposition scheme can be used to obtain a multi-level ORimplemen­
tation of the sum term. A pictorial representation of this decomposition scheme is shown in 
Figure 7. 

The capacitive load of each control signal, Cau1oad, that drives the datapath units is 
proportional to the size (bit-width) of the datapath. If Cauload is high, buffers are usually 
inserted to reduce the delay caused by the heavy load. Let us examine the loading effect in 
our model. If the buffer is not inserted, the last OR gate (i.e., the gate that is represented 
by the root of the OR tree) has to drive Cauload· Thus, the delay caused by this load equals 
Rout(OR(m)) x Cauload, where mis a maximum number of inputs of an OR gate available 
in the library. However, if a buffer, BU F, is inserted, the delay caused by the additional 
buffer and the load equal (tp-gate(BUF) + (Rout(BU F) x Cauload)). Therefore, to realize the 
influence of buffers insertion, we assume that each output of the control logic is driven by a 
buffer, BU F, if 

tp-gate(BUF) + (Rout(BU F) X Cauload) - (Rout(OR(m)) X Cauload) < 0. 
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0 

---0- Critical pati 

Q And gate 

@) Or gate 
9 U1erals 

Figure 7: Pictorial representation of the decomposition scheme. 

Furthermore, if the targeted library provides variety of buffers with different sizes, the buffer 
that gives the minimal resultant delay will be selected. 

Figure 6 shows an example of a multi-level implementation of a sum-of-products expres­
sion. Each product term in the sum-of-products expression, Figure 6(b ), requires a 5-input 
AND gate. If the targeted library provides only AND gates with a maximum of three inputs, 
all product terms are decomposed into a multi-level implementation, which is represented 
by a trinary tree shown in Figure 6(c). The equivalent gate implementation of this trinary 
tree is shown in Figure 6( cl). 

In our model, we assume that the random-logic is laid out as strips of standard or custom 
cells with input ports entering at the top and output ports exiting through the bottom. The 
number of layout strips is predetermined by the floorplanner in such a way that the total 
chip area is minimized. In addition, we assume that all gates that implement an output 
signal are placed closely in a cluster, as shown in Figure 6( e ). The propagation delay from 
any input port of the control logic to an output port 0 is defined as: 

tp-CU( 0) = tp-CUgates( 0) + tp-CUwire( 0) (9) 

where the delay contributed by gates, tp-CUgates( 0), and the delay contributed by wiring, 
tp-CU wire ( 0) are described in more detail below. 

Delay Contributed by Gates, tp-CUgates( 0) 
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tp-CUgates is defined as the delay contributed by gates that lie on the critical path. Using 
the decomposition scheme described earlier, tp-CUgate(O), can be formulated as the sum of 
the propagation delay of gates in the AND tree, the OR tree, and the output buffer, that is, 

tp-CUgates(O) = (AN Dr-node X tp-gate(n-input AND))+ 

( 0 Rr-node X tp-gate(m-input OR)) + tp-gate(BU F)' (10) 

Delay Contributed by Wiring, tcu-wire( 0) 

tp-CUwire( 0) is defined as the sum of wiring delay of nets that lie on the critical path. 
From our layout model, wires that connect gates in the same cluster are short. Thus, the 
wiring resistance and capacitance of these wires are negligible. Hence, the wiring delay, 
tp-net(X, Y), of a net that connects the output of a gate of type X to an input of a gate of 
type Yin the random logic can be derived from Equation 4 with Rw and Cw equal to 0, that 
IS, 

tp-net(X, Y) = Rout(X) X Cin(Y)· (11) 

Using properties of the decomposition tree, tp-CUwire( 0) can be formulated as the sum 
of wiring delay of nets in the AND tree, OR tree, the net that connects the AND and OR 
tree, and the net that connects the last OR gate (i.e., the OR gate that is represented by 
the root of OR tree) to the output buffer, that is, 

tp-CUwire(O) = (AN Dr-net X tp-net(n-input AND, n-input AND))+ 

(ORr-net X tp-net(m-input OR, m-input OR))+ 

tp-net(n-input AND, m-input OR)+ tp-net(m-input OR, BU F). {12) 

4.2 Timing Models for the Datapath Unit 

Layout of a datapath is obtained by stacking functional and storage units one above the 
other. There are two commonly used layout architectures [13]: stack with over-the-cell 
routing and stack with routing channels (Figures 8( a) and (b) ). Each bit slice of a unit may 
be a handcrafted custom cell, or may be implemented with one row of connected standard 
cells, as shown in Figures 8( a) and (b ), respectively. 

