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Pietro Mercati for challenging and supporting me throughout our time together.

I also appreciate my friends who encouraged me from near and far, with perfect,

excited understanding or a smile-and-nod: Eunice Lee, Yeesum Lo, Brandon Wouk,

Mari Campbell, the Neuberts, and the Fifes.

I thank my parents, Stephen Chan and Cathy Luk, and my sisters Angeline

and Eveline, for suffering my sporadic communications during many years apart.

I have never not needed them.

Finally, I will never have enough words to thank Nate for his support, his

patience, his sacrifices, and his unwavering faith. I started this for myself, but I

am finishing because of us. Thank you.

Chapter 1 contains material from “An Ontology-Driven Context Engine for

the Internet of Things” by Jagannathan Venkatesh, Christine Chan and Tajana

Rosing, which appears in UC San Diego Technical Report CS2015-1009, 2015. The

dissertation author was one of the primary investigators and the second author of

this paper.

Chapter 1 contains material from “Context-Aware System Design” by Chris-

xii



tine Chan, Michael H Ostertag, Alper Sinan Akyürek, and Tajana Šimunić Rosing,
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Tajana Šimunić Rosing. “Context-Aware and User-Centric Residential Energy
Management.” International Workshop on Mobile and Pervasive Internet of Things
(PerIoT). IEEE 2017

Jagannathan Venkatesh, Baris Aksanli, Christine Chan, Alper Sinan Akyürek,
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Driven Context Engine for the Internet of Things.” UC San Diego Technical Re-
port CS2015-1009. 2015

xv



Christine Chan, Boxiang Pan, Kenny Gross, Kalyan Vaidyanathan, and Tajana
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ABSTRACT OF THE DISSERTATION

Context-Aware Platform Design and Optimization

by

Christine S. Chan

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California, San Diego, 2017

Professor Tajana Šimunić Rosing, Chair

The Internet of Things (IoT) envisions a web-connected infrastructure com-

prising billions of sensors and actuation devices that collect contextual data about

the environment and respond accordingly. Machine and environmental context-

aware computing opens up opportunities to learn new abstract information from

sensed data, and is key for both standalone and interconnected applications to run

efficiently. Since the volume of such data is growing exponentially, it is essential to

develop automated techniques to derive useful data for design of scalable systems.

We present a middleware framework along with analytical proofs that reduce the

computing complexity of vast context collection and communication of abstract

data among distributed nodes.
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Effective and scalable distributed systems rely on accurate and flexible mod-

eling of the devices and their interactions. In this dissertation, we study the use

of context extraction across a hierarchy of devices, including resource-constrained

embedded platforms as well as more powerful edge servers. We show that relevant

context for optimizing performance and energy consumption, even for a single

server executing database workloads, goes well beyond traditional variables like

performance counters. In fact, we are the first to show that the speed of cooling

fans can strongly affect the energy-delay product of a system. We leverage this

additional contextual information as input to convex optimization that reduces

the energy consumption of a server by 65% compared to basic PID controllers,

or by 19% in comparison to advanced hardware management techniques proposed

in literature. At an ecosystem level, we compare our distributed infrastructure

to current monolithic implementations with single- point communications between

sensor nodes and the cloud servers, demonstrating a reduction in combined system

energy by 22-45%, and increasing the battery lifetime of power-constrained devices

by at least 22x.
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Chapter 1

Introduction

What happens if the Internet of Things (IoT) is fully realized? Market re-

searchers speculate that there will be anywhere between 25 billion [1] to 50 billion

devices [2] globally by 2020, producing about 2.3 ZB of fresh data annually [2]!

As the number of devices and the volume of data explode, resources that we take

for granted today will become highly contended - radio spectrum, communication

bandwidth, even the processing capabilities of the cloud [3]. The current strategies

that aggregate all data to the cloud for processing will not scale. An infrastructure

needs to be in place to support these diverse devices. As more platforms join or age

out of the system, the system infrastructure needs to scale and adapt to new data

types, resources, or device capabilities. Based on their operating context, applica-

tions should anticipate user needs and preferences, and proactively respond. This

requires an understanding of both innate and contextual abilities of the devices

and systems.

Consider a most primitive representation of a signal processor: it receives

some signal data as an input, applies mathematical function to that data, and

then provides an output. Naively, it would seem that a digital signal is the only

data needed for the processor to complete its functions. In reality, external forces,

like network congestion, may affect the expected speed or frequency of input ar-

rival, peak power constraints may limit data processing speed, and battery lifetime

remaining may dictate the use of output communication. Throughout this dis-

sertation, we define context to be any dynamically varying information about the

1
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operating environment of a given platform or a network of platforms. This could in-

clude the ambient temperature, availability of computing resources, battery levels,

or power constraints, in addition to the primary input source that the applications

were originally intended to process. Machine and environmental context-aware

computing opens up opportunities to learn new abstract information from sensed

data, and is essential for both standalone and interconnected applications to run

efficiently. We propose novel methods to represent and leverage this context data

to control platforms and systems.

Considering that IoT applications are executed across a hierachy of devices,

we use multiple scopes when defining the context variables that influence a system

or application. The backbone of computing in the cloud is supported by datacenter

servers. In these machines, programmers traditionally use performance counters

to estimate system behavior at an microarchitecture level. These traces produce

contextual data about the state of the system, allows hardware management to

mitigate how it might affect performance (e.g. hardware cooling vs. application

performance). Extending to applications at the edge of the cloud, devices interact

with each other, gateways, the environment, and humans. Each computing system

produces context that can be observed by the outside world, as well as consumes

the same contextual data for its own sustenance - to ensure correct and efficient

operation.

1.1 Hierarchical context processing middleware

Sensor networks and ubiquitous sensing are evolving into a new concept

the Internet of Things (IoT): the collection of sensing and actuation backed by the

existing and growing Internet infrastructure [4]. The emerging implementation of

the IoT has multiple distinct systems communicating with their own web-based

backends, exposing distinct APIs for interaction and data retrieval. These het-

erogeneous devices are added, removed, or updated independently of each other

by different manufacturers with different goals and release cycles, and the choices

among them are entirely in the hands of the user. The wearable fitness tracker
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market is a current example: Fitbit, Garmin, Moves, Microsoft, and Apple, the

most prominent among several, have developed trackers and independent backends.

Dozens of applications exist that independently scour the data stores for different

pieces of relevant data to aggregate metrics for a users goals and progress. Ex-

tension of applications to new devices and APIs is a manual process requiring a

redeployment of the user-facing application itself [5]. If the data sources and types

change, the backend of the application might require reimplementation as well.

Existing sensing and context infrastructures [5, 6] implement strong ontologies but

lack support for such a changing system, as applications need to constantly adapt

to the environment and the constituent devices.

1.2 Device context - optimizing a known, closed

system

In a well-controlled datacenter environment, we can consider a single server

as a closed system, facing little unforeseen external disturbance, and where the

range of workloads and hardware states is stochastically predictable. Enterprise

servers generate profit for their operators by delivering data and computating for

a wide range of concurrent applications at high performance. They serve simul-

taneous requests from multiple clients (e.g. in big data and cloud computing ser-

vices) while guaranteeing a quality of service (QoS) for each one. The QoS metric

for different applications may vary - e.g. data throughput for online transaction

processing (OLTP) database operations [7], or response time for interactive web

applications, but as developments in processing power have advanced far ahead of

storage and communication, many high-performance services are now I/O bound.

Their datasets are primarily stored on traditional disk media, and only

partially cached in solid state drives and physical memory [8]. Datacenters rely

on many drive types to maintain these different tiers of storage. Tier 2 comprises

the largest proportion of current data that needs to be readily accessible (i.e.

non-archival), and is commonly fulfilled by either Serial Attached SCSI (SAS)

or Serial ATA (SATA) drives. They differ greatly in manufacturing tradeoffs in
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terms of mechanics, materials and electronics [9] - the more robust SAS drives are

reserved for more expensive deployments. There are emerging storage strategies

that bypass hard drive performance issues to recover high access speeds, such as

RAMCloud [10], which divides and distributes datasets across physical memory

in multiple machines. Cost-sensitive datacenters still primarily deploy commodity

SATA drives.

An excellent example of context data that strongly influences server perfor-

mance and energy consumption, but hasn’t been considered so far, is the cooling

system. It generates mechanical disturbances that cause temporary crashes or

misses in spinning storage systems, which in turn inflate workload execution times

and server uptime electric bills [11]. These transient problems can be very difficult

to diagnose in deployment. They are also neglected by existing thermal models

and management policies. While current hardware management strategies leverage

the tradeoffs between processor and cooling power consumption, and core execu-

tion speed, they neglect the relationship between cooling and data performance.

Thus, their performance metrics are skewed in favor of CPU-intensive workloads

and perform poorly for data-intensive ones.

1.3 Environmental context - adapting to an un-

known world

In the cyber-physical world, a system is no longer closed. Beyond datacenter

workloads, Internet of Things (IoT) application demands are unpredictable. The

application responds to changing environmental context by design, so the devices

should also respond by leveraging context to function efficiently. Experimental

context should inform how the larger application behaves, including actuating

device sleep modes, sampling intervals, or communication intervals.

In contrast to yesterday’s systems, where sensor nodes collect data and

blindly send all raw data to aggregation in the cloud, data analysis now occurs at

each layer in the system. Increasingly, intelligence is appearing at every layer of

device hierarchy. Smart sensors not only sense the physical world around them, but
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also provide data management and analysis capabilities (e.g. detecting anomalies).

IoT gateway devices gather the data from relevant sensors in their surroundings

and derive context for ever changing applications.

As an example, the DELPHI project is a large-scale integration of data

sources at various levels of hierarchy, including electronic health records (EHR),

environmental data, medication usage and physical activity monitors [12]. As

sensor networks and devices become increasingly flexible and personalized, much

effort has been made toward empowering citizens to monitor and analyze their own

environment. For example, healthcare or fitness applications in the IoT require

hardware and software systems for crowd sourced air quality monitoring There are

many ideas and prototypes for crowd sensing, but there is a need for connections

to higher-level actionable health information.

1.4 Thesis contributions

This dissertation explores various ways to leverage “context” for sensing and

control, always mindful of delay and energy costs. Based on our understanding of

current IoT development principles and needs, from both data and machine per-

spectives, we propose a middleware framework that efficiently divides and conquers

the many automated tasks required to support context aware computing at scale.

We also present methodologies and results for investigating relevant context-aware

control of single and multiple nodes in cooporation. The rest of this document will

expand on the following contributions:

• We propose a modular approach to designing incoming IoT applications,

breaking them into an equivalent set of functional units (context engines)

whose input/output transformations are driven by general-purpose machine

learning. This organization improves compute redundancy and computa-

tional complexity with a minimal impact on accuracy. In conjunction with

formal data specifications, or ontologies, we can replace application-specific

implementations with a composition of context engines that use common

statistical learning to generate output, thus improving context reuse. We
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provide formal proofs for several characteristics of the context engine or-

ganization to motivate adoption: for any application with non-linear com-

plexity, dividing the input space into multiple context engines will provably

reduce total computation complexity. In fact, the complexity of a context en-

gine system is minimized when each individual engine only takes two inputs.

Moreover, context engines scale linearly with increases in input data load.

In a sample application using two unreliable sources of overlapping data, we

use a Bayesian network to automatically learn when to trust and when to

discard particular data streams based on the context of that data collection.

As a result, we can produce an output stream with an average 60x accuracy

improvement over either of the individual sensor streams alone.

• One potential application area for the context engine framework is in a data-

center, since it houses many computing and communciation nodes organized

in a hierarchy of rows, racks and individual servers, where each level pro-

duces context information. As an example of extracting high-level context

from low-level data streams, we focus on an in-depth study into leveraging

context to optimize operation of a complex enterprise server platform. First,

we identify a previously-neglected link between the cooling system and ap-

plication performance. We characterize commodity drive sensitivity to fans

up to 88% lower performance in realistic cooling situations. Since current en-

closure, cabinet and raised-floor room designs are insufficient in eliminating

all vibrations [13], we turn to software-based detection and control. We de-

velop and integrate interdependent analytical models for performance, power,

thermal, cooling. Fortunately, though datacenter workloads can be highly

demanding of the hardware platform, and increasingly complex in terms of

software optimization, they are also fairly well-known and predictable at

a large scale [14]. By modeling the workloads in terms of their resource

consumption, we can predict the application’s needs and manipulate the op-

erating conditions such as temperature and core availability to improve per-

formance. Notably, we approach the server efficiency problem by targeting

the cooling-performance relationship. Server context is represented using a
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combination of models derived from online measurements. Our method sum-

marizes the cost of execution into a single cost metric, either energy or delay,

for formal optimization. Our results are based on real physical telemetry of

a late-model multi-threaded, multi-core server processor running a standard

database benchmark suite (TPC-H [15]). This multi-model cost function can

be solved to find optimally low-cost fan speeds, saving 19-65% of CPU and

fan energy while meeting critical thermal constraints.

• We also consider distributed nodes that cooperate under a specific IoT appli-

cation using the context engine. Since we hope to reduce redundant efforts

and share data between applications, we take advantage of publicly available

data sources to learn about demographics, city planning data, citizen habits,

and environmental data, and how that implicates respiratory health. For ex-

ample, to investigate asthma risks, ER admissions and hospitalization rates

are used to model asthma complications. Since we have access to small, low

power programmable devices with some, albeit limited, processing power,

context engines are one opportunity to execute generalized machine learning

at the edge of the cloud. This enables aggregate models and knowledge even

at a local level. They can be used to provide direct and timely feedback to

users in the field, without first sending all raw data to the cloud, waiting for

processing, and waiting for the return delivery of useful information. We also

leverage these techniques to enable low power devices to manage their own

sensing behavior, such as down sampling intelligently without missing critical

data, thus saving battery power and restricting power-hungry data transmis-

sions to the cloud. We find that sending machine learning tasks to the edge

of the cloud lowers energy costs in the whole system (22-44%). Additionally,

using machine learning tasks like anomaly detection to process environmen-

tal context and dynamically adjust sampling intervals can increase device

battery lifetime by 72x. Though we use a smart health application as a case

study, these observations can be generalized to other IoT applications that

span a range of devices including small sensor nodes, gateways and cloud

aggregators.
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Chapter 2

The Context Engine

The Internet of Things (IoT) refers to an environment of ubiquitous sensing

and actuation, where all devices are connected to a distributed backend infrastruc-

ture. The main benefit of the IoT is the ability to use myriad sensor data, leveraged

into high-level information about the entities in the system for reasoning and actu-

ation in context-aware applications. A formal specification, or ontology, provides

a regular data interface between different components in the system. In addition,

IoT middleware is required for context-aware applications to operate in an envi-

ronment with constantly changing data, sources, and context. In this chapter, we

present a context engine for IoT applications founded on an ontology that specifies

and reasons on context information. We explore and build upon related work on

IoT needs and ontological principles. Our infrastructure leverages context infor-

mation for learning and processing a changing environment over many different

available nodes in the system. We provide a numerical discussion as well as formal

proofs for the reduced complexity, accuracy tradeoff, and improved scalability of

the context engine framework. Finally, in a sample application, we demonstrate

machine learning from heterogeneous, intermittent sources, producing an output

stream of context information 60x more accurate than either of the individual

sensor streams alone.

9
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2.1 Background and related work

The IoT was initially associated with simply providing value-add to user

convenience products and commercial advertising. The public sector was one of

the first big industries to adopt IoT technologies, widely deploying systems for

the smart grid and environmental monitoring [16] to name a few. With increasing

adoption comes increasing loads and responsibilities to the user base, such that

the underlying system infrastructure must be engineered to meet performance,

reliability and safety constraints [17, 18, 19]. High-level context provides a rep-

resentation that is both lower in computational overhead and more intuitive for

application developers to use in reaction to IoT sensor stimuli, such as crafting

cognitive assistance for medical patients [20], or custom learning environments for

online students [6]. Publications exist on various aspects of energy management in

a power grid such as building demand response [21] and generation control [22]. For

residential control, previous studies include appliance automation [23, 24], lighting

[25], appliances [26, 27], renewables [28], and energy storage [29]. Neighborhood

level control with energy storage or renewable energy sources attempts to minimize

energy costs [30, 31].

Hong et al. [32] build context information based on a host of labeled en-

vironmental and user sensor data (e.g. biometrics, GPS location, interaction with

phone, weather, etc.) and context rules. Lee et al. [33] present a location prediction

model based on a dynamic Bayesian network, where accuracy significantly exceeded

static networks. The location model enables their ultimate goal of supporting ubiq-

uitous computing decisions. With the growing popularity of alternative education,

e-learning systems can personalize learning materials and recommendations based

on modeling student profiles and context [6]. There are many more mobile ap-

plications that operate on context awareness for localized user information [34],

vehicular safety [35], or battery saving [5].
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2.1.1 Use of machine learning

Streaming data collected from human subjects is often noisy, so sliding win-

dows of the continuous data must be smoothed and preprocessed before inputting

into an analytic or modeling framework. Some publications further apply machine

learning techniques to model user behavior and interaction with their physical en-

vironment. K-means clustering is a prevalent way to automatically relate low-level

data into high-level contexts [32]. Reinforcement learning is an important learning

method for context awareness in IoT applications, as users are already innately

involved in sensing and actuation. It invites user interaction to reinforce and guide

the system towards better accuracy and intuitive actuation. For example, Madhu

et al. [6] schedule reminders for a user who is cognitively or orthotically impaired.

They use temporal constraint reasoning to describe a daily plan and reinforcement

learning (function approximation-based learning) to find optimal actions, subject

to adjustable human parameters. Rashidi et al.[36] remove reliance on labeled

data by performing unsupervised learning over low-level sensor event sequences

to extract patterns that represent high-level activities, even if the activities are

discontinuous or varied over time.

2.1.2 Context Ontologies

Ontologies are formal data representations that categorize the vast amount

of unregulated and diverse data from information sources in the IoT [37]. They

help classify the data provided to applications, but the organization of the IoT

still makes application deployment difficult. There are many previous publica-

tions [35, 36] that outline formal context models for domain-specific designs, but

do not intend to share data or actuation beyond their original one-off applica-

tions. However, pervasive sensing provides many of the ontologies that are now

adapted to the Internet of Things. One of the earliest is the resource description

framework (RDF)[37], which annotates all web objects with semantic information,

implemented in XML, a web-ready format. The aggregation of these annotations

forms a directed graph that is already used in context-aware web applications such

as search engines. While this is adequate for objects such as websites, as was its
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original goals, this binary object-object connections are insufficient for the Internet

of Things, which requires a richer description of relationships, as well as an easier

way to query and determine these relationships, make inferences, etc. To address

these limitations, the successor to RDF was the Web Ontology Language (OWL),

now a web standard, which also transitioned from loosely defined and typed sys-

tems suitable for Wireless Sensor Networks to a formal ontology [38]. OWL has

been designed as a hierarchical system, with sub-domains of objects (e.g. appli-

ances) encapsulated by the domains they live within (houses). Several systems

have been designed using OWL: smart spaces[38], meeting room organization [38],

hierarchical modeling of the physical environment [39]. OWL-S is an implemen-

tation built on top of OWL for describing semantic services[37], which has been

adopted by others for the scalability and testability of their services model[40].

