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Recursive Auto-Associative Memory:
Devising Compositional Distributed Representations

Jordan Pollack

Computing Research Laboratory
New Mexico State University

INTRODUCTION

A major outstanding problem for connec-
tionist models is the representation of variable-
sized recursive and sequential data structures,
such as trees and stacks, in fixed-resource sys-
tems. Such representational schemes are crucial
to efforts in modeling high-level cognitive facul-
ties, such as Natural Language processing. Pure
connectionism has thus far generated somewhat
unsatisfying systems in this domain, for example,
which parse fixed length sentences (Cottrell,
1985; Fanty 1985; Selman, 1985; Hanson &
Kegl, 1987), or flat ones (McClelland &
Kawamoto, 1986).!

Thus, one of the main attacks on connec-
tionism has been on the inadequacy of its
representations, especially on their lack of com-
positionality (Fodor & Pylyshyn, 1988).

However, some design work has been done
on general-purpose distributed representations
with limited capacity for sequential or recursive
structures.  For example, Touretzky has
developed a coarse-coded memory system and
used it both in a production system (Touretzky &
Hinton, 1985) and in two other symbolic
processes (Touretzky, 1986ab). In the past-tense
model, Rumelhart and McClelland (1986)
developed an implicitly sequential representation,
where a pattern of well-formed overlapping tri-
ples could be interpreted as a sequence.

Although both representations were suc-
cessful for their prescribed tasks, there remain
some problems,

. First, a large amount of human effort was
involved in the design, compression and
tuning of these representations.

. Second, both require expensive and com-
plex access mechanisms, such as pullout
networks (Mozer, 1984) or clause-spaces
(Touretzky & Hinton, 1985).

o Third, they can only encode structures
composed of a fixed tiny set of representa-
tional elements, (i.e. like triples of 25
tokens), and can only represent a small
number of these element-structures before
spurious elements are introduced?. These

! Tt is possible to get around some of these problems
by resorting to hybrid modeling, e.g. (Waltz & Pollack,
1985).
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representational spaces are, figuratively
speaking, like a *‘prairie’’ covered in short
bushes of only a few species.

] Finally, they ulilize only binary codes over
a large set of units.

The compositional distributed representa-
tions devised by the technique to be described
below demonstrate somewhat opposing, and, I
believe, better properties:

. Less human work in design by letting a
machine do the work,

. Simple and deterministic access mechan-
isms,

. A more flexible notion of capacity in a
““tropical’’ representational space: a poten-
tially very large number of primitive
species, which combine into tall, but
sparse structures.

. Finally, the utilization of analog encodings.

The rest of this paper is organized as fol-
lows. First, I describe the strategy for learning
to represent stacks and trees, which involves the
co-evolution of the training environment along
with the access mechanisms and distributed
representations. Second, I allude to several
experiments using this strategy, and provide the
details of an experiment in developing represen-
tations for binary syntactic trees. And, finally,
some crucial issues are discussed.

RECURSIVE AUTO-ASSOCIATIVE MEMORY

Learning To Be A Stack

Consider a variable-depth stack of L -bit
items. For a particular appllcauon both the set
of items (i.e. a subset of the 2© patterns) and the
order in which they are pushed and popped are
much more constrained than, say, all possible
Sf’:gucnces of N such patterns, of which there are

Given this fact, it should be possible to
bu1ld a stack with less than LN units (as in a
shift-register approach) but more than L units
with less than N bits of analog resolution, as in
an approach using fractional encodings such as
the one I used in the construction of a ‘‘neuring
machine’” (Pollack, 1987a).

2 Rosenfeld and Touretzky (1987) provide a nice
analysis of coarse-coded symbol memories.
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The problem is finding such a stack for a
particular application.

M +L UNITS
| sTack | TOP

AN \/

Lstack | TOP | [sTACK]
M UNITS

M UNITS

M + L UNITS
Figure 1.

Proposed inverse stack mechanisms
in single-layered feedforward net-
works

Consider representing a stack in a activity
vector of M bounded analog values, where
M>L . Pushing a L-bit vector onto the stack is
essentially a function that would have L+M
inputs, for the new item to push plus the current
value of the stack, and M outputs, for the new
value of the stack. Popping the stack is a func-
tion that would have M input units, for the
current value of the stack, and L+M output
units, for the top item plus the representation for
the remaining stack. Potential mechanisms in the
form of single-layered networks are shown in
figure 1. The operation performed by a single
layer is a vector-by-matrix multiplication and
then a non-linear scaling of the output vector to
between 0 and 1 by a logistic function.

