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Abstract

We present an isosurface generation algorithm for
large-scale volumetric scattered data. Rather than
construct a global tessellation of the data points, we
define a set of local tetrahedrizations that are guar-
anteed to cover the domain. Inside each local tetra-
hedrization, a point-based isosurface contouring al-
gorithm is applied to generate isosurface geome-
try. Our work differs from previous work in that we
make very few assumptions about the density of the
point distribution, and we construct visual represen-
tations of the data directly without global tessella-
tion or resampling. The merit of such an approach
is a fairly general method that produces faithful ren-
derings of large-scale scientific data.

1 Introduction

As data acquisition and scientific simulation be-
come increasingly more sophisticated, there is a
growing need for new visualization algorithms that
support meshless data representations—data de-
fined without an underlying mesh. Data acquisition
technology is rapidly advancing to the point where
acquired volumetric data sets can consist of an ir-
regular lattice of sample points. Such data sets in
the past have been referred to as scattered or un-
structured data sets, or point-clouds. One attrac-
tive feature of methods designed for scattered data
is that they can be applied to regular and hierarchi-
cal mesh and grid data without specialization.

Visualization algorithms for scattered data have
followed two primary paradigms: global mesh-
ing and resampling. In the global meshing ap-
proach, a global set of tetrahedra representing the
domain is computed. Once these tetrahedra are ob-
tained, tetrahedra-based visualization algorithms—
such as volume splatting [15], cell projection [19],
or marching tetrahedra [26]—can be applied. The

primary drawback of such an approach is its lack of
scalability, since global mesh generation “remains
one of the most time-consuming techniques” [16].
Another drawback of this general approach is that
many tetrahedral mesh visualization techniques as-
sume linear interpolation inside a given tetrahedron
and cannot incorporate application-specific interpo-
lation methods.

In a resampling approach, the scalar field is re-
sampled on a rectilinear grid using a scattered data
interpolant. Given the resulting grid, grid-based vi-
sualization algorithms can be applied. A severe dis-
advantage of this approach is that an additional in-
terpolation step—e.g., trilinear interpolation—must
be applied in rendering the grid data. This inter-
polation of the resampled data can produce unmea-
surable error evidenced by artifacts in the rendering,
see Figure 1. These artifacts are not only distracting
but also unacceptably unfaithful to the data. Visual-
ization should not introduce biases that would affect
the analytic conclusions based on the data. There-
fore, it is desirable to apply methods that directly
visualize the original data, not a resampling of it.
These issues motivate the development of methods
that bypass the generation of a global mesh or a re-
sampling grid.

To directly visualize the scattered data, we use a
point-sampling isosurface extraction approach. We
make use of an initial linear approximation (in the
form of a tetrahedrization) to the potentially com-
plex volumetric function. This tetrahedrization al-
lows isosurface triangles approximating the surface
of interest to be produced. The triangles are point-
sampled, and these points are projected to the de-
sired isosurface defined by the original interpolat-
ing function. Because the input scattered data may
consist of a large number of data points, we avoid
the generation of a global mesh by creating overlap-
ping local meshes covering the domain of the global
mesh. We refer to the problem of adequately fill-
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Original Resampling

Figure 1: Using the original data and a resampling
of the data. Note the rendering artifacts in the re-
sampled version of this gyrokinetic simulation data
set. (The resampled version uses trilinear interpola-
tion.)

ing a domain with local meshes the domain cover
problem. The focus of this paper is solving domain
cover, as it is a prerequisite to applying point-based
isosurfacing methods.

The major contribution of our work is a new
localized approach to visualize scattered data that
uses direct sampling. Specifically, we extract iso-
surface geometry by directly point-sampling the
scalar field. Our algorithm has several desirable fea-
tures. First, the locality of our method reduces the
amount of memory necessary during processing and
allows a parallel implementation. Second, since no
resampling step is employed in the extraction of iso-
surface geometry, rendering artifacts are avoided.
Finally, the sampling and interpolation procedures
are decoupled, allowing application-specific inter-
polations to be incorporated without modifying the
sampling procedure. This paper introduces a novel
way of approaching the visualization of scattered
data and represents a significant step to building
effective visualization tools for scattered data sets.
Figure 2 illustrates our method for isosurface ex-
traction from scattered data, highlighting our solu-
tion to the domain cover problem.