However, OWL typically operates under a very strictly defined hierarchy.

Although this works well for static applications that rely solely on a fixed set of

data, IoT applications may have to deal with changing sources and sinks. Nodes

should be removable and the system should still be able to operate to the best

of its capacity. In addition, the amount of data for which each application must

be responsible can grow rapidly, as the amount of infrastructure-related data (de-

pendencies, relation annotation, etc.) that each application needs to manage can

grow faster than the data itself. Another extension of OWL handles this issue:

the Context Modeling Language (CML) [41]. The system is based on the Object-

Role Model, which is preferable for the Internet of Things, as all context data is

attributed to a physical or virtual entity (the object) and provides a particular

form of information associated with it (role). The ontology reverts to a flatter

hierarchy than OWL this allows an application to deal with as little context as

it requires, rather than be responsible for the entire graph. Furthermore, CML

provides a direct web-oriented communication language in XCML, a markup im-

plementation that is very important for an Internet-based backend. We borrow

much of our syntax from XCML. This provides an ontology for mapping names of

context variables to their values. The context space includes all possible context

variable names, which may grow according to any additional data types the ontol-
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ogy describes. Finally, to aid the adaptability of context-aware applications, CML

introduces the concept of context dimensions, which define the minimum subsets

of context spaces, in which an application can perform meaningful computations

and operations. By specifying dimensions in the same markup as the data, CML

opens the doors for the specification itself to be changed to adapt to the data

sources available.

2.1.3 IoT Software Infrastructure and Middleware

In an IoT context, middleware is software that acts as a bridge between

low-level sensors and the backend, or between the backend and user-facing appli-

cations. Other works have explored context-aware middleware frameworks. Perera

et al. [42] propose a sensor configuration model for the IoT that can handle sensor

filtration and reasoning, implemented via asking the user a series of questions.

However, the reasoning seems to fall short of an open platform for machine learn-

ing, instead limiting reasoning to an annotated dependency graph. Similarly,[43]

overviews several middleware implementations, identifying certain aspects of each:

ontology-based, flexible for reasoning, data filtration and adaptation, but does not

present a single solution encompassing all aspects.

An application-facing infrastructure that enables these properties is missing.

The various proposed ontologies are only applied towards very specific applications

[32, 36, 20, 38] there is no larger system within which the applications exist, nor

is there the ability for other applications to use the resources made available to

the one, as should be in the real Internet of Things. The closest entity is the

middleware layer implemented in [36], which provides a general framework, but

only within the domain of “smart spaces”, and again, specific to the application

that is designed. More importantly, none of the related works account for applica-

tion adaptability. The emerging IoT implementations require the ability to merge

data from different sources and backends into a common context representation,

and on the application side, to seamlessly incorporate new data or formats with-

out interrupting the application. Regardless of whether adaptation is a product

of a changing environment or sources joining and leaving the sensed surface, the



14

framework around the applications are made static. CML[41] was the only ontol-

ogy to allow application processing using different sets of available data, but the

implementation covered only the ontology and not the applications. Real IoT ap-

plications need to exist in an infrastructure that fosters changing the data, sources,

and internal reasoning. The context engine developed in this work fits this gap in

the current landscape. We present a framework and methodology that developers

inherit, allowing them to describe their source data and end-user applications in

terms of their context space and dimensions. This enables applications that are

flexible with new sources and dimensions, and whose behavior can be extended,

even during runtime.

2.2 Hierarchical context modeling

We envision a world in which intelligence is present at every layer of device

hierarchy. Smart sensors will not only sense the physical world around them, but

also provide data management and analysis capabilities (e.g. detecting anomalies).

IoT gateway devices will gather the data from relevant sensors in their surroundings

and derive context for ever changing applications. In contrast to today’s systems,

data analysis will occur at each layer in our system, and therefore demands novel

and scalable software infrastructure, machine learning algorithms that can leverage

data across distributed computing nodes, privacy strategies that are sensitive to

individual privacy needs while providing sufficient utility across the hierarchy of

devices, and communication methods that can effectively aggregate data to handle

inevitable congestion while ensuring application data timeliness needs are met.

Under the old paradigm, silo-ed, standalone applications collect and process

all the data they rely on, resulting in redundant computations across independent

applications. Considering the expansive growth of data and wide range of com-

putation nodes available, we propose a more scalable way to develop applications

across the ecosystem. In our new paradigm (Figure 2.2), we have identified an

improved approach: multiple general-purpose functional units (context engines)

that each drive data processing for a single output context variable, recomposed to
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be functionally equivalent to conventional monolithic application. Each low-level

sensor is only sampled from minimal times, and once their raw data is processed

into higher-level information (e.g. from raw GPS or radio signals to semantic

“locations”), that information can be shared instead of redundantly computed.

As Figure 2.2 shows, the system operates as a hierarchy of multiple-input-

single-output (MISO) context engine units to improve machine-learning reason-

ing while reducing data redundancy and accomplishing the same functionality

as the corresponding state-of-the-art multi-input-multi-output (MIMO) applica-

tions. Smaller hierarchical functional units represent simpler data translation at

the tradeoff of more functional units. This promotes the use of general data trans-

formation in each context engine using machine learning to generate outputs in

place of application- specific code. We showed the theoretical arguments for the

scalability of this composition in terms of training data required and machine learn-

ing execution time in previous papers [44, 45]. Others have tested and measured

the feasibility of executing traditional machine learning algorithms on resource con-

strained devices. The energy and delay of both linear-and non-linear algorithms

can be automatically determined, based largely on network bandwidth and data

size. [46].

Once the context has been generated, we aggregate data prior to commu-

nicating it to the next layer in our system hierarchy by using our novel data ag-

gregation scheme which ensures an optimal tradeoff between meeting application

timeliness needs while minimizing communication costs. Thus, a context-aware

application can be created by simply specifying the inputs and output of each

functional unit alone, and allowing hierarchical machine learning to generate and

train a model based on input and output observations. Exposing intermediate data

reduces the complexity and redundancy of applications in the larger infrastructure,

and enables easy data sharing among other engines. Creating such a hierarchy of

context engines is very beneficial for distributed data processing, as it makes it

very easy to decompose a large application into sets of context engines that can

each run on various devices present in the system. Because context is derived and

generated at each layer, the total amount of data sent is dramatically reduced as
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compared to todays state of the art, thus making such large-scale deployments not

only possible but also much more efficient.

Figure 2.1: Traditional sensing application development serving multiple end-
user applications

If they participate in the context engine ecosystem, each device should share

their processed data, which may serve as further input data into other applications.

For example, air quality sensor data has a multitude of uses. It can be used simply

for local display, or to inform the actuation of building ventilation, or for regional

environmental studies. In traditional application design, each programmer would

have to set up data sampling and processing of the analog electrochemical sensor

voltage levels into human readable gas concentration values. In a context engine

ecosystem, only the first programmer would have to put in that effort - consequent

applications can simply share that higher level context.

Since we have access to small, low power programmable devices with some

(albeit limited) processing power, context engines are one opportunity to execute

generalized machine learning at the edge of the cloud. They can be used to provide

timely feedback to users in the field, without the need to send all raw data to the

cloud, and wait for processing, and the return delivery of useful information. These

techniques can also enable these low power devices to manage their own sensing
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Figure 2.2: A hierarchy of context engines sharing intermediate data processed
from various sensors to serve multiple end-user applications

behavior, such as down sampling intelligently without missing critical data, thus

saving battery power and restricting power-hungry data transmissions to the cloud.

2.2.1 Generalized Data Transformation

Our approach, a modular multi-stage context engine, results in more func-

tional units (FU) per application. An important consequence is that each FU that

composes the application is a simpler translation of input data to a single output.

This enables the use of a general data transformation in each context engine in

place of application-specific code. Thus, a context-aware application can be cre-

ated by specifying the inputs and output of each FU alone, and allowing the data

transformation algorithm to incur the processing overhead generating and training

a model based on input and output observations.

We leverage the ontologies that are already present in the current state

of the art of IoT middleware. From a data standpoint, they regulate inputs and

outputs of applications. Applications that participate in the system must enforce

the ontology’s specification: discrete variables must provide a set of possible states

to populate the probabilistic condition tables; continuous variables must specify
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a valid range of values that can be clustered. We can exploit this ontological

information for machine learning algorithms that clusters results based on the

space of the input and output variables, as well as determines the training space

and list of prior observations.

Matrix-based stochastic learning models express potential data dependen-

cies as a system of equations. Some use predefined notions about the inputs to

establish linear or nonlinear equations, while others start with a linear combination

of the inputs whose coefficients are unknown. Over time, observed input and out-

put data is gathered until the coefficients can be trained and a model generated.

Since complex relationships can exist among the input data for an IoT applica-

tion, and a purely linear model may not be sufficient [47], several works [48] [49]

[50] implement learning by considering higher orders and time correlation. In our

current implementation, we leverage TESLA, a learning model originally designed

for solar forecasting, as the data translation algorithm in our context engine [51].

It provides efficient model generation: O(nα), where n represents the number of

inputs and α represents the function order of the Taylor expansion. The generic

function of this expansion is established as follows:

n∑
i=0

Cixi (1st order),
n∑
i=0

i∑
j=0

Cijxixj (2nd order) etc. (2.1)

where Cij represents individual coefficients learned once observations are deter-

mined, and x0 = 1 (the constant coefficient). The resulting equation is Ax = B,

where A is the row matrix of input observations; x is the column vector of coeffi-

cients, and B is the column vector of output observations, each entry correlating

with the corresponding row of A, and solved by least squares estimation.

One limitation to this model is that at least m independent observations

are required for training, where m = n for first-order, n2 for second-order, and so

on, which can become space-inefficient as the order increases. Finally, using the

model is as simple as solving the equation using the learned coefficients and the

input context, which produces the output context.

We demonstrate TESLA here because of its general formulation, versatility

across different function orders, and applicability to context processing, but other
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statistical learning approaches exhibit similar properties: for example, Bayesian

Networks [48], Hidden Markov Models (HMM), and Artificial Neural Networks

(ANN) can leverage input and output domain spaces to conditional probability

models and parameters that define preferred paths gu2013.

2.2.2 Integration with Ontologies

The context engine architecture we propose incorporates both modularity

and general data transformation, significantly reducing application-specific and

implementation overhead. In addition to the overall application input and output

context variables, we must identify the data flow and intermediate context required

by the additional functional units. Existing context engine outputs that match the

input needed by the application, that engine will be reused rather than defining

and generating a new one. For example, Figure 2.3 identifies the context variable

for GPS location for a particular object (”User1”) using the context modeling

language (CML).

Figure 2.3: Ontology specification for GPS data, with coordinates, source, and
range.

If this variable specification is present, an application that require GPS

location for that object can simply refer to this variable as input. If this vari-

able is populated in the data store, either by a sensor or as the output of another

application, changes to this variable will be applied. In particular, if deriving

location is intermediate context from another application, it is now exposed for

reuse without additional processing overhead by the current application. Interme-

diate context variables that are not already defined must be outlined using the
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ontology, specifying both the data source and the domain or range for input or

output, respectively. Currently, ontological definition of inputs and outputs al-

lows applications to retrieve and output data to the backend infrastructure. As

we mentioned in previous sections, we additionally use ontologies to generate the

constraints for the statistical learning algorithms. The application designer simply

specifies the input and output ontologies for each context engine. The common

data transformation records observations until there are enough to train the func-

tional model for the order of computation, at which point it begins generating the

output context for each successive input observation set.

2.3 Theoretical analysis

The sequential, hierarchical approach raises questions about the complexity

overhead, latency, and accuracy of breaking down a possibly compact application

into a composition of steps. We validate our approach by proving that the overall

computational complexity of the architecture is actually reduced with a marginal

impact on output accuracy.

2.3.1 Complexity

Theorem I: Dividing a context engine into multiple context engines decreases the

total computational complexity of a nonlinear system.

Proof: We show that dividing the processing of N inputs from a single context

engine to multiple context engines decreases the total computational complexity.

We start with a general representation of a context engine: N number of inputs

and a computational complexity order α for a maximum computational overhead

Nα. We divide the single engine into two stages, where there are multiple engines

with an arbitrary number of inputs of A. The number of engines of the first step

becomes N
A

. The second stage takes the outputs of the first stage and gives the

final output. The total complexity overhead of this system is N
A
Aα +

(
N
A

)α
. We

look for the conditions where the two-stage has a lower complexity than the single
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engine:
N
A
Aα +

(
N
A

)α
< Nα → A2α−1N +Nα < AαNα

Aα−1Aα < Nα−1 (Aα − 1)→
(
N
A

)α−1 (
1− 1

Aα

)
> 1

(2.2)

Although the selection of A is arbitrary, there are two limiting conditions:

A must be an integer and the number of context engines must be an integer
(
N
A

)
.

Thus, the minimum for A is 2 and the maximum is N
2

, i.e. 2 engines. We do not

consider A = 1 or A = N , as neither contribute to division of the single-stage

context engine. The final inequality is the multiplication of two terms. The first

term is minimized when A = N
2

and results in 2−1. The second term is minimized

when A = 2 and results in 1 − 2−α. This provides a lower bound for the result:

2α−1 (1− 2−α) = 2α−1− 1
2
. If we prove that this lower bound satisfies the inequality,

the multiplication result must also satisfy the inequality:(
N

A

)α−1(
1− 1

Aα

)
> 2α−1 − 1

2
> 1→ a > log2 3 ≈ 1.6 (2.3)

This proves that if the complexity order of the system is greater than 1.6 (e.g. for

2nd and greater integer function orders), any arbitrary division of the single engine

results in a decrease in computational complexity. The corollary to this theorem

is:

Theorem II: The complexity of a system of context engines is minimized when

each individual engine contains 2 inputs.

Proof: Theorem I shows that dividing an engine decreases complexity if the system

has a complexity order greater than 1. The number of context engines is N
A

, which

gets its maximum value at A = 2.

While context-aware applications do not necessarily fit perfectly into a sys-

tem of two-input engines, as we reduce inputs into each context engine and increase

the path from the initial input to output context, we reduce the overall system

complexity.
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Figure 2.4: Breakdown of a single-step into lower-complexity equivalent reduc-
tions, with the minimum complexity occurring with maximum division (two-input
engines on the right).

2.3.2 Accuracy

We now investigate the accuracy change between sequential and consol-

idated applications. We begin with a general functional representation of data

transformation from statistical learning: generating a model for data transfor-

mation as a polynomial of varying complexity and functional order, which can

be solved to best-fit through techniques such as regression [47]. By providing

the means to vary the inputs (ontology) and relationship (functional order), com-

plex relationships between the inputs and output can be represented and trained.

While a general formulation differs based on the function order and application,

this example illustrates the accuracy change between 2-input context engines and

a 4-input single-stage context engine, as in Figure 2.5.

We can compare the two implementations through their respective trans-

formation functions. We use a polynomial function as the general data transfor-

mation. The second-order Taylor expansion of f :

f(i1, i2) = f0 + f1 ∗ i1 + f2 ∗ i2 + f11 ∗ i21 + f22 ∗ i22 + f12 ∗ i1 ∗ i2 (2.4)

where fij are the corresponding coefficients. The other context engines (g,

h, and fgh) have corresponding expansions. However, because h is composed of the
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Figure 2.5: Functionally equivalent organizations of the single-stage application
(top) and the sequential (bottom).

outputs of f and g, it can be represented as a function of the fij and gij coefficients

and the initial input variables i1 to i4. This is directly comparable to fgh, which

is also a function of the initial inputs and a set of coefficients represented as λij

(e.g. λ0 + λ1 ∗ i1 + ...). h(f, g) evaluates to fgh exactly except for the ratio of g1

and g2, which matches two different pairs of coefficients of fgh:

g1

g2

=
λ13

λ14

,
g1

g2

=
λ23

λ24

(2.5)

This means that the sequential context engine will have the same accuracy

as the single-stage only when the ratio of λ13 to λ14 matches the ratio of λ23 to

λ24. If the ratios do not match, 1 out of the 4 coefficients in this ratio cannot be

represented, though the other 3 in the ratio as well as the remaining 7 coefficients

in the equation are all represented accurately. This can be modeled as some error

factor δ in the λ24 coefficient, which contributes δ ∗ i2 ∗ i4 truncation error between

the sequential and single-stage context engines.

We also quantify the impact of input signal noise on the sequential context

engine compared to the single-stage approach. We model each input with zero-

mean additive white Gaussian noise: xi + wi, a common expression of sensor

noise [52]. The resulting noise coefficients propagate through the application. In

the sequential case, f and g both propagate the original input noise to h. The

truncation error of the sequential context engine is now compounded by additional
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noise:

δ ∗ i2 ∗ i4 + δ ∗ w2 ∗ i4 + δ ∗ w4 ∗ i2 + δ ∗ w2 ∗ w4 (2.6)

The first term is the truncation error we previously quantified; the second

and the third terms are the scaled Gaussian values due to noise; and the last term

is a chi-squared distribution also derived from noise. The significance of the error

terms is entirely dependent on the relationship between the cross-product input

terms i2 and i4. If the output context is highly dependent on the cross products,

the weight of the noise and truncation terms will pose significant error. From

a system design perspective, simply selecting highly correlated input terms for

context engines - an intuitive choice nonetheless - will mitigate truncation error,

as the impact of the missing cross-coefficient terms is minimized.

2.3.3 Scalability

As previously mentioned, we envision IoT applications operating in an en-

vironment with dynamic computational ability. Specifically, there are different dis-

tributed compute nodes for sensing, infrastructure, and actuation, including sensor

and actuation platforms, mobile devices, and backend storage and processing. The

complexity arguments from the previous subsection show potential improvements

even if we are confined to a single compute node. However, as the number of

compute nodes grows, there is inherent scalability in the sequential context engine

approach.

We leverage and extend the scalability definition from distributed systems

[53] and IoT systems [54]: identifying the change in speedup under the conditions

of 1) changing number of compute nodes for a given application (strong scaling)

and 2) changing amount of input data (load scaling).

We define speedup for the context engine approach using the following
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piecewise function:

S(k,N) = k for 1 ≤ k ≤ N − 1

and

S(k,N) = 1 for k > N − 1

(2.7)

where k is the number of cores (for strong scaling) and N is the number of inputs

(for load scaling). Since we generalize the processing in each functional unit to the

same algorithm, we deal with functional order as a general term representing the

polynomial model’s complexity and the number of inputs.