In the first layout architecture, power and ground wires run horizontally in the first metal 
layer. The control lines common to different bit slices in each unit also run horizontally in 
the ·first metal layer. Data lines connecting distinct units in each bit slice run vertically 
in the second metal layer. In the second layout architecture, power and ground wires run 
vertically in the first metal layer. Control lines run over the standard cells in the second 
metal layer. Data lines are placed in the routing channel and run vertically in the first metal 
or the polysilicon layer. 

Computation of the propagation delay from one datapath component to another in the 
same datapath block requires two elements: internal delay of the component(FU), tp-FU, 
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Figure 8: Two data path layout architectures using: (a) over-the-cell routing, (b) routing 
channel. 

and wiring delay of net( s ), tp-FUwire( s ), that connects the two components. Typically, tp-FU 

for all datapath units are provided by the targeted component library. However, in the case 
where timing informations are not available, we can obtain them using the following model. 

4.2.1 Timing Models for a Datapath Unit FU, tp-FU 

Since both architectures construct each datapath unit in a bit-sliced fashion, we first deter­
mine the delay for a single bit-sliced unit, tp-tbitFU. Subsequently, if there exists an input of 
the FU that is an output of the previous bit of FU, tp-FU is computed as 

ip-FU = ip-lbitFU + ( ( B - 1) X ip-ripple) (13) 

where, 
tp-ripple is the maximum delay of all rippling signals as described in more detail below, 
Bis the number of bits, and tp-tbitFU is described below. 

Otherwise, 
tp-FU = tp-lbitFU · (14) 

Delay of a FU Bit-slice, tp-tbitFU 

Given a netlist of a single FU bit-sliced, tp-tbitFU can be computed with Equation 6 as 
follows: 

ip-lbitFU = tp-comb(/, 0) (15) 

where, 
I and 0 are input and output ports of the FU bit-sliced, respectively. 
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Since all gates in a FU bit-sliced are placed in a close cluster (13], the wire length of nets 
that connect these gates are short. Thus, thier wiring resistances, Rws, and capacitances, 
Cws, are negligible. 

Maximum Delay of All Rippling Signals, tp-ripple 

Rippling signals are output signals that are used as inputs to the next bit slice. Since 
we are only interested in the delay of a critical path, only the longest delay of all rippling 
signals are to be used in tp-FU computation. Hence, the longest delay of all rippling signals, 
tp-ripple can be computed using Equation 6 as follows: 

where, 
I are all input ports of a FU bit-slice, and 
Or are rippling signals of a FU bit-slice. 

Similar to the computation of tp-lbitFU, all Rws and Cws are negligible. 

4.2.2 Timing Models for Wiring Delay, tp-FUwire(s) 

(16) 

The actual wire length can be determined only after the completion of computational expen­
sive datapath placement and routing procedures. For simplicity, we assume that the average 
wire length of a net connecting any two units in the same datapath is equal to half of the 
datapath height (Hdp)· In the first layout architecture, Hdp is equal to sum of the height of 
all datapath units. Whereas, in the second layout architecture, Hdp is proportional to the 
number of transistors in a bit slice and the transistor pitch (spacing between transistors) 
using the layout model similar to one described in (13]. Furthermore, since the stack and the 
standard cell datapath architectures use different layers to route these nets, we formulate 
the wiring resistance, RnPw, and capacitance, CnPw, as follow: 

where, 

( ~Hdp ) 
RnPw = Rs(/) Width( l) 

CnPw = C,(l)(~Hdv)(Width(l)) 

(17) 

(18) 

l is the routing layer in second metal for the bit-sliced stack with abutment architecture, 
and the routing layer in first metal for the bit-sliced standard cells architecture .. 

