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Most existing approaches for flexible and stretchable electronics are based on directly 

bonding semiconductor devices onto stretchable substrates.  They require fragile 3D 

interconnects, stretchable conducting polymeric materials, or liquid metals to accommodate 

mechanical deformation while often providing limited optoelectronic functionality and 

mechanical robustness.  An intriguing alternative strategy for realizing flexible electronics is to 

integrate brittle semiconductor chips onto flexible substrates using capillary confined microscale 
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liquid bridges as mechanical interfaces. This approach allows the use of standard electronic or 

optoelectronic devices fabricated on “thick” substrates as opposed to simplified circuits built on 

highly customized ultra-thin semiconductor membranes. 

For the first part of this thesis, studies on the statics and dynamics of the liquid based 

mechanical interface for rigid devices are present. We first introduce a design of the mechanical 

interface using capillary confined microscale liquid bridges between a rigid component and a 

flexible substrate. Numerical modeling methods are developed and validated by corresponding 

experiments to precisely predict the liquid bridge topologies, capillary forces under various 

loading conditions. This work establishes the engineering and scientific foundation for 

fabrication and optimization of such liquid interfaces for flexible electronics in future research. 

We then continue to investigate the dynamics of such mechanical liquid interfaces. A liquid 

bridge is the basic element of the mechanical liquid interface. The dynamic behaviors of a liquid 

bridge confined between two coaxial disks are comprehensively investigated through a combined 

modeling and experimental study. The effects of the stretching velocity, liquid properties, and 

liquid volume on the dynamics of liquid bridges are systematically studied to provide a direct 

experimental validation of our numerical model as well as offer further physical insights for 

stretching velocities as high as 3 m/s. 

We also present a numerical modeling approach that fully captures the dynamics of a 

capillary self-alignment process, where a solid object floating on a liquid bridge is aligned by 

capillary forces of the underlying liquid bridge onto the target position. By directly coupling 

fluid dynamics, solid mechanics along with the additional line friction from moving contact line, 

model predictions have shown good agreement with experimental measurements. This work 
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provides an experimentally validated modeling approach and physical insights to help establish 

foundation for systematic further studies and applications of capillary self-alignment and other 

related applications of the mechanical liquid interfaces. 

The second part of this thesis discusses the applications, designs and experimental 

characterizations of such mechanical interface for flexible devices. We introduce a design 

concept for a deployable planar microdevice based on a thin film liquid bridge and the modeling 

and experimental validation of its mechanical behaviors. We develop and experimentally 

validate theoretical models based on the energy minimization approach to examine the 

conformality and figures of merit of the device. This study establishes an early foundation for the 

mechanical design of this and related deployable planar microdevice concepts. 

We lastly present a tunable platform for incorporating flexible and yet non-stretching device 

layers on a hemispherical structure. A mechanical model is developed to elucidate the 

dependence of the conformality of the petal structures on their elastic modulus and thickness and 

the liquid surface tension. This platform will enable facile integration of non-stretching 

electronic and optoelectronic components prepared using established planar fabrication 

techniques on tunable hemispherical surfaces. 
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Chapter 1 

Introduction 
 

1.1 Flexible/stretchable and deployable electronics 

Most of prevailing forms of electronic/optoelectronic technologies in the world use planar 

and rigid substrates as basic and functional elements. Such devices require high stability and are 

fragile to environmental loadings during operation. However, recent design of bio-inspired 

devices demands high adaptability to curved surfaces and deformations from the human body. 

Due to the natural rigidity, electronic devices suffer from various loadings such as tension and 

bending when used in such applications and result in performance degradation or even failure. 

The so called “flexible electronics” is then developed by researchers as a solution. This strategy 

avoids the brittle, rigid and planar nature of commercial electronics and enables the flexibility of 

electronic elements to operate under non-planar surfaces and multiple loadings without 

compromising performance. 

The attempts to design flexible circuits start with paper-like displays and gradually 

expand to more challenging applications in various areas. Early methods try to achieve 

bendability of brittle elements and reduce the strain by using ultra-thin films since bending strain 

is directly proportional to thickness [1]. Another way to further bear strain is to embed functional 

elements into the mechanical neutral plane of a supporting layer [2]. Later methods to enable 

stretchability of circuits without performance degradation are to combine strain reducing and 
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isolation mechanisms with layouts enabling out-of-plane motions of the functional elements [3]–

[5]. An example of this design is thin arrays of wavy silicon ribbons made by releasing flat 

ribbons that bond with pre-strained elastomeric substrate [3]. Due to the deformation of buckling 

ribbons, such device can stand high levels of strain. Other designs that do not specifically exploit 

out-of-plane motions use spring structures as interconnects to bear large deformations [6]. The 

mechanisms and strategies mentioned above can be combined to construct stretchable 

electronic/optoelectronic integrated systems. Some successful demonstrations have been reported 

using stretchable metal interconnects and wavy membranes [6], [7] as strain reducer or isolator 

to enable the operation of electronic/optoelectronic elements under curvilinear applications. 

Another variation of electronic devices that also demands high flexibility or stretchability is 

designed to have the ability to be deployable in the field. Deployable devices that can be 

introduced into a region of interest in their compact collapsed states and then deployed to cover 

large volumes or surface areas are of great interest to various engineering and biomedical 

applications [8]–[12]. Incorporating electronic components on such deployable devices is 

challenging as the electronic components must be able to undergo large deformations in highly 

dynamic situations. Deployable electronics are promising in applications such as 

stents/catheters/opto-electrode arrays for minimally invasive diagnosis and treatments of 

cardiovascular and neuronal diseases, deployable sensor networks for structural health 

monitoring or robotics applications and compact launch-volume structures for space 

applications. 

Currently available deployable devices and tools, in particular those employed for minimally 

invasive bio-medical procedures, are mostly limited to mechanical functionalities. Most of these 

devices target limited geometries and rely on inflatable balloons for deployment [13], [14]. A 
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highly desirable design of flexible electronics should be able to adapt planar configurations while 

at the same time providing the ability to incorporate electrical, optoelectronic and other sensing 

and actuation capabilities.  Such design provides opportunities to further expand the usage of 

deployable devices and to facilitate the exploration of novel applications. 

 

1.2 Liquid based mechanical interfaces  

Despite these methods mentioned in Section 1.1 are able to reduce strain at certain degree, 

the active elements are not directly isolated from strain. As a result, the device performance can 

be slightly changed under stretching or bending. This is critical for integrated and sophisticated 

circuits based on CMOS transistors. We report an alternative approach where we mechanically 

decouple functional elements from load bearing support structures using capillary-confined 

liquid bridges.  This approach allows the use of standard electronic or optoelectronic devices 

fabricated on “thick” substrates as opposed to simplified circuits built on highly customized 

ultra-thin semiconductor membranes. 

Figure 1.1 schematically illustrates our concept under two basic types of mechanical 

deformation.  An array of liquid bridges is formed between a flexible bottom substrate and a top 

rigid plate emulating a functional semiconductor chip.  In response to mechanical tension or 

bending applied to the bottom substrate, the liquid bridges deform or rupture while protecting the 

brittle top plate.   
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Figure 1.1 Scheme of the mechanical liquid interface under various loadings: (a) unloaded; (b) tensile; (c) 

upward bending; (d) downward bending. 

 

Microscale liquid bridges offer unique mechanical characteristics.  They can undergo 

significant deformation without transferring large shear stress to solid support structures and can 

be perfectly healed even after they are completely ruptured.  They can also withstand cyclic 

loads without suffering from any fatigue-induced failure. At microscale, liquid elements made of 

non-evaporating materials, such as ionic liquids with virtually zero vapor pressure, can be 

effectively confined without requiring any physical seals due to the predominance of surface 

tension over gravity or other inertia forces. 

As an interface between rigid component and flexible substrate, the liquid interface connects 

two parts through surface tension forces. The capillary forces exerted on the rigid object is 

determined by the meniscus shape of the liquid film, which changes with the distance between 

the two parts.  The flexible substrate might undergo significant amount of deformation by 
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horizontal stretching or vertical bending in different loading situations. Thus it is important to 

study the interactions between the liquid interface and the rigid component.  

1.3 Elasto-capillarity: liquid solid interaction 

Although negligible at macroscopic scales, capillary forces become important at sub-

millimetric scales. Elastocapillary liquid solid interactions involving elastic deformation of solid 

objects due to capillary effects of liquid droplets/films are observed in various fields such as 

biology and microelectromechanical systems (MEMS). It is of great interest to understand the 

physical mechanisms underlying these phenomena for the design of mechanical interface for 

non-stretching flexible or deployable electronics. 

1.3.1 Elasto-capillary length 

The elasto-capillary length is a characteristic length scale to quantify the relative importance 

of surface tension over elasticity.  

For an elastic plate (length L, width w and thickness h) coated with a thin layer of liquid 

(surface tension γ), when it comes in contact with a rigid cylinder (radius R) coated with the 

same liquid, the plate wraps around the cylinder by surface tension forces (Figure 1.2) [15]. By 

considering the surface energy and elastic energy, the elasto-capillary length can be obtained as  

𝐿𝐸𝐶 = √
𝐵

𝛾
 ~ √

𝐸ℎ3

𝛾
  (1.1) 

Where B = Eh3 / 12(1 – v2) is the bending modulus of the thin plate. 

Elasto-capillary length sets a typical length scale that a structure is significantly deformed by 

surface tension forces if its length is larger than LEC. In the contrary, if its length is much smaller 

than this length scale, then surface tension has a negligible effect on the structure.  
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Figure 1.2 An illustration of the elasto-capillary length LEC: a flexible sheet is put in contact with a 

cylinder of radius R coated with a wetting liquid [15]. 

 

1.3.2 Elasto-capillarity for thin films 

As the elasto-capillary length scales with the thickness of a plate or a sheet (Equation 1.1), 

the surface tension tends to have a significant effect on thin slender structures such as plates and 

sheets. In fact, capillary forces have been used for deforming thin plates or sheets into 

predictable or controllable manner, including self-folding thin sheets into 3D microstructures 

[16]–[18]and self-assembly of micro parts. In these applications, a thin sheet self-wraps around a 

liquid droplet and becomes a predefined structure. Based on different templates and 

configurations, they can be constructed into various shapes or origamis (Figure 1.3). The self-

folding or self-wrapping happens as a result of minimization of the surface of the liquid in 

contact with air. These techniques provide way to produce 3D microstructures that are difficult 

with conventional etching and layer deposition techniques from micro-electronic fabrications for 

mostly planar objects.  
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Figure 1.3 Self-wrapping of a flexible sheet (PDMS and silicon) around a droplet of water leading to 

different 3D structures from [16] and [19] respectively. 

 

1.4 Numerical simulation methods 

1.4.1 Surface Evolver  

Surface Evolver[20] is widely used for the study of liquid surfaces based on minimization of 

surface energy. By specifying the initial surface, constraints and an energy function, the 

evolution of the surface shape are determined so as to minimize the energy (Figure 1.4).  The 

energies in Surface Evolver include surface tension, gravitational energy and user defined 

integrals. Surface Evolver can handle complicated topology, volume constraints, boundary 

conditions and other user defined constraints.  
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Figure 1.4 Evolution of a liquid bridge in Surface Evolver [20]. 

 

Surface Evolver is used for studies of different aspects of static or quasi-static behaviors of a 

fluid element. Previous studies have reported static simulations of liquid bridges that were 

formed between two rigid objects such as parallel plates or spheres[21]–[24]. The geometries of 

the liquid bridge at equilibrium state are obtained using Surface Evolver under various surface 

conditions.  The contact angles determined from the meniscus thus can be used to calculate 

capillary forces exerted on the rigid objects. Another use case is to study the rupture distance of a 

liquid bridge, which is the maximum distance between two parallel plates when the liquid fails to 

maintain a bridge.  

Although Surface Evolver is accurate and convenient for surfaces at equilibrium states, it is 

not able to handle dynamic situations where the liquid is far from equilibrium and the inertial 

effect is not negligible. To fully capture the dynamics of fluid under high frequency or large 

displacement, a more comprehensive simulation model is necessary. 
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1.4.2 Dynamic modeling methods 

Computational fluid dynamics (CFD) is an important branch of fluid dynamics, which 

combines numerical analysis and computational algorithms to solve and analyze fluid flow 

problems. The Navier-Stokes equation that defines a single-phase fluid flow is the fundamental 

basis of CFD flow problems. Of all methods for CFD problems, two-phase flow model is a 

promising solution for such situations. The key factor of two-phase modeling is to accurately 

track the interface between two fluids. There are various methods for two-phase flow problems 

to track the two-phase interface such as Volume of Fluid (VOF), Marker particles, Level 

set/Phase field and Moving mesh methods. 

In Volume of Fluid method[25], the phase interface is represented by volume fraction  in 

each cell of the fixed mesh grid. Volume fraction ranges from 0 to 1 with 0 represents 

completely fills with fluid 1 and 1 represents completely fills with fluid 2. The evolution of 

volume fraction is governed by the transport equation 

∂φ

∂t
+ 𝑢 ∙ ∇𝜑 = 0   (1.2) 

The interface geometry is reconstructed by the populated volume fraction in each cell and 

geometric flux calculation is performed. The normal direction to the interface is calculated and 

the normal plane at each cell is determined assuming the interface in each cell is planar.  
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Figure 1.5 The reconstruction of interface in Volume of Fluid method.  

 

In practical applications [26], [27], VOF methods can achieve good volume conservation 

and be able to track the interface during the evolution. However, the reconstruction of the 

interface geometry is still challenging and the normal interface movement is not straightforward. 

Level set method and phase field method are another methods to solve two-phase flow 

problem. In level set method [28], the phase interface is represented by the level set function  

with  = 0 for fluid 1 and  = 1 for fluid 2. The interface is the contour where  = 0.5. The 

motion of the interface is tracked by the transport equation 

∂φ

∂t
+ 𝑢 ∙ ∇𝜑 =  𝛾∇ ∙ (𝜀∇𝜑 − 𝜑(1 − 𝜑)

∇𝜑

|∇𝜑|
)   (1.3) 

The parameter ε determines the thickness of the interface where  varies smoothly from 0 to 

1. The parameter ε is typically of the same order as the size of the elements of the mesh grid. The 

parameter γ determines the amount of stabilization of the level set function. By solving the 

transport equation, the phase interface can be tracked. Level set method allows a simple interface 

geometry reconstruction and automatically handles the normal interface movement. However, 
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the volume conservation is inherently not supported and might significantly affect the accuracy 

of results. 

The phase field method[29] offers an attractive alternative to solve multiphase flow 

problems. In phase field method, the phase interface is tracked by phase field variable instead of 

directly tracking the interface between two fluids. By default, the surface tension force is 

inherently coupled with the Navier-Stokes equations as a body force. The evolution of the phase 

field variable is governed by the Cahn-Hilliard equation 

∂φ

∂t
+ 𝑢 ∙ ∇𝜑 =  𝛾∇ ∙ ∇𝐺 (1.4) 

where G is the chemical potential and γ is the mobility. Different from the level set method 

where the fluid interface is simply advected with the flow field, the Cahn-Hilliard equation does 

not only convect the fluid interface but also ensure the total energy of the system diminishes 

correctly. Both level set and phase field handles topology changes inherently. However, both 

suffer from volume conservation issues. In addition, due to the finite thickness of the interface, 

typically very fine mesh is necessary to achieve accurate results, which means more computation 

and time cost. 

Different from the methods discussed above, in moving mesh method, the phase interface is 

represented by mesh nodes on the interface. The movement of the interface is directly coupled to 

the movement of the mesh grid, which is tracked by Arbitrary Lagrangian-Eulerian (ALE) 

moving mesh method[30]–[32]. The deformation of the interface is directly reflected on the 

mesh grid, which might result in large mesh deformations and thus periodically remeshing is 

necessary for convergence and accurate results. Moving mesh method is very accurate for small 

deformation on the interface, but it typically fails to capture topology changes and normal 



 

12 

 

movement of the interface. It is more complex to implement and required more computational 

and time cost. 

 

Figure 1.6 The representation of the interface in moving mesh method [31]. 

 

1.5 Scope of research 

The present work studies mechanical liquid interfaces for flexible, stretchable and/or 

deployable electronics.  

Chapter 2 presents a mechanical liquid interface with capillary confined microscale liquid 

bridges. A combined modeling and experimental study is performed to investigate the 

mechanical characteristics of such integrated structures under quasi-static conditions and 

demonstrate their feasibility. This work establishes an early feasibility of flexible electronics 

based on liquid-based mechanical interfaces and a design tool to enable their systematic 

mechanical design and optimization. 