All we need for a stack mechanism then,
are these two functions plus a distinguished M -
vector of numbers, €, the empty vector. To push
elements onto the stack, simply encode the ele-
ment plus the current stack; to pop the stack,
decode the stack into the top element and the
former stack. Note that this is a recursive
definiton, where previously encoded stacks are
used in further encodings. The problem is that it
is not at all clear how to design these functions,
which involve some magical way to recursively
encode L+M numbers into M numbers while
preserving enough information to consistently
decode the L +M numbers back.

One clue for how to do this comes from
the Encoder Problem (Ackley, Hinton, &
Sejnowski, 1985), where a sparse set of fixed-
width patterns are encoded into a set of patterns
of smaller width. Back-propagation has been
quite successful at this problem, when used in an
unsupervised autoassociative mode on a three
layer network. Rumelhart, Hinton, & Williams
(1986) only demonstrated an 8-3-8 encoder, but
Cottrell, Munro, & Zipser (1987) demonstrated a
64-16-64 encoder and Hanson & Kegl (1987)
used a 270-45-270 network.

3 The three numbers correspond to the number of un-
its in each layer of a 3-layer feed-forward network. I
will not describe back-propagation here, assuming that
the reader is familiar with the technique. Any pro-

These encoder networks are not directly
applicable to the stack mechanism, because the
compressed representations are never further pro-
cessed. But they can be.

Consider a set of training examples for a
stack as snapshots of the deepest states some
procedure using that stack creates. For example,
if the procedure performed the following stack
operations generating the corresponding stack
states:

operation _stack state

PUSHA (A)
PUSHB (B A)
PUSHC (CBA)
POP B A)
PUSHD (DB A)
PUSHC (CDBA)
POP (D B A)
POP (B A)
POP (A)
PUSHD (D A)
POP (A)

POP 0

Then the deepest states created are (C B A), (C
D B A), and (D A), since all the other stack
states are ‘‘substacks’’ of these three.

OUTPUT
—— = | STACK TOP

\/

STACK HIDDEN

/\

. |sTAack | TOP |
INPUT

FEEDBACK
TRAINING
ENVIRONMENT

Figure 2.

Recursive Autoassociative Memory.
The memory develops compositional
distributed representations as the
outputs of the hidden layer. The
developing representations are fed
back into the training environment,
which therefore evolves with the
weights in the network.

Consider simultaneously training the push
and pop mechanisms from figure 1. Taken
together, they form an encoder network as shown
in Figure 2, with L+M input units, M hidden
units, and L+M output units. If the symbols

grammed implementation of it can be simply modified
to do recursive auto-association. These modifications,
which involve using two error tolerances, and a mechan-
ism 1o save, restore, and copy the output values of the
hidden layer into the input layer, will be made obvious
through the discussion.
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above, A through D, represent L -bit vectors, and
€ is a distinguished vector of size M, then a suc-
cessful application (10 be defined below) of
back-propagation over this network with the fol-
lowing set of training examples can develop the
mechanisms for this stack. The roman letters
indicate particular L -bit patterns, R; (¢) represents
the M values of the hidden units for a particular
example during a particular training epoch, and +
is used to indicate concatenation rather than
addition.

input hidden output
A+E - R, () - A+

B+R, (1) = Rg, (1) - B+R, (Y
C+Rgu (1) - Reg, (1) = C4Rga(t)
A+e = R, - A+e

B+R, (1) - Rg, (1) — B4R, ()
D+Rg, (1) = Rpg, (1) —  D+Rg (1)
C+Rppu (1) = Repaa (1) = C+Rppa (1)
A+e - Ry -  A'+e

D4R, (1) = Rp, (1) — D4R, (1)

There are several nonobvious things going
on here.

First of all, the (initially random) values of
the hidden units, R;(¢), are part of the training
environment. As the weights in the system
evolve, so does the training environment. The
stability and convergence of the network is thus
sensitive 1o the learning rate. It must be set low
enough that the change in the hidden representa-
tions does not invalidate the decreasing error
granted by the change in weights.

