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Connexins or innexins form gap junctions, while claudins and occludins form tight junctions. In this study, statis-
tical data, derived using novel software, indicate that these four junctional protein families and eleven other fam-
ilies of channel and channel auxiliary proteins are related by common descent and comprise the Tetraspan (4
TMS) Junctional Complex (4JC) Superfamily. These proteins all share similar 4 transmembrane α-helical (TMS)
topologies. Evidence is presented that they arose via an intragenic duplication event, whereby a 2 TMS-
encoding genetic element duplicated tandemly to give 4 TMS proteins. In cases where high resolution structural
data were available, the conclusion of homology was supported by conducting structural comparisons. Phyloge-
netic trees reveal the probable relationships of these 15 families to each other. Long homologues containing fu-
sions to other recognizable domains aswell as internally duplicated or fused domains are reported. Large “fusion”
proteins containing 4JC domains proved to fall predominantly into family-specific patterns as follows: (1) the 4JC
domain was N-terminal; (2) the 4JC domain was C-terminal; (3) the 4JC domain was duplicated or occasionally
triplicated and (4) mixed fusion types were present. Our observations provide insight into the evolutionary ori-
gins and subfunctions of these proteins aswell as guides concerning their structural and functional relationships.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Connexins and innexins are the principal core proteins of gap junc-
tions, while claudins and occludins are tight junctional core proteins
[1]. All have the same topologywith fourα-helical transmembrane seg-
ments (TMSs), and all exhibit well-conserved extracytoplasmic cyste-
ines that either are known to, or potentially can, form
extracytoplasmic disulfide bridges [2,3].

In metazoan tissues, adjacent cells are often connected by connexin-
or innexin-containing gap junctional channels [4] as well as claudin-
and occludin-containing tight junctions [2,5–7]. All of these junctional
proteins span the two plasma membranes. In the former cases, docking
of the two half channels in the plasmamembranes of two adjacent cells
creates hexameric tori of junctional proteins enclosing an aqueous pore
[8]. These densely packed gap junctional channels allow cells to ex-
change ions and smallmessengermolecules such as Ca2+ and cyclic nu-
cleotides as well as oligonucleotides. They also coordinate electrical
activities in excitable tissues [9].

In 2003, our laboratory published sequence, topological and phylo-
genetic analyses of the proteins that comprise the connexin, innexin,
claudin and occludin families [1]. Amultiple alignment of the sequences
ported.
of each family was used to derive average hydropathy and similarity
plots as well as a phylogenetic tree. Analyses led to the following con-
clusions: (1) In all four families, the most conserved regions of the pro-
teins are the four TMSs, although the extracytoplasmic loops between
TMSs 1 and 2, and TMSs 3 and 4 are usually well conserved [4].
(2) The phylogenetic trees revealed sets of orthologues except for the
innexins where phylogeny primarily reflected the organismal source,
probably due to a lack of close organismal sequence data [5]. (3) The
two halves of the connexins exhibited similarities suggesting that they
were derived from a common origin by an internal gene duplication
event, but this possibility could not be demonstrated [6]. (4) Conserved
cysteyl residues in the connexins and innexins pointed to a similar ex-
tracellular structure involved in hemichannel docking to create intercel-
lular communication channels. Similar roles in homomeric interactions
for conserved extracellular residues in the claudins and occludins were
suggested. The apparent lack of obvious sequence andmotif similarities
between the four different families indicated that, if they did evolve
from a common ancestral gene, they had diverged substantially to fulfill
different functions.

In this work, statistical and other methods provide strong evidence
that these four junctional protein families, as well as eleven additional
families of ion (most frequently Ca2+) channel and channel-affiliated
proteins have, in fact, arisen from a common origin. The fifteen families
that comprise the 4JC superfamily are listed with their characteristics in
Table 1.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbamem.2016.11.015&domain=pdf
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Table 1
Families included in the 4JC superfamily.a

Family name Family
Abb'n

TC# Phyla Avg seq.
length
(aas)
± SD

#s of
members

# of
potential
fusion
proteins

Pfam designations References

Connexin Connexin 1.A.24 Animals 323 ± 107 1690 12 Connexin (PF00029), Connexin43
(PF03508), Connexin50 (PF03509)

[10]

Innexin Innexin 1.A.25 Animals + dsDNA
viruses (3%)

389 ± 138 7971 16 Innexin (PF00876), Pannexin_like
(PF12534), LRR_8 (PF13855)

[11]

Intracellular chloride channel ICC 1.A.36 Animals + dsDNA
viruses (1%)

494 ± 120 260 1 MCLC (PF05394) [12]

Plasmolipin Plasmolipin 1.A.64 Animals 169 ± 34 2413 1 MARVEL (PF01284) [13]
The low affinity Ca2+ channel LACC 1.A.81 Fungi 277 ± 31 263 0 Fig1 (PF12351) [14]
Hair cell mechanotransduction
channel

HCMC 1.A.82 Animals 221 ± 34 511 0 L_HMGIC_fpl (PF10242) [15]

Calcium homeostasis Modulator
Ca2+ channel

CALHM-C 1.A.84 Animals 351 ± 56 537 4 Ca_hom_mod (PF14798) [16]

Claudin tight junction Claudin 1.H.1 Animals 225 ± 35 4770 1 PMP22_Claudin (PF00822), SUR7 (PF06687) [17]
Invertebrate PMP22-claudin Claudin2 1.H.2 Animals 243 ± 75 537 2 Clc-like (PF07062), Claudin_2 (PF13903) [18]
Ca2+ channel auxiliary subunit
γ1-γ8

CCAγ 8.A.16 Animals 231 ± 60 3839 3 PMP22_Claudin (PF00822), GSG-1
(PF07803), Claudin_2 (PF13903), TMEM37
(PF15108)

[19]