Chapter 3 explores the characteristics of a micro scale liquid bridge of the mechanical 

interface under various dynamic conditions. The deformation and rupture of axisymmetric liquid 
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bridges being stretched between two fully wetted coaxial disks are studied experimentally and 

theoretically. The effects of the stretching velocity, liquid properties, and liquid volume on the 

dynamics of liquid bridges are systematically investigated to provide direct experimental 

validation of our numerical model for stretching velocities as high as 3 m/s.   

Chapter 4 discusses a numerical model coupling solid mechanics and fluid dynamics to fully 

simulate the dynamic process of capillary self-alignment.  This model solves the time-dependent 

Navier−Stokes equations while tracking the deformation of the liquid−air interface using the 

arbitrary Lagrangian−Eulerian (ALE) moving mesh method to fully account for fluid dynamics 

in the supporting liquid film. This work provides an experimentally validated modeling approach 

and physical insights to help establish foundation for systematic further studies and related 

applications of capillary self-alignment. 

Chapter 5 introduces a design concept for a deployable planar microdevice and the modeling 

and experimental validation of its mechanical behaviors based on elasto-capillary interaction. 

Such a deployable device can be introduced into a region of interest in its compact “collapsed” 

state and then deployed to conformally cover a large two-dimensional surface area for minimally 

invasive biomedical operations and other engineering applications. This study establishes an 

early foundation for the mechanical design of this and related deployable planar microdevice 

concepts. 

Chapter 6 explores a tunable platform for incorporating flexible and yet non-stretching 

device layers on a hemisphere for possible application of incorporating electronics or 

optoelectronics on curved surfaces. A mechanical model is developed to elucidate the 

dependence of the conformality of the petal structures on their elastic modulus and thickness and 



 

14 

 

the liquid surface tension. This platform will enable facile integration of non-stretching 

electronic and optoelectronic components prepared using established planar fabrication 

techniques on tunable hemispherical surfaces.  
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Chapter 2 

Microscale Liquid-based Mechanical Interfaces for Flexible and 

Stretchable Electronics 
 

 

Most existing approaches to flexible and stretchable electronics are based on directly 

bonding semiconductor devices onto stretchable substrates.  They require fragile 3D 

interconnects, stretchable conducting polymeric materials, or liquid metals to accommodate 

mechanical deformation while often providing limited optoelectronic functionality and 

mechanical robustness.  We report an alternative strategy for realizing flexible electronics where 

we integrate brittle semiconductor chips onto flexible substrates using capillary confined 

microscale liquid bridges as mechanical interfaces.  We performed a combined modeling and 

experimental study to investigate the mechanical characteristics of such integrated structures and 

demonstrate their feasibility.  The experimentally determined topology and rupture 

characteristics of microscale liquid bridges formed between a brittle glass substrate and a 

stretchable polymer substrate agree well with the prediction from a quasi-static model based on 

the surface energy minimization algorithm.  The present work establishes an early feasibility of 

flexible electronics based on liquid-based mechanical interfaces and a design tool to enable their 

systematic mechanical design and optimization. 
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2.1 Background 

The majority of existing electronics and optoelectronics are based on functional elements 

built on rigid planar semiconductor substrates.  The emergence of so-called flexible and 

stretchable electronics for biomedical, energy, and other applications, however, necessitates 

adaptation of such functional elements and related interfaces to accommodate stretching, 

bending, and other types of mechanical deformation [33]. 

Previous studies reported various strategies to realize flexible and stretchable electronics.  

These include, for example, the use of ultra-thin semiconductor membranes, flexing 3D metal or 

liquid-metal interconnects, and stretchable organic conductors and semiconductors [1]–[4], [6], 

[7], [34]. 

We report an alternative approach where we mechanically integrate functional elements onto 

supporting substrates using capillary-confined microscale liquid bridges.  This approach allows 

the use of standard electronic or optoelectronic devices fabricated on “thick” substrates as 

opposed to simplified circuits built on highly customized ultra-thin semiconductor membranes. 

Microscale liquid bridges offer unique mechanical characteristics.  They can undergo 

significant deformation without transferring large stress to brittle functional elements and can be 

perfectly healed even after they are completely ruptured.  They can also withstand cyclic loads 

without suffering from fatigue-induced failure. At microscale, liquid elements made of non-

evaporating materials, such as ionic liquids with virtually zero vapor pressure, can be effectively 

confined without requiring any physical seals due to the predominance of surface tension over 

gravity and inertia forces. 
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Figure 2.1 schematically illustrates our concept under two basic types of mechanical 

deformation.  An array of liquid bridges is formed between a flexible bottom substrate and a top 

rigid plate emulating a functional semiconductor chip.  In response to mechanical tension or 

bending applied to the bottom substrate, the liquid bridges deform or rupture while protecting the 

brittle top plate.   

 

 

 

Figure 2.1: Scheme of the mechanical liquid interface under various loadings: (a) unloaded; (b) tensile; 

(c) upward bending; (d) downward bending.   

 

To demonstrate the feasibility of and help establish technical foundation of this approach, 

we first develop numerical models based on the surface energy minimization algorithm to predict 

the topology of liquid bridges under different mechanical loading conditions.  A set of 
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companion experiments is then conducted to validate the model predictions and directly 

demonstrate the feasibility of liquid-based flexible interfaces. 

 

2.2 Experimental 

We use a glass slide to emulate as a rigid inorganic semiconductor chip and a cast PDMS 

(polydimethylsiloxane) plate as a flexible and stretchable substrate.  The surfaces of both glass 

and PDMS substrates are coated with hydrophobic layers, which are patterned to create arrays of 

circular islands of radius 500 m.  The circular islands on the PDMS substrate, which are 

initially hydrophobic, are treated with oxygen plasma to render them hydrophilic.  Liquid 

droplets are manually dispensed on the rigid substrate, which is then aligned and brought near 

the flexible substrate to form liquid bridges.  To minimize evaporation during our experiments, a 

mixture of glycerin and water (4:5) is used to create liquid bridges. 

The integrated assembly is placed on rigid cylinders of different radii to subject it to various 

levels of bending.  Optical images of the liquid bridges are captured using a video microscopy 

system.   Figure 2.2 shows representative optical images of the liquid bridges under positive or 

negative bending as characterized by the radius of curvature.   

 



 

19 

 

 

 

Figure 2.2: Liquid bridges under positive or negative bending of increasing magnitudes. R is the bending 

radius of flexible substrate. 

 

2.3 Modeling  

Previous studies reported analytical and numerical methods to modeling capillary 

phenomena involving liquid bridges that were formed between two rigid objects [21]–[24].  We 

consider an array of liquid bridges formed between a deformable bottom substrate and a rigid top 

substrate.  The substrate surfaces are hydrophobic except within circular hydrophilic islands of 

radius rs.  For a given intrinsic surface contact angle intrinsic of the hydrophilic regions and liquid 

volume V0 , the shape of the liquid bridges is predicted using the surface energy minimization 

algorithm.  Capillary forces are calculated using both the virtual work model and the integration 

of the surface tension and the Laplace pressure forces.  We verify that the two approaches yield 
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the same numerical results to within 5%.  To facilitate generalization of our results, we define the 

normalized gap gn = g/rs, the normalized force Fn = F/ 2  rs, and the normalized volume Vn = 

V/r3, where  is the surface tension coefficient. 

Under uniform tension, the hydrophilic patterns on the bottom substrate translate laterally 

and deform from circles of radius R to ellipses of major axis b and minor axis a as illustrated in 

Fig. 2.3a.  Here, a = 2 rs (1 - ), b = 2 rs (1 + ), and ds =  dp. The Poisson ratio is denoted as 

and the applied strain as   

Under pure bending, we consider a liquid bridge that is located a distance l from the 

symmetric plane (Fig. 2.3b).  As the radius of curvature R of the bottom substrate is larger than 

the hydrophilic pattern radius rs, we approximate that the hydrophilic pattern on the bottom 

substrate remains flat.  The angle between the pattern and the original substrate plane is denoted 

as  = arctan (L/R). 
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Figure 2.3: Geometric models used to represent a liquid bridge as the bottom substrate is subjected to 

tensile (a) or bending (b) loading. 

 

2.4 Results and Discussion 

Figure 2.4 shows the predicted shapes of liquid bridges and the corresponding optical 

images under different bending conditions.  The apparent contact angles of the liquid bridge on 

the bottom substrates change their magnitudes substantially and become asymmetric to 

accommodate the substrate bending.  In contrast, the apparent contact angles on the top substrate 

are relatively unchanged as the top substrate remains undeformed.  The predicted liquid bridge 

shapes agree well with the experimental results. 

 

 

Figure 2.4: The shapes of a liquid bridge under different bending conditions. (top) experimentally 

obtained optical images; (bottom) model prediction. 
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2.4.1 Capillary Forces  

To help systematically design liquid interfaces, we next examine the dependence of the 

capillary force on the liquid volume and the gap between the substrates. 

For a given liquid volume, the shapes of liquid bridges at different gaps are predicted.  

Different components of the capillary force of liquid bridge are calculated for both tensile and 

bending situations.  The apparent contact angles at the top left edge 𝜃l and at the top right edge 

𝜃2 are defined as shown in Fig. 2.5.  R1 and R2 are the two principal curvature radii of the liquid 

bridge. 

 

 

Figure 2.5: Definition of the top left and right apparent contact angles and the two principal radii of 

curvature. 

 

The vertical force Fv is the sum of vertical surface tension force Sv and Laplace pressure 

force FP.  The Sv is obtained by integrating the vertical component of surface tension along the 

wetting perimeter, namely 𝑆𝑣 = ∮𝛾 sin 𝜃𝑑𝑙, where 𝜃 is the contact angle.  Due to the symmetry 

of liquid shape, 𝑆𝑣 = ∮𝛾 sin 𝜃𝑑𝑙 = 2∫ 𝛾 sin 𝜃𝑑𝑙 ( 𝜃l < 𝜃 < 𝜃2)
𝐵

𝐴
.  The contact angles between A 
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and B are continuous and the integral can be evaluated by studying the two contact angles  𝜃l and 

𝜃2 at the edge.   

Under tensile loading (Fig. 2.6(a), (c)), at a small gap (gn = 0.6) the liquid is highly 

compressed resulting in large 𝜃l and 𝜃2 (90< 𝜃l < 𝜃2).  As the two substrates are gradually 

pulled apart, the two contact angles decreases.  At first both  𝜃l and 𝜃2 is larger than 90Sv 

increases with gap.  After 𝜃1 is below 90while 𝜃2 is larger than 90 Sv continues increasing 

while with a smaller slope.  At certain point, Sv reaches the maximum and decreases when 

both 𝜃l and 𝜃2 is smaller than 90 

The Laplace pressure force is obtained as 𝐹P = −𝛾(
1

𝑅1
+

1

𝑅2
)𝐴𝑊, where 𝐴𝑊 is the wetting 

area (constant).  At small gap, the pressure is very high due to small positive curvature radii R1 

and R2.  As the gap increases, R1 starts to decrease and become negative whereas R2 increases 

slightly.  Consequently, the repulsive pressure force Fp decreases in magnitude.  At large gap, the 

change of R2 dominates the change of Fp, which therefore increases with gap.  The vertical force 

Fv as a function of gap can be obtained by the sum of Sv and Fp.  

The shear force Fs is obtained by integrating the horizontal component of surface tension 

force along the wetting perimeter on the top substrate, namely 𝐹𝑠 = ∮𝛾(cos 𝜃) 𝑛⃗ ∙ 𝑑𝑙⃗⃗  ⃗, where 𝑛⃗  is 

the vector of horizontal direction.  Due to the symmetry of liquid shape, 𝐹𝑠 = ∮𝛾(cos 𝜃) 𝑛⃗ ∙ 𝑑𝑙⃗⃗  ⃗ =

2 ∫ 𝛾(cos 𝜃) 𝑛⃗ ∙ 𝑑𝑙⃗⃗  ⃗𝐵

𝐴
( 𝜃l < 𝜃 < 𝜃2). 

As the gap increases, the two contact angles decreases.  When 𝜃1 is below 90while 𝜃2 is 

larger than 90Fs increases with gap.  After 𝜃2 is reduced below 90and gets closer to 𝜃1, 
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shear force reaches a maximum and then gradually decreases, eventually reaching zero when the 

liquid ruptures.  

The vertical force Fv of the bending situation (Fig. 2.6(b);(d)) can be explained similarly 

with the tensile situation.  As for shear force Fs, it decreases monotonously to zero. At small gap, 

𝜃1 is below 90while 𝜃2 is above 90.  The large difference of the two contact angles results in a 

large Fs.  When the two substrates are pulled apart, the difference between 𝜃1 and 𝜃2 becomes 

less and less.  As a result, Fs decreases and reaches zero at certain gap. 
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Figure 2.6: Liquid shapes and capillary forces with different gaps under certain loading level (Vn = 2.8). 

Liquid shapes evolvement under tensile strain =0.4 (a) and bending angle = 40(b); Capillary forces: 

tensile loading (c); bending loading (d). 

 

For a given normalized gap, the shapes of liquid bridges at different volumes are predicted 

(Fig. 2.7).  The dependence of Sv on the liquid volume is similar for both tensile and bending 

situations.  As the liquid volume increases, both 𝜃1 and 𝜃2 increase.  When the two contact 

angles are less than 90, Sv increases with the liquid volume.  When 𝜃2 is larger than 90, The Sv 

reaches a maximum value and then decreases with further increase in the liquid volume.  

Under tensile loading, the change in R2 dominates the change of pressure force Fp at small 

liquid volume resulting in increasing Fp.  As the liquid volume further increases, R1 becomes 

positive, dominating the change of Fp.  Consequently, Fp decreases with liquid volume.  Under 

bending loading, the pressure force Fp is positive at small liquid volume and decreases 

monotonously with the liquid volume.  The vertical force Fv can then be obtained and explained 

as a sum of Sv and Fp. 

The shear force Fs under tension first increases with liquid volume due to the enlarging 

difference between 𝜃1 and 𝜃2.  The difference of two contact angles decreases when the liquid 

volume is further increased, resulting in decreasing shear force Fs.  Under bending loading, the 

shear force Fs decreases below zero after a slight increase at first.   
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Figure 2.7: Liquid shapes and capillary forces with different volumes under certain loading level (gn=1.2). 

Liquid shapes evolvement under tensile strain=0.4 (a) and bending angle=40 (b). Capillary forces: tensile 

loading (c); bending loading (d). 

 

2.4.2 Loading effect 

The relation between loading levels and forces are also studied.  There are two regimes 

considering the states of liquid bridges: the repulsive regime when the liquid is compressed and 

the vertical force is repulsive and the attractive regime the liquid is stretched and the vertical 

force is attractive.  
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Figure. 2.8 shows the capillary forces under different strain levels ranging from 0 to 1.  In 

the repulsive regime ((a);(c)), the gap is small and the volume is large enough for the liquid to 

wet the hydrophobic area beyond the patterns, therefore the two contact angles 𝜃1 and 𝜃2 are 

larger than 90at zero strain.  When the substrate is stretched, 𝜃1 decreases and 𝜃2 increases as 

the applied strain.  The vertical surface tension force Sv thus has a slight increase at first and then 

remain almost constant.  Meanwhile, the two principal curvature radii R1 and R2 increases as the 

strain.  As a result, the pressure force Fp decreases and then slight increases in magnitude.  As a 

sum of Sv and Fp, the repulsive vertical force Fv decreases significantly at small strains and 

remain almost constant at large strains.  The shear force Fs, as indicated in the Fig.8(c), increases 

with the applied strain and remain constant at large strains.  

In the attractive regime, as the strain increases, 𝜃1 decreases while 𝜃2 increases to above 

90.  The Sv has a slight change while the negative pressure force increases significantly in 

magnitude, resulting in decreasing vertical force Fv.  Meanwhile, the shear force Fs increases 

monotonously with the strain. 
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Figure 2.8: Liquid shapes and capillary forces under different strain levels (Vn = 2.8). Liquid shapes 

evolvement in the repulsive (a) and attractive (b) regimes. Capillary forces in the repulsive (c) and 

attractive (d) regimes. 

 

Figure 2.9 shows the capillary forces under different bending angles ranging from 0 to 70. 