For strong scaling, the hierarchical application behaves like a distributed

system, taking advantage of compute nodes as they are made available. However,

even with maximum division (i.e. an application broken up into N − 1 2-input

context engines), the speedup is ultimately capped: when more than N−1 compute

nodes are made available, there are more free nodes than functional units. At best,

some FUs can be reallocated to more capable nodes, but at this point, the system

is already overprovisioned and will scale as the system is expanded.

Load scaling, or the increase in input data, is particularly important for IoT

applications, as the growing amount of data in applications should be appropriately

handled. An infusion of new input can be addressed by either:

1. Increasing the number of inputs to a single (or multiple different) context

engines

2. Expanding the hierarchy with more low-input context engines.

In case 1, for every m additional inputs, the complexity of the updated

context engine increases from nα to (n+m)α. In contrast, for case 2, assuming a

maximum division of input (a binary tree of two-input context engines), for every

m inputs, we add at most m−1 new context engines, increasing the complexity to

(m+ n− 1) ∗ 2α. As m increases, the complexity of case 1 grows much faster than

case 2. Moreover, the second option falls in line with our goal of more modular
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Figure 2.6: Scalability comparison between the single-stage approach and the
context engine, comparing complexity with input size (left) and communication
overhead over input size (right).

applications. Load scaling, with a system growth of mnα, represents linear growth

in the modular context engine approach. Figure 2.6(left) illustrates this growth

compared to the equivalent single-stage application’s growth as m increases, with

fixed n and α = 3.

The increase in input data also affects the communication overhead of the

application, another factor impacting scalability. Each functional unit must train

its machine learning algorithm in order to generate appropriate output context. In

the training phase of an n-input α-complexity single-stage application, the func-

tional unit must receive nα individual input samples and a corresponding nα output

samples from the source and sink devices to calculate the context engine’s coef-

ficients using TESLA. Similarly, a sequential application with maximum division

(2-input context engines) requires 2(n− 1) ∗ 2α, or 2α+1 ∗ (n− 1) input and output

samples. Figure 2.6(right) illustrates the communication overhead of the context

engine approach vs. the consolidated approach over the number of inputs.

2.4 Case study: Fitness tracker

Fitness trackers currently dominate the wearables market [55], with many

interface options available to the user, including smartphone and desktop appli-

cations, and development APIs opened to development enthusiasts. Users often

wear devices that report partially redundant information, even if they were de-

signed to collect disparate data at a low level. This example collects user activity
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from two independent devices - a Fitbit Flex step counter [56] and an Android

smartphone running the mobile application Moves [57]. While both data streams

report a user’s step count, they arrive at that conclusion in different ways and with

different reliabilities. We have a simple goal of obtaining an accurate daily step

count for a single user based on these two data streams, by learning when and

where to trust one data stream over the other.

2.4.1 Input sources

Fitbit reports minute-by-minute step counts for a user, based on accelerom-

eter readings. The data traces are simple. Each piece of context data only contains

a start and end time for the interval (currently fixed at 1 minute) and the number

of steps counted. While the device actually reports more, such as a user’s sleep

mode and inferred activity levels, our application does not need those pieces of

data and thus leaves it out of the context dimension.

Moves traces include higher-level activity readings such as semantic location

names, type of motion, and a step count if the user is walking. These readings are

inferred from a variety of low-level sensors and crowd-sourced data (smartphone

accelerometer, GPS, social location check-in service, etc). The traces are divided

into “segments”, where the user is either sedentary, moving from one point to

another, or moving around within one location. Each segment is bookended by

a start and end time, but it may also exercise different combinations of context

keys, some of which are organized into nested structures, as shown in Figure 2.7.

When the user is at a location for an extended period of time, it records the GPS

coordinates, and may include a semantic locality name depending on availability.

The semantic location name may be estimated from a web-based social location

service like Foursquare [58], or manually entered by the user - this naming source

is also recorded and can imply a measure of confidence in the location. If the user

is in transit, Moves records instantaneous positions in a list of timestamped GPS

coordinates, called “trackpoints”.

The user manually collects the verification data for an actual step count.

The start and end timestamps are required to align collected data with Fitbit
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Figure 2.7: Relevant variables filtered from the context space into an application’s
context dimensions

and Moves data, and the unique context variable here is “user input”. When the

boolean “user input” is True, it implies highest confidence in the user-supplied

data.

2.4.2 Context engine organization

From observation, we have a sense of systematic errors from Moves - for

example, the GPS tracking has high latency when waking from sleep and misinter-

prets movement upon catching up to tracking. Intermittently, it derives the step

count from the distance traveled divided by a universal average stride length (thus

undercounting steps for a shorter person). Both devices are susceptible to losing

battery, losing data due to connection or cloud service failures, or simply being

misplaced by an absent-minded user. Fitbit has a tendency to misinterpret mis-

cellaneous movement (typing, doing dishes, etc.) as steps, while missing less easily

discernible steps (carrying groceries, hands in pocket). By taking both devices into

the context-aware application, and leveraging the fact that Fitbit and Moves give
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slightly overlapping but different information, we have the opportunity to weigh

their data given contextual reliability and fall back to one if the other goes offline.

We classify segments of a user’s day coarsely based on data from Moves. When

the user is in one place, the phone records data as a location and associates a list

of activities with it. However, when the user is in transit, the system records a sin-

gle movement activity (transit, walking, cycling, etc.) with a series of trackpoints

tracking the movement. The two context dimensions in Figure 2.7, both extracted

from the same context space, reflects this. The two context dimensions allow the

application to parse and reason across two different scopes of data. The Bayesian

network in Figure 2.8 describes the relationships between observable data from

Fitbit and Moves, each node representing some variable summarizing the user’s

activity. Using the specification from Fitbit’s API, we classify the step counts per

minute into low, medium or high activity levels. The context engine trains the

network on each incoming data segment and constructs the associated conditional

probability based on whether Fitbit or Moves is more accurate for each segment

(relative to the ground truth). The dependencies of the nodes are determined by

the classification of activity levels (low, medium, high), and the perceived Moves

activity (on location, walking, or using transportation). Each instance where Fit-

bit (or Moves) agrees with the ground data (within margins of the activity level

thresholds) increases the weight of the edge leading from that node to the “Fitbit

is accurate” node (or “Moves is accurate” node).

In Figure 2.8, the edges connecting dependencies were manually assigned,

and only their weights were learned. Without a priori knowledge of the relationship

between Fitbit and Moves, the Bayesian network would start as a fully connected

graph, and the learning algorithm would eventually prune the edges which do not

in fact connect dependent nodes.

2.4.3 Results

We compare the accuracy of these three data streams - Fitbit, Moves, and

estimation learned on Fitbit and Moves. The edge weights of the Bayesian network

are trained on two days’ worth of data. Since each day is naturally divided into
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Figure 2.8: Bayesian Network to learn accurate step count from Fitbit and Moves
data

a different total number of segments depending on how often the user changes

activities or locations, this ranges between 37-45 segments. After the learning

phase, the cross product of all these variables gives a confidence for each data

stream that selects the most trusted source for each segment. The final daily total

of step counts is compared to the “ground truth” for that day’s total, and the

“accuracy” represents how closely the estimated step count falls relative to the

actual number of steps taken. We define accuracy as the probability of designating

the output as “correct”, under a Gaussian distribution. The mean is selected as

the “ground truth” data and the standard deviation set such that the +/-15%

range has a 90% accuracy. This margin is given because small discrepancies in the

absolute number of steps counted across a day (which ranges in the thousands on

average) should be reasonably expected.

Figure 2.9 shows the performance of our learning algorithm on a small

training set, for three representative days. In Sample 1, even though both Fitbit

and Moves are grossly inaccurate in counting total steps for the day, the other

contextual data they provide about a user’s location and activity type can help

greatly in learning which one to trust for a particular segment in the day. Thus,
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Figure 2.9: Bayesian Network to learn accurate step count from Fitbit and Moves
data

for each segment, as long as one of them reports accurate data, and the learning

algorithms picks the correct one, the final count can still be very accurate. In

Sample 2, the Fitbit stream is highly accurate, while Moves is not. While the node

weights of the Bayesian network represent confidence in a data stream, they do

not guarantee accuracy by correctly choosing to trust Fitbit in most segments and

Moves in a minority of segments, the final step count is still highly accurate. On the

other hand, the penalty of trusting in the wrong stream can negatively impact the

learned result, as shown in Sample 3. Such an “anomalous” day may include long

periods of time spent underground where GPS localization is ineffective, or where

the user is engaged in vigorous and repetitive activity while standing relatively

still, such as organizing equipment in a lab environment.

By learning when to trust and when to discard particular data streams

based on the context of that data collection, we can produce an output stream

with accuracy much higher than either of the individual sensor streams alone. In

this case study, we see an average 60x accuracy improvement over using a single

stream of data when learning over just 2 days.
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2.5 Conclusion

The Internet of Things represents the next iteration of ubiquitous comput-

ing, incorporating heterogeneous sensing and actuation in a web-based backend.

With the vast data collection and application execution that dynamically changes

with contextual environment, there is a growing need for scalable ways to deal with

this volume of data and computation. The conventional method of independent,

ad-hoc application development includes many redundancies in both sensor com-

munication and data manipulation. We have shown that a hierarchical division of

labor is provably more scalable, with a controlled accuracy tradeoff.

However, the onset of significant commercial development of IoT devices

communicating with divergent backends and in constantly-changing formats severely

complicates the main goal of the IoT: context-aware computing. Upon reviewing

the related IoT work, we found a key component of the new IoT middleware miss-

ing: the ability to unify and operate on ever-changing sources and context in a

low-overhead manner. To resolve this issue, we developed the ontology-driven con-

text engine. Leveraging and expanding the XCML context ontology, we unified

data translation, filtering, and preprocessing into a format readily readable and

expandable by context engine implementations. We developed a methodology to

implement context-aware applications: upstream context engine instances for flexi-

ble context preprocessing and extension, and downstream instances for application

logic and actuation. Using a base context engine, we implemented an application

that demonstrates the ability to learn and follow different paths of reasoning based

on available data.

In the next chapter, we discuss how machine context can be leveraged to

optimize a single node of the hierarchy. In the cloud, high performance servers

support the massive volume of data processing. Within a single node, there are

many sources of context that describe the efficiency of the underlying hardware

resources, including ambient temperature, cooling capacity, and availability of com-

pute resources like CPU cycles and data bandwidth. We will leverage these context

parameters to optimize various metrics of execution such as energy consumption

and speed. In Chapter 4, we will move beyond the single node and consider the
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cooperative execution of devices with different capabilities.

This chapter contains material from “An Ontology-Driven Context Engine

for the Internet of Things” by Jagannathan Venkatesh, Christine Chan and Tajana

Rosing, which appears in UC San Diego Technical Report CS2015-1009, 2015. The

dissertation author was one of the primary investigators and the second author of

this paper.

This chapter contains material from “A Modular Approach to Context-

Aware IoT Applications” by Jagannathan Venkatesh, Christine Chan, Alper Sinan

Akyürek and Tajana Šimunić Rosing, which appears in Proceedings of the Inter-

national Conference on Internet-of-Things Design and Implementation (IoTDI),

IEEE 2016. The dissertation author was one of the primary investigators and the

second author of this paper.



Chapter 3

Device context: performance,

power and thermal controls

Datacenters are the conventional backbone of processing in the cloud, com-

prised of a complex hierarchy of devices that support a wide variety of application

domains. Due to the huge scale of operation, power, cooling, and combined en-

ergy cost management of these datacenters at various levels of hierarchy are the

subject of many studies, both academic and commercial [59, 60]. For example, a

high-end database server is equipped with many sensors that inform the system

of many aspects of its hardware state, including granular power sensors, multiple

temperature sensors at different locations, hard drive health, and more, all man-

aged by a dedicated side-band processor. It would be infeasible for each server’s

fans, core power modes, and data bandwidth to be managed individually from the

whole datacenter’s perspective. However, if each server in a rack can summarize

its operating context in relation to performance, this may enable the hierarchy

of computing elements to incorporate its hardware context in a scalable manner.

Structure is needed to sense and manage that context so that it does not interfere

with the intended application operations.

In this chapter, we discuss how a single server node in the IoT monitors

and manages its own operating context. To maintain the integrity of hardware

components, processors manage workload scheduling and on-chip thermal man-

agement dynamically, while powerful server chassis fans work in combination with

34
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the building HVAC or passive heat removers to maintain a thermal set point [61].

The power consumption of these fans grows cubicly with the speed settings [62].

There are efforts to reduce datacenter cooling power by reconfiguring rack orga-

nization (e.g. hot/cold aisles [63]), creative chillers, and task allocation across

multicore processors and even room placement [64] [65]. In an individual server,

the largest power consumers are the processor chip and cooling subsystem (we

measured 37% and 29% respectively). In a typical datacenter of 20,000 servers at

a 1.5 power usage effectiveness (PUE), 24% of its monthly budget goes towards the

utility bill[66]. Any improvement in the server energy consumption can dramati-

cally lower power budgets, improve service reliability in case of power instabilities,

and ultimately improve profit margins for the datacenter operator[67].

Database query software is written assuming that underlying hardware re-

sources including CPU cycles, memory access and IO bandwidth are fully available.

However, the operating context may limit this resource availability - e.g. power

caps or thermal constraints are aspects of the physical environment that can limit

software application behavior. In the following sections, we address a critical source

of data performance degradation that is often neglected. Mechanical disturbances

generated by the cooling system can cause temporary crashes or misses in spinning

storage systems, which in turn inflate workload execution times and server uptime

electric bills [11]. Even small disk latencies can cascade into large effects on final

application performance - 5% disk latency can lead to over 40% slowdown in the

total performance [13], while others have measured a 60% disk delay leading to

170% final delay in a database query execution [11]. These transient problems can

be very difficult to diagnose in deployment or to replicate in a lab setting without

the correct surrounding environmental factors. They are also neglected by existing

thermal models and management policies.

Since current enclosure, cabinet and raised-floor room designs are insuffi-

cient in eliminating all vibrations [13], we turn to software-based detection and

control. Enterprise servers already have a side-band “service processor” to mon-

itor hardware sensors, execute power management, and log maintenance events,

accessed via the Intelligent Platform Management Interface (IPMI). This would be
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an appropriate platform to detect vibrations from the fan controller and respond

accordingly. Orthogonal to mechanical upgrades, a software update also allows for

fast and low-cost adaptation In the event of hardware configuration changes.

Fortunately, though datacenter workloads can be highly demanding of the

hardware platform, and increasingly complex in terms of software optimization,

they are also fairly well-known and predictable at a large scale [14]. By modeling

the workloads in terms of their resource consumption, server operators can predict

the application’s needs and manipulate the operating conditions such as temper-

ature and core availability to improve performance. Most current strategies focus

on manipulating processing resources such as multi-core task scheduling and fre-

quency scaling. Notably, we approach the server efficiency problem by targeting the

cooling-performance relationship. Our results are based on real physical teleme-

try of a late-model multi-threaded, multi-core server processor running a standard

database benchmark suite (TPC-H [15]). The proposed server model and simu-

lated control policy demonstrates up to 3.3x speed up over state of the art policies,

leading to 19-65% energy reduction while still meeting thermal constraints. We

hope these insights can help server designers, database administrators and data-

center operators design and maintain more energy efficient systems for database

applications.

3.1 Background and related work

Here, we give an overview of prior work done in three main research areas

that involve server data performance as supported by hard disk drives. First, we

identify representations of database applications with respect to their hardware

utilization and reliance on data accesses. Second, we discuss existing physical and

mechanical designs that affect hard drive performance in datacenters. We close by

summarizing state of the art server management strategies, in particular power,

thermal and cooling policies, and discuss our contributions to the area.
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3.1.1 Database Workload Modeling

Database performance can be quantified and analyzed many different ways.

End-to-end metrics such as total execution time are used to signal critical failures or

crisis status [14]. For a more detailed understanding, applications can be divided

into phases of software demands and elemental operations, but the complexity

of database platforms necessitate the use of machine learning techniques rather

than relying on expert design[68]. To predict total execution time of separate

database queries using design-time characteristics, some have found that clustering

techniques out-perform regression for multi-variate feature sets [69].

An orthogonal method of representing workloads is to inspect their inter-

actions with hardware resources, which lends more naturally to hardware man-

agement policies. For example, a particular query behavior can be described with

microarchitectural statistics (e.g. IPC and cache-miss), and transitions between

behavior can be modeled with a Markov decision process, leading to thermal man-

agement decisions [70]. A query can also be described in terms of the size, location,

and frequency of disk accesses [71, 72]. However, these static approaches neglect

how additional interactions with the physical environment can change software

behavior and resulting execution. These policy solvers may choose generally opti-

mal execution plans given ideal drive performance, but miss dynamic degration in

drive throughput due to external mechanical disturbances, resulting in inaccurate

performance modeling.

3.1.2 Mechanical considerations: shock and vibration

Vibrations and shock can have significant detrimental effects on hard disk

drive operation [73, 74]. Many server vendors and large customers have made

design improvements in drive enclosures [9, 75], server chassis [76], racks[77], and

even the raised-floor datacenter rooms and buildings[13, 78], to preserve drive data

integrity and performance in the face of vibrations. These improvements include

sturdier material choices, physical re-organization of vibration sources (fan arrays,

hard drives), and signal processing to cancel sensed vibrations. The vibration

protections only target well-known sources such as the spinning hard drive motors
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themselves, physical drops, and HVAC building cooling systems [79]. Their success

metrics are geared towards lowering hard drive failure rates, generally caused by

head crashes (i.e. when the read-write head makes contact with the disk platters,

causing irreverible damage)[80]. Liquid cooling [81, 82] would reduce mechanical

disturbances to the system, but are prohibitively expensive for today’s commod-

ity systems. To our knowledge, there are no solutions currently in the market

that account for the persistent, dynamically changing vibrations generated from

fan cooling within the server. Concurrently, there are no metrics that quantify

vibrational effects in terms of instantaneous but non-lasting drive performance

degradation.

3.1.3 Power, Thermal and Cooling Management

The largest power consumers in servers are the processor chip and cooling

subsystem. Fans have a cubicly growing motor power consumption profile [62],

while processor leakage power grows quadratically with increasing temperature (i.e.

lower fans). For a fixed workload, there is a single optimal point where some fan

speed achieves the lowest combined processor leakage power and fan motor power

[83]. High, fluctuating temperatures are correlated with poor drive reliability [84,

85]. We show that the observed disk performance degradation is likely due to

interactions with the cooling system, and not temperatures per se. To reduce the

thermal load, the processor can gate the clock or perform dynamic voltage and

frequency scaling (DVFS), at the cost of direct reduction in performance [86]. In

workloads where the bottleneck lies outside of the core (in memory, for example),

frequency scaling may have unexpected effects - what is optimal from the core’s

perspective may not yield desirable results for the larger system [87].