Non-classical protein exporter NCPE 9.A.27 Fungi 170 ± 13 584 1 MARVEL (PF01284), NCE101 (PF11654) [20]
Clarin CLRN 9.A.46 Animals 218 ± 42 407 1 None [21]
Occludin Occludin 9.B.41 Animals 531 ± 181 335 4 MARVEL (PF01284), Occludin_ELL

(PF07303)
[22]

Tetraspan vesicle membrane
protein

TVP 9.B.130 Animals 258 ± 116 812 3 MARVEL (PF01284) [23]

MscS/DUF475 DUF475 9.B.179 Actinobacteria 298 ± 159 361 0

a Family names and abbreviations are provided in columns 1 and 2, respectively, while family numbers in the Transporter Classification Database (TCDB; www.tcdb.org) [24–26] are
provided in column 3. Class 1 indicates a channel function. Class 8 indicates a transporter auxiliary functionwhile class 9 indicates that insufficient information is available to establish the
mechanisms of action of these proteins. Phylum representation for each protein family of the 4JC superfamily is provided in column 4. Average sizes of the proteins in each
family± standard deviations (SD) are provided in column 5, while estimates of family sizes, expressed in numbers of proteins retrieved by running Psi-BLAST against the NCBI NR protein
database with two iterations and a cutoff of 90% to eliminate redundancies and very similar (N90% identity) sequences can be found in column 6. Potential fusion proteins (column 7) are
those that are at least 2× larger than the familial average. Pfam designation(s) for members of a given family, when available, are provided in column 8, and a representative reference is
given in column 9. Additional references for each family can be found in TCDB.
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Evidence is presented that members of these families arose follow-
ing a pathway involving duplication of a primordial 2 TMS element to
give rise to the current 4 TMS proteins. The gap junctional innexins
and connexins proved to bemore closely related to each other although
the tight junctional occludins and claudins do not appear to be closely
related. We suggest that the innexins, present primarily in inverte-
brates, were the precursors of connexins in vertebrates. Vertebrate
pannexins, members of the innexin family [4], may have been obtained
by vertebrates from invertebrates via horizontal transfer after verte-
brates diverged from invertebrates, giving rise to the current families
of connexins and innexins [1].

2. Methods

Representative members the first member of each TC subfamily
within the fifteen families included in the 4JC superfamily (Table 1)
were obtained from the Transporter Classification Database (TCDB;
www.tcdb.org) and expanded using a PSI-BLAST search tool against
the NCBI NR protein database within the Protocol1 program with an
e-value cut-off of 0.005 and two iterations [27]. Redundant sequences
were then removed using the CD-HIT component of Protocol1 with a
0.8 (80%) identity cutoff [28]. Using this approach, all sequences
retained for analysis differ from each other by at least 20%.

Comparison scores, expressed in standard deviations (SD), were de-
termined using theGSAT program [28]. GSAT performs a pairwise align-
ment using the Needleman-Wunsch algorithm, followed by 200
additional alignments using a shuffled sequence in each round. A stan-
dard score (z-score) is calculated and returned by the program. High
scoring pairs (HSPs)were selected between families using the Protocol2
program [27]. Protocol2 performs a Smith-Waterman search between
two FASTA files and selects the HSPs with overlapping TMSs. The HSPs
are then analyzed with GSAT using 200 shuffles, and a standard score
is determined for each. The greatest HSPs for each family comparison
are then selected and again run through GSAT using 2000 shuffles to
confirm scores and gain greater accuracy.

TheWeb-based Hydropathy, Amphipathicity and Topology (WHAT)
program was used to determine and plot the hydropathy,
amphipathicity, secondary structure and predicted transmembrane to-
pology of individual protein sequences [29]. All TMS predictions for in-
dividual proteins were performed using the WHAT program, which
predicts integral membrane protein topology using a Hidden Markov
Model approach [30,31].

Multiple alignments were created using the ClustalX program [29].
Relative conservation was estimated using the AveHAS program [30],
which generates average hydropathy, amphipathicity and similarity
plots based on ClustalX multiple alignments, and also predicts topology
with greater accuracy than is possible using the WHAT program (plots
presented in Figs. 1 and 2).

Phylogenetic superfamily trees were created using the
SuperFamilyTree (SFT) programs [32–34]. SFT works by creating 100
distance matrices using tens of thousands of Blast bit scores. The matri-
ces are then built using the Fitch program. The trees are averaged using
the Consense program to produce a superfamily tree [32–34]. SFT1 cre-
ates a tree showing the individual proteinswhile SFT2 collapses this tree
to show the relationships of the families to each other [32–34].

The Ancient Rep [27], REPRO [35] and HHRepID [36] programs were
used to recognize distant transmembrane repeats within a single pro-
tein sequence. The former two programs use a variation of the Smith-
Waterman local alignment strategy to find non-overlapping top-
scoring alignments, but AncientRep also allows screening of multiple
homologues for repeats after construction of ClustalX-generated multi-
ple alignments, allowing comparison both within single proteins (hori-
zontal comparisons) and between multiple homologues (vertical
comparisons) [27]. TMS repeat units were located using these pro-
grams, and their common origin was established using the GSAT pro-
gram as outlined above.

http://www.tcdb.org
http://www.tcdb.org
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Fig. 1. AveHAS plots for all protein families in the 4JC superfamily. The families are indicated by their familial abbreviations (see Table 1). See Methods and the legend to Fig. 2 for
explanation of format.
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The phylum composition and average protein size ±S.D. for each of
the 15 protein families of the 4JC superfamily were determined by using
the Phylum-Size/Topology (PhyST) program [37]. The phyla of origin of
the proteins in a family were automatically tabulated and used to quan-
titatively determine the phylum distribution for each family. The PhyST
program was also used to determine the number of family members
following use of the CD-hit program with a cut-off of 90% identity,
with the CD hit program and to identify large potential fusion proteins
for each of the 15 families in the 4JC superfamily. This program was
used precisely as describes previously [37].