When the substrate is bent, the liquid wets beyond the pattern area and therefore the two contact 

angles 𝜃1 and 𝜃2 are larger than 90at zero bending. In the repulsive regime, as the bending 

angle increases, 𝜃1 decreases below 90 while 𝜃2 remains constant.  As a result, the Sv increases 

with bending angle and then has a slight decrease.  Meanwhile, the Fp decreases with bending 

angle in magnitude.  The repulsive vertical force Fv in magnitude thus decreases at small bending 

angles and remain almost constant at high bending angles. The shear force Fs, in contrast, 

increases monotonously with bending angles. 
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In the attractive regime, the vertical force Fv has the same tendency as the repulsive regime. 

The shear force Fs first slightly increases and then decreases with bending angle.  At certain 

point, the Fs changes direction and increases in magnitude.   

 

 

Figure 2.9: Liquid shapes and capillary forces under different bending levels (Vn = 2.8). Liquid shapes 

evolvement in the repulsive (a) and attractive (b) regimes. Capillary forces in the repulsive (c) and 

attractive (d) regimes. 
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Generally, the applied loadings weakens the vertical force and the higher loading level is, 

the lower the force is.  Shear force, however, increases with applied loading levels except for the 

slight fluctuation at bending attractive regime.  

 

2.4.3 Rupture distance 

At sufficiently high level of bending, some of the liquid bridges will eventually rupture.  

Such rupture may be deliberately designed to occur at each location to protect the brittle top 

substrate.  Previous studies reported detailed modeling results of rupture distances for liquid 

bridges formed between two parallel rigid substrates under axial loading.  The model we 

developed to predict liquid shapes and forces is also used to obtain the rupture behaviors of the 

liquid of flexible substrates under tensile and bending loadings. We predict the rupture distance 

by searching the gap where the minimum diameter of the liquid bridge reaches or highly close to 

zero. The gap slightly increases by a constant value Δg each step and the minimum diameter of 

liquid bridge is obtained. The liquid is considered rupturing when the minimum diameter is less 

than the pre-set value dc. The searching procedure continues until the desired gap distance is 

found.    

The measured and modeled rupture distances of the new liquid as a function of the bending 

angle are shown in Fig. 2.10.  A liquid droplet with a normalized volume of 2.12 first forms 

liquid bridge between two substrates.  The flexible substrate is bent by attching it to cylinders 

with different radii.  The top substrate are then pulled apart gradually until the liquid bridge 

ruptures.  The rupture distance is obtained by the captured image at rupture.. From the results, a 

larger bending angle leads to a larger rupture distance.  The reason is thatwhen the flexible 
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substrate is bent, the liquid shape becomes asymmetric.  A larger bending angle will increase the 

asymmetry of the liquid bridge and thus the ability to withstand rupture.    

 

 

 

Figure 2.10: Modeling and experimental results of rupture distance as a function of the bending angle (Vn 

= 2.12). 

 

2.5 Summary 

In this chapter, a new approach based on mechanical liquid interface for flexible electronics 

is proposed and its feasibility is demonstrated.  The implement of “perfectly” flexible liquid 

droplets decouples the load bearing structures from brittle electronic elements, enabling the 

direct use of commercial circuits.  Numerical modeling methods are developed and are proved to 
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precisely predict the liquid topologies, capillary forces and stress/strain distributions under 

various loading levels.  The modeling and experimental results show the high loadbearing ability 

and flexibility of the mechanical liquid interface.  Our work has established the engineering and 

scientific foundation for fabrication and optimization of such liquid interfaces for flexible 

electronics in future research. 
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Chapter 3 

 

A Combined Experimental and Numerical Modeling Study of the 

Deformation and Rupture of Axisymmetric Liquid Bridges under 

Coaxial Stretching 

 

The dynamics of liquid bridges has been attracting a lot of attention and research efforts. In 

this chapter, the deformation and rupture of axisymmetric liquid bridges being stretched between 

two fully wetted coaxial disks are studied experimentally and theoretically. We numerically 

solve the time-dependent Navier-Stokes equations while tracking the deformation of the liquid-

air interface using the Arbitrary Lagrangian-Eulerian (ALE) moving mesh method to fully 

account for the effects of inertia and viscous forces on bridge dynamics. The effects of the 

stretching velocity, liquid properties, and liquid volume on the dynamics of liquid bridges are 

systematically investigated to provide direct experimental validation of our numerical model for 

stretching velocities as high as 3 m/s.  The Ohnesorge number (Oh) of liquid bridges is a primary 

factor governing the dynamics of liquid bridge rupture, especially the dependence of the rupture 

distance on the stretching velocity.  The rupture distance generally increases with the stretching 

velocity, far in excess of the static stability limit.  For bridges with low Ohnesorge numbers, 

however, the rupture distance stay nearly constant or decreases with the stretching velocity 

within certain velocity windows due to the relative rupture position switching and the thread 

shape change.  Our work provides an experimentally validated modeling approach and 
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experimental data to help establish foundation for systematic further studies and applications of 

liquid bridges. 

3.1 Background 

The statics and dynamics of liquid bridges have been extensively studied for their 

importance in such diverse areas as crystal growth [35], spraying and atomization of liquids [36], 

fiber spinning [37], measurements of surface tension and viscosity [38], agglomeration of 

particles [39], and drop formation through capillary breakup [40]. Recent studies also 

investigated capillary forces mediated by liquid bridges for enhanced wet adhesion [41]–[46]  

and for self-alignment and self-assembly of milli- and sub-milliscale objects [47].   

Many past studies of liquid bridges focused on their stability under near equilibrium or 

quasi-static conditions.  Gillette et al. [48], for example, determined the limiting gap for the 

formation of a stable liquid bridge between two circular disks as a function of the liquid volume.  

A one-dimensional model was also developed by Rivas et al. [49] to characterize the evolution of 

liquid bridges around their stability limits. 

Other studies examined the post-rupture behavior of liquid bridges, such as satellite droplet 

formation[50] and volume partitioning [51]–[53].  These phenomena are particularly relevant for 

printing industry. Chadov and Yakhnin [51], [52], for example, investigated liquid bridge 

partitioning, illustrating preferential transfer of liquid to a more wettable surface.  The amount of 

transferred liquid was also shown to increase with the difference in contact angle between the 

two surfaces.  The separation speed and liquid properties, most notably viscosity and surface 

tension, also affected the volume partitioning. 
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The majority of these past studies of liquid bridges relied on quasi-static approximations to 

model their profiles, capillary forces, and rupture dynamics.  This presents fundamental 

limitations, however, in modeling highly dynamic phenomena where the inertia and viscous 

effects cannot be ignored.     

As an example, microscale liquid bridges have recently been explored as a potential enabler 

of reversibly switchable optical [54], mechanical, electrical and thermal interfaces [55]–[58] for 

micro and mesoscale devices. In these applications, liquid bridges can be subjected to repeated 

ruptures and reformations at rates in excess of 100 Hz.  Fast rupture dynamics of liquid bridges 

also serves as a useful analogy for drop generation from a capillary tube.  As another example, in 

capillary-mediated self-assembly processes, liquid bridge profiles were observed to continuously 

change and deviate noticeably from their equilibrium states. 

This motivated studies of the dynamics of liquid bridges that accounted for the inertia and/or 

viscous effects.  Early such studies, however, were limited as they used one-dimensional or 

inviscid flow approximations. Meseguer [35] studied axisymmetric liquid bridges that were close 

to their stability limits using an inviscid slice model. The axisymmetric and non-axisymmetric 

oscillations of liquid bridges were theoretically investigated by Sanz et al [59], [60].  Later 

studies investigated the effects of finite viscosity on the dynamics of liquid bridges under 

different conditions, including forced oscillations [61],[62] and stretching [40],[63]. The latter 

studies showed that even at modest elongation rates of 0.1 s-1, instantaneous bridge shapes 

deviate considerably from equilibrium profiles and the limiting length can significantly exceed 

the critical length of a static bridge at its limit of stability. 
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Zhang et al. [40] used an one-dimensional (1D) model based on the slender jet 

assumption[64] to study the deformation and breakup of axisymmetric liquid bridges.  The liquid 

bridges were held between two parallel coaxial disks of the same radius and subjected to 

stretching as the disks were continually pulled apart. The predicted interface profiles and rupture 

lengths agreed well with experimental data when stretching velocities were below Uc, which is 

the capillary velocity scale (/R)1/2  ( = 0.2 m/s for a water bridge of 1.6 mm radius).  Here  

and  are the density and surface tension of the liquid, respectively and R is the radius of the 

disks. The capillary velocity scale measures the relative importance of inertial forces to surface 

tension forces.   

A follow-up 2D modeling study [65] extended model predictions to higher stretching 

velocities and showed that the 1D model gave qualitatively and quantitatively different results 

from those of a presumably more accurate 2D model at stretching velocities > Uc.  Direct 

experimental validation of the model predictions, however, was not reported.   

Building upon these past studies, we report a combined experimental and numerical 

modeling study of the dynamics of axisymmetric liquid bridges that are coaxially stretched 

between two fully wetted disks.  We focus on the deformation and rupture behavior of micro-

scale liquid bridges over a much wider range of stretching velocities than the previous studies, up 

to 3 m/s.  The dependence of the rupture length and rupture location on the stretching velocity, 

liquid properties, and liquid volume is systematically investigated. This work provides direct 

experimental validation of our numerical model based on a moving mesh method and offers 

physical insights useful for applying deformable microscale liquid elements as reversibly 

switchable mechanical or thermal interfaces. 
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3.2 Numerical Simulation 

We consider the dynamics of an axisymmetric liquid bridge confined between two parallel 

fully-wetted circular disks of the identical radius R and surrounded by the ambient air.  The top 

disk is moved upward along the common axis of symmetry at a velocity u whereas the bottom 

disk is stationary. The common axis of the symmetry of the bridge and the disks are aligned with 

the gravity vector. The radial coordinate of the air-liquid interface is denoted as h. 

The transient liquid flows inside the bridge and the surrounding air are modeled using the 

Navier-Stokes equations and associated initial and boundary conditions. Figure 3.1 shows the 

simulation domains and boundary conditions used in our study.  The liquid and the air are 

assumed to be incompressible with the constant density, viscosity and liquid-air interface surface 

tension.  

We assume that the contact lines remain pinned at the disk edges: 

h (z = 0, t) = R, h (z = L, t) = R  (3.1) 

and that the no slip condition holds at the disk surfaces: 

ur (z = 0 , t) = 0, uz (z = 0, t) = 0  (3.2) 

ur (z = L , t) = 0, uz (z = L, t) = u  (3.3) 

    For our experiments discussed later, we indeed observed no noticeable contact line 

motion, at least to within our optical resolution of approximately 20 m.  The pressure outlet 

condition is specified at the top, bottom and outer boundaries of the air domain.   
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    The liquid bridge is assumed initially at rest in its equilibrium condition at volume v and 

initial length l0. 

h (z, t = 0) = heq (z)   (3.4) 

ur (z, t = 0 ) = 0, uz (z, t = 0 ) = 0  (3.5) 

The Navier-Stokes equations are solved using a time-dependent finite-element solver based 

on the backward difference scheme. We employ the Arbitrary Lagrangian-Eulerian (ALE) 

moving mesh method [66], [67]  to handle dynamic deformation of the simulation domains and 

the moving boundaries.  The evolution of the liquid-air interface is directly tracked using the 

instantaneous normal velocities of the fluid at the interface as obtained from solutions of the 

Navier-Stokes equations [68]. At each dynamically determined time step, new mesh coordinates 

are generated to account for the movement of the boundaries.  

The mesh quality gradually degrades as the simulation domains deform. An automatic 

remeshing method is adopted to periodically generate a new mesh when the mesh quality index 

falls below a threshold value. The maximum allowed time step is limited to 10-6/u where u is the 

stretching velocity. The liquid volume is monitored during the entire simulation process to 

confirm that any variation stays below 0.1%.  

A typical simulation run starts with a liquid bridge at its equilibrium state as obtained by 

setting the stretching velocity u to zero. A predefined temporal velocity profile is next applied to 

the top disk to emulate a stretching process. The bridge shapes (as defined by the locations of the 

air-liquid interface) and the velocity and pressure distributions are recorded at each time step 

until rupture occurs. The liquid bridge is considered ruptured when the minimum radius of the 

liquid bridge at any point along its length reaches 0.01% of the disk radius R.  
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Figure 3.1: Schematic of the simulation domains and boundary conditions used to model an axisymmetric 

liquid bridge, which is held between two parallel coaxial disks of equal radii R (not shown) and stretched 

at a velocity of u. We define a cylindrical coordinate system {r, z} whose origin is located at the center of 

the bottom disk. The rupture distance and the rupture location are noted as ld and lm, respectively. 

 

Test simulation runs were conducted with a very small disk velocity (0.001 mm/s) to 

confirm that we can replicate static stability limits predicted by the surface energy minimization 

algorithm [41]. We further confirmed that the rupture distances predicted by our numerical 

simulation agree with the values reported for moderate stretching velocities by Yildirim and 

Basaran [65] to within 2%.  
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A mesh independence study was also carried out.  We confirmed that doubling the number 

of mesh elements results in less than 1% changes in the predicted rupture distances and partial 

liquid volumes.  

To help generalize our results, we normalize relevant variables using the disk radius R as the 

characteristic length scale of the system and Uc = (/R)1/2 as the characteristic velocity scale. 

The corresponding characteristic time scale is tc = (ρR3/)1/2. The governing dimensionless 

groups are: 1) the dimensionless stretching velocity 𝑈 ≡ √𝜌𝑅𝑢2/𝜎; 2) the Ohnesorge 

number 𝑂ℎ ≡  𝜇/√𝜌𝑅𝜎; 3) the Bond number 𝐵𝑜 ≡ 𝑔𝜌𝑅2/𝜎; 4) the dimensionless initial bridge 

length 𝐿0 ≡ 𝑙0/𝑅; 5) the dimensionless liquid volume 𝑉 ≡ 𝑣/𝜋𝑅3.   

The dimensionless stretching velocity can be re-expressed as 𝑈 = √𝑊𝑒, where We is the 

Weber number.  The Weber number measures the importance of inertial force over surface 

tension force. The Ohnesorge number Oh measures the importance of viscous force over surface 

tension force and the Bond number Bo measures the importance of gravitational force over 

surface tension force.  Since we are most interested in the dynamics of sub-millimeter and 

microscale liquid bridges, the Bond number is kept small (Bo < 0.05).  We note that the Bond 

number may alternatively be defined as 𝐵𝑜 ≡ 𝑔𝜌𝑙2/𝜎, where l is the length of the liquid bridge. 

This may reflect the effect of the gravity more accurately but it is not convenient to use as the 

bridge length changes with time.  The particular definition of the Bond number used should not 

affect our results as the gravity is explicitly accounted for in our numerical simulation. 
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3.3 Experiments 

Experiments are conducted to allow direct validation of our predictions from the 2D 

axisymmetric model. To achieve stretching velocities as high as 3 m/s, we have developed an 

impact-driven setup schematically illustrated in Fig. 3.2.  The liquid bridge is held between the 

parallel surfaces of two cylindrical stainless steel disks of the same radius. The disks are coaxial 

with the liquid bridge. The disk radius R is fixed at 0.5 mm for all the results reported in the 

article. The parallel surfaces of the disks are machined flat and held perpendicular to the disk 

axis so that the liquid completely wets the surfaces and the contact lines remain pinned on the 

sharp edges of the disk surfaces.   

The bottom disk is fixed and the top disk is attached to a plate that can move vertically along 

a cylindrical slide guide. A high-striker mechanism is implemented to apply impact to this 

movable plate. A weight released from a certain height accelerates as it falls and activates a 

striker, which is coaxial with a movable plate. The plate and hence the upper disk then accelerate 

to a target velocity, typically within 1 ms.  By changing the initial height of the falling weight, 

different stretching velocities can be achieved. 

In a typical experimental run, two disks are first separated by a target initial distance. A 

liquid bridge is next formed by depositing a desired amount of liquid into the space between the 

two disks using a pipette with a resolution of 0.002 L.  The liquid bridge is next allowed to 

relax into its equilibrium state.  We independently confirm the liquid volume by integrating the 

bridge cross section obtained through optical imaging under the assumption that the liquid bridge 

is axisymmetric. In one reproducibility study, the maximum difference between the targeted and 
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measured liquid volumes were 3% over 10 independent measurements.  The measured rupture 

distances varied by less than 5% over these measurements. 

  A high speed camera (FASTCAM MC2, Photron Inc.) with a frame rate of 8000 fps is used 

to capture temporal trajectories of the upper disk and variations in the bridge shape.  The 

acquired digital images are analyzed using Matlab and ImageJ to extract the instantaneous 

positions of the upper disk and the liquid-air interface.  Representative temporal velocity profiles 

of the upper disk are shown in Fig. 3.3.  