For cooling, a standard industrial policy proportional-integral-derivative

(PID) control [88], which some newer solutions are based on [89]. Task assign-

ment can be done with some awareness of datacenter physical layout [90, 91], but

these techniques fail to account for the cooling interactions at the lower level of

server fans. Traditionally, the thermal effect on performance is only measured in

terms of core compute speed [86], even by studies of disk-heavy database query
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performance [92]. We assert that even when thermal is not considered an issue

by conventional standards (e.g. high temperature), data performance can still suf-

fer, because cooling has a significant side-effect - existing work has shown that

internal server fans can negatively impact drive throughput by anywhere between

60-88% [11, 93]. A comprehensive understanding of the system enables model-

predictive control to maintain a stable system state and make guarantees about

system behavior. Relevant models include thermal circuit simulators [94], time-

based temperature predictors [95][96] or workload-based temperature prediction

[89]. Well-defined hardware configurations and operating ranges lend themselves

to control-theoretic solutions for cooling decisions [97]. If performance and accu-

racy constraints change in the field, application-level integration can make system

management more efficient and stable [98]. While these strategies leverage the

tradeoffs between processor cooling power consumption, and core execution speed,

they neglect the relationship between cooling and application performance. Thus,

they may yield subpar performance for data-intensive workloads.

In comparison to solutions in the current state of the art, our contributions

are three-fold:

• We quantify the fan-disk interactions that cause difficult-to-diagnose perfor-

mance degradation in data-intensive workloads. Our measurements taken

from in a real operating datacenter and lab settings show up to a 88% hit on

disk write throughput when fans are at their maximum setting.

• We develop a model of a server to represent dependencies between server per-

formance and physical effects, including power, thermal and cooling. Using

analytical models as opposed to conventional simulators, we enable formal

optimization of the overall system.

• We use convex optimization to design a proactive policy that performs opti-

mally efficient fan management. Compared to existing controllers and those

proposed in literature, our model-predictive control yields provably higher

energy savings (up to 80%) and faster workload completion times (up to

70%) while meeting temperature constraints.
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The rest of this document is organized as follows: Section 3.2 documents

our measurements of cooling and performance interactions in a real, operating

datacenter server. In Section 3.3, we develop a system model based on physical

measurements of thermal, cooling and disk performance. Section 3.4 formulates

and solves the hardware thermal management problem optimally for runtime en-

ergy. Finally in Section 3.5, we evaluate how the optimal hardware management

policy performs as compared to current state of the art.

3.2 Measuring cooling and performance interac-

tions

First, we present a methodology for characterizing any server disk’s response

to vibrations that it may encounter in a typical datacenter. Our parametric char-

acterization suite of experiments measures the vibrational sensitivity of a diverse

set of disks. In all experiments, the ambient temperature is tightly controlled,

isolating any drive performance effects to mechanical sources.

3.2.1 Measurement methodology

We recorded vibrations from several points on server racks in an operative

datacenter, using tri-axial accelerometers. These vibrations can be quantified on

two different axes - the overall acceleration or total energy, called the amplitude,

and the frequency or component frequencies of the signal. The amplitude is a scalar

calculated from the power spectral density (PSD) function, or the root mean square

value of multiple signals, in units of grms. The frequencies are in Hertz. We found

that a rack server in an operative datacenter will typically experience vibrational

frequencies ranging from 20 to 2000Hz, and amplitudes from 0 to 2 grms.

Within the measured parameters, the vibrations are reproduced in a lab

environment with an Unholtz-Dickie model K170 electrodynamic programmable

vibrational table [99]. Specifications of the platform and environment are listed

in Table 3.1. The test server is mounted on top of the table, as we monitor the



41

Table 3.1: Test server specifications

Processor 8 cores @ 3.0GHz, 40nm

Memory 16 x 16GB DIMM

Operating system Solaris 11.1, firmware 8.2.1

DBMS Oracle 11.2.0.3

Idle processor power 75W

Idle server power 267W

Typical server power range 330-600W

Maximum air flow 145 cubic feet per minute (cfm)

Maximum fan power 180W

Room temperature 25◦C

Chassis internal temperature 30◦C

Figure 3.1: Server organization with (1) hard disks and (2) fan assembly directing
airflow towards (3) the motherboard.

same points where it would have come in contact with a rack mount to ensure

that the vibrations are faithfully transmitted. The test server has a commonly

used single-socket, multi-core and multi-threaded processor. It has two memory

sockets on either side of the processor, 6 fan modules, and 8 disk drive slots. The

drive slots are loaded with a broad range of disk models as described in Table

3.2, including the commodity SATA drives, enterprise SAS drives, and solid state

drives (SSDs). Since SSDs do not depend on moving parts to read data, they act

as our control drives - as expected, they were impervious to vibrations and their

rsults are ommitted for clarity.



42

Table 3.2: Disk drive models specifications

Code name Manufacturer Technology Spin speed (RPM)

FUJSATA Fujitsu MHY2200BS SATA 5400

HITSATA Hitachi Travelstar E5K500 SATA 5400

SEASAS A,B Seagate Savvio 10K.3 ST930003S SAS 10000

HITSAS Hitachi Ultrastar C10K600 SAS 1000

INTELSSD Intel 710 SSDSA2BZ300G3 SSD -

Table 3.3: Overview of measured disk drive behavior

Code name Write speed at min fan (MB/s) Write speed at max fan (MB/s)

FUJSATA 31.2 6.2

HITSATA 37.0 14.6

SEASAS A,B 72.2 72.2

HITSAS 81.6 81.6

INTELSSD 206.8 206.4

Fan speeds are controlled through pulse width modulation (PWM). This

electrical “pulse” does not contribute to mechanical vibrations. The available fan

speeds are 0-100% at increments of 10% (given some tachometer error) but in

practice, fans are observed to be at least 50% when a server is active. We can

temporarily override the built-in fan control algorithm to manually set fan speeds

via the Intelligent Platform Management Interface (IPMI).

To expose the true disk behavior, we disable the buffer cache that would

have hidden disk access latency from the user. We run a pure I/O generator

which issues random sustained writes to the disk, utilizing 100% of the I/O bus

bandwidth. We quantify the effect of fan speeds on disk performance in terms

of data write throughput. The minimum and maximum write speeds measured

while the server is experiencing no external vibrations are reported in Table 3.3.

In Section 3.5, we will evaluate realistic database benchmarks with more variable

I/O bandwidth requirements.
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3.2.2 Amplitude test with random frequencies

We study the effect of external vibrations varying in “amplitude”, defined

as the total combined signal strength of each component signal in the frequency

profile. The vibrations are generated on the shake table while fan speeds are set

to 50% PWM, and accelerometers are placed at rack-contact points on the server

to verify the total amplitude of vibrations delivered - this is why the test points do

not exactly line up at increments of 0.2. We ran experiments on the disks under

profiles that cover a different collection of frequencies (20-800Hz in Figure 3.2 and

20-2000Hz in Figure 3.3).
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Figure 3.2: Throughput dependence on vibrational amplitude, component fre-
quencies ranging 20-800Hz

Although lower throughputs generally follow higher amplitudes, the sensi-

tivity curve varies across hard drives and across frequency profiles. Of the two

SATA drives spinning at the same speed (5400 RPM), FUJSATA performs better

than HITSATA for grms < 0.2. At grms = 0.63, HITSATA writes at 8.6 MB/s in

the first profile and 3 MB/s in the second. SAS drives are more resilient, but they

start showing signs of performance degradation around grms = 1.27. The largest

drop among the SAS drives is 10.5% on HITSAS and the largest drop among the

SATA drives when HITSATA stalls at 0 MB/s at grms = 1.8.
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Figure 3.3: Throughput dependence on vibrational amplitude, component fre-
quencies ranging 20-2000Hz

3.2.3 Frequency test with fixed amplitude

This experiment characterizes the hard disk response to external vibrations

of varying frequencies. From on-site measurements at datacenters and observing

Figures 3.2 and 3.3, we fixed the amplitude of vibrations at 0.17g, where drives

performed well in general, but had the potential to experience throughput degrada-

tion. We sweep through frequencies between 20 to 2000Hz and monitor the change

in disk throughput (Figure 3.4). The response to different frequencies is irregular

and there is neither a distinct “zone” of performance degradation, nor any obvious

ratio between the frequency value or write throughput. Certain frequencies that

cause performance degradation have a very narrow band. Even though more obvi-

ous degradation is seen at higher frequencies, there are narrow bands where disk

performance returns close to its ideal. SATA drive throughput drops to 0MB/s at

various points, while SAS drives fluctuate by 1-2%.

3.2.4 Fan sweep test

Here, we isolate the effect of internal vibrations generated by the full range

of possible fan speeds by bolting the server to the stationary shake table. With
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Figure 3.4: Throughput dependence on vibrational frequency with amplitude
fixed at 0.17g

each change in stimuli, the disk drive throughputs take 20 seconds to respond. In

our experience, the processor shuts down within 10 seconds of turning off the fans,

while self-reporting on-die temperatures up to 91◦C immediately before crashing.

Consequently, it is challenging to accurately measure system characteristics in

fine-grained steps at low fan speeds. We step through fan speeds from 100% to

0% PWM at 10% step sizes to obtain stable results. Figure 3.5 shows the aver-

age degradation of write throughput on fan speeds, normalized to the maximum

throughput measured on each disk. There are no observable vibrational effects

below 50% PWM. SATA drives show the most throughput degradation, down to

35% and 12% of their maximum value. The SAS drives show degradation only at

the maximum fan setting - HITSAS loses about 2% of its throughput.

With these experiments, we have characterized the relationship between

hard disk performance and vibrations they experience. The possible effects of vi-

brations external to the server (represented by the amplitude and frequency sweep

tests) are not easily mitigated - short of expensive hardware rehaul. Although the

mechanical study of these drive differences is out of the scope of this work, we do

observe that enterprise SAS drives are consistently more resilient than commodity

SATA drives. Enterprise drives tend to have a heavier and more stable chassis,
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Figure 3.5: Throughput dependence on fan speeds (no external vibrations)

more expensive servos controlling the read/write head, better spindle motor shaft

capturing, and better air flow control, all of which improve resilience against en-

vironmental vibrations [9]. Since our motivation is to find solutions for in-server

hardware management, and the majority of deployed drives in cost-sensitive dat-

acenters are commodity SATA, we choose to focus on the relationship between

internal fans and SATA disk performance. Based on measurements presented here,

this leaves a 65-88% drive performance gap that we hope to close with intelligent

fan control policies.

3.3 Integrated system model for performance,

power, thermal and cooling

In this section, we describe models of workloads that we use for optimizing

power, thermal and cooling systems. These models are essential for enabling the

optimal hardware manager we present in the following section. They are based on

physical instrumentation and software tracing of database workloads run on the

server described in Table 3.1.

Figure 3.6 shows the models developed based on the data from the actual
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Figure 3.6: Subsystems and dependencies in the server model

processing core, hard drive, power and thermal sensors, and fan cooling subsys-

tems. Application performance is modeled based on a standard database bench-

mark suite, with a unique but predictable pattern of hardware resource utilization.

Power and thermal models estimate the thermal response and heat exchange be-

tween the processor chip and the fan cooling system. We use measurements of disk

performance from the previous section to model the effect each cooling decision has

on IO throughput and system performance. All these components are combined

to represent the behavior of a high-end server running typical database workloads.

3.3.1 Workload representation

We chose the TPC-H benchmark suite to represent data-intensive workloads

that commonly run in datacenters [15]. TPC-H is a decision-support benchmark

consisting of 22 queries representing different business-oriented queries on large

datasets. Depending on the size of the dataset, the entire suite can take on the

order of hours or days to complete. The benchmark specification states that per-

formance is defined by the query throughput (i.e. query-per-hour) for a fixed

dataset, processor parallelism and memory size. For each individual query of a

40GB database size, with 4 parallel core threads allowed, and 128GB RAM, we

calculate performance as the execution time required. We extract the model for
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each query using the single-user “power test” scenario, as opposed to the “through-

put test” which represents a multi-user environment.

Other researchers have had success categorizing database workloads solely

on their observed disk activity fluctuations, without tracking the semantics at an

application level [71, 72]. Since different database operations in a single query can

activate parallel cores, memory, and the IO bus in different patterns, we extend

the model to represent a more comprehensive view of the system operating con-

straints, using a database manager that enables parallel queries where appropriate.

We monitored the system using built-in trace commands (mpstat, iostat, vmstat)

and a database monitor Oracle Enterprise Manager. Resource utilization can be

described by vectors in a multi-core scenario in the form < c0, ..., cN−1, io > where

ci represents the utilization between 0-100% for physical core i out of N cores, and

io represents the percentage of maximum IO bandwidth (machine specification is

300MB/s).

We observe similarities among the observed utilization points and we model

these similarities as system states. We use k-means clustering to quantify these

similarities, where each cluster corresponds to a distinct system state. When de-

termining a cluster for each observation, distortion is defined as the sum of the

squared distances between each observation vector and its closest centroid [100].

The distortion decreases non-uniformly as the number of clusters increases. The

elbow test described in [101] determines an appropriate number of clusters (k) to

determine the point that gives the most benefit (in terms of reducing distortion)

relative to an increase in clusters. Consider the decreased distortion per increment

in k as the quantifiable benefit of increasing k. Then the first derivative represents

the rate of gain in benefit. Furthermore, to find the k setting that yields a highest

gain in benefit vs. increase in k (and consequently, lower benefit for k+ 1) we can

take the derivative of the rate of gain. Thus, identifying some minimum in the

second derivative shows us an appropriate k using the “elbow” test.

With this method, we find that four clusters provide a good tradeoff between

number of clusters vs. distortion value. With all execution grouped into one of

these four clusters, on average each query can be described with a chain of 97
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Figure 3.7: States as defined from CPU and IO bandwidth utilization vector
clustering

states. The chosen centroids are visualized in Figure 3.8. At the high level, most

of the TPC-H queries consist of reading data from separate tables in parallel before

sorting and/or joining them. Parallel operations show multiple cores being active

- e.g. State 2 may be issuing multiple small read requests, while State 4 is issuing

large bulk transfers. The joining and aggregation of parallel work present as one

particular core being very active and others being relatively idle (e.g. State 1 and

State 3).

The average length of time spent in each state per occurrence varies between

states. The performance traces were collected while the server was in a very cool

room, so the processor stayed cool even with fans at low speed. This measured

time is considered the “ideal” time since there are no vibration-induced delays.

The duration of a state may be extended dynamically if the state is IO-dependent

and fan speeds are high - as measurements show in the previous section.

For the rest of this chapter, we consider each query as a series of intervals,

where each interval executes a single workload state. For example, the shortest

query 2 is represented with 6 states of various lengths, while the longest query 1

has 330 state changes. The average query length across all 22 queries is 120 states

where the standard deviation is 88 states. For each single workload state, since
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Figure 3.8: Model representation of query 2, with a chain of 6 states

the hardware utilization patterns are fixed, their power and thermal responses will

also be predictable. The power and thermal profiles will change as the workload

state changes. They will be evaluated on an interval-by-interval basis to determine

necessary changes in cooling control.

3.3.2 Power model

In most server systems, including ours, the processor and the cooling sys-

tem represent the majority of total server power consumption and have a wide

dynamic range [102]. The processor’s high power density also dominates dynamic

changes in chip temperature at runtime. We choose to focus on modeling these

two components accurately.

Processor power dissipation is comprised of dynamic power - dependent on

workload state w - and static “leakage” power - dependent on temperatures ~T . Our

processor’s maximum power dissipation by design (the “thermal design power”)

is 240W; we observe a typical range of 80-200W consumed by the processor, de-

pending on utilization. We estimate dynamic power required to execute each of

these states by linearly scaling the dynamic range of each core by the utilization

factor [103]. For each workload state defined in the previous section, the utilization

level is fixed, hence the dynamic power consumption εdynamic(wi) is also fixed. We

approximate the static power εstatic(~T ) as linearly dependent on temperature. For

the typical range of operating temperatures in a server, this has been shown to

have an error less than 5% [104].

A commonly used cubic fan power model is presented in [62]. To use this

model, we require a reference constant rf that can be easily measured once for
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any given server, to obtain a known fan speed fr and its corresponding power

consumption level pr. Our final fan power model is defined as:

εfan(f) = rff
3

where rf =
pr

(fr)3

(3.1)

For the purposes of the static power model, we will assume that the tem-

perature does not change significantly over the course of a workload interval, and

that fan speeds are only reevaluted once per workload interval. Thus, each interval

power depends on the single workload state, the starting temperature, and the set

fan speed. The processor- and fan-centric power model can then be calculated at

runtime as:

εpower(w, ~T , f) =εdynamic(w)

+ εstatic(~T )

+ εfan(f)

(3.2)

3.3.3 Thermal model

This section discusses the major heat producing and extracting components

in our server, which can be represented with electrical analogies [94][97]. Compo-

nents that actually consume power (such as the processing cores and L2 caches)

behave as heat sources, modeled as power sources in the circuit. The effectiveness

of the heat sink in dissipating extra heat relative to any given power consumption

is determined partly by its materials and surface area A (conductive resistance),

but more dynamically by the airflow V passing through it (convective resistance,

with δ between 0.8 and 1. The air flow rate increases linearly with fan speeds as

dictated by the duty cycle of the fan motors (PWM), while the driving fan power

PV rises cubically with air flow rate [62].

Rconv ∝
1

AV δ
(3.3)

We extract an analytical model based on initial simulations run on the

widely accepted HotSpot tool [94]. The goal is to identify a differentiable model
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to be used later in the formal problem formulation in Section 3.4. While retaining

the RC response, we simplify the model to only model the runtime variations of

the hottest core and the fan cooling capacity. The underlying hardware has a

thermal response time constant τ that is dependent on the given fan speed. Each

workload has a time-invariant steady state temperature Tss if it is allowed to run

indefinitely at a given fan speed. Thus, beginning at some initial temperature

T0, for any single workload executing for a certain amount of time t, a cooling-

dependent time constant τ dictates how quickly the system approaches the steady

state temperature Tss. We obtained the actual values for Tss and τ based on

HotSpot experiments.