Three-dimensional structures for members of TCDB families 1.A.24,
1.H.1 and 8.A.16 were obtained from RCSB PDB [38] through sequence
and structural similarity searches. First, for family members without
structures, we ran the online PDB sequence similarity tool (E-value
≤10−3) to find homologs. Second, for family members with structures,
we ran the online PDB structural similarity tool and retrieved structures
showing RMSD values of ≤4.0. Finally, we ran HMMTOP [39,40] on all
hits obtained and rejected structureswith b4 predicted transmembrane
segments (TMSs). Representative structural alignments based on
pairwise combinations of structures between families were then com-
puted using the Collaborative Computational Project 4 (CCP4) imple-
mentation of the Secondary Structure Matching (SSM) algorithm,
which superposes structures with an emphasis on matching secondary
structural elements as the name suggests, selecting for minimal RMSD
values [41–43].

3. Results

3.1. Topological predictions

To predict the common and distinctive topological features of each
family found to belong to the 4JC superfamily, average hydropathy,
amphipathicity and similarity (AveHAS) plotswere generated using ho-
mologues obtained using Protocol 1 with a query protein from each
family in TCDB, the first member of each subfamily (of the 15 families
of the 4JC superfamily) listed in TCDB (Table 1 and Fig. 1) [32–34]. The
red lines in the top plots represent hydropathy, while the green lines
represent amphipathicity. The dotted black lines below show the de-
grees of conservation among the proteins at any one location in the
alignment while the vertical yellow lines show an independent predic-
tion of TMSs. The AveHAS plots for the fifteen families: Occludins
(Fig. 1A), Connexins (Fig. 1B), Innexins (Fig. 1C), CALHM-C (Fig. 1D),
ICC (Fig. 1E), HCMC (Fig. 1F), CCAγ (Fig. 1G), Claudin (Fig. 1H), LACC
(Fig. 1I), Clarin (Fig. 1J), Claudin 2 (Fig. 1K), Plasmolipin (Fig. 1L), TVP
(Fig. 1M), NCPE (Fig. 1N), andDUF475 (Fig. 1O), all demonstrated a con-
served 4 TMS topology. All 15 families showed comparable degrees of
similarities for the four TMSs with slight differences being observed
for a few families. For example, the connexins (Fig. 1B) had TMSs 1
and 2 better conserved than TMSs 3 and 4 while the CALHM-C proteins
(Fig. 1D) showed the opposite behavior with TMSs 3 and 4 better con-
served than TMSs 1 and 2.

3.2. Topological correspondence among all fifteen families within the 4JC
superfamily

In addition to the AveHAS plots for the individual families, the
AveHAS plot for the entire 4JC superfamily was generated as shown in
Fig. 2. Four clear peaks of hydrophobicity corresponding to four peaks
of similarity can be visualized. All four peaks show similar degrees of
conservation, but TMSs 3 and 4 may be somewhat better conserved
than TMSs 1 and 2. The best conserved TMS appears to be TMS 4. In gen-
eral, the peaks of similarity are broader than the peaks of hydropathy
with similarity preceding peaks 1 and 3 but following peaks 2 and 4.
This suggests that the cytoplasmic regions adjacent to the TMSs are bet-
ter conserved than the remaining parts of the cytoplasmic loops or the
corresponding extracellular regions. All four peaks exhibit moderate
amphipathicity.

All members of each of the fifteen families of the 4JC superfamily are
homologous throughout most of their lengths, although insertions, dele-
tions and fusions, primarily in their hydrophilic regions, have occurred in
various protein members during their evolutionary divergence. Proteins
used for the initial PSI-BLAST searches were the first member of each
sub-family within the 15 families of the 4JC superfamily listed in the
Transporter Classification Database (TCDB; www.tcdb.org) [24–26]
under their respective families as indicated by abbreviation as summa-
rized in Table 1. The values reported using this expanded dataset yielded
scores that suggested homology between all fifteen families (Table 2).
The criteria used for establishing homology were comparison scores of
14 standard deviations (SD) or greater, with an alignment of at least 60
amino acyl residues (aas) including corresponding TMSs [26,44].

The phylum representation of each protein family within the 4JC su-
perfamily is provided in Table 1. Amajority of the protein families of the
4JC superfamily are from Metazoa. Two families, LACC and NCPE, have
proteins derived from Fungi, while the DUF475 family includes proteins
only from Actinobacteria. Table 1 also presents the average sizes of the
proteins comprising the fifteen 4JC families (column 5) and the relative
family sizes (in numbers of proteins recovered as described in the
Methods section (column 6)). The numbers of large proteins that
could be fusion proteins as determined with the PhyST program were
also tabulated. As illustrated in Figs. 1 and 2, they all have at least four
conserved TMSs, a unifying characteristic of the 4JC superfamily. If the
4TMS 4JC domain is fully or partially, duplicated, triplicated or fused
to another transmembrane domain, there will be more of TMSs, but
this occurs rarely (see Table 3). Table 1 also lists Pfam designations for
members of the various TC families when available (column 8). Of
note is the fact that three families exhibit the Claudin domain while
four families exhibit the MARVEL domain. This observation substanti-
ates the conclusion of homology for these families. Table 1 also provides
a reference (column 9). Additional references can be found in TCDB for
all of the families listed.