For each experimental condition, measurements were repeated at least 4 times to ascertain 

the reproducibility of the results. 

 

 

 

Figure 3.2: Schematic of the experimental setup used to uniaxially stretch the liquid bridge at varying 

stretching velocities. 
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To investigate the effects of the physical properties of the liquid, aqueous solutions of 

glycerol at different weight concentrations (0%, 20%, 40%, 60%, 80%) are used[69].  The 

densities and surface tensions of the aqueous solutions are similar to each other, varying by less 

than 30%, whereas their viscosities vary by more than three orders of magnitude. This allows us 

to explore large variations in the Oh number while maintaining the Bond number relatively 

constant. 

Experiments were performed for different values of the velocity of the upper disk, liquid 

properties, and initial liquid bridge lengths. The Ohnesorge number ranges from 0.002 to 0.5, the 

disk velocity from 0.1 m/s to 3 m/s, and the initial dimensionless bridge length L0 from 0.2 to 3.  

The dimensionless liquid volume V is fixed at 2. 

While one can readily assign arbitrary temporal velocity profiles in numerical simulations, 

achieving infinite acceleration and maintaining a constant disk velocity in real experiments is not 

feasible due to finite inertia, gravity and friction.   

To help present and interpret our data, we therefore performed two sets of simulations using 

two different sets of velocity profiles.  The first set of velocity profiles (actual profiles) is 

obtained by analyzing the trajectories of the upper disk for direct comparison with the 

experimentally determined bridge profiles and rupture distances.  The second set of velocity 

profiles is approximate idealized velocity profiles (idealized profiles) that consist of the linear 

ramp up phase and the constant “average” velocity phase.  Simulations based on these idealized 

profiles are meant to help identify general trends. The average velocity is set to match the total 

distance traveled by the upper disk up to a bridge rupture point.  Figure 3.3 shows representative 

actual and corresponding ideal velocity profiles, which are input into our numerical simulations. 
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Figure 3.3: Representative actual (symbols) and idealized (lines) temporal velocity profiles of the upper 

disk.  

 

3.4 Results and discussion 

The dynamics of a stretching liquid bridge of a given dimensionless initial length L0 is 

governed by the dimensionless groups defined earlier: the Ohnesorge number Oh, the 

dimensionless stretching velocity U (or the Weber number We = U2), the Bond number Bo, and 

the dimensionless bridge volume V.  

3.4.1 Validation of the model static rupture distances 

As an independent validation of our numerical model, we conducted numerical simulations 

for a very small stretching velocity (0.001 mm/s) and compared the results with the rupture 

distances under quasi-static conditions reported in the literature. Under quasi-static conditions, 

the rupture distance is governed by the contact angles, 1 and 2, on the two disks.   
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    Figure 3.4 compares the results obtained using the energy minimization algorithm 

(Surface Evolver) and the results obtained in our numerical simulations for a symmetric surface 

condition (θ1 = θ2).  Figure 3.5 makes similar comparison for asymmetric surface conditions (θ1 

≠ θ2).  

 

 

Figure 3.4: Comparison of the predicted rupture distances as a function of the contact angle (symmetric 

cases).  The squares are the results from reference and the triangles are from our numerical simulation. 
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Figure 3.5: Comparison of the predicted rupture distances as a function of the contact angle on the bottom 

circular disk for two different values of the contact angle on the top circular disk (asymmetric cases).  The 

squares are the results from Reference [21] and the triangles are from our numerical simulation. 

 

3.4.2 Dynamic deformation of liquid bridges  

We first compare the predicted liquid bridge profiles with the experimentally measured 

profiles for liquid bridges with a low (0.05) and a high (0.5) Ohnesorge number.  The 

dimensionless stretching velocity U is fixed at 1 (U = 1).  All the results presented in the article 

have been obtained for liquid bridges with L0 = 2.  

Figure 3.6 shows the temporal evolution of the simulated and experimentally measured 

shapes and minimum neck radius of the liquid bridge with an Ohnesorge number of 0.05 (a 60% 
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glycerol solution). As shown in the inset, the instant the bridge is stretched, necking first occurs 

in the upper portion of the liquid bridge.  As the stretching continues, the necked portion of the 

liquid bridge gradually contracts further, ultimately leading to rupture. As the liquid bridge 

breaks up, the upper portion of the bridge forms a near spherical droplet whereas the lower 

portion of the bridge develops an elongated liquid thread. The temporal evolution of the 

dimensionless minimum neck radius hmin/R is shown in Fig. 3.6.  The neck radius decreases at 

higher rates in the early stage of stretching than near rupture partly because further increase in 

the capillary pressure is opposed by the inertia and viscous effects. 

Figure 3.7 shows the corresponding results for a liquid bridge with a higher Ohnesorge 

number (0.5 for an 80% Glycerol solution). The liquid bridge again first contracts at its upper 

portion but then develops into an almost symmetric (top to bottom) vase-like shape. A long 

cylinder-like liquid thread develops for the bridge with the higher Ohnesorge number.  The 

liquid thread only gradually thin down as the stretching continues. As a result, the rupture time is 

significantly longer than that for the bridge with the smaller Ohnesorge number.  The different 

manners in which the two liquid bridges evolve suggest one way to control the rupture of liquid 

bridges by simply choosing liquids with different Ohnesorge numbers. 

For both cases, the experimental results and numerical predictions agree reasonably well in 

terms of the bridge shape and also the minimum neck radius.  The maximum deviation is 

approximately 3%.  
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Figure 3.6: Temporal evolution of the predicted and experimentally determined minimum neck radius and 

bridge profiles (inset images) for a bridge with an Ohnesorge number of 0.05 (a 60% glycerol solution).  
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Figure 3.7: Temporal evolution of the predicted and experimentally determined minimum neck radius and 

bridge profiles (inset images) for a bridge with an Ohnesorge number of 0.5 (an 80% glycerol solution).  

 

We note that, although the temporal evolution of the minimum neck radius is qualitatively 

similar for the two cases with different Ohnesorge numbers, the underlying details of the 

dynamics are very different.  To gain further insights into the dynamics of liquid bridge rupture, 

we next examine internal pressure distributions.   

Figure 3.8 shows the numerically computed liquid bridge profiles and corresponding 

internal pressure distributions for low and high Ohnesorge number cases. The dimensionless 

pressure within a liquid bridge is given, to the leading order, by 2𝐻/𝑂ℎ − ∂𝑈𝑧/𝜕𝑧.  Here, H is 

the local mean curvature of the interface and Uz is dimensionless velocity in the z direction[65]. 

The capillary pressure 2H/Oh and the viscous pressure ∂𝑈𝑧/𝜕𝑧 compete to determine the total 

pressure within the liquid bridge.  
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Figure 3.8: The predicted dimensionless pressures and liquid bridge profiles for a) Ohnesorge number Oh 

= 0.05 and b) Ohnesorge number Oh = 0.5.  The dimensionless stretching velocity U is fixed at 1. 

 

For the liquid bridge with the lower Ohnesorge number (Fig. 3.8a), the viscous pressure is 

negligible compared with the capillary pressure. As a result, the bridge generally follows a 

curvature-controlled rupture process. The bridge develops a necking point and the liquid is 

rapidly expelled away from this point due to high spatial capillary pressure gradients. This leads 

to a rapid bridge break up and a small rupture length. 

For the liquid bridge with the higher Ohnesorge number (Fig. 3.8b), the viscous pressure can 

be comparable to the capillary pressure.  It effectively opposes the capillary pressure gradient 

that expels the liquid away from the center. This drastically changes the total pressure profile.  
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The pressure within the bridge is more uniformly distributed and virtually symmetric. No 

pronounced necking point with a distinct large curvature is developed.  Instead, the liquid bridge 

supports a long stable liquid thread, which gradually thins down until the bridge ruptures.  This 

stabilizing effect of the viscous force delays rupture and leads to larger rupture distances.  

3.4.3 Rupture distance: the effects of U and Oh 

We next examine the effects of the Ohnesorge number Oh and the dimensionless stretching 

velocity U (or Weber number) on the rupture dynamics of liquid bridges.  

We first discuss simulation results where the Bond number is set to be zero to remove any 

complication from the gravitational effect.  This is reasonable for micro-scale liquid bridges.  

Numerical simulations are performed over a wide range of stretching velocities for liquid bridges 

with different Ohnesorge numbers.  As a reminder, the rupture distance is nondimensionalized as 

Ld = ld/R, where ld is the separation of the two disks at the point of bridge rupture. The 

dimensionless rupture location is defined as Lm = lm/R, where lm is the vertical distance from the 

rupture point to the bottom disk (Fig. 3.1). 
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Figure 3.9: Predicted rupture distance Ld as a function of the stretching velocity U for liquid bridges with 

different values of the Ohnesorge number.  The Bond number Bo is set to be zero. 

 

The predicted dimensionless rupture distance Ld is shown in Fig. 3.9 as a function of the 

stretching velocity U for different values of the Ohnesorge number. When a liquid bridge is 

axially stretched at a very low velocity, the bridge shape at each instant closely resembles the 

quasi-equilibrium shape that it would have if the moving disk were instantaneously brought to 

rest and the bridge were allowed to relax to its equilibrium state.  Under this condition, the 

rupture distance that the bridge attains exceeds the maximum stable length of a nominally 

identical static bridge by only a small amount.  The rupture distance is also relatively insensitive 

to the Ohnesorge number.  This is consistent with well-established static stability of liquid 
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bridges [70] and prior experimental measurements at low stretching velocity (< 6 mm/s) [40].   

In contrast, at higher stretching velocities, the departure of the transient shapes from the 

equilibrium ones becomes larger and the rupture distance is increased substantially over the 

maximum stable length of a comparable static bridge.  

For a liquid bridge with a relatively small value of Oh (0.008), rather complex trends are 

observed in the dependence of it rupture distance on the stretching velocity.  These are 

represented by the relative rupture location switching and the liquid thread shape changes.  

Figure 3.10 shows a zoomed view of the rupture distance plot with matching bridge profiles 

illustrating these two phenomena.  

As mentioned before, at very small stretching velocities, a liquid bridge approximately 

maintains its quasi-static state.  Rupture occurs almost simultaneously at the upper and lower 

necking points.  As the stretching velocity increases, however, the rupture location shifts.   

For liquid bridges with small values of Oh, the rupture process is governed primarily by 

localized peaks in the capillary pressure.  The rupture occurs at or near the maximum local mean 

curvature point(s). Two potential rupture points (one closer to the top disk; the other closer to the 

bottom disk) exist due to the opposite signs of the two principle curvature components 

contributing to the total local mean curvature.  We will refer to them as the upper and lower 

potential rupture point, respectively. 

As the stretching velocity is increased, rupture occurs first on the lower potential rupture 

point (Fig. 3.10 inset I).  As the stretching velocity is further increased, the rupture location 

switches to the upper point (Fig. 3.10 inset III).  We call this the relative rupture point switching.  

There may be additional rupture location switching events (back to the lower point and then to 
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the upper point) as the stretching velocity is further increased for bridges with relatively low 

Ohnesorge numbers. The rupture distance stays relatively constant or drops slightly with 

increasing stretching velocity during these switchings. 

One consequence of the rupture location switching is on the trajectory of satellite droplets 

formed after a liquid bridge ruptures.  These satellite droplets may either recoil toward the 

residual droplet on the bottom disk or the top disk depending in part on the relative rupture 

location[65].  

 

 

Figure 3.10: The predicted rupture distance as a function of the dimensionless stretching velocity (The 

case of Oh = 0.008 in Fig. 3.9).  The insets illustrate the rupture location switchings and the thread shape 

change discussed in the text. 
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When the stretching velocity becomes large enough and the inertia effect is significant, a 

pronounced necking develops near the upper portion of the liquid bridge almost immediately 

after the upper disk is set into motion. This leads to a thin necked portion with a large local mean 

curvature. The liquid bridge then always ruptures at this upper portion (Fig. 3.10 insets IV-VII). 

We consider the transition velocity Utr, approximately 1 in Fig. 3.10, as the velocity above 

which no further rupture location switching happens for bridges with a given value of Oh. That 

is, the liquid bridges always rupture at the upper rupture points at velocities larger than this 

transition velocity.  We performed additional simulations for liquid bridges with L0 (= l0/R) 

different from 2.  The simulation results show that the transition velocity is weakly dependent on 

the Ohnesorge number but is a function of the initial aspect ratio, defined as l0/(2R), of the liquid 

bridge.  The disk radius R is fixed at 0.5 mm.  Figure 3.11 shows the dimensionless transition 

velocity as a function of the aspect ratio.  Long and thin (large aspect ratios) liquid bridges tend 

to experience the transition at lower stretching velocities than short and fat (small aspect ratios) 

liquid bridges.  The gravity has a negligible effect on the transition velocity. 
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Figure 3.11: The dimensionless transition velocity as a function of the liquid bridge aspect ratio with and 

without the gravity.  The disk radius R = 0.5 mm. 

 

  At still higher stretching velocities, even though the rupture points stay in the upper portion 

of the liquid bridge, we observe an additional anomaly in the stretching velocity dependence. 

That is, the liquid thread in the lower portion of the liquid bridge exhibits a change in shape from 

a long and thin needle-like structure (Fig. 3.10 insets IV-V) to a short and thick cone-like 

structure (Fig. 3.10 insets VI-VII). Accompanying this shape change is reduction in the rupture 

distance with increasing stretching velocity.  In the long needle-like structure, locally enhanced 

capillary pressure gradients around the lower potential rupture point cause the liquid to be 

expelled, leading to the formation of an elongated liquid thread of varying widths.  In the short 

and thick cone-like structure, in contrast, the lower potential rupture point becomes insignificant 

and the thread stays short.  
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Aside from these localized anomalies, the rupture distance generally increases with 

stretching velocity. This overall trend is consistent with the stabilizing effect of increasing 

inertial force over surface tension force as measured by the dimensionless velocity U (or Weber 

number We = U2).  

For liquid bridges with the larger Ohnesorge numbers (Oh = 0.08 and 0.3 in Fig. 3.9), 

localized anomalies are less obvious, all but indiscernible for the highest Oh considered. 

Increasing Oh (for example, by increasing the viscosity and/or reducing the surface tension) has 

added stabilizing effects on the liquid bridge, enabling the formation of highly elongated liquid 

threads.   

We next compare our experimental results with the numerical model predictions for liquid 

bridges of different values of Oh.  Figure 3.12 shows the experimentally captured and predicted 

liquid bridge profiles right before rupture for different stretching velocities.  Liquid bridges with 

Oh = 0.005, 0.05 and 0.5 are considered. For a low Oh (A: Oh = 0.005) liquid bridge, the rupture 

position switching (I to III) and the thread shape change (IV to VI) are observed as predicted in 

our simulations. These phenomena are less obvious as the Oh number increases (B: Oh = 0.05) 

and all but disappear when Oh is sufficiently high (C: Oh =0.5).  The transition from the rupture 

location switching regime to the thread shape change regime occurs between Columns II and III 

in Fig. 3.12 or for stretching velocities of approximately 1 for the cases considered in the present 

study. The experimental results agree reasonably well with the predictions. 
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Figure 3.12: Comparison between the experimentally captured and predicted liquid bridge profiles right 

before rupture for different stretching velocities.  Results are from liquid bridges with Oh = 0.005, 0.05, 

and 0.5.  

 

Figure 3.13 compares the experimentally measured and predicted dimensionless rupture 

distances as a function of the dimensionless stretching velocity for liquid bridges with a low 

value of Oh (= 0.005). The experiments are repeated four independent times and we report the 

average values as the filled triangles in Fig. 3.13.  Standard deviations are reported as error bars. 

The hollow symbols in Fig. 3.13 correspond to the simulation results obtained using actual 

velocity profiles obtained for each individual experimental condition. The corresponding 

individual experimental results are shown as the filled diamonds. They agree reasonably well 

with < 10% deviation. 
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To help clarify a general trend, we also show the simulation results obtained using 

“idealized” temporal velocity profiles (Section 3, Fig. 3.3) as the solid line.  

Figure 3.14 shows similar comparison for liquid bridges of a moderate value of Oh (= 0.05). 

The increase in Oh is mainly due to a larger viscosity of the liquid used (a 60% glycerol 

solution).  One can notice almost monotonic increase in the rupture distance with the increasing 

stretching velocity.  Local anomalies (the rupture location switching and the thread shape 

change) are barely distinguishable. Again, reasonable agreement is observed between the 

predicted and experimental results. 