T (t) = Tss + (T0 − Tss)e
−t
τ (3.4)

Considered piecewise, the temperature at the end of each interval is the

“initial” temperature of the next. The heat sink temperature falls linearly with

the convective resistance - thus, temperature Ti decays as an exponential function

of the given fan speed fi. Recall that the actual length of each interval t varies,

since we take into account both the nominal interval length of that particular state

and any delay that the fan may incur. Equation 3.4 describes the instantaneous

temperature at the end of interval i (i.e. the start of i+ 1) as:

Ti+1 = Tie
−t
τ + Tss(1− e

−t
τ ) (3.5)

To verify, we compare 18 seconds of time series temperature data from our

analytical model and a full HotSpot simulation. This evaluation now takes seconds

instead of the minutes or hours that HotSpot simulation takes. Across the range of

our expected workloads, the average error is less than 1%; thus we can approximate

HotSpot’s validated model quite closely.

3.3.4 Cooling-vs-disk interaction model

In typical enterprise servers, vibrations are transmitted from the fan motors

by mechanical coupling to the housing for the disk drives. In earlier work, an em-

pirical curve was used in [93] without making assumptions about the exact relation
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Figure 3.9: Fan speed-disk throughput interaction fit to a sigmoid function

between fan speeds and vibrational amplitudes. We find that this relationship can

be generalized as a sigmoid function of fan speed f . We model the Fujitsu SATA

drives in our particular server with α = 1034.65, β = 1033.65, γ = 8.04, for an R2

value of 0.98 and average relative error of 2.7%. This curve is shown in Figure 3.9.

ThroughputFactor(f) =
α

β + eγ·f
(3.6)

The workload model already contains information about the ideal runtime

c(w) of each workload state w, assuming full availability of the disk bandwidth

(Section 3.3.1). It has been shown that throughput degradation has a superlinear

effect that cascades into the overall application delay [11] [13]. In lieu of modeling

memory hierarchy and database storage structures in detail, we make a conser-

vative estimate for the relationship between available disk throughput and the

minimal effect on overall application delay. We assume that the final delay caused

by fan degradation is at least inversely proportional to the throughput. The result-

ing execution time εtime(w, f) needed for executing a single instance of a workload

state at a certain fan speed is then defined as:

εtime(w, f) = c(w) · β + eγ·f

α
(3.7)
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For example, if only half the nominal throughput is achievable in a data-

reading workload state, the state will take at least twice as long to complete.

3.3.5 Combining model dynamics

This section summarizes the notations and governing dynamics in the pro-

posed system model. Each database workload is represented as a chain of workload

states. A workload state wi identities the system resource vector during some ex-

ecution interval i. The ideal average duration of each state c(w) was found in

Section 3.3.1. It is known a priori but may increase during execution if the work-

load wi has high IO dependence and the fan speed fi is high enough to affect disk

performance according to the cooling-performance model (Equation 3.6). Thus,

the time spent in any single state is a function εtime of the workload and the fan

speed - the ideal duration with perfect disk performance would be εtime(wi, fi = 0).

The initial temperature of any given interval i is a historical (fixed) value

Ti−1 from the perspective of that interval. The final temperature of that interval

Ti is calculated according to the initial temperature, the dynamic power dissipated

by the current workload state, leakage power dissipation due to the starting tem-

perature, and the cooling capacity of some chosen fan speed. This becomes the

initial temperature of the next interval i + 1. Our fan model assumes an accu-

rate actuator that sets the fan speed according to the given control signal at each

subsequent control step.

Energy consumed (εenergy) is a product of power consumed (Equation 3.2:

εpower) and the period of time εtime. Thus, the execution time DN and total energy

consumption EN for a finite workload of N discrete system states are defined as:

DN =
N∑
i=1

εtime(wi, fi) (3.8)

EN =
N∑
i=1

εpower(wi, Ti−1, fi) · εtime(wi, fi) (3.9)
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Figure 3.10: Numerical functions of temperature and derivatives, with respect to
fan speeds

3.4 Energy-optimal cooling control

We consider a formal constrained optimization problem to define fan speeds

that minimize the total cost of system operation. The generic cost CN of executing

N intervals is the sum of each interval cost εcost. Two costs of interest could

be energy consumption EN or execution delay DN as described in the previous

section. Whichever the cost in question, it must be minimized while keeping the

temperature of all components under the threshold Tlimit at all times, or formalized

as:

min
f

[CN (f)] s.t. Ti ≤ Tlimit∀i ∈ [0, N ] (3.10)

For example, to minimize the energy cost of execution Equation 3.10 would

be rewritten with CN = EN , where the energy consumption EN is an accumulation

of power consumption values εpower scaled by the interval lengths of εtime. The cost

can be defined using some combination of the the thermal, cooling and performance

models from Section 3.3, where each model depends on the fan speed selections

and also each other.

For optimizations problems, Slater’s condition states that any feasible so-

lution to the Lagrangian Dual problem is also an optimal solution for a convex

objective function[105]. Since the constraint function is the temperature, it suf-

fices to analyze the various power components along with the time degradation

dependency for convexity.

Lemma 3.4.1. Processor and fan power consumption power are convex with re-
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spect to fan speeds.

Proof. Power consumption consists of three components: 1) dynamic power is

independent of fan speeds; 2) fan power is a cubic polynomial of fan speed; 3)

static power is a linear function of temperature.

Dynamic power is a function of core utilization, thus Equation (3.11) shows

the independence of dynamic power from the fan speed selection.

∂nεdynamic
∂fn

= 0, ∀n (3.11)

The power consumption of the fan is a cubic polynomial with positive first

and second derivatives.
∂2εfan(fi)

∂f 2
i

= 6rffi > 0 (3.12)

Static power has a linear relation with temperature, thus the convexity

of static power is the same as of temperature. Consider the temperature func-

tion in Equation (3.5). The steady state temperature and time constants are

numeric values obtained through experiments, so we prove the convexity of tem-

perature through numeric differentiation in Figure 3.10. The second derivative

is non-negative for all fan speeds, so temperature as a function of fan speeds is

convex.

Lemma 3.4.2. Execution delay is convex with respect to fan speeds.

Proof. Total execution time of any given interval is a function of the workload

being executed, which has a minimum delay (c(w)), and the fan speed, which

may further slow down the workload. The delay function (Equation 3.7) is an

exponential, and its second derivative:

∂2εtime(w, fi)

∂f 2
i

=
c(w)γ2

α
eγfi > 0 (3.13)

Since α, β, and gamma are all positive constants, the second derivative is

always positive, hence the delay function is convex with respect to fans.
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Theorem 3.4.3. Total energy cost of any application executed on this hardware

platform is convex with respect to fan speeds.

Proof. Energy consumption is defined as the product of power consumption and

the total time that power is dissipated across. The final convexity of energy is

calculated as:

∂2Ei
∂f 2

i

=
∂2εpower(fi)

∂f 2
i

+
∂2εtime(fi)

∂f 2
i

+ 2
∂εpower(fi)

∂fi

∂εtime(fi)

∂fi

(3.14)

The first derivative of the energy cost function is always positive, such that

energy monotonically increases with fan speeds. Morover, since we find that the

second derivative of the energy cost function with respect to fan speeds is always

positive, the problem is convex.

In this section, we have proven that energy, power, and delay are all convex

with respect to fan speeds, which allows us to next solve this optimization problem

using its Lagrangian Dual.

3.4.1 Convex optimal formulation

We wish to minimize the cost CN while ensuring that the system remains

strictly below the temperature constraints (Tlimit) for all time intervals. The

Lagrangian with KKT multipliers is formulated as such, where each λi represents

the constraint at interval i:

L = CN +
N∑
i=1

(max(~Ti)− Tlimit)λi (3.15)

We need to solve for the fan assignment f at every interval j such that the

Lagrangian is minimized.

∂L
∂fj

=
∂

∂fj
(CN +

N∑
i=1

(max(~Ti)− Tlimit)λi) = 0,∀j ∈ [1, N ] (3.16)
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The total cost CN is a summation of all interval costs, and is dependent on

all fan speeds. We assume that each interval’s fan mainly affects its own interval

cost, and less so intervals before or after it. This means dropping the derivative of

the static power term (εstatic), since it is the only term that carries the hysteresis

in terms of fan-dependent temperature. That is, the dominant dependency of total

cost CN on fj is the the cost of that interval εcost(wj, ~Tj, fj). Thus, ∂CN
∂fj

simplifies to
∂εcost j
∂fj

. Additionally, since temperatures in the past are not dependent on current

or future fan settings, the summation will begin at the relevant interval j instead

of 1.

As we showed in Section 3.3, the critical element in the chip temperature

vector ~Ti is the hottest one. Now recall the analytical temperature model from

Equation 3.5:

Ti+1 = Tie
−t
τ + Tss(1− e

−t
τ ) (3.17)

The first term is an exponent of an exponent of fan speeds and converges

to 1. For differentiation then, that simplifies the temperature function to ∆T =

Tss(1− e
−t
τ ). Substituting this into the constraint comparison of Equation 3.15 for

consecutive intervals j and j + 1:

∂

∂fj
εcostj +

N∑
i=j

∂

∂fj
∆Tiλi = 0 (3.18)

∂

∂fj+1

εcostj+1 +
N∑

i=j+1

∂

∂fj+1

∆Tiλi = 0 (3.19)

Next, we normalize Equation 3.18 by
∂∆Tj
∂fj

and Equation 3.19 by
∂∆Tj+1

∂fj+1
,

then take the difference. Since temperatures must stay strictly within constraints,

λj must be equal to 0. Most of the terms in the expanded summations simplify,

resulting in this equality:

∂εcostj
∂fj

∂∆Tj
∂fj

−
∂εcostj+1

∂fj+1

∂∆Tj+1

∂fj+1

= 0 (3.20)
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Intuitively, this specifies that the ratio ∂ratio between execution cost and

the thermal pressure should be held constant across intervals. This simplifies the

Lagrangian problem into finding a fan setting where this ratio can be kept constant

throughout runtime. However, this rule does not specify the actual value of that

ratio.

3.4.2 Optimal algorithm design

We use energy as an example of an optimization objective in the rest of

this paper. The pseudocode for the interior point search for a solution is described

in Algorithm 1, solving for a vector of optimal fan speeds for a given workload.

In each workload interval, the controller takes the current workload state and a

target ratio as inputs, and solves the combined system model to output the closest

permissible fan speed that produces a matching ratio, to fulfill Equation 3.20. In

lieu of physical sensors, we use Equations 3.2 and 3.5 to represent power and

thermal interactions. Equation 3.7 dictates the effect a fan setting has on the

execution time of each interval.

To begin, we evaluate the target ratio at the lowest possible fan speed (lines

2-5). The fan speed setting of each query’s first interval drives a target ratio for

all following intervals. According to Equation 3.20, this is a potential value of

the initial ratio, ratio0, that should be matched for the rest of execution in order

to achieve the minimal cost of execution, or minimal energy in our case. The

rest of the simulation (power dissipation and temperature simulation) follows this

decision. For all following intervals, there are fixed costs that are independent of

the fan decision, including dynamic power dissipation and static power dissipation

(lines 7-8), after which the solver attempts to set a fan speed that matches ratio0 as

closely as possible (line 9). After making the interval decision, the solver completes

timing and thermal modeling (lines 11-12).

Due to physical limitations of the fan speed and a possibility of overloading

the processing workload, there may not be any feasible fan speeds that satisfy

ratio0, resulting in temperature violations. Thus, temperature should be checked

at the end of the run (line 17). If the constraints are met, the corresponding lowest-
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Algorithm 1 Search for energy-optimal fan speeds

1: for f0 = each increasing fan setting do

2: for the first interval do

3: ratio0 ⇐ given f0, find ∂εenergy/∂∆T

4: ti ⇐ given {workload, t0, f0}, find temperature

5: end for

6: for each following interval i: do

7: dynamicPower ⇐ fixed for the workload

8: staticPower ⇐ fixed for ti

9: fi ⇐ find fan to match ratio0

10: fanPower ⇐ calculate fan power

11: intervalT ime⇐ find fan-induced delay

12: ti+1 ⇐ advance temperature

13: if ti+1 violates constraints then

14: continue to next f0

15: end if

16: end for

17: if workload completes within constraints then

18: minimum cost fan assignment found!

19: return solution f̄

20: end if

21: end for

cost fan assignment is selected as an optimal solution. If one of the constraints

are violated, the workload chain is re-evaluated, but starting with the next lowest

possible fan speed (loop to line 1). If all fan speed have been exhausted and there is

still no solution that meets all constraints, that means the the problem is infeasible,

and the only resort is to slow down the CPU workload with DVFS.

Since the total cost is always increasing with fan speeds, the algorithm is

described linearly here for clarity, but can be sped up by doing a binary search.

Pragmatically, the number of system states and quantized fan speeds are both

limited (e.g. only 10 fan settings in our actual server); these values can be pre-



61

computed and stored in a lookup table for execution at runtime.

3.5 Results

In this section, we demonstrate the effectiveness of our proposed solution by

comparing against the state of the art and other proposed solutions in literature.

We describe the hardware and software setup of our physical measurements on

the real server, as well as the parameters of our modeling and simulation. We

describe three state of the art fan control strategies and compare with our results.

Finally, we discuss the robustness of our modeling and optimal solver, analyzing

how optimization results might change at various levels of model inaccuracies.

3.5.1 Experimental Setup

We model the same server instrumented and measured in Section 3.2, a

SPARC T4-1 server with 8 cores running at 2.85GHz, with 8 DIMM modules of

16GB each. We use commodity SATA disks as they are preferred by cost-sensitive

datacenters for their low cost per storage density. Buffer caches are enabled to

capture the real response of applications along with power, thermal, cooling and

disk performance issues.

We evaluate the management policies with a mixed workload of database

queries and compute-intensive batch jobs. TPC-H is a decision support bench-

mark representing databases requests [15]. The queries comprise combinations of

operations such as sequential scan, index scan, merge join, and hashing functions.

All queries operate near the thermal threshold 85◦C. SPEC CPU 2006, on the

other hand, is a benchmark suite targeted towards compute-intensive workloads

[106]. As per a datacenter environment, the server will be shared with other jobs

other than a single database thread. We assume there are four co-located com-

pute tasks on the processor, represented in our power and thermal simulations as

single-threaded tasks that consume 8W each (this number was obtained from aver-

aging the power consumption of SPEC CPU 2006 benchmarks). With this mixed

workload on our physical system, we encounter both thermal issues due to heavy
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Figure 3.11: Simulation setup with sub-models.

computation, and I/O performance issues due to reliance on the disk access rates.

Figure 3.11 summarizes the organization of data from each sub-model eval-

uated by each policy. We monitor sensor statistics and event logs on a real server

through IPMI [107]. Most enterprise servers already have a side-band controller

implementing IPMI to handle server management, reading hardware sensors, and

enforcing power modes. Any fan control algorithm should be realistically imple-

mented in this side band controller. The user programmability of this controller

is extremely limited, hence we chose to simulate the physically-based models in

software. Disk access statistics are collected through iostat reports, estimating the

number and average service times of queued and active transactions per sampling

interval (every second). These event logs are converted into a discrete workload

model as described in Section 3.3. The advancement of workoad states varies,

measured at a granularity of 10ms. Since the packaging thermal time constant

is on the order of seconds, the fan control interval is set to 1s. Finally, we use

MATLAB to coordinate our physical experimental traces and analytical models,

and test multiple algorithms for the effects of different fan assignments.

We compare our proposed controller against three others compared them in

terms of delay and energy cost when running mixed SPEC and TPCH workloads.

They represent a range of sophistication and complexity in hardware management
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Table 3.4: Comparison to related fan control strategies

Algorithm Name PID, PID-1 [88] Adaptive PID [89] JETC [96] Optimal

Temperature

Sensing
Physical sensors Floorplan sim Floorplan sim

Numerical

model

Fan Control

Input

Heat sink

temperature

Heat sink

temperature,

fan speed

Multi-core

temperature,

power

Core

temperature,

workload

fan speed

Performance

considerations
(None) CPU throttling

Core migration,

throttling
Disk Delays

Reaction

Horizon
Reactive

Workload

prediction

Temperature

prediction

Workload

dependent

Workload

Verification
(Agnostic) Synthetic SPEC

TPC-H

+ SPEC

schemes. For all policies, progressive power gating is applied in emergency cases

if the main controller fails to maintain temperatures under the specified threshold

(85◦C in our system). The first (PID [88]) is time-tested strategy used in many

control systems in various engineering fields, representing the state of the art. The

next two strategies (Adaptive PID [89] and JETC [96]) were proposed in literature;

they make cooling decisions by accounting for temperature conditions as well as

CPU performance degradation.

Proportional-Integral-Derivative (PID) [88] is completely agnostic to

workload and reacts only to temperature sensor feedback. Being a reactive method,

it responds much slower to temperature fluctuations than proactive controllers,

and by nature allows both over- and under-corrections before arriving at a steady

solution. We show results for “PID-1” which is the same strategy with a setpoint

conservatively set below the threshold (by 1◦C in our case) to reduce temperature

violations. The tuning parameters are determined using the Ziegler-Nichols closed

loop tuning method [108]. It operates at a control interval of 10 seconds.
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Adaptive PID [89] refines the PID assignment into two zones and scales

the tuning parameters dynamically based on the current fan region. It uses the

Ziegler-Nichols closed-loop tuning method [108] to obtain PID parameters specific

to a high and low fan setting (15% and 65% of the maximum, in our experiments).

For all fan speeds between those two settings, the paramters are linearly interpo-

lated, aiming to reach faster convergence. The original proposal for APID stated a

control interval of 30s, aiming to converge the fan control within hundreds of sec-

onds. In our experience, a maxmum control interval of 10s is required to maintain

steady chip temperatures.

Joint Energy, Temperature and Cooling Manager (JETC) [96] uses

proactive core migration to control heat generation. In each control interval, this

policy predicts the upcoming power dissipation and resulting temperatures. Using

the RC thermal model proposed in [94], it then calculates the required cooling

capacity to bring temperatures to the system thermal setpoint, and sets the fan

speed accordingly. JETC re-evalutes control decisions every second, attempting to

stabilize temperatures on the order of 10 ms. While making these decisions, the

fan controller aims to minimize fan setting changes during runtime.

Our Energy-Optimal controller implements the search described in Algo-

rithm 1, minimizing for total energy consumption. The search is executed offline,

then applied to a known query at runtime. For each workload state in a query,

it sets the fan to maintain a constant ratio between the change in energy and the

change in temperatures. Unlike other policies, control decisions are made when the

workload state changes instead of a fixed control interval. In practice, the control

interval is on the order of seconds.