3.3. Establishing homology between members of different families

The top comparison scores expressed in SD for each interfamilial com-
parison were obtained using the GSAT programwith 2000 random shuf-
fles. Proteins in TCDB were checked for homology as shown in Table 2
with scores supporting the conclusion of homology. Global sequence
alignments for several interfamilial comparisons are presented in Fig. 3.

http://www.tcdb.org


Table 2
Comparison scores expressed in standard deviations (SD) for the fifteen families in the 4JC superfamily.a

Families compared Proteins compared (UniProt # or GI #) Comparison score (SD)

Protein-1 (A) Protein-2 (B) Protein-3 (C) Protein-4 (D) A v. B B v. C C v. D A v. D

Connexin v. Innexin Q8NFK1 Q4SJR0 K8LRA8 Q8IWT6 62.6 17.9 32.3 0.8
ICC v. Innexin Q96S66 J9JZG4 K1QMI8 Q96QZ0 26.5 14.9 15.3 −0.2
Occludin v. CCAγ Q16625 H2L4X0 C3ZY32 P54825 154.4 14.2 16.9 2.2
HCMC v. CCAγ Q8TAF8 291242472 F7BS52 Q06432 22.8 15.0 19.0 0.7
CCAγ v. Claudin Q9D563 701422218 657540378 P56857 18.6 19.3 20.5 12.5
LACC v. Claudin I3VPY1 S8ALD9 G8C1J8 P54003 16.3 16.0 95.4 9.5
Clarin v. CCAγ A7SGP9 C1BSD7 R7TFA9 R7TFA9 21.8 14.3 126.5 9.5
Claudin2 v. Claudin Q9NGJ7 U1MC19 R4GBS8 P56857 22.4 16.7 35.7 0.8
CCAγ v. Claudin2 Q9NY35 488549030 194750239 F5HJC0 178.5 17.3 125.0 8.1
TVP v. Connexin P08247 B3RIL2 H3AJZ7 P08050 47.6 15.6 282.5 −1.0
Occludin v. Plasmolipin Q16625 M7BW70 C3ZW40 P47897 18.5 15.5 23.0 4.2
Occludin v. NCPE Q16625 F1QIE2 Q6FKV0 Q8NJ01 24.1 14.5 21.7 2.4
Occludin v. TVP Q16625 432884588 527260494 P08247 152.9 15.7 63.3 1.7
Plasmolipin v. NCPE P47897 602664033 K3VQ09 Q8NJ01 59.0 14.5 37.7 6.3
TVP v. DUF475 B3RX02 A0A077ZHE5 655407529 Q9KXK6 14.5 14.4 65.6 3.7
TVP v. Plasmolipin P08247 E9CJG0 C3ZW39 P47897 22.4 14.3 29.4 −1.2
TVP v. NCPE P08247 641792620 J7SAL5 A5E332 119.4 14.4 14.2 −1.1
CALHM-c v. Claudin Q8IU99 821384408 E5R4H8 Q06991 46.5 14.0 22.1 −0.4

a The Superfamily Principle,which states that if A is related to B, and B is related to C, then Amust be related to C (The Transitivity Rule), was used to establish homology. Column 1 gives
the family abbreviations (see Table 1). Accession numbers of the four proteins compared (based on Protocol1 and Protocol2 results) are provided in columns 2–5, and the comparison
scores for the 3 comparisons (A vs. B, B vs. C, and C vs. D) are given in columns 6–8. Column 9 gives the value obtainedwhenAwas directly comparedwith D. Accession numbers provided
are UniProt numbers when available or gi numbers when UniProt numbers were not available.
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Three patterns were observed when conducting binary alignments.
The first demonstrated all or most of the four TMSs in a subject se-
quence aligning with their respective counterparts in the target se-
quence. Alignments of this type can be seen in Fig. 3A, B and D, where
(A) a CCAγ homologue is compared with a Claudin homologue, (B) an
HCMC homologue is compared with a CCAγ homologue, and (D) a
Claudin homologue is compared with a Claudin2 homologue. These
three comparisons gave comparison scores of 19.3 SD, 15.0 SD, and
16.7 SD, respectively. The second pattern of binary alignments shown
in Fig. 3 always involved comparisons of corresponding TMSs (1 with
1; 2 with 2; 3 with 3; and 4 with 4, respectively) but with only two
(Fig. 3G and H) or three (Fig. 3C, E and F) TMSs aligning. 10 SD has
been reported to correspond to a probability of 10−24 that the observed
degree of similarity has arisen by chance [45], but Gaussian skew can
substantially increase this probability. Controls showed that 14 SD
was 2 SD above the highest value that could be obtained when non-
homologous sequences of similar topology were compared at the time
these studies were conducted.

The remainder of the comparisons exhibited similar patterns. For ex-
ample, the best comparison score obtained for the connexins and the
innexins was 21 SD. A portion of this alignment is shown in Fig. 3H.
The full alignment had 28% identity (I) and 48% similarity (S) for a
stretch of 539 residue positions.

The best comparison score for the ICC family compared to the
Innexin family (not shown)was 14.9 SDwith 24% I and 49% S, spanning
183 residue positions. For the comparison between theHCMC and CCAγ
families, a score of 15.0 SDwas achievedwith 26% I and 46% S, spanning
187 residue positions (Fig. 3B). The comparison of the clarin and CCAγ
families gave a score of 14.3 SDwith 25% I and 45% S, spanning 193 res-
idue positions (not shown). The comparison between the claudin and
claudin2 families (Fig. 3D) gave a score of 16.7 SD with 23% I and 46%
S, spanning 192 residue positions. The highest scores for the claudin
and LACC families (Figure 3E) were 16.0 SD, with 24% I and 45% S, span-
ning 150 residues. All other comparisons are listed in Table 2.

3.4. Evidence for 2 TMS repeat units in members of the 4JC superfamily

The third pattern of aligned sequences showedTMSs 1 and 2 of a sin-
gle 4JC superfamily member aligning with TMSs 3 and 4 of the same
protein (or a homologous protein), as shown in Fig. 4. Four alignments
for the first and second halves of single proteins are presented, a
connexin (A), an innexin (B), an HCMC family member (C), and an
occludin (D). Additionally, heterologous comparisons (i.e., the first
half of proteinA alignedwith the secondhalf of Protein B) gave convinc-
ing comparison scores. For example, an occludin homologue and a CCAγ
homologue gave a comparison score of 14 SDwith 25% I and 54% S for a
stretch of 67 residue positions. The value of 14 SD was sufficient to es-
tablish homology when these studies were conducted [32,37]. The
AlignMe program was used to provide further evidence for similarity
between the two halves of several of these proteins (See Fig. S1).