For the liquid bridge with the highest value of Oh we considered (Fig. 3.15), the rupture 

distance increases monotonically with the stretching velocity throughout the entire velocity range 

considered.  Compared with the other liquid bridges with the lower Ohnesorge numbers, a 

drastically longer liquid thread is developed. As a result, the rupture distance is significantly 

larger for a given stretching velocity.  

The observation that liquid bridges with different Ohnesorge numbers show distinct rupture 

behaviors can be taken advantage in designing practical devices.  For example, one may choose 

high Oh liquid bridges to achieve highly stretchable liquid interconnections for flexible or 

reconfigurable electronic and optoelectronic devices.   Alternatively, one may wish to minimize 

the rupture distance for fast switching of thermal or electrical conductance by identifying a local 

minimum in the rupture distance around the thread shape change regime.  
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Figure 3.13:  Predicted and experimentally determined dimensionless rupture distance as a function of the 

dimensionless stretching velocity.  The bridge is made of water (Oh = 0.005, Bo = 0.03).  Superposed on 

the plot are experimentally obtained images of the liquid bridge at the incipience of rupture at several 

different stretching velocities.  

 

 

Figure 3.14: Predicted and experimentally determined dimensionless rupture distance as a function of the 

dimensionless stretching velocity.  The bridge is made of a 60% glycerol solution (Oh = 0.05, Bo = 0.04).  
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Superposed on the plot are experimentally obtained images of the liquid bridge at the incipience of 

rupture at select stretching velocities.  

 

 

Figure 3.15:  Predicted and experimentally determined dimensionless rupture distance as a function of the 

dimensionless stretching velocity.  The bridge is made of an 80% glycerol solution (Oh = 0.5, Bo = 0.05).  

Superposed on the plot are experimentally obtained images of the liquid bridge at the incipience of 

rupture at select stretching velocities.  

 

We note that all the results presented in the article are obtained under asymmetric stretching 

conditions where only the top disk is in motion and the bottom disk remains stationary.  Under 

the symmetric stretching condition, the top and bottom disks would be stretched in opposing 

directions, each at half the total target stretching speed. At higher stretching velocities, where the 

inertia effects are significant, the rupture distances under the symmetric and asymmetric 

stretching conditions significantly deviate from each other. The symmetric stretching condition 

suppresses the development of pronounced upper potential rupture points and associated local 

anomalies.  
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The experimentally measured and predicted rupture distances as a function of Oh for 

different stretching velocities are shown in Fig. 3.16.  Similar results have been reported in 

previous experimental [40] and numerical modeling [65] studies but only at relatively low 

stretching velocities.  Setting aside experimental uncertainties, for a given stretching velocity, we 

note that the rupture distance is rather insensitive to Oh when Oh < 0.01.  Relatively speaking, it 

increases more rapidly with Oh when Oh > 0.01 as the rupture behavior changes from the 

capillary controlled necking to the viscous controlled thread thinning. The experimental results 

agree reasonably well with the predictions with deviation < 5 %. 

We note in passing that we did not observe any “pre-mature” rupture of liquid bridges that 

resulted in smaller rupture distances than what we predicted.  This may, however, be due to a 

specific set of experimental approaches/protocols we used.  Under certain other conditions (for 

example, plates and/or liquid bridges are subjected to mechanical, electrical, or magnetic 

oscillations in addition to unidirectional stretching at a constant speed) one may potentially 

observe accelerated bridge rupture. 
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Figure 3.16: Predicted (lines) and experimental (symbols) results of the dimensionless rupture distance as 

a function of the Ohnesorge number for different stretching velocities.    

 

3.4.4 Relative Rupture Location and Partial Liquid Volume 

In Section 3.4.3, we discussed the relative rupture location switching as local anomalies 

observed in the stretching velocity dependence of the rupture distance.  To illustrate this more 

systematically, we show the predicted and experimentally measured relative rupture locations 

Lm/Ld in Fig. 3.17 as a function of the dimensionless stretching velocity.  Results are shown for 

bridges made of water and an 80% glycerol solution. We refer to cases where Lm/Ld > 0.5 as the 

upper point rupture mode and cases where Lm/Ld < 0.5 as the lower point rupture mode.  For 

liquid bridges with a low value of Oh (e.g. water), the rupture location switches between the 

upper and lower potential rupture points at relatively low stretching velocities. When the 

stretching velocity is sufficiently large (U > 1), the rupture location switches back to and remains 

on the upper portion of the bridge.  A similar trend is observed for a liquid bridge with a higher 
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value of Oh (80% glycerol solution) but with much smaller variations in the relative rupture 

distance as the switchings occur. 

Another parameter of interest is the partial residual volume Vp, which is defined as the ratio 

of the volume Vb of the liquid remaining on the bottom disk after rupture and the total liquid 

volume V.  Figure 3.18 shows variation in the partial volume as a function of the dimensionless 

stretching velocity for liquid bridges with different values of Oh.  Under static conditions or 

extremely small stretching velocities, the partial volume is approximately 0.5 as the bridge 

breaks up symmetrically. Note that the two disks are nominally identical with the same contact 

angles in all cases considered in the present study.  The symmetric rupture is consistent with the 

results of previously reported liquid partitioning studies [51]–[53].  

As the stretching velocity increases, the relative rupture location switches between the lower 

to the upper potential rupture points. For the lower point rupture cases, the partial volume is less 

than 0.5 and the larger portion of the liquid will remain pendant to the top disk. For the upper 

point rupture cases, the partial volume is larger than 0.5 at higher stretching velocities as a larger 

portion of the liquid forms a long thread at the bottom.  

Note that the rupture distance anomaly caused by the thread shape change does not influence 

the increase in the partial volume with increasing stretching velocity. As inertial effects become 

dominant over surface tension effects, more liquid remains on the lower portion of the liquid 

thread despite such a shape change.  

For the liquid bridge with the higher Oh (an 80% glycerol solution), the partial volume 

remains relatively insensitive to the stretching velocity when the velocity is relatively small.  As 

the relative rupture location switches from the lower to the upper potential rupture points, the 
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partial volume increases with the stretching velocity. Compared with the bridge with the lower 

Oh, the effects of the rupture location switching and thread shape change on the partial volume is 

less pronounced due to the damping effect of viscosity over surface tension.  

 

 

Figure 3.17: Simulation and experimental results of the partial volume as a function of the stretching 

velocity for water (Oh = 0.005, Bo = 0.03) and an 80% Glycerol solution (Oh = 0.5, Bo = 0.05). 



 

66 

 

 

 

Figure 3.18: Simulation and experimental results of the partial volume as a function of the stretching 

velocity for water (Oh = 0.005, Bo = 0.03) and an 80% Glycerol solution (Oh = 0.5, Bo = 0.05). 

 

3.4.5 Symmetric stretching 

To gain further insight into the observed velocity-dependence of the rupture distance, we 

extended our numerical simulations to symmetric stretching situations under otherwise identical 

conditions. Under symmetric stretching, the top and bottom disks are stretched in opposing 

directions, each at half the total target stretching speed.  

    Note that we considered only asymmetric stretching in the main manuscript where only 

the top disk is in motion at the target speed whereas the bottom disk remains stationary.  

    The predicted dimensionless rupture distances Ld under the symmetric and asymmetric 

stretching conditions are shown in Fig. 3.19 as a function of the stretching velocity U.  Four 

different values of the Ohnesorge number are considered.  Figure 3.20 compares the predicted 

liquid bridge profiles under the asymmetric stretching conditions (left panel) and the symmetric 



 

67 

 

stretching conditions (right panel) right before rupture occurs.  The results are presented for 

different stretching velocities and Ohnesorge numbers (Oh = 0.008 and 0.3). 

    Under symmetric stretching, the liquid bridge ruptures at two (upper and lower) potential 

rupture points simultaneously while under asymmetric stretching the relative location of the 

liquid bridge rupture shifts as a function of the stretching velocity (see Fig. 3.20).  As expected, 

when the stretching velocity is very low (U of approximately 0.3 and below), there is no obvious 

difference between the symmetric and asymmetric stretching conditions). 

    At higher stretching velocities, due to the increasing inertial effects, the rupture distances 

under the symmetric and asymmetric stretching conditions significantly deviate from each other. 

The asymmetric stretching leads to more pronounced development of the upper potential rupture 

point and thereby reduces the rupture distance. 
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Figure 3.19: The predicted rupture distances Ld as a function of the stretching velocity U for liquid 

bridges with different values of the Ohnesorge number under the symmetric (solid) and asymmetric 

(dash) stretching conditions.  The Bond number Bo is set to be zero. 

 

 

 

 

Figure 3.20: Comparison between the predicted liquid bridge profiles under the asymmetric (left panel) 

and symmetric (right panel) stretching conditions right before rupture for different stretching velocities 

for liquid bridges with Oh = 0.008 and 0.3. 

 

3.5 Summary  

In this chapter, the effects of inertial, viscous and surface tension forces on the dynamics of 

stretching liquid bridges are investigated using a combined experimental and numerical 

simulation study. The experiments and simulations are carried out for a wide range of 

dimensionless stretching velocities and Ohnesorge numbers. The rupture distance of a liquid 

bridge generally increases with stretching velocity due in part to the stabilizing effect of viscous 

and inertia force.  For low-Oh liquid bridges, local anomalies in the rupture distance, such as the 
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relative rupture position switching and the thread shape change, occur as the stretching velocity 

is varied.  Such anomalies are less visible for high-Oh liquid bridges. The partial volume of the 

liquid remaining on the bottom disk after rupture generally increases with increasing stretching 

velocity. Our study provides direct experimental validation of the numerical simulation approach 

based on the moving mesh scheme for capturing dynamics of capillary confined liquid bridges 

and their rupture.  Our work helps develop a systematic design tool for utilizing liquid bridges as 

mechanical, electrical or thermal interfaces.  

The present study focused exclusively on axisymmetric liquid bridges formed between two 

identical full-wetted disks.  We note, however, that contact line motions on more general solid 

substrates can significantly affect the statics and dynamics of liquid bridge[71], including the 

bridge deformation and rupture patterns[53], [72].  Further studies on this rich topic, including 

accurate modeling of the mechanics of contact line pinning and unpinning[73] would be worthy 

extension of our work.   
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Chapter 4 

Dynamics of Damped Oscillations during Capillarity-Driven Self-

Alignments 
 

In a capillarity-driven self-alignment process, a solid object suspended on a liquid bridge is 

aligned onto a desired position on the pre-patterned substrate through the combined action of 

capillary and dissipative forces.  We report a study of the dynamics of damped oscillations 

during such self-alignment processes where we directly track the deformation of liquid menisci 

and motion of contact lines.  Quantitative comparison with the experimental data reveal that the 

viscous shear stress exerted by mesoscale liquid flows is insufficient to explain the observed 

damping ratios.  We identify an additional dissipative force arising from moving contact lines as 

a possible explanation for the discrepancy.  Our model predictions based on an independently 

obtained friction coefficient show quantitatively good agreement with the experimental data. 
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4.1 Background 

Capillary self-alignment is an intriguing approach that uses capillary forces exerted by 

deformed liquid bridges to register micro- and meso-scale objects on pre-patterned substrates.  It 

is promising for various applications, including fabrication and/or packaging of micromachined 

devices, solar cell segments and biological samples through massively parallel alignments and 

assemblies on rigid and flexible substrates [74]–[77]. Self-assembly techniques have also been 

explored for accurate micro-handling and micro-positioning tasks in robotics and 3D integration 

[78]–[81].   

Early studies of these self-assembly processes developed simplified models based on the 

energy minimization approach to predict capillary forces from the quasi-static geometries of 

liquid menisci.  The contact lines were most often assumed to be spatially fixed.  Dynamic 

responses of capillary assembly systems were then described using the predicted capillary forces 

while only approximately accounting for the viscous forces [82]–[86].   

These rather simplistic models, however, were found insufficient in describing self-

assembly processes involving relatively large displacements [87]–[89].  Here, one must 

accurately account for dissipated forces associated with contact line motions and internal liquid 

flows as well as capillary forces associated with large meniscus deformations.  A recent study 

recognized the impact of contact line motion on initial acceleration but only considered  its 

impact on capillary forces under the quasi-static approximation [90].   

To circumvent the limitation of early quasi-static models, we develop a model that 

dynamically tracks the deformation of liquid menisci and the motion of contact lines by directly 

solving the Navier-Stokes equations.  By directly comparing our model prediction with 
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experimental data for damped harmonic oscillations, we elucidate the relative importance of the 

line friction arising from contact line motion and the viscous forces arising from internal liquid 

flows. 

4.2 Numerical model 

We model transient liquid flows inside the liquid bridge by solving the Navier-Stokes 

equations using a time-dependent finite-element solver based on the backward difference 

scheme.  The liquid (water) is assumed to be incompressible with the constant density, viscosity 

and liquid-air interface surface tension.  We employ the Arbitrary Lagrangian-Eulerian (ALE) 

moving mesh method to handle dynamic deformation of the simulation domains and the moving 

boundaries [30]–[32].   We directly track the evolution of the interfaces using the instantaneous 

normal velocities of the liquid at the interface obtained from the solutions of the Navier-Stokes 

equations. At each adaptively determined time step, new mesh coordinates are generated to 

account for the movement of the interfaces. 
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Figure 4.1: (a) Schematic of a self-assembly system where a solid substrate is floating on a thin liquid 

film within a target binding site; (b) the corresponding simulation domains and boundary conditions with 

red arrows showing the flow velocity distribution around the contact line. 

 

Figure 4.1 shows the schematic of a self-assembly system where a solid substrate is 

floating on a thin liquid film within a target binding site and the corresponding simulation 

domains and boundary conditions. In traditional elastic models, the contact line is ideally fixed 

and thus no motion at the contact line is allowed. However, the contact line cannot be perfectly 

pinned in place in practical experimental conditions. In our model, the contact line is free to 

move along the substrate. To allow contact line motion, the solid liquid interface is imposed with 

the Navier slip boundary condition with a constant slip length. The Navier slip boundary 

condition enforces the slip condition u  nsubstrate = 0 and adds a friction force in the form of Ffr = 

- µ / β  u, where u is the fluid velocity vector, µ is the viscosity of the liquid and β is the slip 
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length, which is typically in the order of 10 nm [91]. A slip length of 50 nm is used in the 

simulation and the variation of slip length has been proved to have negligible effect on the results 

by conducting simulations with slip length range from 1nm to 200 nm. 

At the liquid solid contact point, an equilibrium contact angle boundary condition is 

applied to take into account the effect of substrate surface conditions. In experimental conditions, 

the target binding area is a hydrophilic island surrounded by hydrophobic areas. This imposes a 

chemical confinement on the liquid film to be within the binding area. To simulate this chemical 

confinement, hydrophilic and hydrophobic contact angles are specified for boundary conditions 

within and outside the target site respectively. A small buffer area with a length of 10 m 

between the binding site and the surrounding area is used to allow a continuous transition from 

the hydrophilic to hydrophobic contact angle and avoid convergence issues due to the disruptive 

change of contact angle at the transition point. 

The capillary and viscous shear forces exerted on the solid object by the liquid bridge and 

its internal flow are calculated at each time step.  The resulting lateral displacement and velocity 

of the solid object are then used as boundary conditions for the next time step. The mesh quality 

gradually degrades as the simulation domains deform. An automated re-meshing method is 

adopted to periodically generate a new mesh when the mesh quality index falls below a threshold 

value. The maximum allowed time step is limited to 10-3 ms.  The liquid volume is monitored 

during the entire simulation process to confirm that any variation stays below 0.1%. 
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4.3 Results and discussions 

4.3.1 Experimental validation of the model 

A typical self-assembly process consists of three dynamic regimes: transient wetting, 

acceleration and damped harmonic oscillation[89]. Upon the release of a solid object from its 

initial misaligned state, a liquid layer placed on the binding site wets the bottom surface of the 

object and forms a liquid bridge.  Under the action of the capillary forces of the deformed 

meniscus, the object experiences acceleration towards its aligned “equilibrium” position.  As the 

object overshoots the equilibrium position, the capillary forces reverse the direction and pull the 

object back towards the equilibrium position.  Under the added actions of dissipative forces, the 

object undergoes damped oscillations until it stops at the final rest position.  

The oscillation frequency and the damping ratio are typically used to describe a damped 

harmonic oscillation process. The oscillation frequency is calculated by the inverse of the 

oscillation period and the damping ratio by equation: c = 2m ln (A0 / A1) / dt, where m is the mass 

of the solid component, A0 and A1 are the peak displacements at t0 and t1 respectively and dt = t1 

– t0. 