3.5.2 Controller policy results comparison

The energy and delay results from a select number of TPC-H queries are

shown in Figure 3.12. By design, the energy-optimal solver yields fan settings

that yield the lowest possible server energy consumption required to complete a

workload. Our energy savings come predominantly from faster completion times

and lower overall fan speeds. This controller operates as close to the tempera-
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Figure 3.12: Final results of various algorithms on selected TPC-H queries

ture threshold as possible without crossing it, unlike the oscillatory nature of PID

solutions. We guarantee zero temperature violations with lowest energy consump-

tion possible. Only the PID-1 controller is able to keep temperatures below the

threshold, at a much higher cost in terms of delay and energy since it sets an

artificially lower thermal setpoint. The slow convergence of APID leads the pol-

icy to violate temperature constraints. Compared to these heuristic solutions, our

policy performs 2x faster at a 65% lower energy cost. JETC relies on a detailed

thermal simulation of the processor package. At each decision interval, it predicts

the upcoming temperatures and power dissipation, then calculates the heat sink

cooling capacity needed for such a power density to maintain temperatures under

specified constraints. For a slowly-varying workload, this can yield very stable

temperatures. Because of this model-based calculation, it converges to a solu-

tion much faster than the PID-based controls. However, because JETC relies on

migration-based management, its artifically actual fan control results in unstable

temperatures (this effect was also noted in [89]). To manage these unstable tem-

peratures, this control requires higher fans on average. Compared to JETC, our

optimal policy only finishes 1.2x faster on average, but using 19% less energy to

finish a workload.

Table 3.5 summarizes some statistics about how each controller behaves

in terms of fan speeds and resulting temperatures over all tested queries. By
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Table 3.5: Behavior of fan control strategies

Algorithm Name PID APID JETC Optimal

Average fan (%) 77 58 63 57

Std dev of fans (%) 10.18 12.77 6.59 20.12

Time in emergency (%) 28.6 32.1 12.1 0

Avg. temperature (◦C) 84.9 74.1 84.2 84.9

Peak temperature (◦C) 91.5 91.2 85.5 85.0

design, the optimal controller never exceeds the temperature threshold, while the

PID-based solutions naturally overshoot the temperature setpoint regularly. In

these cases, the application will be further delayed and the total server energy

consumption will continue to rise. It is clear that JETC achieves its stated goal

of “flattening” the fan profile, however in cases where the workload may vary

widely, this leads to a very high variance in its temperature. Meanwhile, the

optimal solution finds the minimal fan speeds to keep temperatures within limits

immediately without need for oscillation like the PID-based solutions, resulting in

sharp changes in fan settings immediately after each workload state change.

3.5.3 Sensitivity to model inaccuracy

Our optimal solver relies on several models to represent physical subsystems

in the server and search for a solution at design time. In this section, we investi-

gate the effects of error in the power, thermal, and cooling-performance models.

These studies how the effectiveness of the convex optimal formulation even when

component models are inaccurate.

Power model accuracy

Errors in the power model are described with additive Gaussian white noise

in Equation 3.2 used by the solver at each interval. The signal-to-noise ratio (SNR)

is shown in decibels (dB), where a higher SNR represents a “clearer” original signal
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Figure 3.13: Efficacy of the optimal solver with inaccurate power modeling

relative to the noise. Figure 3.13 shows that a noisy power model will result in sub-

optimal results and higher energy cost, though the optimal policy still outperforms

the next-best JETC policy for most queries. An SNR of 20dB indicates that

original signal is 100 times more powerful than the noise. Due to noise added to

the power model, the optimal policy consumes on average 6.3% more energy as

compared to the optimal policy that uses power model with no noise added. JETC

consumes 8.5% more energy when noise is added to the power model as compared

to no noise. Heuristic PID and APID policies are not sensitive to the noise in

the power model, as they respond only to temperature readings, so their results

remain the same regardless of the model. Thus, optimal policys benefit relative to

PID and APID policies is reduced on average from 65% to 63% with power model

of 20dB SNR as compared to when model with no noise is used.

Thermal model accuracy

We investigate the effects of error in the temperature model (Tss in Equation

3.5). We again use additive Gaussian white noise to estimate errors in the thermal

model. Figure 3.14 shows that due to a 20dB SNR in the temperature model (i.e.

noise is 1% of the original signal), the optimal policy consumes 6% more energy

as compared to when there is no noise in the model. It still outperforms PID by
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63%. JETC has a much higher penalty due to noise in the thermal model - its

energy cost increases by 95%, consuming 2x as much energy as the optimal policy

at the same noise level. We conclude that while both the optimal policy and JETC

depend strongly on a temperature model to achieve their objectives, the optimal

policy is more robust to reasonable levels of added noise.
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Figure 3.14: Efficacy of the optimal solver with inaccurate temperature prediction

Disk delay model

A major motivation of this work was the realization that fan speeds have

a detrimental effect on disk peformance [11, 93]. The control algorithm should be

aware of the sigmoid shape of disk response to fan settings. The original delay

model we proposed in Equation 3.7 is exponential with respect to fan speeds.

Figure 3.15, illustrates two alternative models, a piecewise linear function and a

constant model (the state of the art assumption), as well as their first derivatives

which dominate the convex optimization solution in Equation 3.20. To test these

results, we substitute each of these alternative models into the optimal solver

calculation, and simulate the final results for a system that still responds with an

exponential disk delay relative to fan speeds.

Figure 3.16 shows that if the solver tries to obtain an energy-optimal so-

lution while assuming that disk throughput is independent of fan speeds, it uses
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31% more time and 71% more energy to complete the workload on average. A

piecewise linear model would have a delay penalty of 4% compared to an accurate

exponential model, using 12% more energy in total. This proves the significance

of our modeling work - inaccurate knowledge of the physical system leads to sub-

optimal results. However, our optimal formulation still provides energy efficiency

benefits in the case of a deficient disk model - even the constant model saves 37%

system energy compared to PID.
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Figure 3.15: Alternative disk delay models used by the optimal solver
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Table 3.6: Overhead of fan control strategies

Algorithm PID [88] APID [89] JETC [96] Optimal

Offline Design

Effort

Medium

(tuning)

Medium

(tuning)

High

(modeling)

High

(modeling,

solution search)

Online Decision

Delay
7.81 µs 7.89 µs 4.14 µs 1.83 µs

Simulation time

for query 1
5.8 min 7.3 min 6.7 min 3.7 min

3.5.4 Overhead

Table 3.6 summarizes a comparison of the design and runtime sources of

overhead for each policy. It also shows the example solution time for the longest

query in the suite, q1. Our simulations throughout this section were performed on

an Intel Core i5 unning at 2.6 GHz.

PID [88] requires manual tuning before deployment; the Adaptive PID con-

troller [89] has to be tuned twice. Iteratively tuning the controller terms takes

many multiples of the machine’s thermal time constant - minutes per iteration.

In contrast, both JETC [96] and our strategy require up front modeling effort.

Both strategies model the system’s physical characteristics including thermal time

constants, heat capacity, cooling capacity and workload power consumption. Our

solver also models the resource utilization and power consumption of the workload

before it runs. The workload trace clustering implemented in Python took less than

10 seconds over thousands of samples collected over 4.5 hours of actual database

execution. Since this is a learning algorithm, it can be re-executed periodically

to fine tune the workload model, in case application characteristics change. In

addition, our optimal solver performs a search at design time for fan settings given

starting temperatures and a known workload. This search can be completed in

MATLAB in approximately 3.7 minutes for the longest query.

Runtime delays for each policy may include the time to compute a decision.

For PID and APID, the controller has to compute the derivative and integral of
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historical errors, which contributes to the delay of over 7µs for each decision. They

also have delayed reactions to real system stimuli at runtime as opposed to the

proactive decisions made by JETC and our optimal policy. Because JETC relies

on second-to-second granular temperature prediction, it simulates the processor

floorplan in detail before calculating a change in fan speed. This calculation takes

on average 4.14 µs in our experiments. By spending all the design effort in ac-

curately modeling the system, our runtime overhead costs (1.83 µs per decision)

come only from accessing the power and temperature sensors, fan tachometer, and

looking up the precomputed solution.

3.6 Conclusion

In this chapter, we measure many sources of hardware context within a sin-

gle node, and optimized fan control with this contextual data to lower energy costs

by up to 65%. For each subsystem in the server, we discuss the physical sensing

basis and how we define the context data extracted. We observe and quantify hard

disk sensitivity to environmental disturbances such as datacenter HVAC cooling vi-

brations, and server fan vibrations, their relationship to data-intensive workloads,

and consequent energy wastage. We identify a previously-ignored link between

the cooling system and application performance, where commodity drive sensitiv-

ity to fans can cause up to 88% lower performance in realistic cooling situations.

We also develop and integrate interdependent analytical models for performance,

power, thermal, cooling. Finally, we define a multi-model objective function that

can be solved to find optimally low-cost fan speeds, saving 19-65% of CPU and

fan energy while guaranteeing that critical thermal constraints are still met 100%

of the time.

This context extraction methodology may be generalized to many different

well-engineered and well-known systems. For platforms that operate in more un-

predictable scenarios, such a closed-form solution focused on each device may be

infeasible. In the next chapter, we discuss situations and applications where users

and ambient environments are highly variable. While analytical optimizations may
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be inappropriate for those scenarios, machine learning techniques provide a scal-

able way to exploit both human and environmental context data across a hierachy

of diverse devices.

This chapter contains material from “Optimal Performance-Aware Cooling

on Enterprise Servers” by Christine Chan, Alper Sinan Akyürek, Baris Aksanli,

and Tajana Šimunić Rosing, which was submitted for consideration in IEEE Trans-

actions on Computer-Aided Design. IEEE 2017. The dissertation author was the

primary investigator and the author of this paper.

This chapter contains material from “Correcting vibration-induced perfor-

mance degradation in enterprise servers” by Christine Chan, Boxiang Pan, Kenny

Gross, Kalyan Vaidyanathan, and Tajana Šimunić Rosing, which appears in SIG-

METRICS Performance Evaluation Review. ACM 2013. The dissertation author

was the primary investigator and the author of this paper.



Chapter 4

Environmental context: Air

quality and smart health

Beyond datacenter workloads, user-centric Internet of Things (IoT) appli-

cations function in many environments that may be varied and unpredictable. In

this chapter, we return to a wider view of the IoT, where context extraction is

performed not only internally in each device, but also communicated across a set

of devices. The scope of context for an application then consists of human and

environmental data in addition to the machine performance metrics from previous

chapters. Because of the variable deployment environment, devices should leverage

environmental context to drive operation, including actuating their sleep modes,

sampling intervals, or communication intervals.

We use a sample healthcare system to illustrate the different scopes and

scales of data collection in a single application, which may be processed by ma-

chine learning tasks distributed over a hierarchy of devices. The application com-

bines large scale datasets, collected at a population level, with local sensing, and

applies context-aware functionality to improve the battery efficiency of resource-

constrained nodes at the edge. Realistically, the same learning tasks may be exe-

cuted on multiple devices, albeit on different data sizes. This task allocation is part

of the different cost tradeoffs like energy efficiency, processing speed, or battery life

of sensor nodes. We will discuss how to leverage the heterogeneity of devices in this

hierarchy to meet different system design goals. Though still under development,

73



74

the ultimate goal is to display actionable information such as personalized asthma

risk to a user. Though we use a smart health as a case study, these observations

can be generalized to other IoT applications that span a range of devices like small

sensor nodes, gateways and cloud aggregators.

4.1 Background and Related Work

Many researchers have utilized machine learning and data mining tech-

niques to draw new insight from large studies of geographical models. Some have

proven hypotheses about the effects of urbanization on asthma hospitalization

rates [109, 110] or the link between air pollutants vs. asthma incidence [111]. The

DELPHI project is a large-scale integration of electronic health records (EHR), en-

vironmental data, medication usage and physical activity monitors. They present

a specific personalized dashboard that summarizes this data and displays relevant

data any specific patient [12]. This is a quickly developing area. As a field, we

have some understanding of correlations between environmental/geographical fac-

tors for widespread conditions like asthma, but are notably missing automated

system for individual patients to incorporate this data in daily life.

As sensor networks and context-aware computing become increasingly flex-

ible and personalized, much effort has been made towards empowering citizens to

monitor and analyze their own environment. Healthcare or fitness applications

in the IoT require hardware and software systems for crowd sourced air quality

monitoring [112, 113] leading to more comprehensive studies of populations and

geographic factors in public health [114]. Wearable pollutant monitors have seen

success in the market, whether for personal or industrial use - the degree of con-

nectivity varies [115, 116]. And to effectively integrate sensed data from various

sources, many communication protocols have been researched for maximum us-

ability and efficiency, such as the pub/sub model for crowd sourcing [117], and

aggregation inside the network [118, 119].

There are many ideas and prototypes for crowd sensing, but precious little

validation, so we are motivated to find the connection to higher-level actionable
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health information. Electrochemical sensors are a cost efficient solution for gas

measurement, with price tags on the order of hundreds of US dollars as compared

to those used at regulatory stations, which cost tens of thousands of dollars. The

EPA includes measurements of six critical air pollutants in the definition of the air

quality index (AQI) [120], three of which our platform measures by default. The

previous stage of this work produced a mobile modular sensor platform that detects

air pollution indicators including nitrogen dioxide, ozone and carbon monoxide at

a parts-per-million (ppm) granularity, reporting either batched or real-time results

directly to users via a mobile application and aggregated all data to the Internet

[121, 122]. Our proposed platform has increased processing power such that it can

execute some machine learning algorithms, and can be paired with an IoT gateway

or directly upload data via Wi-Fi to the cloud. In the interest of maintaining

scalable data volumes and communication bandwidth, we will implement and study

the opportunities for intelligent processing natively on the sensor node, instead of

naively aggregating all data in the cloud.

4.2 A modular context-sensing platform

As a test platform, we developed an air quality sensing board, which served

as a context-generating sensor where context is derived from local environmental

conditions (e.g. pollutants used as air quality indicators, temperature, humidity).

The platform was designed with the primary goal of accurately sensing pollutants

while maintaining modularity and extensibilility, allowing end users and researchers

to reconfigure the board and replace modules as required to tailor the functionality

to their specific end needs. The result is a platform that can interface with vari-

ous sensing modalities using standard communication protocols (I2C, SPI, analog,

UART, USB, and BLE) and process the data with an ARM Cortex M3 micropro-

cessor.
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Figure 4.1: The AQ board with electrochemical sensors, supporting humidity
and pressure sensors (left), and with VOC sensors, Bluetooth module and alterna-
tive processor (right).

4.2.1 Sensors

The air quality sensing platform can interface with any 3.3 or 5.0 V sensor

that communicates using I2C, SPI, analog, or UART. The interface options permit

a variety of sensing modalities to be used. Our configuration utilized electrochem-

ical sensors for traditional air quality indicators (NO2,CO,Ox), nondispersive in-

frared sensors for CO2, photoionization detectors for volatile organic compounds

(VOCs), and a variety of environmental sensors (temperature, humidity, baromet-

ric pressure). A list of tested sensors is shown in Table 4.1.

The base configuration of the platform uses three electrochemical sensors for

monitoring the traditional air quality indicators, which include NO2 (Alphasense

NO2-A43F), Ox (Alphasense O3-A431), and CO (Alphasense CO-A4). These

chemicals are defined in the US National Ambient Air Quality Standards as part

of the Clean Air Act. While these three sensors were selected for our application,

Alphasense makes a variety of other pin compatible sensing elements for hydro-

gen sulfide (H2O) from sewage treatment plants, nitric oxide (NO) from automo-

bile emissions, and sulfur dioxide (SO2) from coal power plants. The sensors are
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Table 4.1: Sensing elements of the air quality sensing platform, including built-in
and optional extensions.

Sensor Name Measured element Communication

Sensiron SHT11 Humidity Proprietary 2-wire

Sensiron SHT11 Temperature Proprietary 2-wire

TE Connectivity MS5540C Barometric pressure SPI

TE Connectivity MS5540C Temperature SPI

Alphasense NO2-A43F Nitrogen dioxide (NO2) Analog

Alphasense O3-A431 Ozone (Ox) Analog

Alphasense CO-A4 Carbon Monoxide (CO) Analog

Alphasense PT1000 Temperature Analog

Telaire T6713 Carbon Dioxide (CO2) I2C

Mocon pID-TECH eVx Volatile Organic Compounds Analog

ams iAQ-Core Volatile Organic Compounds I2C

STMicroelectronics STC3105 Power Consumption I2C

mounted to a companion analog front end (AFE) from Alphasense, which assists

with voltage regulation and signal amplification. Electrochemical sensors offer a

high level of accuracy at a low current consumption. Each sensing element has

two electrodes which give analog outputs for the working and auxiliary electrodes.

The difference in signals is approximately linear with respect to the gas concen-

tration detected but have dependencies with temperature, humidity, barometric

pressure, and cross-sensitivities with other gases. By accurately measuring the

environmental conditions, the effect of these dependencies on the measured signal

can be reduced. Due to the kinetics of the sensing mechanism, the gas sensors

have a long required warm up period that prevents systems from power cycling for

energy savings. In our experience, a warmup period of 30 minutes is sufficient to

reach valid values. After which, the sensing elements will respond to a change in

environmental conditions with a 60, 45, and 20 s response time for NO2, Ox, and

CO, respectively.
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The environmental sensors (MS5540C and SHT11) are important for cor-

recting the environmentally related offset in electrochemical sensor readings and

for accurately measuring temperature, humidity, and pressure, which can affect

medical conditions. The sensors self-calibrate and are able to deliver accurate

readings after a short delay at startup. The TE Connectivity MS5540C is a baro-

metric pressure sensor capable of measuring across a 10 to 1100 mbar range with

0.1 mbar resolution. Across 0◦ C to 50◦ C, the sensor is accurate to within ±1

mbar and has a typical drift of −1 mbar per year. The Sensiron SHT11 is a rela-

tive humidity sensor capable of measuring across the full range of relative humidity

(0 to 100% RH) with a 0.05% RH resolution. Both sensors come equipped with

temperature sensors with ±0.8◦ C and ±0.4◦ C accuracy, respectively. The sensors

stabilize to environmental changes in under 30 seconds, which is sufficiently fast

to capture changes in the local environment.

All sensing elements rely on a passive diffusion mechanism for pollutants

to reach the sensing elements. While an active air flow rate can result in faster

response times and potentially more accurate readings, an exhaust fan has pro-

hibitively high power consumption for a mobile, embedded platform. To study the

effect of air flow and enclosure design, we are in the process of producing multiple

3D printed enclosures that promote different levels and directions of air flow for

comparative testing.

The electrochemical sensors generate an analog output, which is connected

through a header to a pair of ADCs (TI ADS6115). The 16-bit ADC has a pro-

grammable gain amplifier before the conversion circuitry, allowing the effective full-

scale range between differential inputs to vary between ±0.256 V and ±4.096 V.