In lieu of a formal proof of convergence, I
simply argue inductively that the terminal train-
ing patterns are constant, so that the patterns of
depth 1 become constant as learning proceeds; as
they become stable, the patterns of depth 2 start
to stabilize, and so on. This paper focuses on the
strategy for finding these representations, so
while stability and convergence in leaming is an
important problem, here it is only a secondary
issue. As will be discussed later, it may be pos-
sible to solve auto-association problems directly
through algebraic means.

The second nonintuitive point is that the
network is not really being trained as a stack!
Considering that the input-to-hidden function
performs a PUSH, and the hidden-to-output func-
tion function a POP, the training regime involves
multiple PUSHes, but only single POPs.

Enter the notion of successful training, by
which [ mean the usual termination condition for
back-propagation: For each example, and for
each unit, the absolute value of the difference
between desired and actual output is less than
some tolerance.

For the encoder and decoder to really
work, however, the tolerance on the developed
representations has to be quite sharp. After push-
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ing A, the stack is represented by R,. After
pushing B, the stack is represented by Rp, . Pop-
ping Rg, returns B” and R, . In order to success-
fully pop R4’ to get A” and €', R, must be very
similar to K, .

In running the simulations, then, I use two
different tolerances, a terminal tolerance, t, for
the input/output bit-vectors, and another non-
terminal tolerance, v for the developing hidden
representations. In the experiments described
below, I use 1=0.2 and v=0.05.

The third conceptual problem is that the
two parts of the RAAM really define separate
mechanisms, a PUSH encoder and a POP
decoder, which will be embedded in different
parts of an application network with some
simpler sort of memory and control logic. That
these mechanisms are tightly coupled in training
does not mean that they always form a single
network.

I have run several experiments in learning
distributed representations for sequences whose
details are omitted for lack of space. One 21-12-
21 RAAM leamned to be a stack for a network
using a recursive subgoal strategy to solve the
Towers-of-Hanoi Puzzle; Another 15-10-15
RAAM learned to represent sequences of letters
(encoded as 5 bit numbers) in common words;
and a third experiment on a 4-3-4 RAAM trained
on all eight depth-3 patterns of a single bit stack
developed into a shift register.

Learning to Represent Trees

Considering that a stack is really a right-
branching binary tree with a distinguished empty
symbol, it should be obvious that this mechanism
can also be adapted for dealing with other fixed
valence trees. For a training set consisting of
unlabeled binary trees where the terminals are
K -bit binary vectors, a three-layer network with
2K input units, K hidden units, and 2K output
units can be used to develop representations for a
set of such trees. The input-to-hidden function
encodes two trees into a new, higher-level, tree,
while the hidden to output function decodes a
tree into two subtrees.

Consider the tree, (D (A N)}(V (P (D
N))), as one member of a training set of such
trees. If the aforementioned network is success-
fully trained with the following patterns (among
other such patterns in the training environment),
the resultant encoder and decoder networks can
reliably form representations for these binary
trees.
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input hidden output
A+N — Ryn(t) — AN’
D+R (1) S Rpan(t) = D4Ry (1)
DN — Rpy (1) — D4N’
P+Rpy (1) — Rppn (1) — P4Rpy (1)
V4+Rppy (1) — Ryppn (1) = V4Rppy (1)

Rpan (1 HRyppxn (1) = Rpanveon (1) = Rpan (1Y +Ryppy (1)

DETAILS OF AN EXPERIMENT

In fact, the above example was part of the
first experiment I ran on learning to represent
trees. Consider a simple grammar, where every
rule expansion has exactly two components:

S>NPVPINPV
NP ->D APIDN | NP PP
PP -> P NP
VP ->VNPIV PP
AP > A APIAN

Given a set of strings in the language
defined by this grammar, any old parser is capa-
ble of returning bracketed binary trees which will
make up our training set. I made up such a set of
strings, and used a parser to get the following set
of trees:

(D (A (A (AN))))
(D I:I!)OIJ) (D N))

(V(DN))
(P (D (AN))
(DN V)
(D N) (V (D (AN

(D AN) V @DN))

Each terminal (D A N V & P) was
represented as a 1-bit-in-5 code padded with §
zeros. A 20-10-20 RAAM devised the represen-
tations shown in figure 3.