Figure 4.2 compares the experimentally obtained and numerically simulated results of a 

self-assembly process with an initial misalignment of 500 m.  In these simulations, the contact 

line is free to move along the substrate surface. While our numerical simulation results capture 

the damped harmonic oscillation qualitatively, the actual damping rate is substantially 

underpredicted.  Here, the damping rate is defined as the damping ratio of the first full oscillation 

cycle. This suggests the presence of additional dissipative forces. 



 

76 

 

-10 0 10 20 30 40 50 60 70 80
-400

-200

0

200

400

600

800

1000

1200

I: 500 m

D
is

p
la

c
e

m
e

n
t,

 
m

Time, ms

II: 1000 m

Damping ratio

Simulation Experiment

I 0.005 0.011

II 0.004 0.013

 

Figure 4.2: Predicted and experimentally determined displacements during a self-assembly process as a 

function of time.  The Experimental data were replicated from an independent early study [92].   

 

 Wetting dynamics may be described in terms of the disturbance of absorption equilibrium 

at the contact line.  Its motion is explained by statistical movement of molecular movement at the 

vicinity of the contact line [93].   A phase field theory introduces a free energy function to 

describe phenomena such as dynamic contact angle and moving contact line.  Previous studies 

applied this theory to modeling of the dynamics of spreading liquid droplets in sub-millimetric 

scales [93]–[95]. In these experiments, a droplet (R ~ 0.5 mm) held at the tip of a needle is 

brought into contact with a dry solid substrate. The droplet is actuated through a micro pump to 

ensure a very low flow speed. Simulations are then built to replicate the same spreading process 

while considering the effect of contact line dynamics. These studies found significant impact of 

so-called line friction, representing microscopic interactions between the liquid and solid surface 
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at the contact line.  A phenomenological parameter called friction factor f was determined by 

comparing experimentally measured temporal trajectories of spreading liquid droplets with 

model prediction to represent the line friction force as a function of the contact line velocity [93], 

[94], [96].  
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Figure 4.3: The line friction factor as a function of static contact angle of the solid substrate (red triangles 

are data from an early study [96] and black squares are simulation results replicated from another study 

[97] using a similar model). Inset image shows the experiment setup where a droplet (R = 0.5 mm) held at 

the tip of a needle and brought into contact with a dry solid substrate. 

 

 Figure 4.3 shows line friction factor f as a function of the static contact angle of the 

solid surfaces. Generally, as the contact angle increases, the line friction factor decreases. The 

effect of line friction due to moving contact line is then incorporated into the model, which is 

modeled as a friction force applied to the solid object as a result of the interaction between the 
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liquid film and the solid object. The line friction force (with a unit of Nm) is calculated as fline = 

f Uc, where f is the friction factor and Uc is the lateral velocity of the contact line. At each time 

step in a typical simulation, the friction force is calculated based on the contact line velocity 

obtained from solving the fluid dynamics. This line friction force is then applied as a load 

boundary condition onto the solid object for solving its dynamic motion.  

 The initial misalignment is an important factor in determining the dynamics of a self-

assembly process. For a small initial misalignment, the liquid layer may fully wet the whole solid 

surface while a large initial offset may not. We first conduct simulations regarding different 

initial offsets for direct comparison to experimental observations.  
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Figure 4.4: Predicted and experimentally determined displacements of the solid substrate as a function of 

time with an initial misalignment of 500 m and 1000 m. 
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 Figure 4.4 compares the experimental and simulation results of a self-assembly process 

with initial misalignments of 1000 m and 500 m. The geometry and surface conditions of the 

solid substrates are kept the same.  

 For both initial misalignment values, the trajectory of the solid substrate clearly shows 

the three sequential dynamic regimes of transient wetting, constant acceleration and 

underdamped harmonic oscillation. A larger initial misalignment induces a larger acceleration of 

the solid substrate initially and subsequently a larger displacement to the equilibrium position. 

As can be observed in Figure 4.4, during the harmonic oscillation regime, larger damping ration 

is achieved for a larger initial misalignment due to faster contact line motion and thus larger 

viscous forces. Generally, reasonably good agreement is achieved between simulation and 

experimental results. 

 Another important factor in the dynamics of self-assembly process is the contact angle of 

the solid and substrate surface. The surface conditions significantly contribute to the capillary 

forces, meniscus geometry and the contact line dynamics. We conduct simulations for two types 

of substrates and compare with existing experimental results. 
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Figure 4.5: Predicted and experimentally determined displacement of the solid substrate as a function of 

time with untreated and Oxygen treated surfaces. 

 

 Figure 4.5 compares the simulation and experimental results of self-assembly processes 

with an initial misalignment of 500 m for Oxygen treated and untreated substrates. As shown in 

Figure 4.5, for oxygen treated substrate with a smaller contact angle, a higher acceleration rate is 

achieved during the constant acceleration regime and thus a larger displacement from the 

equilibrium position. In addition, the contact line velocity is smaller, resulting in a smaller 

dissipative viscous force and thus the damping ratio smaller.  

Figure 4.6 shows the predicted trajectories of the contact line motion as a function of time 

for three different experimental conditions. In this plot, a negative value of contact line motion 

means the contact line moves beyond the target binding boundary while a positive value means 
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the contact line moves within the target binding boundary. As shown in Fig. 6, for a larger initial 

misalignment, the contact line moves farer away from the binding site boundary and meanwhile 

a larger contact line velocity, resulting in a larger line friction force. For an untreated substrate, 

the contact line displacement is larger than an oxygen treated surface with the same initial 

misalignment due to a larger contact angle. Each trajectory of the contact line motion closely 

represents a significantly damped harmonic oscillation, where the contact line displacement from 

the binding site boundary rapidly reduces to zero in a few cycles. These predictions from Fig. 4.6 

accords to the experimental observations in Fig. 4.4 and Fig. 4.5. 
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Figure 4.6: Predicted contact line motion as a function of time with different initial misalignments and 

surfaces conditions of the substrate. 

 

Figure 4.7 shows the predicted viscous force and line friction force per unit length as a 

function of time for different combinations of initial misalignment and substrate surface 
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conditions. For a larger initial misalignment, the contact line friction force is larger while the 

viscous force is almost the same (Fig. 4.7a). Similarly, for an untreated substrate, the contact line 

friction force is larger while the viscous force is almost the same (Fig. 4.7b). For each trajectory 

in Fig. 4.7, the line friction force rapidly decreases while the viscous force reduces much slowly. 

In addition, the line friction force dominates over the viscous forces during the first a few 

oscillation cycles and become comparable to viscous forces when the solid object is about to 

reach its rest position. These predictions accords to the previous experimental observations in 

Fig. 4.4 and Fig. 4.5. 
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Figure 7: Predicted viscous force and line friction force per unit length as a function of time for (a) 1000 

m and 500 m initial misalignment; (b) untreated and oxygen treated substrates. 

 

4.3.2 Effects of initial displacement, contact angle and liquid film thickness on capillary self-

assembly 

With the established coupled model, we perform series of simulations to understand the 

dynamics of the uniaxial self-assembly for different parameters of the system.  

The initial misalignment of the solid object is an important factor to the self-assembly 

process. While maintaining other parameters such as liquid film thickness, substrate geometry 

and contact angles constant, simulations are performed for different initial offset ranging from 50 

to 500 m.  
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Figure 4.6: Predicted determined oscillation frequency and damping ratio of the solid substrate in its 

damped harmonic oscillation regime as a function of the initial offset.  

 

Figure 4.6 shows the oscillation frequency and damping ratio of the harmonic oscillation 

regime in a self-assembly process as a function of initial misalignment. As the initial offset 

increases, the solid substrate responses slower (the oscillation frequency decreases). The 

damping ratio, however, increases with the initial misalignment. This can be explained by the 

fact that the contact line velocity increases as the restoring forces increases for a larger 

displacement from the equilibrium position.  
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Figure 4.7: Predicted determined oscillation frequency and damping ratio of the solid substrate in its 

damped harmonic oscillation regime as a function of the static contact angle.  

 

Simulations are also conducted to demonstrate the effect of substrate static contact angle on 

the dynamic of self-assembly process especially the harmonic oscillation regime. Figure 4.7 

shows the oscillation frequency and damping ratio of the harmonic oscillation regime in a self-

assembly process as a function of the static contact angle. As the static contact angle increases, 

the solid substrate responses slower (the oscillation frequency decreases). Meanwhile, the 

damping ratio increases due to the increased contact line velocity. 
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Figure 4.8: Predicted determined oscillation frequency and damping ratio of the solid substrate in its 

damped harmonic oscillation regime as a function of the liquid film thickness.  

 

The thickness of the supporting liquid film not only affects the stability of the solid 

substrate, but also has effects on the dynamics of the self-assembly process. Figure 4.8 shows the 

oscillation frequency and damping ratio of the harmonic oscillation regime in a self-assembly 

process as a function of the liquid film thickness.  As the static contact angle increases, the solid 

substrate responses slower (the oscillation frequency decreases). As the liquid film gets thicker 

and thicker, the disturbing effect from the motion of the solid substrate on the contact line 

decreases, reducing the contact line velocity and thus the damping ration decreases. 

4.4 Summary 

In this chapter, the dynamics of capillary-driven self-alignment processes is investigated 

using numerical simulations. The model directly couples the fluid dynamics of the supporting 
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liquid bridge and the motion of the suspended solid object while directly tracking the 

deformation of liquid menisci and motion of contact lines.  Model predictions accounting for 

only the viscous shear stress associated with mesoscale liquid motions underpredict damping 

ratios.  We identify an extra dissipative force arising from the motion of triple-phase contact line 

as a possible explanation for the discrepancy.  Model predictions based on an independently 

determined value of the line friction coefficient capture reasonable well the experimentally 

observed temporal trajectories of the suspended solid object. 
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Chapter 5 

 

Mechanical Design and Modeling of Deployable and Conformal 

Devices for Minimally Invasive Brain Functional Monitoring 

 

A design concept for a deployable planar microdevice and the modeling and experimental 

validation of its mechanical behavior is present in this chapter. The device consists of foldable 

membranes that are suspended between flexible stems and actuated by push-pull wires. Such a 

deployable device can be introduced into a region of interest in its compact “collapsed” state and 

then deployed to conformally cover a large two-dimensional surface area for minimally invasive 

biomedical operations and other engineering applications.  

      We develop and experimentally validate theoretical models based on the energy 

minimization approach to examine the conformality and figures of merit of the device. The 

experimental results obtained using model contact surfaces agree well with the prediction and 

quantitatively highlight the importance of the membrane bending modulus in controlling surface 

conformality. The present study establishes an early foundation for the mechanical design of this 

and related deployable planar microdevice concepts. 
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5.1 Introduction 

Deployable devices that can be introduced into a region of interest in their compact 

collapsed states and then deployed to cover large volumes or surface areas are of great interest to 

various engineering and biomedical applications [8]–[12]. These include deployable sensor 

networks for structural health monitoring or robotics applications, compact launch-volume 

structures for space applications and stents/catheters/optoelectrode arrays for minimally invasive 

diagnosis and treatments of cardiovascular and neuronal diseases. 

Existing deployable devices and tools, in particular those employed for minimally invasive  

bio-medical procedures, are mostly limited to mechanical functionalities. They also target 

limited geometries, as they very often rely on inflatable balloons for deployment [13], [14]. 

Adapting these device designs for planar configurations while at the same time providing the 

ability to incorporate electrical, optoelectronic and other sensing and actuation capabilities are 

highly desirable to further expand the usage of deployable devices and to facilitate the 

exploration of novel applications. 

A conceptual design of our deployable planar device is shown in Figure 5.1. Foldable thin-

film membranes, which may incorporate 2D electrode arrays or other electronic or optical 

components, as demonstrated in many recent studies on flexible electronics [98], are suspended 

between semi-flexible stems via embedded wire guides. The device may be introduced through a 

small burr hole in its compact collapsed state (the membranes fully folded). The push-pull wires 

then allow the membranes to be deployed in situ along a gap and cover a large surface area. 
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The membranes must be sufficiently flexible to conformally contact typical engineering 

surfaces or tissues that contain topographical features. Previous studies reported mechanical 

modeling of the behavior of flexible conformal membranes. Kim et al. [99] predicted the tensile 

and compressive strains of epidermal electrodes that may be conformally attached to human skin. 

Other studies examined the deformation of thin membranes under elastocapillary effects. An 

analytic model reported in [100], for example, describes the folding and reopening processes of 

capillary-driven origami structures. In this and related models, the behavior of thin membranes 

subjected to capillary forces are studied by considering the mutual interaction between the 

surface and elastic energies [101]. 

We extend these past efforts and develop analytic models to investigate the conformality of 

flexible membranes as they contact surfaces and experimentally validate the models. We note 

that our goal for this analytic modeling is to help establish a basic understanding of the 

mechanics involved using simplified test cases rather than to examine complex geometric 

situations of a specific application. 
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Figure 5.1: (a) Conceptual design of the deployable ECoG electrode array.  Foldable membranes 

incorporating the electrodes are suspended between stems via push-pull wires. (b) Zoomed view of the 

device in its collapsed and deployed state. 

 

5.2 Mechanical models 

To help quantify the conformality of the membranes, we define the bending angle  as the 

angle between a membrane and a push-pull control wire (Figure 5.2).  Our basic approach is to 

find this bending angle as a function of the relevant physical and geometric parameters of the 

membrane by identifying a minimum energy state of the membrane when in contact with a 

model cortical surface.  

We consider a single membrane fold and approximate it as linearly interconnected segments, 

each of a uniform radius of curvature.  The total energy t of the fold is the sum of its elastic 

strain energy Ee and the interfacial energy Es (in contact with the cortical surface via an 

interfacial fluid): Et = Ee + Es.  The equilibrium bending angle is considered the one that 

minimizes Et under a given geometric constraint.   

The elastic strain energy per unit area e of a membrane segment that bent to a radius of 

curvature R can be written as e = B/2R2, where B = Eh3 / [12 (1-2)] is the bending modulus of 

the membrane.  Here, E is the Young’s modulus,  is the Poisson’s ratio, and h is the thickness of 

the membrane [102]–[104].  The present analytic model considers only 2D deformation of the 

membrane and all the energy terms are considered per unit width (into the page) of the 

membrane.  The total elastic strain energy Ee can be obtained as the sum of the strain energies of 

all the segments: 
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where Ai is the area of the membrane segment with a radius of curvature Ri. 

The surface/interfacial energy Es can be generally expressed as Es = sgAsg + lgAlg + slAsl 

where ’s are the surface tension coefficients and A’s are the corresponding areas of solid-gas, 

liquid-gas, and solid-liquid interfaces.   

We consider two different surface topographies in the present study: 1) a featureless flat 

surface 2) a flat surface incorporating a sulcus (or valley).  The former emulates a cortical 

surface of typical lower-order animals and the latter emulates gyrii in humans or apes with radii 

of curvature much greater than the length of the single membrane fold. 

 

5.2.1 Flat featureless surface 

Based on our experimental observations, we approximately represent a single fold of the 

membrane using seven segments: one flat segment of length l2, two sets of two bent segments 

with radii of curvature, R1 and R2, respectively, and two unbent segments of length l1 (Figure 

5.2).  These geometric parameters of the membrane are inter-related:  
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Figure 5.2: Geometric model of the membrane in contact with a featureless flat surface: (a) top view of 

membrane in complete released state; (b) side view. (c) Optical image of the membrane in side view.   

 

2l1 + 2R11 + l2 = l     (5.2) 

2l1cos1 + 2R1sin1 + 2R2sin1 + l2 = d     (5.3) 

2R21 = s     (5.4) 

The total energy is next expressed as a function of the bending angle After algebraic 

manipulation, we write 
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5.2.2 Substrate incorporating a sulcus 

We next consider a flat surface with a sulcus illustrated in Figure 5.3.  The sulcus is located 

in the middle of the flat substrate and modeled using two circular arcs of radius Rs.  The 

membrane is assumed to bend with a constant radius of curvature R3 over the sulcus.  A second 

bending angle  is used to quantify the ability of the membrane to conformally follow the 

contour of the sulcus.  
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Figure 5.3: (a) Geometric model of the membrane in contact with a featureless flat surface in side view; 

(b) Optical image of the membrane in side view.  