The ADC has a maximum full-scale range of ±6.144 V, but it cannot be fully

utilized with the 5.0 V supply rail of the board. The adjustable gain is a useful

feature that permits dynamic sampling resolution for capturing small variations

of typically low signals and the high signals near pollution sources. The ADC is

operated in a single-shot conversion mode where all channels are sampled sequen-

tially in accordance with our desired sampling rate. The ADC has the ability to

perform continuous conversions, but it is not practical to sample at 8 Hz when
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the required sampling rate is 1/5 to 1/30 Hz. By not continuously sampling, the

average ADC power consumption drops from 150 µA to < 2µA.

The platform has headers for connecting additional sensors. In our con-

figuration, total VOCs (TVOCs) and carbon dioxide were important aspects for

quantifying indoor air pollution. VOCs are a major indicator of air quality in in-

door environment and are outgassed from a variety of building materials, cleaning

agents, paints, and microbial agents [123]. Carbon dioxide concentrations have

been linked to decreases in concentration and productivity [124] and can be used

to estimate occupancy [125]. Both of these sensors (shown in Figure 4.1 connect

to headers on the topside of the platform. These sensors were added to the air

quality sensing platform with no design changes, showcasing the modularity of the

design. Different sensors can be connected as required for end user applications.

Initial data was collected by co-locating a single sensor platform with a ref-

erence station at the Colorado Department of Health and Environment monitoring

site. Using 2 weeks of minute-by-minute data, data analysis and verification of the

gas chemistry model was performed [126]. This calibration model was used in the

conversions for all remaining boards. Depending on the mode of deployment and

availability of other nearby sensors, we expect to adjust the model computation for

each individual board based on reference data from either a regulatory air qual-

ity monitoring station, or a calibrated mobile sensor node. The mean standard

deviation with direct emissions across 6 sensors over 2.75 hours: 27.8 ppb. Mean

standard deviation in ambient environment without direct emissions in a 4.5 hr

period: 8.3 ppb. We can adjust the ADC gains dynamically online, and update

the model parameters through the processor.

4.2.2 Processing and communication

The air quality sensing platform is compatible with the Particle Photon

[127] and the Particle Electron [128]. The Particle Photon runs on an ARM Cortex-

M3 32-bit core at 24 MHz with a real-time clock (RTC), 1 MB flash, and 128 KB

SRAM (ST Micro STM32F205). Application code is written in C++. It has a Wi-

Fi module (Broadcom BCM43362) through which it can upload data to the internet
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and have its firmware updated wirelessly. The Broadcom Wi-Fi module has a single

antenna connection and can support IEEE 802.11 b/g/n. The Particle Electron

has the same ARM processor but is installed with a 3G cellular module instead

of the Wi-Fi module. The U-bloc SARA-U260 and G350 chipsets provide 3G and

2G cellular connectivity, respectively. Although developed for direct interface with

the Particle devices, Arduino boards could be substituted with minor additional

wiring. Each of the Particle modules offer a secondary power connection to the

RTC and SRAM, allowing the board to retain a correct timestamp and critical

configuration values in low-power situations that may cause the microprocessor to

reset.

The microprocessor collects readings directly from digital sensors and dig-

itized values from the ADCs. It arbitrates the various buses and slaves and then

compiles the data into a JSON-formatted message. Each sample record currently

includes a full real-time timestamp, uptime of the board, and values from all sensors

on board, but it can be updated to include power management statuses, calibra-

tions, or contextual output from the on-board Context Engine. Messages are sent

in ASCII over UART to the Bluetooth Low Energy (BLE) 4.0 module (HM-11),

which wirelessly relays the message to a paired personal device. BLE is well suited

to the air quality sensing application because it offers a secure, low-power com-

munication channel. The low bandwidth of BLE is not a problem with the low

sampling rate of the system. For stationary deployments, Wi-Fi and 3G proto-

cols can be used to communicate to a backend server. The networks are prevalent

within densely and moderately populated areas. While BLE is provided by default

for communication, any communication module that communicates serially can be

added to the communication extension header, such as the HC-06 Bluetooth 2.3

module for backwards compatibility.

In addition to sending data, the platform has a two-way interface with

a mobile application on Android phones (currently available for Android 4.4+).

JSON-formatted commands allow the user to remotely toggle whether data is

stored locally on the SD card, change the sampling interval, adjust configuration

parameters for the analog sensors, and update the conversion model on the fly.
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4.2.3 Power

The air quality sensing platform can be operated in a stationary or mobile

mode, drawing power from a rechargeable battery or wired USB connection, re-

spectively. We equipped a 1800 mAhr lithium-ion battery, but for a higher energy

density, a primary cell option could be used if it connects to a standard 2-pin (2

mm spacing), keyed power connector. When connected to a powered USB line,

the battery is recharged through an on-board battery charging IC. Topside LEDs

serve as power and charging indicators.

In addition to a time-based sleep mode, the Photon can enter deep sleep

mode and be woken up by hardware interrupts. On our platform, interrupts can be

generated by the BLE module to signal when a nearby device has been connected

or by programmable alert pins on the ADCs, so that the board may conserve energy

by going into a low power mode until pollutant levels reach a desired threshold

without manual polling.

Air quality measurements are low-frequency signals, varying on the time-

frame of minutes and hours. Combining a low sampling rate with deep sleep mode

on the microprocessor enables significant power savings. For reference across the

operating temperature range of −20◦ C to +60◦ C, the Particle Photon consumes

30 mA in normal operational mode with the Wi-Fi off, 1 mA in sleep mode, and

99 µA in deep sleep mode.

The sampling rate can be adjusted for the required application (e.g. mobile

sensing may require a longer battery life than a stationary deployment). On the

scale of environmental sampling rates (< 1 Hz), the 17 µs wake up time does not

affect performance. The smallest sampling period is defined by component hold

times and bus delays, taking 290 ms to update readings from all sensors on board.

The sampling rate is appropriate for monitoring ambient conditions, but further

shortening the awake time can improve the operational lifetime of the device.

Our base configuration equipped with the Particle Photon has two primary

methods of communication: BLE and Wi-Fi. The BLE module is based on the

TI CC2541 chipset, which has current consumption of 15 mA and 8.5 mA when

transmitting and receiving, respectively, but only 600 µA in sleep mode. The
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Wi-Fi module has even higher power consumption at 80 mA average. Due to the

low average power that is inherent to the BLE protocol, BLE can be in regular

communication with nearby devices, but the high power cost of Wi-Fi prevents it

from being regularly deployed in mobile settings. If it is needed, the Wi-Fi can be

cycled on for short periods for burst communication to a backend database. If real-

time measurements are not required in an application, data can be stored to a local

SD card for later analysis, removing the need for higher power communication.

If VOC or CO2 measurements are required for an application, the board

should be configured into a stationary, plugged position due to the high current

draws of the sensors. The VOC sensors pull 39.7 mA and the CO2 sensor draws

an additional 30.2 mA baseline with large spikes in current (500-600 mA for 560

ms) when the infrared lamp turns on. While the system can provide these current

draws, the battery would not last long enough for sustained mobile deployment.

A summary of the current consumption in different operational modes can be seen

in Table 4.2.

Table 4.2: Power consumption in various configurations. “Env” refers to the set
of basic environmental sensors (humidity, temperature, and pressure) and “AQI”
refers to the pollutant sensors.

Microcontroller Bluetooth WiFi Sensors Power (mW)

Deep Sleep

Off Off None 0.42

Deep Sleep Off Env 10.15

Deep Sleep Off AQI+Env 52.19

Idling

Off Off None 144.20

Deep Sleep Off Env 153.26

Deep Sleep Off AQI+Env 192.40

Active (24 MHz)

Connected Off Env 231.62

Connected Off AQI 249.92

Deep Sleep Connected AQI+Env 519.94

Our platform currently consumes 192.4 mW during active sampling and
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processing, and 52.2 mW in deep sleep mode. With a 1.8 Ahr battery, a sensor

node lasts 5.0 days at a 5 s sampling interval and 5.6 days at a 30 s sampling

interval. This is a conservative characterization. Power efficiency improves by

optimizing code use and aggressively power gating various modules on the board

whenever possible. For reference, other commercially available air quality sensors,

such as the AirBeam [115] and CairClip [116], can only measure up to 10 and 36

hrs on a single charge, respectively.

4.3 Context-aware Smart Health application

In healthcare settings, the data collection and aggregation hierarchy in-

cludes components such as wearable monitors, environmental sensors, in-home

care equipment, and larger electronic health records (EHR). Heightened privacy

concerns in healthcare settings further motivate the need for allocating tasks to

nodes close to the edge of the cloud, limiting the communication and exposure of

sensitive medical data. The main idea of our application is to integrate contextual

information at two very different scales. First, we build an initial model for regional

risks towards asthma. To bring this large-scale data down to a relatable and useful

data point for an individual, we combine it with personal environmental data col-

lected at a local level. In fact, the context engine framework is general enough that

the same coding infrastructure used for our previous fitness work in Chapter 2.4

are easily instantiated for a healthcare application. For example, a context engine

running on an air quality sensor nodes works to detect anomalies in continuous air

quality data. The anomalies can then be collected by the patients cell phone, run-

ning an intermediate content engine, that will correlate air quality anomalies with

physical activity and respiratory metrics to learn when asthma related problems

occur. At a larger scale, a context engine running in the cloud may use data from

many individuals context engine outputs to gather correlations between asthma,

geographic location, air quality and physical activity. Meanwhile, the intermediate

data generated can be shared for other uses, reducing the computational load for

those applications.
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Figure 4.2: A workflow for building our personalized health application based
on population health data

In this section, we present our experimental setup for deploying a dis-

tributed sensing and health application. Our set up includes an original modular

sensing platform that fits into the IoT as a sensor node, capable of both collecting

raw data and providing some limited amount of energy-efficient computation. In

Section 4.4, we show measurement results and discussions for the several possible

configurations of running this application on an ecosystem of heterogeneous nodes.

4.3.1 Population health

At a population level, hospitalization rates serve as an indicator for health,

and the primary diagnosis for any particular emergency room admission or hospi-

talization represents the overall risk that a population has towards that condition.

We have preliminary results based on annual county-level data from the EPA [129]

and California Department of Public Health [130]. The EPA data includes daily

pollutant averages and maximum hourly counts, as well as temperature and hu-

midity data, for each county in California. The demographic data includes hospital

and emergency room asthma admission rates per 10,000 persons, for each county

annually, as well as the percentage of residents who live within 0.5 miles of a public

park, and their commute habits. The pollutant count and demographic data show

linear correlations for the concentration of pollutants such as CO and Ozone and

the likelihood that more citizens will be admitted to the ER for asthma compli-

cations. On the other hand, the percentage of citizens who live within 0.5 mile

of a park is negatively correlated with the county’s rate of hospital admissions for

asthma. The model goes beyond just linear relationships - it includes up to 2nd or

3rd order cross-dependencies between different input variables (depending on the
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amount of public data available).

Based on this model, for any given environmental sample of gas pollutants

and related cross-dependencies (temperature, humidity), we predict the related

asthma risk. We divide the dataset into 10 subsets for cross-validation of the

regression model. Currently, using various subsets of the environmental data, we

can predict a county’s hospital and emergency room admission rate for asthma

with 25-35% error. This is useful to test hypotheses on the general population by

leveraging existing historical data, without instrumentation. Once correlations are

identified between variables of interest, then we can refine the top-down model with

personal details as they are made incrementally available. Respiratory sensitivity

varies widely among citizens even asthma patients can have different triggers

depending on their vulnerabilities. There is value in helping each individual track

and learn how their condition responds to acute triggers (e.g. known allergens) as

well as their vulnerability according to daily air exposure. Going forward, we will

also move into monthly and seasonal data. We also plan to include data from more

census and city planning sources, such as what fraction of the population lives or

works in proximity to highways, industrial areas, bus depots, or trains.

4.3.2 Personal health

With the population health model, citizens can now have a idea of what

environmental factors generally have effects on respiratory health. However, they

cannot apply this knowledge to their daily lives until they have 1) up-to-date data

about their immediate environment (e.g. carbon monoxide concentration in the

surrounding city block is 2 parts per million), 2) a translation from that current,

local data into a quantifiable health-related terms (e.g. CO 2 ppm is a safe level of

air quality, no action needed), and possibly 3) personalized factors such as allergies,

medical history, or level of aerobic activity. Such a personal application should give

insights on whether the user is going through typical exposure, or may need to be

alerted to sudden and unexpected changes in their environment.

Since each person’s health and activities vary, it is important for us to au-

tomatically sample and extract their behavioral context. For such an application,
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we can split up the tasks in order of:

1. Environmental raw sampling: Although the Alphasense electrochemical

gas sensors we use have some temperature adjustment, calculating the cross

dependencies with other changing environmental factors, including tempera-

ture, humidity, barometric pressure, and other gases) is non-trivial, requiring

at least 2nd order level polynomials with high-precision coefficients.

2. Sensor data summarization and anomaly detection: To reduce the

amount of transmissions from sensor nodes to collector nodes in the network,

we can use anomaly detection techniques to filter out “typical” samples from

“anomalous” ones. We use a SMCTC-based [131] particle filter to predict

the expected value according to an irregular time series stream of air quality

values. If an incoming sensing sample deviates from the expectation, it is

labeled as an anomaly. The results can be used to reduce sensor power

consumption and communication congestion by down sampling whenever

samples are “typical” instead of “anomalous”.

3. Nonlinear modeling of health risk for patient feedback:

Finally, we build and update Taylor-expansion based nonlinear regression

models (TESLA) [51] to learn which environmental factors have the highest

correlation with asthma incidents at a population level, as described in the

previous section.

In the remaining sections, we will describe the experimental setup for eval-

uating several variations of this application implementation on a hierarchy of de-

vices. we will describe a specific sensor node design that is capable of collecting

multiple environmental samples and processing some data.
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4.4 System evaluation and results

4.4.1 Smart Health Experimental Setup

We roughly categorize the available system into three different types of

compute nodes, in order of increasing resources: sensor nodes, gateways and edge

servers. In our testbed, they are represented by the air quality sensor platform

(Particle Photon system-on-chip with ARM Cortex M3), Raspberry Pi 3 Model

3 (Broadcom system-on-chip with ARM Cortex A53) [132] and an edge server

(similar to Intel Xeon D Processor [133] or Dell Edge Gateway 5000 [134]). The

three application subtasks will be delegated to different devices. The sampling task

is uniquely executed on the air quality sensor. The modeling task is an aggregation

function and must run on an IoT gateway or server.

The Raspberry Pi 3 (RPi) has a Broadcom BCM2837 SoC, where the pro-

cessor runs at 1.2 GHz by default, and the typical power consumption we have

observed is between 1.2W - 2.5W depending on utilization, and up to 3.5W when

communicating with Wi-Fi. The edge server we used runs at 2.6 GHz and consumes

between 12W - 45W depending on the utilization, and is constantly connected to

the Internet via Wi-Fi. The air quality board communicates with gateways via

Bluetooth, or directly with an edge server using Wi-Fi. The RPi has built in Blue-

tooth and Wi-Fi capabilities, we assign it to communicate with the edge server via

Wi-Fi. The RPi consumes 2.9-3.5W when using Wi-Fi[46]), while the AQ board

consumes 100mW when transmitting on BLE, and 150mW when transmitting on

Wi-Fi.

In this chapter, we use end-to-end metrics such as total execution time and

total device power consumption to quantify the execution of different devices. We

can further inspect details of subsystems if needed, to identify bottlenecks and

optimize performance (e.g. using performance counters in the operating system,

easily accessible in Linux), but considering the scale of our system, we choose to

take the nominal performance for granted and focus on the ecosystem scale instead.
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Table 4.3: Three devices representing a range of capabilities in the cloud

Node: Sensor board Gateway Edge server

Product name Particle Photon Raspberry Pi 3
Macbook Pro

(Mid 2014)

Chipset ARM Cortex-M3
Broadcom BCM2837

with ARM Cortex A53
Intel Core i5

Clock speed 24 MHz 1.2 GHz 2.6 GHz

Power draw 192-520mW 1.2-2.5W 20-35W

4.4.2 Individual devices

We first evaluate the capabilities of each node for running the three subtasks

in our health system (listed in Section 4.3.2. For the machine learning tasks, there

are various configurations to choose from for accuracy and speed of execution.

Figures 4.3 and 4.4 show the costs of executing tasks on various devices, in terms

of delay and energy respectivitly. In anomaly detection, we use a particle filter with

l represents the number of iterations and p represents the number of particles. We

observe that execution is always slowest on the AQ board and fastest on a server,

but energy efficiency varies more.

In a real hierarchical system where context engines are delegated to various

connected nodes, each sensor nodes, gateways and cloud servers would be running

different workloads with different data sizes, requiring different communications.

4.4.3 Ecosystem utilization

Next, we’ll consider this heterogeneous system, where sensor nodes are run-

ning smaller workloads than servers, but we also include data transmission costs.
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Figure 4.3: For different configurations: Total execution time for anomaly de-
tection and health risk model on different nodes. Note that y-axis is in log scale.

For anomaly detection on the limited AQ board, we choose the 100/100 configu-

ration (100 particles and running 100 iterations for time series prediction) - that

is a reasonable processor and memory usage to still allow for timely sampling and

communication activities. For the particle filtering model running on the larger

Raspberry Pi and server, we choose the 1000/100 configuration, accounting for the

fact that they will be processing more diverse, larger sets of data. A third-order

Taylor series is used in the non-linear model. Table 4.4 shows some examples from

the spectrum of distributed computation vs. cloud aggregation. System 1 and 2

spread tasks between the AQ board and the Raspberry Pi only. System 3 and 5

use only the AQ board and the edge server. System 4 utilizes all three nodes.

In a simple two-node system, the AQ board collects all environmental sam-

ples and transmits them to the cloud, one of which will calculate the risk model.

The Taylor-expansion based model requires second by second data, and is updated

each time a new sample arrives. The sensor communicates with the gateway RPi

over Bluetooth or directly to an edge server via WiFi. The radios are turned off

when not in use. We round up the transmission time for each data sample to 1

second. If the AQ Board does not perform anomaly detection, it must send out
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Figure 4.4: For different configurations/data sizes: Total energy consumption
for anomaly detection and health risk model on different nodes. Note that y-axis
is in log scale.

a new data sample every second (86400 samples per day) to support timely risk

model updates. But if instead of transmitting all its data immediately, it is able

to run anomaly detection locally, it may be able to batch its mundane data until

something “interesting” shows up on the sensors. Each invocation of anomaly de-

tection at the edge of the cloud may perform slower in an isolated speed test, but it

is very useful for cutting down the amount of meaningless/redundant information

that gets transmitted. In the case with anomaly detection available, we begin by

setting a default sampling interval of 30 seconds (2880 samples per day). If an

air quality sample deviates from its expected value, we set a higher sampling rate

of 1 Hz. Thus, the risk model gets occasional “confirmation” sample readings at

30s intervals when data is not changing, and gets updated, detailed samples every

second if new data arises that might change the model computation.