NP (DN} O0O0Oe - = » « OO0
(D(A(A(ANy) o000« -0
(D(AN) BoOe=----0

((DN) (P (D N))) reg-

(V (P (DN)) +0ae
(V(D(ANy °+0Oe-0-000
(VNy *-Oe-0-0O+0

(P@EN) - -0--0-8°0
(P(D(AN) *-0O--0-000

(AN) «QoQguod- o[]-

(AAN) - 00O =0~

(A(A(AN)) -*000---0-

((DN) V) 00-00=000-
(DN)(V(D(AN)) B ®®---0e-
(D(AN) (V(P(DNy)) -B+*-o-0O8-

D-n'--

o-o--

VP

PP

oDooOo -

AP

Figure 3.

Representations of all the binary
trees in the training set, devised by a
20-10-20 RAAM, manually clustered
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by  phrase-type. The  squares
represent values between 0 and 1 by
area.

I labeled cach tree and its representation by
the phrase type in the grammar, and sorted them
by type. The RAAM has clearly developed a
representation with similarity between members
of the same type. For example, the third feature
scems to be clearly distinguishing sentences from
non-sentences, the fifth feature seems to be
involved in separating adjective phrases from
others, while the tenth feature appears to distin-
guish prepositional and noun phrases from oth-
ers.

At the same time, the representation must
be keeping enough information about the sub-
trees in order to accurately reconstruct them.

The encoder and decoder networks thus
form a recursive well-formedness test as follows:
Take two trees, encode them into a new, higher-
level, tree, and decode that back into two sub-
trees. If the subtrees are reconstructed within
tolerance (i.e. T for terminal binary vectors, and
v for non-terminal analog vectors) than that tree
can be said to be well-formed.

The implications for conventional parsing
is that instead of searching a grammar for a rule
whose right-hand sides matches the two phrase-
markers, we can accomplish this search with a
simple feed-forward computation and parallel
element-by- clement comparison. This could lead
to a somewhat nifty speed improvement.

The implications for connectionist parsing
is that the output of an unsupervised RAAM
could be the teacher for a supervised sequential
learning technique such as sequential cascaded
networks (Pollack, 1987b).

Furthermore, the well-formedness test can
be used in a generator as follows. Start with a
pool of trees composed of the terminals. Take
every pair of trees from the pool, apply the
well-formedness test, and if it passes, add the
new higher-level tree to the pool.

Running this generator over the network
formed from the above experiment yielded the
following two interesting parse treces, among
many silly ones:

(((D N)(P (D N)))(P (D N)))
(D (AN))(V (DN))

The first seems to be a recursive applica-
tion of the NP -> NP PP rule, while the second is
a single instance of a known NP newly appearing
ina VP.

4 In fact, by these metrics, the test case (D N)(P (D
N))) should really be classified as a sentence; since it
was not used in any other construction, there was no
reason for the RAAM to believe otherwise.
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In my experiments thus far, RAAMS have
only shown evidence of very limited generativity
in this sense. The issue will be discussed further
below.

DISCUSSION

The Tricks That Make RAAMS Work

Extensional Programming (Cottrell, et. al.,
1987). Given that, with suitable control logic,
the encoder produces a fixed-length analog
representation for a sequence or tree which the
decoder can decompose and reconstruct into a
good facsimile of the original sequence or tree,
then the fixed-length vector must be representing
that sequence or tree.

Embedding the developing representations
into the iraining environmen!. This is really new,
though McClelland & St. John (1986),
apparently tried something similar,

Recursively Reduced Descriptions. Recur-
sive Autoassociative Memory appears to imple-
ment one of Hinton’s (unpublished) idea’s that
has been floating around for a couple of years.
With implementation, however, comes both vali-
dation and better understanding.

Constrained Co-evolution of Multiple
Mechanisms. The encoder and decoder of a
RAAM are really separate mechanisms which are
evolved simultaneously and cooperate to develop
a shared representation. There may be a useful
foundational principle at work

Performance Induced from Tolerance
Chaining. Neither stack nor tree mechanisms are
rcally trained to be what they become. I am
making an induction, backed up by lots of exper-
imentation, that if an original encoded represen-
tation is compressed even further by the encoder,
but can be reconstructed by the decoder to within
a close tolerance of the original, then this recon-
structed representation can be decoded almost as
well as the original. It stands to reason that the
error tolerance must get smaller as the desired
representations get deeper, but this has not yet
been quantified.