 

Similar to our model for the featureless flat substrate, we first relate the geometric 

parameters of the bent membrane: 

2l1 + 2R11 + l2 + 2(R3 + Rs)2= l     (5.7) 

2l1cos1 + 2R1sin1 + 2R2sin1 + l2 + 2Rs = d     (5.8) 

(R3 + Rs) sin2 = Rs      (5.9) 

2R21 = s     (5.10) 
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The total energy of the membrane is then written as 
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5.2.3 Non-dimensionalization 

To help gain further physical insights and “generalize” our models, we recast the equations 

for identifying the minimum energy states in their dimensionless forms.   

We define an elastocapillary length [15] LEC as LEC = (B/)1/2 where B is once again the 

bending modulus of the membrane B = Eh3/[12 (1-2)] and  ≈ sg + lg – sl.  A membrane longer 

than this characteristic length will be significantly deflected by the surface tension force. 

Using the featureless flat surface as an example, we write the first order derivatives of the 

total energy in their dimensional form and set them equal to zero: 
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After non-dimensionalizing all the relevant geometric parameters (R1, s, l, d) using LEC, we 

obtain 
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We further define two dimensionless parameters that characterize the extent of membrane 

deployment and the dimension of the sulcus: deployment factor Df = (d – l)/s and dimensionless 

sulcus radius Sf = 2Rs/d.  The deployment factor governs the lower bound min of the bending 

angle ( >  min). 

 

5.3 Experiments 

To help validate our models, we constructed single folds of membranes of a range of 

thicknesses (3.8 ~ 12.7 m) and measured respective bending angles on two different types of 

model surfaces.  We chose polyimide as our membrane material as it has been widely used as 

substrates to construct thin film ECoG electrodes [104]–[107].   The polyimide has a Young’s 

modulus of 2.3 GPa and Poisson’s ration of 0.34 and surface tension of sl = 0.042 N/m, lg = 

0.073 N/m, and a contact angle of with water.  

A liquid solution of polyimide (PI-2545, HD MicroSystemsTM) was first spin coated on a 

glass side and cured at 250 °C for 0.5 hour and again at 350 °C for 0.5 hour.  The cured 
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membrane was then peeled off from the glass side.  The membrane was attached to two glass 

slides that served as rigid mechanical supports.  The membranes were suspended using wires 

(0.20 mm in diameter, Como Nylon filament) inserted through mechanically punctured holes. 

Model cortical surfaces were prepared using Agar gels to simulate the mechanical properties 

of brain tissues [108].  An Agar solution (0.5g / 100ml DI water) was first heated at 200℃ until 

it boiled and then cooled down to form thick (~ 3 mm) blocks of gel.  Some of the blocks were 

formed on a mold to create sulci.  

The experimental setup is shown in Fig. 5.4.  The two glass slides holding each membrane 

were mounted on two translational stages so that we could adjust the deployment distance d (see 

Figure 5.2).  At the beginning of each experiment, an Agar block was gradually lifted up using a 

vertical translation stage until it made a contact with the membrane such that the membrane 

suspended free from the wire.  A digital camera captured the images of the membrane, which 

were then analyzed to determine the bending angles.  For each membrane, experiments were 

repeated while varying the deployment distance d.   
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Figure 5.4: Experimental setup of bending angle measurements with zoomed view of deployable device 

in contact with Agar block.   

 

5.4 Results and discussions 

5.4.1 Featureless flat surface 

Figure 5.5 shows representative captured images of the polyimide membranes under 

different deployment conditions on the featureless flat surfaces.  The bending angle of the 

membrane after making contact with the Agar surface is determined by the dimensions of the 

device (l, s, d).  As expected, for a given hole spacing s = 1.5 mm, the bending angle is larger for 

larger deployment distances (5a vs 5b and 5c vs 5d).  A larger membrane thickness leads to a 

smaller bending angle (5a vs 5c and 5b vs 5d) due to larger bending modulus B. 
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Figure 5.5: Optical images of membrane shapes under different deployment distances and thicknesses for 

featureless flat surface. 

 

Figure 5.6 shows the predicted and experimentally observed bending angles for three 

different values of the deployment factor Df = (d – l)/s as a function of the normalized membrane 

length l/LEC.  The two results agree well with each other.      

Under the same substrate surface conditions, the equilibrium state of membrane is merely 

determined by membrane material, dimensions and deployment.  For a given Df, the bending 

angle  starts at the geometrically determined initial value min and then increases as the 

normalized membrane length l/LEC increases (or as the thickness of the membrane decreases).  

Note that, when the membrane length l (over a single fold) is fixed, the normalized membrane 

length is inversely proportional to LEC and hence h3/2. As mentioned previously, the 

elastocapillary length LEC is the characteristic length of a membrane that measures its resistance 
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to bend in response to surface tension forces.  A membrane with length l much larger than LEC is 

strongly deflected by surface tension forces and thus gives rise to large bending angles.  A 

shorter or thicker membrane (l smaller than LEC) in contrast will not be significantly bent by 

surface tension forces.  

 

Figure 5.6: Modeling and experimental results of the bending angle on the featureless flat surfaces as a 

function of the normalized membrane length for different deployment factors. 

 

The effect of normalized membrane length on bending behaviors of membrane is discussed 

above.  Besides this, the way the membrane is deployed contributes to the final state of the 

membrane after contacting the surface.  For a given normalized membrane length, higher 

deployment factors result in higher bending angles (Fig. 5.7).  From the condition 0 < d < l + s, 
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the possible values of Df are within the range of (-l/s, 1).  The deployment factor Df governs the 

initial bending angle of the membrane before it makes any contact with the model cortical 

surface. Larger deployment factors result in larger initial bending angles.  In fact, for a given 

membrane length l and a hole spacing s, a smaller deployment distance d leads to a larger 

deployment factor Df and hence a larger initial bending angle. Once again, the experimental 

results agree well with the modeling results. 

 

Figure 5.7: Modeling and experimental results of the bending angle as a function of deployment factor. 

 

The bending angle helps quantify the conformality of the membrane contacting a cortical 

surface. Another important design consideration is how efficiently the membrane is utilized to 

achieve a large spatial coverage.  We define two additional parameters to help quantify this 
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characteristic of our deployable membrane.  1) The fraction of the membrane area that makes 

contact with the cortical surface: membrane utilization ratio ru = (l2 + 2Rs/l and 2) the fraction 

of the deployment area projection that is available for electrode placement:  membrane coverage 

ratio rc = (l2 + 2Rs/d.  Recall that l2 is the length of the flat membrane segment in contact with 

the model cortical surface.  For the featureless flat surface without a sulci, the same definitions is 

used with Rs = 0. 

Figure 5.7 shows the calculated membrane utilization and coverage ratios as a function of 

the normalized membrane length for different values of the deployment factor Df.  For a given 

deployment factor, as the normalized length increases, the membrane is more readily deformed 

to make larger contact areas, leading to enhanced coverage and utilization ratios.  The 

quantitative results allow selection of an optimal membrane thickness to achieve acceptable 

coverage or utilization ratios without severely compromising the mechanical robustness of the 

membrane.   

The deployment factor also affects the coverage and utilization ratios but in different ways.  

As the deployment factor increases, the utilization ratio monotonically increases.  The coverage 

ratio, in contrast, decreases with the increasing deployment factor when the normalized length is 

large (l/LEC > 10 in Fig. 5.8a).  When the normalized length is small (l/LEC < 5 in Fig. 5.8a), the 

coverage ratio increases with the increasing deployment factor.   This can be understood from the 

asymmetric behavior of the coverage ratio depending on whether the bending angle 1 is smaller 

or larger than 90°.   As schematically illustrated in Figure 9, for given values of l and s, the 

surface contact length l2 increases with the deployment distance d when 1 < 90° whereas l2 

decreases with d when 1 > 90°. 
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Figure 5.8: The predicted membrane coverage and utilization ratios as a function of the normalized 

length. 
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Figure 5.9: Schematic illustration of changes in the membrane bending behavior for different deployment 

factors when 1 < 90° and 1 > 90°. 

 

5.4.2 Flat surface incorporating a sulcus 

For the model cortical surfaces with a single sulcus, Fig. 5.10 shows representative captured 

images of the polyimide membranes.  For a given deployment factor, as the thickness of the 

membrane increases (and hence as the normalized length decreases), the two bending angles 1 

and 2 decrease.   
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Figure 5.10: Optical images of the membranes under different deployment factors and normalized lengths 

for the surface incorporating single sulcus.   

 

Figures 5.11a and 5.11b show the predicted and measured bending angles 1 and 2 as a 

function of the normalized membrane length.  The general qualitative trend for 1 is similar to 

that of the featureless flat surfaces.  Larger normalized membrane lengths lead to larger bending 

angles and therefore higher conformality.  For the given set of the deployment factors and the 

radii of curvature of the sulci examined here, critical normalized lengths of the order of 20 and 

greater are necessary to achieve good conformality over the sulci.   
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Figure 5.11: Modeling and experimental results of bending angle  (a) and  (b) as a function of 

normalized length for surface incorporating a sulcus. 

 

The results of three different cases are shown in Fig. 11:  I) Df = 0, Sf = 0.42; II) Df = -1/3, Sf 

= 0.42; III) Df = 0, Sf = 0.56.  Figure 5.12 shows the predicted and measured bending angles 1 

and 2 as a function of the deployment factor when Sf = 0.42.  For a normalized sulcus radius of 

curvature Sf of 0.42, the deployment factor has a significant effect on the top bending angle 1 

but little effect on the bottom bending angle 2 (Case I and II).   However, for a given 

deployment factor Df = 0, 2 is a strong function of Sf whereas 1 is only a weak function of Sf. 

(Case I and III).  The presence of the sulcus reduces the length of the top membrane segments 

(adjacent to the wires) and thereby decreases the top bending angle when compared with the 

membrane on the featureless flat surfaces.  When the spatial extent of the sulcus is sufficiently 

small, the top membrane segments are separated by the flat segments from the bottom segments 

covering the sulcus.  Therefore, the geometric details of the sulcus do not significantly influence 

the top bending angle. In contrast, 2 is dependent on the sulcus dimension, increasing with Sf. 
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Figure 5.12: Modeling and experimental results of bending angles  (a) and  (b) as a function of 

deployment factor.   
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Figure 5.13a and b show the two bending angles as a function of the normalized sulcus 

radius of curvature Sf.  As the normalized sulcus radius Sf increases, the bending angle 1 

decreases whereas bending angle 2 increases.  A larger radius of sulcus induces a longer 

membrane bent in the sulcus and thus a larger bending angle 2.  Since the total membrane 

length is fixed and the increasing length of membrane bent in the sulcus, the effective membrane 

length is reduced and thus the bending angle 1 is decreased.    
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Figure 5.13: Modeling and experimental results of bending angles  (a) and  (b) as a function of 

sulcus length factor. 

 

Figure 5.14 shows the calculated membrane utilization and coverage ratios as a function of 

the normalized membrane length for different values of the deployment factor Df.  For a given 

deployment factor, as the normalized length increases, the membrane is more readily deformed 

and thus has a larger coverage and utilization ratios.  However, the presence of sulcus reduces 

the effective length of the membrane comparing to a featureless surface.  Therefore, the 

membrane is less deformed and has smaller coverage and utilization ratios than a surface without 

a sulcus. Similar to a featureless surface, the deployment factor also affects the coverage and 

utilization ratios in different ways.  As the deployment factor increases, the utilization ratio 

monotonically increases.  The coverage ratio, in contrast, decreases with the increasing 
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deployment factor when the normalized length is large (l/LEC > 7 in Fig. 5.14a).  However, when 

the normalized length is small (l/LEC < 4 in Fig. 5.14a), the coverage ratio increases with the 

increasing deployment factor.   This can be explained by the asymmetric behavior of the 

coverage ratio between when the bending angle 1 < 90° and when 1 > 90°.  The surface 

contact length increases with the deployment distance d when 1 < 90° whereas it decreases with 

d when 1 > 90° for given values of l and s.  
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Figure 5.14: Modeling result of membrane coverage ratio (a) and utilization ratio (b) as a function of 

normalized length.  

 

5.5 Summary  

In this paper, a deployable device with subdural ECoG electrode array for minimally 

invasive monitoring of brain activity is introduced.  The ECoG based device can be introduced 

into the subdural gap in a collapsed state and deployed by actuating wires.  The membrane 

shapes under different device dimensions and surface conditions are modeled based on the 

minimization of elastic and surface energy to predict the bending angles and spatial coverage of 

the membrane.  Experimental results are then obtained, showing good agreement with the 

modeling.  The modeling method has been proven to predict the conformality and spatial 

coverage of membrane under various situations and therefore will help optimize mechanical 

design of the deployable device.  Our work proves the early feasibility of the deployable ECoG 

device, however this and other related device architectures will enable new generations of 
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flexible and stretchable optoelectronic biomedical devices for smart minimally invasive surgical 

procedures. 
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Chapter 6 

 

A Tunable Hemispherical Platform for Non-Stretching Curved 

Flexible Electronics and Optoelectronics 
 

 

One major challenge in incorporating flexible electronics or optoelectronics on curved 

surfaces is the requirement of significant stretchability.  We report a tunable platform for 

incorporating flexible and yet non-stretching device layers on a hemisphere.  In this 

configuration, an array of planar petals contractively maps onto the surface of an inflatable 

hemisphere through elastocapillary interactions mediated by an interface liquid.  A mechanical 

model is developed to elucidate the dependence of the conformality of the petal structures on 

their elastic modulus and thickness and the liquid surface tension.  The modeling results are 

validated against experimental results obtained using petal structures of different thicknesses, 

restoring elastic spring elements of different spring constants, and liquids with different surface 

tension coefficients.  Our platform will enable facile integration of non-stretching electronic and 

optoelectronic components prepared using established planar fabrication techniques on tunable 

hemispherical surfaces. 
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6.1 Background 

There recently have been growing interests in so-called flexible electronics and optoelectronics 

for a wide variety of applications, in particular, smart biomedical devices, biomimetic imaging 

devices, [109], [110] wearable electronics, and robotics [111]. Some classes of the flexible device 

concepts, such as spherically curved focal plane detector arrays, require fabrication of electronics 

and optoelectronics on spherical surfaces.  Such non-planar geometry is difficult to achieve in part 

because of the intrinsically planar nature of established micromachining techniques for 

semiconductor devices.    

To deform a planar substrate into a spherical shape, one must stretch the center of the 

substrate isotropically and/or compress its perimeter tangentially.  This is problematic because 

the resulting strains exceed the yield or fracture strength of most materials.  To circumvent this 

issue, previous studies had to adopt a complex and challenging lift-off process sequence [112] or 

relied on “stretchable” conductors, such as thin interconnections that bend out of their planes, to 

accommodate the large strains [109], [113]–[115].  These highly customized fabrication and 

integration strategies may lead to increased costs and degraded mechanical 

reliability/performance (e.g., fill factor) of target devices and systems.   

It is therefore of great interest to develop alternative mechanical architectures for spherical 

electronics or optoelectronics that utilize non-stretching substrates and conductors while still 

taking full advantage of established planar fabrication processes.  In this article, we report the 

design, micro-mechanical modeling, and experimental validation of an alternative architecture 
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based on the contractive wrapping for possible applications in tunable hemispherical electronics.  

The architecture exploits high conformality and bendability of ultra-thin plastic, metal, or paper 

substrates and can deliver tunability often reserved only for devices incorporating stretchable 

substrates/conductors.   

 

6.2 Tunable Platform Design  

A basic design of our tunable hemispherical device is schematically illustrated in Fig. 6.1.   

Its main component is a flexible membrane (for example, a thin polyimide layer in the present 

study) that is patterned into a radial array of petals and then bends to wrap a hemisphere (Fig. 

1a).   

In conventional origami, a flat polygon of paper is folded along creases into a 3D object, a 

process that may be represented mathematically as a non-crossing isometric mapping.  There, 

however, is no isometric folding of a flat surface into an object with infinitely many points of 

non-zero Gaussian curvature, such as a sphere.  One approach to approximate a sphere is based 

on contractive wrapping[116].  In the petal wrappings employed in the present study, the 

contours of the petals are defined as  

b = tan-1 (sin c tan (/n))  (6.1) 

Here, b is the angular width of the petal at an angular location c (0 ≤ c ≤ π) measured 

along the meridian and n is the number of the petals used to approximate a sphere (Fig. 6.1a).  

The length contraction can be achieved by forming continuous infinitesimal crinkling, by 

juxtaposing “semi”-flat triangles like in a geodesic dome [117],  or by targeting a sphere of 
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slightly larger diameter although at the expense of leaving finite gaps between some of the 

petals.  The third approach is adopted here. 