3.5. SFT-based phylogenetic trees

Phylogenetic trees for representative members of all 15 families in
the 4JC Superfamily are shown in Fig. 5A and B, where A shows the re-
lationships of representative proteins while B shows the integrated
family relationships [32–34]. Because the abbreviations for the individ-
ual proteins in Fig. 5Amay be too small to read, these are reproduced in
clockwise order in supplementary Table S1. It will be noted that a very
few proteins lie outside of the principle cluster that represents a partic-
ular family, but the two trees show good agreement. In both trees, the
families cluster into four major groups. Nine families cluster loosely
into two groups. Thus, in thefirst group (Cluster I; top), six families clus-
ter loosely together. These are (from left to right in B): CALHM-C,
Connexin, DUF475, LACC, Innexin and ICC. In the second cluster (Cluster
II, center left), the Plasmolipin, TVP and NCPE families cluster together.
In the lower right hand cluster (Cluster III), the Claudin, Claudin2, CCAγ
and HCMC families cluster together with the Clarins at the base of this
cluster. Finally, the Occludins (Cluster IV) branch together by themselves
from a point near the center of the tree (lower left in A, right in B). These
results provide evidence concerning the phylogenetic relationships of the
fifteen families within the 4JC superfamily to each other.

3.6. 3D structural comparisons

Of the families believed to be members of the 4JC superfamily, high-
resolution 3D structures are available for members of just three of these
families. These families are the connexins (TC#1.A.24 [46]), type I
claudins (TC#1.H.1, [47,48]), and Ca2+ channel γ auxiliary subunits
(CCAγ; TC#8.A.16 [49]). The results of comparisons, selecting forminimal
RMSD values, are presented in Fig. 6A–C. In each case, the front, back, and
top views are shown. The superpositionswere sufficient to provide strong
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Table 3
Fusion proteins containing 4TC superfamily domains.a

Gi # Sizes
(aas)

Domain/order

1.A.25
Connexins
431890982 2729 Connexin - PDZ (protein protein interaction domain) -

Myosin-XVIIIa (MYSc = myosin motor) - Tropomyosin -
Kinetochore (microtubule binding domain) - Opi1
(phosphorylated Tx factor)

537123619 1178 Connexin - Pkc-like cyclin-dependent Ser/Thr kinase
530667615 994 Connexin - SPRY/TRIM domain (regulator of immune system) -

olfactory receptor
521027364 760 Connexin - SPRY/TRIM tripartite motif containing domain
190358616 709 Connexin - uncharacterized hydrophilic domain
597731320 755
736164105 700
593734441 675
528770327 839 Connexin - DUF3735 - ABA-GPCR (golgi pH regulator)
465977614 840 4 + 5 + 4 TMS topology;

Connexin DUF3735-ABA-GPCR (abscisio acid receptor, G protein)
444706902 930 Connexin - Gtr1_RagA (P-loop NTPase)
47222966 948 LRR-RI-LRR-RI, Leucine-Rich Repeats (11 full repeats;

protein-protein interaction domain) - Ribonuclease Inhibitor
- Connexin

1.A.25
Innexins
669308587 795 Two complete adjacent duplicated innexin domains.
669225467 810
339248393 813
541046776 834
568268171 797
684378264 969
669329541 1230 DUF2045 - TAF7 - Innexin
669313956 818 Ndr-Innexin (Ndr may be an α, β-hydrolase (Pfam00561)).
405960508 840 AAT - I (aspartate amino transferease) - Innexin
684379759 844 Innexin fragments - Innexin

(The innexin fragments precede the full length innexin domain)674266122 717
734560734 836
684386324 780
684367491 884
353231599 1023
674595321 1006 Innexin - pyruvate kinase

1.A.36
ICC
528765010 1089 LisH (microtubule regulation) - W040 (signal transduction) -

MCLC (ICC) Cl− channel

1.A.64
Plasmolipin
719732991 339 N-terminal hydrophilic domain – C-terminal MARVEL

(plasmolipin domain)
1.A.81 No large proteins
LACC

1.A.82 No large proteins
HCMC

1.A.84
CALHM-C
465989358 1203 Dermatansulfate epimerase - CALHM-C
594679692 659 Duplicated CALHM-C domains. C-terminal hydrophilic domain;

The second CALHM-C domain is better conserved.537213670 668
676278280 916

1.H.1
Claudin
521024295 908 N-terminal 4 TMS Claudin domain - ARM repeat units

(at least 5) (armadillo/β-cateinin repeats; protein-protein
interaction domains).

1.H.2
Claudin 2
576700697 995 N-terminal 4 TMSs Claudin 2 domain - C-terminal DM10

(3OUF1128) domain; function unknown
322796000 627 1 + 4 + 4 + 3 TMSs. Three (triplicated) Claudin 2 domains

Table 3 (continued)

Gi # Sizes
(aas)

Domain/order

8.A.16
CCAγ
641736570
351715945
555949535

649
630
487

Duplicated 4 TMS CCAγ domains. The N-terminal domain
resembles 8.A.16.2, while the C-terminal domain more closely
resembles 8.A.16.1

9.A.27 No large proteins
NCPE

9.A.46
Clarin
521024245 525 Clarin - EEP (Endonuclease domain) - DUF4205

9.B.41
Fusions to occludin
528761243
465983309

1094
1280

Two fused Occludin domains. The N-terminal domain is like
subfamily 9.B.41.2. The C-terminal domain is more like subfamily
9.B.41.1.