Thus, the wiring delay of a signal s that connects output of a component compi to units 
( Uj, 1 ~ j ~ n) in the same datapath can be computed as: 

where, 

n 

lp-FUwire(s) = (Rout(compi) + RnPw)(CnPw + E Cin-unit(u1)) 
j=l 

(19) 

Cin-unit(uj) is the total input capacitance of all components (compk, 1 ~ k ~ m) in Uj 
that are connected to signals; (i.e., Cin-unit(u1) = Er=1 Cin(compk)) 
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4.3 Timing Models for Inter-block Wiring delay 

Propagation delay of a wire, S, that connects two logic blocks, A and B, on a chip can be 
computed using Equation 4 as follows: 

n 

f1nter-block(S, A, B) == (Rout(compi) + RBLI<w(S, A, B)) X (CBLI<w(S, A, B) +I: C,·n(comp3-)) 

j=l 

(20) 
where, 
com pi is the source driver of S, 
( compj, 1 ::::; j ::::; n) are sink components of S, and 
RBLI<w(S, A, B) and CBLKw(S, A, B) can be obtain from the floorplan as described in more 
detail below. 

4.3.1 Floorplanning 

To obtain a chip floorplan, we use a simplied cluster growth algorithm that selects and places 
blocks constructively one at a time. The cluster is grown from the lower left corner and the 
algorithm iteratively adds blocks on the top and right. The algorithm determines the order 
of the block to be placed according to the cost of the resultant area and the connectivity of 
that block with those already placed. In another word, the objective function selects a block 
Bi E Bunplace with max(Area(Bi)) X ~w(Bi, Bj), where Bj E Bplace and w is the number of 
wires. Subsequently, a placement position for the selected block is determined with respect 
to the overall connectivity and the aspect-ratio constraints. The main reason for using this 
simplied method is the considerably lower computation effort. 

As the result of floorplanning, each block in the chip is centered at a coordinate ( x ,y). The 
length of a signal connecting any two given blocks is estimated as the manhattan distance 
between centers of the two blocks. And depending on the targeted layout system, vertical 
and horizontal segment of the wire will be routed in different layers. Hence, we formulate 
the resistance and capacitance of the wiring between blocks as a function of routing layers 
as follows: 

where, 

( 
IAx - Bxl IAy - Byl 

RBLKw(S, A, B) == Width(Ver) X Rs(Hor)) + ( Width(Ver) X Rs(Ver)) 

CBLKw(S, A, B) - (IA~ - Bxl X (Width(Hor)) X Cs(Hor)) + 
(IA11 - B11 I x (Width(Ver)) x Cs(Ver)) 

(21) 

(22) 

RBLI<w(S, A, B) and CBLKw(S, A, B) are the total wiring resistance and capacitance of the 
signal S connecting block A and B, respectively, 
Ver is the layer used in vertical routing, 
Hor is the layer used in horizontal routing, 
Ax and A11 are the x and y coordinates of block A, 
Bx and B 11 are the x and y coordinates of block B, 
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5 Timing Models for the System Clock 

The clock period is determined as the worst register-to-register delay in the design. Consider 
a typical register-transfer path shown in Figure 9( a). The register-to-register delay is defined 
as the delay of the critical path from source registers, Regl and Reg2, to the input of 
destination register that stores result of the data transfer, Reg3. 

13 
.............. Fl3 ,___ _ _. 

(1) (b) 

CordJo4 
unil 

Figure 9: Timing models for system-clock: (a) an example of a register-transfer path, and 
(b) its equivalent multistage graph representation. 

To identify the critical path in a register transfer, we use the multistage graph algorithm. 
First, we compute propagation delay of all components and wiring in the given register 
transfer using timing models described in previous sections. For example, the delay of 
Pa1 , an output of the control unit, is computed using Equation 9, the delay of ALU is 
computed using Equation 13 or 14, the delay of signal ml is computed using Equation 20, 
the delay of signal nl is computed using Equation 19, etc. Then, the register-transfer path is 
transformed into a multistage graph (similar to the transformation of a combinational circuit 
to a multistage graph) with each component maps to a node, and each net maps to an edge 
with direction signifies the signal flow. Furthermore, we introduce a source node with its 
output edges directed to nodes that represent source registers and the control unit, and a 
sink node with input edges directed from the destination register, Figure 9(b). Subsequently, 
the sum of propagation delay of each net, neti, and the delay of its source node is assigned 
as a cost to the edge that reprerents the net neti; except for two special types of net that are 
assigned a cost of 0, namely, outputs of the source, and inputs of the sink. For example, the 
sum of the propagation delay of ALU and the wiring delay of net n5 is assigned as a cost to 
the edge e5• Finally, the critical path is identified as the longest path from the source to the 
sink of the resultant multistage graph. Hence, the propagation delay of a register-transfer, 
RT, is computed as 