We estimate the total system energy across nodes, for different system con-

figurations and different real-life sensing situations. Figure 4.5 shows the difference

in energy consumption for these various task allocations, given different amounts

of anomalies detected in a day. For example, “1 min daily” indicates that roughly

a total 1 minute of air samples per day are anomalous and require higher sampling
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Table 4.4: Task distributions to context engines residing on each node

Node: Sensor board Gateway Edge server

System 1
Sampling

Anomaly detection
Risk model

System 2 Sampling
Anomaly Detection

Risk model

System 3
Sampling

Anomaly detection
Risk model

System 4 Sampling Anomaly detection Risk model

System 5 Sampling
Anomaly Detection

Risk model

and transmission rates to the risk model. The more anomalies there are in a day,

the more energy all systems must expend to process them - but it also widens the

gap between systems that distributed workloads to smaller sensor nodes compared

to those that aggregate in the cloud. To compare fairly among systems that still

include the most powerful edge server (Systems 3-5), we see an energy difference

of 21.5-44.35%.

While the total energy consumption of an ecosystem certainly affects the

bottom line for the application vendor, there are additional critical constraints to

be met for devices at the “edge” of the cloud - such as battery life. In the far

right columns of Figure 4.4, it seems that there is little difference between the

energy consumption of Systems 4 and 5. But Figure 4.6 shows that the lifetime

of a battery-fun sensor node in those systems can be dramatically different. The

AQ board Photon processor and the Raspberry Pi may both be realistically run

on portable batteries, and are often sold as such[135]. Figure 4.7 shows a potential

lifetime of the gateway for a full battery charge of 1800mAh and 10,000mAh respec-

tively. As we observed before in Figure 4.4, the AQ board is not the most energy

efficient at running machine learning code in isolation, but when considering the

larger coordinated system, it greatly benefits from automatically down-sampling
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Figure 4.5: The total daily energy consumption of nodes in the ecosystem, for
different task allocations across nodes, and different levels of variation in actual
air quality sampled

and going into sleep mode when inactive. Where the AQ board transmits via Wi-Fi

(to edge server), 69-76% of battery life is consumed for communication. When it

transmits data via Bluetooth (to Raspberry Pi 3), it consumes 24.1% by default,

and 18.6% when down-sampling after anomaly detection. Comparing System 5

(sending all 1 Hz samples to the edge server) and System 1/3 (sending 30 Hz typ-

ical samples and 1 Hz anomalous samples to the Raspberry Pi/edge server), we

can multiply the battery lifetime by 22-72x. The lower end of that battery lifetime

increase can be achieved if the node eventually detects many anomalies (2 hours

total daily), leading to fewer opportunities to down sample, but the higher end of

the lifetime increase can be achieved in cases where most data collected is typical,

such that only occasional samples have to be delivered to the cloud.

Additionally, using Wi-Fi to communicate from the sensor node to the cloud

is more power-expensive than communicating by Bluetooth to a nearby gateway.

The use of the anomaly detection engine already reduces new data sample trans-

mission from the sensor node by at least 88.6%, in the case of 2 hours worth of

anomalous data throughout the day. If there are fewer anomalies, i.e. fewer unique

samples to communicate, the transmission volume can be reduced by 96%. By ar-
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Figure 4.6: Sensor node battery lifetime. Note that y-axis is in log scale.

ranging the tasks such that the sensor node only has to communicate via Bluetooth

to the Raspberry Pi, we can extend the battery lifetime of the AQ board by 96.2%,

73.2%, 94.2% and 87.5% for each case of total anomalies detected daily. The mode

of communication may dramatically affect the deployment and operations budget.

While it may seem more convenient to aggregate data directly from a sensor node

to the Internet (a selling point of the Particle Photon we chose), battery limita-

tions may motivate designers to provide connectivity via closer Bluetooth-enabled

gateways instead.

It comes as no surprise that low-power sensing devices are far slower at

performing machine learning functions than servers when compared head-to-head.

However, delegating part of automation tasks to them can yield great benefits. In

this section, we have studied the energy effects of delegating the same tasks to dif-

ferent machines and with different communication methods. We found that there

is a system-level benefit to running an anomaly detection algorithm on a sensor

node or a gateway, yielding far higher battery lifetimes for resource-constrained

nodes (up to 72x in specific cases) and lower energy costs in the larger system

(22-45%).
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Figure 4.7: Gateway (Raspberry Pi) battery lifetime. Systems 3 and 5 do not
utilize Raspberry Pis and are omitted.

4.5 Conclusion

In this chapter, we demonstrate the versatility of our proposed context en-

gine framework to be deployed across a hierarchy of devices for a smart health

application. The rise of Internet of Things and availability of personal connected

sensors enables citizens to have more detailed knowledge of their immediate sur-

roundings. To fully leverage the opportunity that ubiquitous data and vast Internet

connectivity provide, we must develop new ways for devices and software to interact

and share valuable insights. To integrate personal context with large population-

size datasets, we also present a custom sensor platform that connects individual

users to the world of data through either a IoT gateway or an edge server, or both.

The air quality board we describe in this chapter is a low cost, embedded compo-

nent of the IoT that enables both experts and lay-users to measure the air quality

of their immediate surroundings. Notably, the hardware and software design are

intended to be reconfigurable and extendable with minimal effort. Because IoT

devices provide both computation and communication of various levels, they give

us many different ways to implement the data analysis that is required to process



95

raw data into high level, human-readable feedback. We propose several examples

of how subtasks in a health application might be distributed to various nodes in

the system as context engine instantiations, and compare those distributions with

respect to energy consumption and device lifetimes. By judiciously allocating ma-

chine learning tasks to sensor nodes at the edge of the cloud, we can greatly reduce

the volume of data transmission between devices. An anomaly detection engine

reduces new data sample transmission from the sensor node by at least 88.6%.

Overall, total system energy can be reduced by 22-45%, and the battery lifetimes

of power-constrained devices can be lengthened by 22-72x compared to systems

that blindly aggregate all sensor data in the cloud.

This chapter contains material from “Context-Aware System Design” by

Christine Chan, Michael H Ostertag, Alper Sinan Akyürek, and Tajana Šimunić

Rosing, which appears in SPIE Defense + Security. International Society for Optics

and Photonics 2017. The dissertation author was the primary investigator and the

author of this paper.



Chapter 5

Summary and Future Work

5.1 Thesis Summary

The Internet of Things boasts the potential of pervasive sensing and actu-

ation, with an ever-growing network of platforms seamlessly communicating un-

precedented volumes of context data about the devices themselves, as well as users

and their environment. However, current software infrastructure and platform de-

sign methodologies cannot achieve this vision at reasonable costs. This dissertation

presents a middleware that efficiently allocates context extraction efforts across a

network of devices, with provably scalable characteristics. We discuss context-

aware computing for both isolated, well-engineered machines and networked de-

vices deployed in a more varied environment among human interaction.

5.1.1 Hierarchical context processing middleware

Our modular approach to context-aware IoT application is the context en-

gines framework, where applications are composed of many functional units that

contain general-purpose machine learning code. The composition and organization

of these units, or engines, can yield lower computational complexity of the system

for any non-linear calculation, and guarantees and linear growth with increased

system load. We illustrate the ease of implementation with a basic fitness applica-

tion that includes overlapping sensor data from multiple unreliable sources. Using
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a context engine that supplies a generic Dynamic Bayesian Network, we demon-

strate the ability to learn and follow different paths of reasoning based on available

data, improving accuracy by 60x over using a single stream of unreliable data.

5.1.2 Device context optimization

At the level of a single node, a machine is responsible for monitoring and

managing its own operating context. In addition, to operate in the paradigm

of the multiple-input single-output context engine framework, it can support the

scalability of hierarchical context processing by summarizing several of its con-

text streams into a model. In a detailed model of a high-end server, we study

the effects of internal device context variables such as power consumption, heat

dissipation, cooling capacity, data bandwidth availability and their interactions.

We identify a previously-ignored link between the cooling system and application

performance, where commodity drive sensitivity to fans can cause up to 88% lower

performance in realistic cooling situations. We also develop and integrate inter-

dependent analytical models for performance, power, thermal, cooling. Finally,

we define a multi-model objective function that can be solved to find optimally

low-cost fan speeds, saving 19-65% of CPU and fan energy while guaranteeing that

critical thermal constraints are still met 100% of the time.

5.1.3 Environmental context in a hierarchy

We investigate some system-level design issues for a sample smart health

application that extracts air quality context from sensors and combines that data

with larger datasets available in the cloud. We use our context engine infrastruc-

ture to demonstrate the benefit of hierarchical processing as opposed to single-stage

monolithic implementations across different architectures and devices. By intelli-

gently sending some tasks to the edge of the cloud, and using environmental data

to dynamically adjust sensor intervals, we can lower energy costs in the whole

system by 22-44% and improve battery lifetimes for resource-constrained nodes by

22-72x compared to systems that aggregate all sensor data to the cloud.



98

5.2 Future Work

Although we have commonly used medical applications as examples in this

thesis, the system infrastructure, hierarchical machine learning, privacy and ag-

gregate data communication features we discuss can be used for application de-

velopment across other IoT verticals like smart grid, smart cities, and intelligent

environments. The idea of using general machine learning techniques in specific

IoT applications is gaining traction in many commercial projects [136]. For ex-

ample, Google Assistant SDK (also branded as “AIY projects” [137]) abstracts

away expert machine learning knowledge, letting users simply choose the class of

machine learning techniques and plug-and-play with their own sensed inputs.

Figure 5.1: Proposed internal structure of a context engine. Current iteration
does not provide privacy mechanisms.

The context engine, as discussed in Chapter 2, is under development and has

been showcased at several venues. Code in development can be found at https://

github.com/UCSD-SEELab/ContextEngine27. As of June 2017, it is implemented

in Python 2.7 and runs on Desktop Ubuntu [138] and Raspberry Pi [132]. As

shown in Figure 5.1, it provides several different clustering, anomaly detection,

and regression algorithms along with test scripts for users to quickly train and

https://github.com/UCSD-SEELab/ContextEngine27
https://github.com/UCSD-SEELab/ContextEngine27
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test new data. It can receive serial data streams as data input, or interface with

the Global Data Plane, a distributed data platform for the IoT developed at UC

Berkeley [139]. Some specific kernels are available in C++ to be run on smaller

devices such as Arduino microcontrollers, and were utilized for the experiments in

Chapter 4. The data security and communication functionalities have been tested

independently but are yet to be integrated into the framework.

While some IoT frameworks address important deployment issues, such as

reducing the communication overhead and congestion caused by a large distributed

network of these sensors [140], most do not adequately address privacy or security

concerns that come with handling sensitive medical information. To secure data

in transmission, we have prototyped some context engines that supply RSA key

generation and AES encryption. Further work is required to integrated this as a

part of the class output interface.

Aside from end-to-end data security using encryption, maintaining the pri-

vacy of data content is also vital. At the IoT scale, the impact of any privacy

breaches is exponentially increased. Differential privacy techniques are particularly

relevant in the IoT where many personal data streams are combined and mined

for more abstract information about populations [141, 142]. These techniques ob-

fuscate identifiable personal data by adding data noise to aggregated data, while

preserving functionality of the main processing application. This tradeoff should

be monitored and implemented in context engines that serve as data aggregators

or gateways between sensor nodes and the cloud.

Large scale IoT deployments depend on being able to guarantee safety and

privacy of individuals who use them. Solving these issues is critical to acceptance

and adoption. Further work on our context engine framework must integrate se-

curity, privacy, and energy-efficiency while providing objective, comprehensive in-

formation in timely fashion. The generated models and population-level trends

from our hierarchical configuration of context engines will provide unprecedented

insights from an otherwise unwieldy amount of data. Once complete, our frame-

work will enable scalable, secure and privacy-aware processing of IoT data, more

suitable for medicine and other critical applications.
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and M. González-López, “A review on internet of things for defense and
public safety,” Sensors, vol. 16, no. 10, p. 1644, 2016.

[19] N. Suri, M. Tortonesi, J. Michaelis, P. Budulas, G. Benincasa, S. Russell,
C. Stefanelli, and R. Winkler, “Analyzing the applicability of internet of
things to the battlefield environment,” in Military Communications and In-
formation Systems (ICMCIS), 2016 International Conference on. IEEE,
2016, pp. 1–8.

http://www.tpc.org/tpch/
http://www.tpc.org/tpch/


102

[20] M. Rudary, S. Singh, and M. E. Pollack, “Adaptive cognitive orthotics: com-
bining reinforcement learning and constraint-based temporal reasoning,” in
Proceedings of the twenty-first international conference on Machine learning.
ACM, 2004, p. 91.

[21] M. R. V. Moghadam, R. T. Ma, and R. Zhang, “Distributed frequency con-
trol in smart grids via randomized demand response,” IEEE Transactions
on Smart Grid, vol. 5, no. 6, pp. 2798–2809, 2014.

[22] H. K. M. Paredes, A. Costabeber, and P. Tenti, “Application of conservative
power theory to cooperative control of distributed compensators in smart
grids,” in Nonsinusoidal Currents and Compensation (ISNCC), 2010 Inter-
national School on. IEEE, 2010, pp. 190–196.

[23] J. Venkatesh, B. Aksanli, J.-C. Junqua, P. Morin, and T. S. Rosing, “Home-
sim: Comprehensive, smart, residential electrical energy simulation and
scheduling,” in Green Computing Conference (IGCC), 2013 International.
IEEE, 2013, pp. 1–8.

[24] L. Klein, J.-y. Kwak, G. Kavulya, F. Jazizadeh, B. Becerik-Gerber,
P. Varakantham, and M. Tambe, “Coordinating occupant behavior for build-
ing energy and comfort management using multi-agent systems,” Automation
in construction, vol. 22, pp. 525–536, 2012.

[25] C. Pang, V. Vyatkin, Y. Deng, and M. Sorouri, “Virtual smart metering in
automation and simulation of energy-efficient lighting system,” in Emerging
Technologies & Factory Automation (ETFA), 2013 IEEE 18th Conference
on. IEEE, 2013, pp. 1–8.

[26] P. Yi, X. Dong, A. Iwayemi, C. Zhou, and S. Li, “Real-time opportunistic
scheduling for residential demand response,” IEEE Transactions on smart
grid, vol. 4, no. 1, pp. 227–234, 2013.

[27] J. Venkatesh, B. Aksanli, and T. S. Rosing, “Residential energy simulation
and scheduling: A case study approach,” in Computers and Communications
(ISCC), 2013 IEEE Symposium on. IEEE, 2013, pp. 000 161–000 166.

[28] N. Banerjee, S. Rollins, and K. Moran, “Automating energy management
in green homes,” in Proceedings of the 2nd ACM SIGCOMM workshop on
Home networks. ACM, 2011, pp. 19–24.

[29] A. Mishra, D. Irwin, P. Shenoy, J. Kurose, and T. Zhu, “Smartcharge: Cut-
ting the electricity bill in smart homes with energy storage,” in Proceedings of
the 3rd International Conference on Future Energy Systems: Where Energy,
Computing and Communication Meet, 2012, p. 29.



103

[30] Z. Huang, T. Zhu, Y. Gu, D. Irwin, A. Mishra, and P. Shenoy, “Minimizing
electricity costs by sharing energy in sustainable microgrids,” in Proceed-
ings of the 1st ACM Conference on Embedded Systems for Energy-Efficient
Buildings. ACM, 2014, pp. 120–129.

[31] T. Zhu, Z. Huang, A. Sharma, J. Su, D. Irwin, A. Mishra, D. Menasche,
and P. Shenoy, “Sharing renewable energy in smart microgrids,” in Cyber-
Physical Systems (ICCPS), 2013 ACM/IEEE International Conference on.
IEEE, 2013, pp. 219–228.

[32] J.-H. Hong, S.-I. Yang, and S.-B. Cho, “Conamsn: A context-aware messen-
ger using dynamic bayesian networks with wearable sensors,” Expert Systems
with Applications, vol. 37, no. 6, pp. 4680–4686, 2010.

[33] S. Lee and K. C. Lee, “Context-prediction performance by a dynamic
bayesian network: Emphasis on location prediction in ubiquitous decision
support environment,” Expert Systems with Applications, vol. 39, no. 5, p.
49084914, 2012.

[34] “Google Now,” Dec. 2014. [Online]. Available: http://www.androidcentral.
com/google-now

[35] K. Lee, J. Flinn, T. J. Giuli, B. Noble, and C. Peplin, “Amc: verifying user
interface properties for vehicular applications,” in Proceeding of the 11th an-
nual international conference on Mobile systems, applications, and services.
ACM, 2013, pp. 1–12.

[36] P. Rashidi, D. J. Cook, L. B. Holder, and M. Schmitter-Edgecombe, “Dis-
covering activities to recognize and track in a smart environment,” IEEE
transactions on knowledge and data engineering, vol. 23, no. 4, pp. 527–539,
2011.

[37] S. Staab and R. Studer, Handbook of Ontologies. Springer Science and
Business, 2010.

[38] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware pervasive
computing environments,” The knowledge engineering review, vol. 18, no. 03,
pp. 197–207, 2003.

[39] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang, “An ontology-based
context model in intelligent environments,” in Proceedings of communication
networks and distributed systems modeling and simulation conference, vol.
2004. San Diego, CA, USA., 2004, pp. 270–275.

[40] W. Wang, “A comprehensive ontology for knowledge representation in the
internet of things,” in 11th International Conference on Trust, Security and
Privacy in Computing and Communications, 2012.

http://www.androidcentral.com/google-now
http://www.androidcentral.com/google-now


104

[41] M. Nebeling, M. Grossniklaus, S. Leone, and M. Norrie, “Xcml: providing
context-aware language extensions for the specification of multi-device web
applications,” World Wide Web (WWW), vol. 15, no. 4, pp. 447–481, 2012.

[42] C. Perera, A. Zaslavsky, M. Compton, P. Christen, and D. Georgakopou-
los, “Context aware sensor configuration model for internet of things,” in
Proceedings of the 2013th International Conference on Posters & Demon-
strations Track-Volume 1035. CEUR-WS. org, 2013, pp. 253–256.

[43] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta, “A survey of mid-
dleware for internet of things,” in Recent Trends in Wireless and Mobile
Networks. Springer, 2011, pp. 288–296.

[44] J. Venkatesh, C. Chan, A. S. Akyurek, and T. S. Rosing, “A modular
approach to context-aware IoT applications,” in Internet-of-Things Design
and Implementation (IoTDI), 2016 IEEE First International Conference on.
IEEE, 2016, pp. 235–240.

[45] J. Venkatesh, B. Aksanli, C. S. Chan, A. S. Akyürek, and T. S. Rosing,
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