528761243
465983309

1094
1280

Two full 4 TMS Occludin (MARVEL - Occludin) repeats

9.B.130
TVP family (MARVEL)
528765018
431896453

1135
1088

MARVEL - SCA7 Zn2+ binding domain - Cytb561

432110159 980 MARVEL - Prickle-like protein 3 (PET_Prickle - LIM2-LIM3 Zn2+

binding)

a The family and its TC#aswell as theGenBank IDnumber (gi#) are provided in column
1. The protein size in number of amino acyl residues (aas) can be found in column 2, and
the recognized domains, in order from N- to C-terminus, are presented in column 3.
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evidence of homology. Here, comparisonof Connexin-26with Claudin-19
(A) gave an RMSDvalue of 2.67, that for Connexin-26with CCAγ (B) gave
an RMSD value of 3.35, and that for Claudin-15 and CCAγ (C) gave an
RMSD value of 1.90. Other comparisons not shown were as follows:
(1) Claudin-19 versus CCAγ, 2.78 over 126 aas (3X29.C versus 3JBR.E),
(2) Connexin-26 versus Claudin-15, 2.87 over 114 aas (2ZW3 versus
4P79A), (3) Claudin-19 versus Claudin 15, 1.36 over 151 aas (3X29.A ver-
sus 4P79.A). These values are highly suggestive of homology, confirming
the conclusions based on primary sequence analyses.

3.7. Potential fusion proteins including 4JC domains

No large homologues were identified for the LACC (1.A.81), HCMC
(1.A.82), NCPE (9.A.27) and DUF475 (9.B.179) families, but such pro-
teins were found for all other 4JC families (Table 1).

3.7.1. Connexins (1.A.24)
Twelve connexin homologues from animals proved to bemore than

two-fold in size relative to the average size of these proteins, and all
were examined (Table 3). All but one had full length connexin domains
at their N-terminal ends; four of these had long C-terminal hydrophilic
domains of unknown function. Two long homologues had an N-
terminal connexin domain followed by a 7–9 TMS “Golgi pH Regulato-
ry” domain (TC#1.A.38), which consists of a DUF3735 domain followed
by an abscisic acid GPCR receptor (Aba_GPCR) domain. One protein had
a C-terminal P-loop NTPase (Gtr1_RagA) domain. Two proteins had an
SPRY/TRIM immune system regulatory domain C-terminal to the
connexin domain, and one of these also had a C-terminal 7 TMS olfacto-
ry receptor domain (TC#9.A.14.8). The largest of these connexins had a
size of 2729 aas. Following the connexin domain in this protein was
(1) a PDZ protein-protein interaction domain, (2) a myosin-XVIIIa
(MYSc myosin motor) domain, (3) a tropomyosin domain, (4) a micro-
tubule binding kinetochore domain, and (5) an Opi1 (phosphorylated
transcription factor) domain in this order.

Only one large homologue had the connexin domain at its C-
terminus. This protein of 948 aas had an N-terminal multiply repeated
leucine-rich domain. The NCBI database also contained shorter 2 TMS
proteins corresponding to much of the N-terminal 2 TMS domain or



Fig 3.Global sequence alignments of various familieswithin the 4JC superfamily demonstrating that corresponding TMSs align. Accessionnumbers for the proteins compared are provided
in Table 2 (B vs. C). Residue numbers are provided at the beginning and end of each line. Shaded regions indicate the predicted TMSs which are numbered (1–4). CS, comparison score
expressed in standard deviations (SD); %I = percent identity; %S = percent similarity. Vertical lines, identities; colons, similarities. The eight figures (A–H) show eight binary
comparisons for the families indicated at the top of each alignments.
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the C-terminal 2 TMS domain, each of 200–400 aas in length. The poten-
tial existence of such proteins, although functionally uncharacterized,
supports the conclusion presented above, that 4JC proteins arose by in-
tragenic duplication of a 2 TMS-encoding element.

3.7.2. Innexins (1.A.25)
Sixteen large Innexin homologueswere identified. Six proteins, each

from a different invertebrate species, proved to have internal duplica-
tions, containing two complete adjacent innexin domains, each with 4
TMSs (Table 3). One such protein was entered into TCDB with
TC#1.A.25.1.11. Several other large proteins appeared to contain com-
plete C-terminal innexin domainswithN-terminal fragmentary innexin
domains of variable sizes. These frequently included partial innexin
fragments or sequences that were too distantly related to known pro-
teins to allow their identification, even though some of them represent-
ed conserved domains. Recognized N-terminal domains included (1) a
DUF2047-TAF7 region and (2) an Ndr domain, thought to be involved
in cell differentiation, possibly an α, β-hydrolase (Pfam 00561). One



Fig. 4. Alignments of the two halves of several members of the 4JC superfamily. The Repro program was used to identify potential repeats with default settings for gap penalties: 10 for
open, 1 for extension, and 50 for N local alignments. A, a connexin, B, an innexin, C, an HMCM protein, D, an occludin. The UniProt accession and TC numbers of the proteins studied
are provided above each alignment. TMSs are shaded and numbered.
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protein had an N-terminal innexin domain with a C-terminal pyruvate
kinase domain.

It is interesting to note that while most connexin fusion proteins
have their extra domains fused C-terminal to the connexin domain,
the innexin fusion proteins have their extra domains fused N-terminal
to the innexin domain. Additionally, while no protein was identified
with two full length connexin domains, six homologues with two full
length innexin domains were detected, and six more had full length C-
terminal innexin domainswithwhat appeared to beN-terminal innexin
fragments.

3.7.3. ICC (1.A.36)
Only one large (N2× average) proteinwas identified for the ICC fam-

ily. This protein, of 1089 aas, had an N-terminal LisH microtubule regu-
lation domain, a central WD40 signal transduction domain and a C-
terminal MCLC chloride channel domain (TC#1.A.36; Table 3).
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3.7.4. Plasmolipin (1.A.64)
One protein of 339 aas was substantially larger than its plasmolipin

homologues. This protein had an N-terminal hydrophilic domain, not
associatedwith a conserved domains in CDD or Pfam, followed by a sin-
gle C-terminal plasmolipin domain.