tp-Rtransfer(RT) = 
compiECOMP(SRc,DRc) 

18 



(23) 
net1ECON N(Ic,Oc) 

where, 
S Re and D Re are the source and destination registers, respectively, on the critical path, 
COM P(SRc, DRc) and CON N(SRc, DRc) define all components and all nets on path 

from SRc to DRc, 
tp-comp( comp;) is a function that computes delay of the component compi. ip-comp() rep­

resents Equation 9, 13 or 14 depending on the classification of the logic block for compi. 
tp-wire(netj) is a function that computes delay of the net netj. iw() represents Equation 

19 or 20 depending on the type of net j. 

And thus, the period of the system clock can be compute as 

tsystem clock= MAX1~i~n(tp-Rtransfer(RTi)) (24) 

where, 
RTi is the i-th register transfer in the design and n is the total number of register transfers 

in the design. 

6 Experimental Results and Discussions 

We have tested our timing models on the elliptical filter benchmark. The experiment is 
divided into five parts. In the first part, we evaluate our control-unit timing models by 
comparing estimates with the simulated delays of four synthesized elliptic-filter designs with 
the same schedule but different registers and 'muxes utilization. Using the same set of 
designs, in the second part of the experiment, we compare our timing models for clock­
period estimation against traditional performance measures by comparing estimates with 
the actual timing. The main distinction between different performance-estimation schemes 
is the granularity of the underlying model. A realistic timing model should consider all delay 
constituents of a chip. In section 2, we have identified and provided timing models for each 
of these constituents. In the third experiment, we determine the percentage contributed by 
these constituents to show that each of the constituent does in fact contribute delay to the 
clock period. The amount of delay contributed by each constituent of a chip varies across 
designs. Even a slight change in the number of bits of datapath units can cause a noticeable 
difference. This is shown in the fourth part of the experiment as we vary number of bits of 
the elliptical filter's datapath unit. In the last part of the experiment, we show that estimates 
from our timing models can be used to guide high-level synthesis tools in the selection of 
design styles. 

In our experiments, the clock period is computed using Equation 24. For simplicity, we 
divided the delay of the clock period into three parts: Datapath delay, Control unit delay 
and Wire/load delay. Datapath delay includes the delays of wiring, functional, interconnect, 
and storage units as described in Equation 13, 14 and 19. Control unit delay includes the 
delays of control logic, next-state logic and state register as described in Equation 7 and 9. 
Wire/load delay takes into account the global wiring delay and the overall driven-load as 
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described in Equation 20. The first, second and third experiments are carried out in 3µm 
CMOS technology ([3]), while the fourth and fifth experiments use l.5µm CMOS technology 
((12]). 

In the first experiment, we have tested our control timing models on four synthesized 
designs of the elliptical filter benchmark with 2 adders and a 2-stage pipeline multiplier. All 
four designs are scheduled in 19-control steps but with different utilization of registers and 
muxes (Figure 10): 

• design A contains 10 registers and 36 mux-inputs, 

• design B contains 11 registers and 28 mux-inputs, 

• design C contains 12 registers and 26 mux-inputs, and 

• design D contains 13 registers and 23 mux-inputs. 

Figures 10( a) and (b) shows the comparisons between the actual delay and the estimated 
delay of four control units. Since each control unit has a number of control paths, the data, 
in Figure lO(a), and data points, in Figure lO(b), represent the worst path delay. Two sets 
of data are given for the actual delay. The first set is the actual delay obtained from circuits 
that are created using the same decomposition scheme as assumed by our timing models. 
The second set is the actual delay of circuits that have been optimized for high performance. 