In the present implementation, a tunable hemisphere is formed and actuated by pneumatically 

inflating an elastomer membrane made of polydimethylsiloxane (PDMS).  As depicted in Fig. 

1c, the elastomer membrane is sandwiched between two clamping metal plates.  The top plate 

has a center hole of radius R to define the hemisphere and the bottom plate has a small gas inlet 

for actuation.  The capillary force exerted by a liquid confined in the gap between the elastomer 

membrane and each of the petals is used to maintain conformal contact while allowing the petals 

to glide freely on the elastomer membrane and the top metal plate as the elastomer membrane is 

inflated or deflated.  The petals can reversibly return to their planar states when the elastomer 

membrane is deflated through the action of the peripheral elastic spring elements shown in Fig. 

6.1.  The elastic spring elements are made by bonding elastomeric joints on pre-folded segments 

of the polyimide film.  
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Figure 6.1: Conceptual design of the tunable hemispherical platform: (a) A single petal in its flat state and 

in its bent state to contractively map the surface of a hemisphere. (b) Top view of the tunable hemisphere 

platform with an array of the petals. (c) Side view of the hemisphere (d) Zoomed view near the edge of 

the hemisphere.  The petal structures shown in (b, c) include extended strips that accommodate the elastic 

spring elements. 

 

Figure 6.2a shows an optical image of the fabricated tunable hemispherical platform.  An 

array of eight polyimide petals is conformally mapped on the surface of the elastomer 

membrane.  As discussed before, small but finite gaps between the petals were intentionally 

incorporated into the design to eliminate crinkling or bulging associated with contractive 

mapping.  
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For further illustration, we also present in Fig. 6.2b a separate side view of a single isolated 

petal on the surface of a fully inflated elastomer membrane.  The upper and middle portions of 

the petal are in good conformal contact with the elastomer membrane whereas the lower portion 

is lifted away from the membrane.  The lower portion still maintains contact with the elastomer 

membrane and the top metal plate via a liquid bridge through its capillary interactions. 

In actual integration of optoelectronic or electronic devices, one may first fabricate the 

devices using established planar fabrication techniques and then transfer bond them on petals 

made of thin polyimide films or comparable flexible “substrates.”  These petals are then mounted 

on the tunable hemisphere platform using a non-volatile liquid with negligible vapor pressure, 

such as ionic liquids. 

 

Figure 6.2: (a) Optical image of the tunable hemispherical platform with an array of 8 petals in contact 

with an inflated elastomer membrane. The inset shows a zoomed view of the two adjacent petals.  (b) The 
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contour of a single isolated petal on the surfaces of a fully inflated elastomer hemisphere and the top 

metal plate.  

 

6.3 Mechanical Model 

A mechanical model is developed to predict the geometric contour of a single polyimide 

petal bent under elastocapillary interactions on the inflated elastomer membrane surface.  As 

illustrated in Fig. 6.3a, the bent petal structure is approximated as two arc segments AB and BC 

with a radius of curvature R and r, respectively.  The coverage angle  of the petal segment AB 

is used as a quantitative measure of the conformality of the petals.  The coverage angle and the 

two radii of curvature are interrelated: r(1-cos()) = Rcos().  We determine the coverage angle 

 from the minimization of the total energy, which is the sum of the elastic energy Ee and the 

interfacial energy Es.   

The elastic energy Ee, which is a sum of the strain energy of the bent petal and the elastic 

energy of the elastic spring element, is written as 

2

22 2

2
dl

k
S

r

B
S

R

B
E BC

P
AB

P
e   (6.2) 

Here, the arc segment AB is modeled as a thin shell with the principal curvature equal to 1/R 

and the arc segment BC is modeled with a curvature of 1/r.  The bending stiffness BP for a film 

of thickness h, elastic modulus EP, and Poisson ratio  is Bp = Eph
3/12(1-2).  The net horizontal 

elongation of the elastic spring element dl is given as  

))sin()((   rRllldl OCBCAB    (6.3) 
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The interfacial energy of the liquid in the gap Es is approximated by ignoring variations in 

the curvature along the long edges of the petal (Fig. 3b) as 



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

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2
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where lg  is the surface tension of the liquid in the unit of N/m.  The associated interface 

areas SAB and SBC are obtained from 
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 (6.5) 

where   ́= lAC/R and b is the angular width of the petal that varies as a function of the 

meridian coordinate c as shown in Eq. (5.1) and Fig. 5.1.  The liquid wetting factor  is defined 

as the ratio of the wetted surface area SCD of the petal segment CD to the sum of the petal surface 

area SBC and the air-liquid interface area at the gap SCDE: = SCD/(SBC+SCDE). 
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Figure 6.3: A geometric model of a petal structure and an elastic spring element designed to reversibly 

wrap the hemisphere through contractive mapping. 

 

6.4 Experimental 

To experimentally validate our model, we prepared thin polyimide films of varying 

thicknesses (3.6 ~ 12.7 m) by spin coating a precursor solution (PI-2545, HD MicroSystemsTM) 

on a glass substrate at different speeds, curing them at 250 °C for 30 minutes, and then baking 

them for another 30 minutes at 350 °C.  The polyimide film has an elastic modulus of 2.5 GPa 

and a Poisson’s ratio of 0.34.   

Each of the cured polyimide films was peeled off from the glass substrate and cut into the 

petal structure with extended strips where elastic spring elements were to be formed.  One such 

patterned polyimide film was mounted on the actuation platform incorporating an inflatable 



 

124 

 

elastomer membrane.  A liquid was next applied to fill the gap between the polyimide petals and 

the elastomer membrane.  For a given petal structure connected to an elastic spring element with 

a given spring constant, we performed experiments using three different liquids: water, glycerin 

and silicone oil with a surface tension coefficient lg of 73 mN/m, 64 mN/m, and 20 mN/m, 

respectively.  In each set of experiments, a set volume of liquid was first applied using a pipette.  

Additional amounts of the liquid were then added in a small increment to investigate the effect of 

the total liquid volume.  A digital camera was used to capture the profiles of the polyimide petal 

under given experimental conditions, which were then analyzed using ImageJ.  The spring 

constants of the elastic spring elements were measured independently by mounting each element 

between a mechanical stage and an analytic balance.  

 

6.5 Results and Discussion 

The elastocapillary length LEC = (BP/αlg)
1/2 is used to describe the deformation of the 

polyimide petals under capillary interactions [118].  It can be roughly interpreted as a measure of 

the length of the polyimide petal segment that can stay flat (due to elasticity) while counteracting 

the capillary forces.  To make our model for hemispherical platforms more generally applicable, 

we non-dimensionalize the hemisphere radius R and liquid volume V using the elastocapillary 

length LEC: 𝑅̅ = R/LEC and 𝑉̅ = V/LEC
3.  In addition, we define the dimensionless spring constant 

𝑘̅ = k/γlg to help quantify the mutual interaction between the elasticity of the spring element and 

the capillary forces mediated by the interfacial liquid [119]. 

The contour of the polyimide petal structure is governed not only by the elastocapillary 

interactions but also by the elasticity of the spring element.  For a given spring constant k, the 

smaller the elastocapillary length LEC is, the larger the coverage angle is.   
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Figure 6.4 shows the modeled and experimentally measured coverage angles as a function of 

the normalized radius of the hemisphere.  Larger normalized hemisphere radii (or smaller LEC) 

result in larger values of , signifying better conformality.   The spring element counteracts the 

capillary forces exerted on the petal, effectively increasing the elastocapillary length.  The 

coverage angle, therefore, is reduced as the spring constant of the elastic spring element (or the 

dimensionless spring constant) increases (Figs. 6.4 and 6.5).  Our approximate analytic model 

captures the two trends observed experimentally reasonably well.   

The capillary effect itself is mainly a function of the surface tension coefficient lg.  The 

higher the surface tension coefficient is, the smaller the elastocapillary length is.  As a result, the 

petal has larger coverage angles for liquids with higher surface tension coefficients as illustrated 

in Fig. 6.5.  
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Figure 6.4: Modeling (lines) and experimental (symbols) results of the coverage angle  for different 

values of the dimensionless spring constant 𝑘̅.  The results are plotted as a function of the normalized 

hemisphere radius 𝑅̅.   
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Figure 6.5: Modeling (lines) and experimental (symbols) results of the coverage angle  for different 

liquids.  The results are plotted as a function of the spring constant k of the elastic spring elements.  The 

normalized hemisphere radii 𝑅̅ are 5.5, 5.2 and 2.9 for water, glycerin and silicone oil, respectively.  

 

Figure 6.6 shows the modeling results of the coverage angle as a function of the 

dimensionless spring constant for different values of the normalized radius.   As shown above in 

Fig. 6.4 and Fig. 6.5, larger spring constants or smaller surface tension coefficients and thus 

larger values of the dimensionless spring constant lead to smaller coverage angles for a given 

normalized radius. 
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Figure 6.6: The predicted coverage angle  as a function of the dimensionless spring constant 𝑘̅ for 

different values of the normalized radius 𝑅̅.  

 

The liquid confined in the gap between the petal and the elastomer membrane forms liquid 

bridges with different shapes and wetting areas for different volumes of the liquid.  When the 

liquid volume is insufficient to fill the entire gap, disconnected liquid bridges are formed around 

the edge of the hemisphere.  As the liquid volume is increased, a larger area of the petal is wet.  

The increased wetting factor α leads to a smaller elastocapillary length, which in turn results in a 

larger coverage angle.  Referring back to Fig. 6.3, we note that although both the wetted petal 

surface area SCD and the liquid-gas interface area SCDE increase with the liquid volume V, the 

former is much larger and therefore has a larger effect on the liquid wetting factor. 

At sufficiently large liquid volumes, the entire petal structures are wetted by the liquid and 

thus the wetted petal surface area SCD remains constant.  Any accumulation of the excess liquid 
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in the gap causes the coverage angle to decrease with further increase in the liquid volume.  The 

model prediction once again agrees well with the experimental data as shown in Fig. 6.7.  

 

Figure 6.7: Modeling and experimental results of the coverage angle  as a function of the normalized 

liquid volume 𝑉̅ for two different liquids. The normalized hemisphere radii 𝑅̅ are 5.5 and 5.2 for water 

and glycerin, respectively. 

 

We use the coverage angle  as a quantitative measure of the conformality of the petal.  This 

coverage angle is governed by the normalized radius 𝑅̅ and the dimensionless spring constant 𝑘̅.   

For a given bending stiffness of the petal, one reaches a maximum coverage angle m (or a 

minimum radius of curvature rm) when 𝑘̅ = 0.  This extreme condition allows us to separately 

illustrate the intrinsic effect of the bending stiffness on the conformality of the petal. 

Figure 6.8 shows this theoretical maximum coverage angle m as a function of the bending 

stiffness for two different liquids.  From this plot one can determine the upper limit of the 

bending stiffness for a targeted coverage angle.  The actual limit for elastic spring elements with 
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finite spring constants will be lower.  The limit on the bending stiffness in turn constrains the 

acceptable elastic modulus and/or thickness of the petal.  The elastic moduli of common flexible 

polymeric or rubbery materials are of the order of 100 MPa.  With minimum practical layer 

thicknesses of the order of 1 m, one has a practical lower bound in the bending stiffness of the 

order of 10-10 N m.   As a practical upper bound, bending stiffness values of the order of 10-3 N 

m are obtained for very “stiff” films of thickness 50 m and elastic modulus 100 GPa.  

 

 

Figure 6. 8: Predicted values of the maximum coverage angle as a function of bending stiffness BP for 

two different liquids. 

 

When designing a specific system, one needs to choose a combination of the normalized 

hemisphere radius 𝑅̅and the dimensionless spring constant 𝑘̅ consistent with a targeted value of 

the coverage angle .  Figure 6.8 provides the maximum possible coverage angle, which one 



 

131 

 

may achieve in the limit 𝑘̅ = 0.  In practice, the elastic spring elements with a finite spring 

constant (k ≠ 0) are necessary to provide restoring forces and achieve reversible operations.  

Figure 6.9 shows predicted contour lines of the coverage angle as a function of the normalized 

hemisphere radius 𝑅̅ and the dimensionless spring constant 𝑘̅.  For each contour line (that is, for 

a given targeted coverage angle), the normalized hemisphere radius increases with the 

dimensionless spring constant and diverges when 𝑘̅ reaches a certain critical value.   

When the dimensionless spring constant is relatively small (as an example, Region I for  = 

70° in Fig. 6.9), the required normalized hemisphere radii are small and hence the petal bending 

stiffness Bp can be large.  Recall that 𝑅̅ ~ R / Bp
0.5.  A smaller spring constant is generally 

preferred because the resulting coverage angle is larger.  However, “soft” elastic springs (k < 0.1 

N/m) may not provide sufficient restoring forces to enable reliable reversible operations. This 

imposes a limit on the minimum acceptable value of the dimensionless spring constant 𝑘̅.  In the 

opposite limit of very “stiff” elastic spring elements (Region III in Fig. 6.9), the required 

normalized hemisphere radii are large and hence the petal bending stiffness Bp must be small.  In 

this region, petals can only be made of very flexible materials with small elastic moduli and/or 

have very small thicknesses. 
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Figure 6.9: The predicted normalized radius 𝑅̅as a function of the dimensionless spring constant 𝑘̅ for 

different values of the coverage angle . 

 

6.5 Summary 

In summary, a mechanical design of a tunable hemispherical platform for non-stretching 

substrates is reported for possible flexible electronic and optoelectronic applications.  The 

tunable transformation of a planar substrate incorporating electronic or optoelectronic 

components into a hemisphere is achieved via contractive wrapping of petal-shaped structures on 

a pneumatically actuated elastomeric membrane.  The conformality of the film wrapping on the 

hemispherical elastomer surface under various circumstances is predicted using an analytical 

model accounting for elasto-capillary interactions.  The predicted values of the coverage angle 

and its dependence on the design parameters (the bending stiffness of the petal, the surface 

tension of the interface liquid, and the spring constant of the elastic spring elements) all show 
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good agreement with our experimental results.  This study demonstrates the early feasibility of 

such non-stretching mechanical architectures for use in tunable hemispherical opto-electronic 

and other related devices and provides possible design parameter spaces. 
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Chapter 7 

Summary and Recommendations 
 

The present work demonstrates the concept of mechanical liquid interfaces as a new 

alternative for flexible, stretchable and deployable electronics. Mechanical liquid interfaces 

decouple direct loading from brittle rigid electronic components and thus allows the use of 

existing planar electronic components fabricated on “thick” or flexible yet non-stretching 

substrates. Such liquid interfaces also exploits and utilizes the elasto-capillary effect to enable 

non-stretching flexible and deployable devices on curved surfaces. 

We extensively study the static and dynamic responses of the mechanical liquid interfaces 

for rigid devices to comprehensively understand the underlying physics and provide design tools 

for practical applications of such interfaces. We design a mechanical liquid interface based on 

capillary confined microscale liquid bridges and numerically investigate its quasi-static capillary 

forces, rupture behaviors under various loading scenarios. We also numerically and 

experimentally characterize the dynamic response of an axisymmetric liquid bridge being 

stretched at high velocity ranges. In addition, we present a numerical study for capillary self-

alignment based on a confined liquid bridge to fully investigate its dynamic response and motion 

of the floating solid object. 
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We also design and characterize the mechanical liquid interfaces for non-stretching flexible 

and deployable devices. By utilizing the fluid solid interactions, the so-called elasto-capillary 

effect, we demonstrate a tunable hemispherical platform for non-stretching curved electronics. 

We then discuss a deployable planar device that can be introduced into a small space and then 

deploy to cover a large spatial area.  

The following recommendations are made for future research on mechanical liquid 

interfaces for flexible, stretchable and deployable electronics. 

In the scope of this research, the statics and dynamic response of the mechanical liquid 

interfaces have been numerically and experimentally studied. To provide a more comprehensive 

design tool for such related applications, further modeling and experiments can be conducted to 

gain insight on strain/stress distribution of the rigid component itself. A 2-D or 3-D simulation 

can be conducted to obtain the mechanics of the brittle rigid component and explore its limits 

regarding material strengths, dimensions and composition.  

A further investigation on the dynamics of a mechanical interface with multiple liquid 

bridges can be performed. The dynamic response of the brittle substrate supported by the liquid 

interface can be numerically and/or experimentally characterized under various loading 

scenarios. This would help to understand the effects of such liquid interface exerted on the rigid 

substrate and provide a more mature design tool for future applications. 
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