3.7.5. CALHM-C (1.A.84)
Four large CALHM-C homologues were identified (Table 3). The first

had a C-terminal CALHM-C domain fused to a large hydrophilic
dermatan sulfate epimerase domain. The other three proteins, each
from a different animal species, possessed two internally duplicated,
full length, 4 TMS CALHM-C domains. In these cases, the C-terminal do-
mains were better conserved (90–95% identical to its best TC hit) with
the N-terminal domain exhibiting only about 30% identity with the
same TC CALHM-C homologue. One of these proteins, with gi#
676278280, has a duplicated domain with 5 rather than 4 putative
TMSs (peaks of hydrophobicity). Possibly, the domain duplication
events occurred late during the evolution of these proteins.

3.7.6. Claudins (1.H.1 and 1.H.2)
Only three large claudin proteinswere identified, one for the Claudin

(TC#1.H.1) family and two for the Claudin 2 (TC#1.H.2) Family. The
large claudin homologue (Table 3) was of 908 aas and had an N-
terminal claudin domain of 4 TMSs followed by at least 5 ARM (Arma-
dillo/β-cateinin) repeat units. The ARM domains are probably protein-
protein interaction domains. The first of the large Claudin2 homologues,
of 995 aas, had at least 3 DM10 (DUF1128) domains of unknown func-
tion, C-terminal to the Claudin2 domain. The second large Claudin 2
protein, of 627 aas, had a Claudin2 triplication in a 1+ 4 + 4 + 3 TMS
arrangement. Repeat #3 showed 52% identity, repeat #1 showed 32%
identity and repeat #2 showed 29% identity with TC#1.H.2.1.1.

3.7.7. CCAγ (8.A.16)
Three large homologues in the CCAγ family were identified, and all

shared the same domain patterns. They exhibited duplicated 4 TMS
Claudin2-like domains, the first belonging to subfamily 8.A.16.2, and
the second belonging to subfamily 8.A.16.1. This fact suggests that
they arose by gene fusion rather than by intragenic duplication. Finding
multiple homologues with the same domain order increases confidence
that these proteins did not result from artifacts of sequencing or exon
identification.

3.7.8. Clarins (9.A.46)
Only one large homologue of the Clarins was found. This protein, of

525 aas, had three domains in the order: Clarin - EEP - DUF4205, where
the EEP domain is found in endonucleases while the DUF4205 domain
has not been characterized.

3.7.9. Occludins (9.B.41)
Two of four large occludin homologues, of 1094–1280 aas, displayed

two full length occludin repeats. These proteins appeared to be fusions
of two occludins rather than duplications because their N-terminal
occludin domains resembled subfamily 9.B.41.2 proteins while the C-
terminal domains most closely resembled subfamily 9.B.41.1 occludins.
Two such proteins are listed in Table 3. This situation is similar to that
observed for the CCAγ family. Two additional proteins also had two
full length 4 TMS occludin domains, but their origins could not be
ascertained.
Fig 5. Phylogenetic trees of representative proteins (A) and families (B) within the 4JC superfam
respectively (see 2. Methods). In A, the specific proteins examined in each of the 15 families h
clockwise order in the tree. Those proteins that fall outside of their familial cluster are indi
proteins in the tree, the family abbreviation is provided. Finally, the four clusters (I-IV) are s
clusters (I–IV) are indicated. Note that TG families corresponding to Pfam claudin/claudin2 fam
clusters II and IV. The family abbreviation used with their full names is presented in Table 1.
3.7.10. Tetraspan vesicle membrane (9.B.130)
The 4 TMS 4JC domain of this family is referred to asMARVEL in CDD.

Two proteins had their N-terminalMARVEL domains fused to a long hy-
drophilic domain with a Zn2+ binding SCA7 domain, and one of them
had a C-terminal Cytochrome b561 domain. One other homologue had
the N-terminal MARVEL domain fused to a hydrophilic Prickle-like pro-
tein 3 (PET_Prickle-LIM1-LIM2-LIM3) series of domains.

4. Discussion

The statistical analyses presented in this article provide the first ev-
idence that four families of junctional proteins, the innexins, connexins,
claudins and occludins, as well as eleven channel, transport auxiliary
protein and uncharacterized families (see Tables 1 and 2) all arose
from a common ancestor via the same pathway. In all cases, a 2 TMS
hairpin structure with its N- and C-termini inside, probably duplicated
to give the4 TMSproteins. Interestingly, additional duplication or fusion
events giving 8 TMS proteins with two 4JC domains and even 12 TMS
proteinswith three 4JC domains (with some variations) were identified
(see section entitled “Potential Fusion Proteins” and Table 3). The 4 TMS
topology is therefore the basic characteristic of all members of the 4JC
superfamily, although in several cases, particularly putative “fusion”
proteins,more TMSswere observed (see below). The relatively high fre-
quencies of duplicated or fused 4JC domains, especially among the junc-
tional connexins, innexins, claudins and occludins, is consistentwith the
conclusion that the proteins of each family form (hetero)oligomeric
structures in the intact cell [50–58].

The evidence for homology between the fifteen families of the 4JC
superfamily was substantial (all scores at or above the 14 SD cutoff;
see Fig. 2 and Table 2), and in the few cases where 3-d structures
were available (connexins, claudins, and CCAγ), structural comparisons
confirmed this conclusion. Analysis of the phylogenetic trees for the
proteins and families of the 4JC superfamily revealed some interesting
details (Fig. 5A and B). First, all but two of the known channel proteins
(T.C. Class 1.A) occur in cluster I at the tops of the two phylogenetic
trees. The two exceptions are the Plasmolipin Family which can be
found in Cluster III (middle left), and the HCMC Family, present in Clus-
ter II (bottom). The DUF475 Family, with proteins derived from
Actinobacteria, of unknown function, is found in Cluster I, suggesting
that these proteins may be ion channels. Second, the plasmolipins clus-
ter with the occludins and two poorly defined families, the TVP and
NCPE families. None of the proteins in these families aremechanistically
defined. Third, cluster III includes both Claudin families (Claudin and
Claudin2) as well as the CCAγ andHCMC families with the Clarin family
branching from a position much closer to the center of this radial tree.
Fourth, the Occludin family branches from the center of the tree by itself
(Branch IV).While Claudins andOccludins are known to be constituents
of tight junctions, HCMC family members are mechanosensitive ion
channels, while CCAγ proteins are believed to be auxiliary subunits of
Ca2+ channels. Clarin 1 is a component of the USH complex involved
in mechanotransduction [59], responsible, when defective, for deaf-
blindness [60]. It is the causative protein which when mutated gives
rise to the human Usher syndrome type 3A [61].