Compositionality is Settled

Fodor & Pylyshyn (1988) attacked the
non-compositional nature of  connectionist
representations, while McDermott (1986) chal-
lenged the community to be able to represent and
reason about the meaning of a complex sentence
like: “*She is more at home with her fellow stu-
dents than with me, her advisor.”’

Compositionality and complexity are no
longer crippling issues for connectionism. The
representations that RAAM’s develop may not be
obvious, except in the simplest and most highly
constrained cases, but they are compositional in
the strictest sense.

Systematicity is not Settled
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Unforwnately, Fodor & Pylyshyn’s genera-
tive capacily issue, which they called ‘‘systema-
ticity”’, still stands for the time being. There are
essentially three possibilities, which will be
explored in future work. Given that I have shown
some limited generative capacity in the form of a
small number of new useful representations, I
believe that either the second, third, or both will
be the case.

1 RAAM will not be able to develop sys-
tematicity;

2 Better training environments and better
activation functions are needed; or

3 Critical mass, in terms of network size or
training environment size, is needed.

Default Topology and Training is not Essen-
tial

There is no reason why only single level
networks for the encoder and decoder should be
used. Hidden units in the decoder as well as real
thresholds will probably be necessary for a
RAAM to develop a real analog stack representa-
tion, which may affect generative capacity®.

On the other hand, this simple form of
autoassociation may be directly solvable by
lincar methods: Cottrell, et. al. (1987) reported
that their autoassociator essentially performs
decomposition into principal components, while
Bourlard & Kamp (1988) reported that autoasso-
ciative networks have direct and optimal alge-
braic solutions. Whether such methods can be
implemented under the constraints of extreme
locality, and whether they might extend to recur-
sive autoassociation arc still, however, open
questions.

CONCLUSIONS

Implications: The Ultimate Capacity Of

RAAMS

I do not have any closed analytical forms
for the capacity of RAAMs. Somebody else will
have to do that work. Given that is is not really
an file-cabinet or content-addressable memory,
but a memory for a gestalt of rules for recursive
pattern compression and reconstruction, results
such as Willshaw's (1981) and Hopfield's (1982)
do not directly apply. Binary patterns are not
being stored, so one cannot simply count how
many.

I have considered the capacity of such a
memory in the limit, however, where the actual
functions and analog representations are not
bounded by single linear transformations and sig-
moids or by 32-bit floating point resolution.

5 The ultimate irony here would be if the
competence/performance distinction reduced to a prob-
lem in roundoff error.
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Saund (1987) has investigated autoassocia-
tion as a method of dimensionality reduction,
and asserted that, in order to work, the data must
be constrained to form a small dimensional
parametric surface in a larger dimensional space.

Consider just a 2-1-2 autoassociator. It is
rcally a reconstructible mapping from data points
on the unit square 10 unique points on the unit
line. In order to work, the environment should
define a parametric 1-dimensional curve in 2-
space, perhaps a set of connected splines. As
more and more data points need to be encoded,
this parametric curve must get ‘‘curvier” to
cover them. In the limit, it is no longer a 1-
dimensional curve, but a space-filling curve with
a fractional dimension. (At this point, however,
the similarity between nearby points is lost.)

It is not yet the time to discuss the impli-
cations of fractal representations for Al: Just
consider that the decomposition of meaning can-
not really stop at a semantic primitive such as
“MTRANS"".

Applications: Inference By Association

If the reader almost believes that (1) com-
plex Al-style representations can now be
encoded into fixed-length analog vectors, which
are compositional, similarity-based, and recursive
in nature, and (2) that functions can be devised,
say, using back-propagation, which perform arbi-
trary associations (that can generalize) between
such fixed-width vectors, than it is not too hard a
leap to believe that it may be possible, in the
near future, (o construct simple, constant-time,
deterministic (but fallible) mechanisms for
apparently rule-based processes such as parsing,
logical deduction, plausible inference, and,
perhaps, even, syntactic transformations.

I will be exploring several of these appli-
cations, with the slogan of ‘‘Associative Infer-
ence’’ over the next year.
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