The measure of the first actual delay data-set is carried out in several steps. We first use 
the control layout model described in Section 2.3 to generate the gate-level netlist from the 
control-state table. Then, we use the Mentor Graphic GDT tools to generate the layout of 
the control unit with a 3µm CMOS technology. Finally, we use the GDT simulator, in adept 
mode, to measure delays for all critical paths and select the worst delay as the control delay. 
The results in Figure 10( c) shows that our control timing-model can predict the actual delay 
within an average of 6.4% error. 

As we described earlier, our control timing-model aims to estimate the lower bound delay 
of the control logic, i.e., control logic that is optimized for performance. However, in reality, 
optimization techniques, such as factorization and transistors sizing, are applied to the logic 
to improve the performance of the design. To demonstrate the impact of these optimization 
procedures, we first use GDT optimizers to improve the performance of the logic. Then, we 
simulate and measure the delay of the optimized designs using GDT's simulator in adept 
mode; data is shown in the third column of Figures 10( a). The results (Figure 10( c)) 
show that our control timing-model can predict the actual delay of the optimized 
circuit within an average of 14.2% error. 

In the second experiment, the actual clock period of four synthesized designs, which 
are used in the first experiment, are determined and their estimated values are computed. 
The delay calculation is based on a 16-bit datapath and a 3µm CMOS technology. Using 
the layout area model proposed in [13), the elliptic-filter benchmark is laid out in three 
blocks: a control unit, a datapath, and a 2-stage pipelined multiplier (macrocell), as shown 
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Figure 10: The evaluation of control-unit timing models: (a) comparison between estimated 
delay and actual delays (b) comparison in graph ( c) percentage error of estimated delay. 
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Figure 11: A layout of the elliptical filter benchmark. 

in Figure 11. The actual (performance optimized designs) and estimated clock period is 
shown in Figure 12(a). 

Figure 12(b) shows comparison of traditional timing-estimation schemes, our timing mod­
els and the actual clock period. And from results. in Figure 12( c) we can draw the following 
observations. Estimators that use only delay of functional units provide estimates with an 
average error of 31.9% of the actual delay (Figure 12( c) ). Estimators that use delay of units 
in the datapath (i.e., registers, functional uni ts, muxes, etc.) in the clock period estimation 
provide estimates with an average error of 18.2%. Estimators that obtain clock period esti­
mation by considering datapath and wiring delays give result with an average error of 7.5%. 
On the other hand, results obtained with our timing models are within 2. 7% of 
the actual delay. 

Using data obtained in the second experiment, we derive a distribution bar-chart shown 
in Figure 13. The chart shows that the clock period comprises of delay contributed by each 
constituent of the chip, as follows: 

• an average of 80% of the clock period is contributed by the delay in the datapath units, 

• an average of 10% of the clock period is contributed by the wiring and its driving load, 
and 

• an average of 10% of the clock period is contributed by the control-unit delay. 

Because the elliptic-filter benchmark is a datapath dominated design, the main contributor 
of the the clock period is the datapath delay. However, the amount of contribution by each 
constituent to the clock may vary from design to design. For example, Figure 14 shows 
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Figure 12: The clock period for four designs of the elliptical filter benchmark: (a) table of 
data, (b) comparison of different timing estimation schemes, ( c) percentage error of each 
estimation scheme. 
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Figure 13: Delay distribution of constituents of a chip. 

the distribution of delays as we vary the datapath bit-width of an elliptical filter design. 
As we increase the datapath bit-width, the capacitive load of each control signal increases, 
and in response, our model selects a bigger buffer to drive the increasing load. This causes 
the wire/load delay to remain generally constant (Figure 14). However, the control delay 
increases because of the additional delay contributed by the inserted buffer (Figure 14). 
Figure 14(b) also shows that the contribution of datapath delay to the clock period increases 
as the number of bits increases. This experiment shows that all delay constituents of a chip 
have to be included in order to perform complete analysis of the clock period. 