Of the 15 families in the 4JC superfamily, a search for proteins at least
2-fold larger than the average size of all members of the family revealed
a few proteins that proved to have more than a single domain. Four of
these families had no such recognizable fusion proteins, nine families
had between 1 and 4 such members, and two, the connexins and
innexins, had more, 12 and 15, respectively. These numbers indicate
ily. The SuperfamilyTree programs (SFT1 and STF2) were used to generate the two trees,
ave their protein abbreviations listed in Table S1 in supplementary materials, all listed in
cated by asterisks. Outside of these branches, indicating the positions of the individual
hown. B. The integrated tree in which each branch bears a single family. The same four
ilies are in Cluster III, while TC families corresnpoding to the Pfam MARVEL family are in



Fig. 6.Representative alignments of available 4JC structures. Left to right: A. Connexin-26 (TCDB: 1.A.24.1.3) and claudin-19 (TCDB: 1.H.1.1.5); B. connexin-26 (TCDB: 1.A.24.1.3) and CCAγ
(TCDB: 8.A.16.1.1); C. claudin-15 (TCDB: 1.H.1.1.9) and CCAγ (TCDB: 8.A.16.1.1). Hydrophilic domains and unaligned loops have been excluded for clarity. The color-coding is as follows:

Color TMS A B C

Light red 1 2ZW3.A 5ER7.B 4P79
Light yellow 2
Light green 3
Light blue 4
Dark red 1 3X29.A 3JBR.E 3JBR.E
Dark yellow 2
Dark green 3
Dark blue 4
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that almost all members of the 4JC superfamily consist of single domain
proteins; there are only a few exceptions. Some of these large proteins
may have resulted from errors in sequencing, incorrect intron/exon as-
signment or misinterpretation of the sequence data.

The most common occurrence among large putative fusion proteins
were internal duplications, having two, or in a few cases, three, 4JC do-
mains. These proteins often have family-specific characteristics. For ex-
ample, no internally duplicated connexin was identified, although
several putative connexin proteinswere fused to other domains, almost
always with the connexin domain N-terminal. By contrast, six innexin
homologues were internally duplicated, and six more displayed C–
terminal innexin domains with N-terminal fragments of innexins. In
contrast to the connexins, where N-terminal 4JC domains were fused
to other domains, the innexin domains were almost always C-terminal.

In each of the ICC and Plasmolipin Families, only a single fusion pro-
tein was identified, and in both cases, the 4JC domain was C-terminal. A
single CALHM-C protein had a C-terminal 4JC domain with an N-
terminal dermatan sulfate epimerase domain, but three other proteins
had duplicated 4JC domains, where the C-terminal domains were better
conserved. By contrast, Claudins, when fused to other domains, had the
4JC domain N-terminal. A single Claudin2 homologue seemed to have
three (triplicated) 4JC domains. Three large CCAγ homologues had the
4JC domains C-terminal with the other domains being N-terminal. The
single Clarin fusion protein identified also had its 4JC domain C-terminal.

The large occludins and TVP proteins contained 4JC domains recog-
nized by CDD as MARVEL/occludin domains. Of the occludins, two had
two C-terminal 4JC domainswith these 4JC domains fused to hydrophil-
ic N-terminal domains. Of the three large TVP homologues, all had the
4JC domain N-terminal to the other domains.

It is apparent, that the occurrence of internally duplicated (or fused)
or partially duplicated 4JC domains represented a fairly high percentage
of the large proteins and that several of these appeared to have arisen by
fusion of two dissimilar 4JC domains, rather than duplication of a single
such domain.

Whether these fusions occur with the 4JC domain C-terminal or N-
terminal depended on the family to which these proteins belong. One
primary function of the fusions could be to anchor a soluble enzyme
or structural protein to themembrane with formation of a multiprotein
complex. However, it is also possible that these fusions provide cooper-
ative metabolic regulatory functions. Systematic identification of these
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fusion proteins provides food for thought and future research prospects
concerning their evolution and functions.

The observations reported in this communication suggest that the 4
TMS topology, conserved in all members of the 4JC superfamily, is im-
portant for a structure and/or function common to all of its members.
The two patterns of topological alignment, one showing the same
TMSs (1–4) aligning with the corresponding TMSs in members of an-
other family, and the other showing TMSs 1 and 2 aligning with TMSs
3 and 4, substantiate the conclusion of homology and also provide evi-
dence for the conclusion that the proteins of this superfamily arose via
intragenic duplication. These suggestions were substantiated using rig-
orous statistical criteria, and by the identification of 2 TMS elements in
some homologues.

In general, we observed that the 4 TMSs in any one family of the 4JC
superfamily were conserved to similar degrees. This suggests that these
4 TMSs are of comparable importance, both structurally and functional-
ly, in all 15 families. In some families, differing degrees of conservation
were observed, but these were not large differences. In these instances,
however, parts of the proteins may serve extra functions not assumed
by the others. We suggest that family-specific functions could include
subunit:subunit interactions, channel formation, and hemichannel
docking. Superfamily-generalized functions could include overall 3-
dimensional structural features, subunit stability, and proper
biogenesis.
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