In the last experiment, we have tested our timing models on four synthesized designs of a 
16-bit elliptical filter benchmark with four different schedules and design styles (Figure 15): 
(A) 17 control steps with 3 adders, 2 multipliers, 10 registers and 34 mux-inputs, (B) 19 
control steps with 2 adders, 2 multipliers, 11 registers and 28 mux-inputs, ( C) 21 control 
steps with 2 adders, 1 multiplier, 10 registers and 25 mux-inputs, and (D) 19 control steps 
with 2 adders, 1 2-stage pipelined multiplier, 10 registers and 28 mux-inputs. The delay 
computation in this experiment is based on a l.5µm technology [12]. 

The results in Figure 15 list the total execution time (for one iteration) of four designs. We 
can use these estimates to guide the selection of designs that will satisfy a given performance 
constraint. For instance, if the performance constraint is 1 OOOns, two designs, Design A and 
Design B, can satisfy the constraint. On the other hand, if the performance constraint is 
1600ns, all four designs satisfy the constraint. 

7 Conclusions 

Performance measure is one of the crucial elements in high-level synthesis. It is used to 
determine the performance of the final synthesized design and as a guidance in the search 
of the design space. Without a performance measure, high-level synthesis-tools will not be 
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Figure 14: The datapath bit-width factor: (a) estimated clock period, (b) delay distribution. 
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Estimated delays (ns) 

Design Datapath Control Wire/load Clock period Total execution time 
for one iteration 

A(17c.s.) 41.0 16.8 7.0 64.8 1101.6 

B(19c.s.) 37.5 15.6 7.0 60.1 1141.9 

C(21c.s.) 37.5 18.5 6.0 62.0 1302.0 

D(19c.s.) 41.0 19.5 6.0 66.5 1263.0 

c.s. : control steps 

Figure 15: The estimated clock period and total execution time of four different designs of 
the elliptical filter benchmark. 

able to determine whether the synthesized designs satisfy given timing constraints, nor will 
they able to distinct a fast design from a slower one. To be useful in high-level synthesis, a 
performance measure should produce accurate estimates that can depict tradeoff and critical 
spots in the design efficiently (i.e., fast run time). The quest for a good performance-measure 
is usually a trade between accuracy and efficiency. In one extreme, a performance measure 
can produce highly accurate estimates by actually synthesizing the final layout. This type of 
estimators is not suitable for the use in high-level synthesis because of its slow run time (i.e., it 
took approximately 2~ days to produce a layout for each example in our experiments). In the 
other extreme, the performance of a design can be estimated from some abstracted models. 
This type of estimators produce estimates efficiently, however, their accuracy depends on 
the underlying models. Commonly used measures that model performance of a chip as 
functional-units delay, datapath-units delay, or datapath units and wiring delay belong to 
this category. While these measures are very efficient, results in our experiments have shown 
that estimates produced by these measures are inaccurate due to its over-simplified models. 

To obtain more realistic timing measures in high-level synthesis, we have presented a 
timing model that takes into account all delay elements, including datapath delay, control 
delay and wiring delay, and several technology factors, such as layout architecture, technology 
mapping, buffers insertion and loading effect. Using the popular elliptic filter benchmark, 
we have shown that the control unit and wire delays contribute 20% of the total clock period 
even in a datapath dominated design. Though the amount of delay contributed by each 
constituent of the clock period may vary from design to design, all factors mentioned have 
to be considered in order to perform complete analysis of the clock period. Furthermore, 
the preliminary results show that our timing model produces a better estimates on the lower 
bound of the clock period than previous models. 

Using the proposed model, the timing estimates can be computed rapidly (with n log n 
complexity, where n is the number of nets in the control/ datapath) by implementing a 
number of fast algorithms, such as the KLFM min-cut algorithm [2] for datapath placement, 
the left-edge algorithm for datapath routing-track assignments, the cluster-growth algorithm 
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for floorplanning, and the multistage-graph algorithm for identifying critical path in a circuit. 

To obtain better estimates of the control delay, more accurate models for control op­
timization procedures are needed. In order to improve the wire delay estimation, a more 
complex floorplanning procedure should be implemented. 

Timing model described in this report is suitable for the use in high-level synthesis because 
of its efficiency and accuracy. For the same reason, the model can also be used in interactive 
synthesis [8] and in feedback-driven synthesis [9] for rapid evaluation of performance. 
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