In the following sections, we describe an auto-
mated algorithm to solve the domain cover problem
and how this algorithm is applied to extract isosur-
faces from scattered data. This process begins with
stencil creation, where the point set data is parti-
tioned into subsets. An octree aids in the process of
regularization of the distribution to compute such
stencil point sets. The union of local tetrahedriza-
tions constructed from these stencil point sets pro-

vides a domain cover, and we use the local tetra-
hedrizations to generate continuous isosurface ge-
ometry.

2 Related Work

Numerous publications have been devoted to the
study of scattered data interpolation. Traditional
methods for scattered data interpolation include
Shepard’s method, radial basis functions (RBFs),
tessellation-based methods, tensor-product meth-
ods, and blended local methods [10]. RBFs [4, 11,
13] and local methods have proven effective, par-
ticularly in the reverse engineering and surface re-
construction communities. There has been renewed
interest in the application of moving least-squares
[1, 3, 17] as a local method for fitting smooth ap-
proximations to point cloud data. Partition-of-unity
blending functions [12, 20, 24] have promoted the
use of local approximations used to construct a
globally continuous approximation.

Meshing algorithms for point clouds play an im-
portant role in computational science, parameteri-
zation, and surface reconstruction. In particular, the
Delaunay tetrahedrization [5, 9], and its dual, the
Voronoi tessellation, are standard tools for natural
neighbor interpolation [23, 24] and 3D surface re-
construction [2]. However, global tessellations of-
ten become undesirable in practice as data sets grow
in size and complexity.

Researchers exploring point-based methods have
studied the use of raw point samples without ex-
plicit mesh connectivity information. The point-
based rendering community has focused primarily
on the display and manipulation of complex sur-
faces represented by point primitives [21, 22]. Iso-
surfaces have been extracted in a point-based man-
ner [6, 25, 18]. The iso-splatting technique was
adapted to extract continuous point-based isosur-
faces from multiblock data [8].

Our work is a visualization system in which
various interpolation methods can be incorporated.
Rather than construct a global tessellation of the
data points, we define a set of local tetrahedrizations
that are guaranteed to cover the domain. Inside each
local tetrahedrization, point-based contouring is ap-
plied to extract isosurface geometry. Our work dif-
fers from previous work in that we make very few
assumptions about the density of the point distribu-
tion, and we construct direct visualizations of the
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data without global tessellation or resampling. The
contribution of this direct approach is a relatively
general method that produces faithful scientific vi-
sualizations.

3 Regularization

To facilitate the construction of local tetrahedral
meshes, we first regularize the point distribution.
We add data points to the data set such that the
resulting point distribution is quasi-uniform. We
create a regular grid around the data points and
distribute the points among the cells of this grid.
Empty cells are filled with a single data point at
the center of the cell whose function value is deter-
mined by interpolating. (Interpolation is discussed
in Section 5.) These additional points are used for
creating local tetrahedrizations and are not consid-
ered when evaluating the approximation. We refer
to the resulting grid as the binning grid.

The properties of a desirable binning grid bal-
ance two competing desires. First, the grid should
be coarse enough to minimize the number of evalu-
ations of the scattered data interpolant. Since the
interpolant is evaluated at points added to empty
cells of the binning grid, the number of interpolant
evaluations is equal to the number of empty cells in
the binning grid. Second, the grid should be fine
enough to minimize computation time of the local
tetrahedrizations.

The properties of the binning grid are determined
by using an octree to balance these competing con-
straints. The data points are rescaled to fit inside an
axis-aligned unit cube, the root node of the octree.
This cube is refined adaptively until each leaf cell
contains at most one data point of the data set. The
binning grid is a set of cells resulting from one full
level of octree subdivision. We refer to this level
as the binning grid level lb, which corresponds to a
2lb × 2lb × 2lb grid. The binning grid is computed
in two steps. In the first step, lb is determined by
traversing the octree in a depth-first fashion. In the
second step, the binning grid is obtained by trim-
ming or augmenting the 2lb × 2lb × 2lb grid such
that a single layer of cells of the binning grid sur-
rounds the axis-aligned bounding box of the data
points.

To compute lb, the octree is traversed in a depth-
first fashion until a node is reached that contains at
least one empty child node. The level of this node

is appended to a list. If a leaf cell is encountered,
its level is also added to the list. (A leaf node is a
node containing only empty children.) The median
level of the resulting list of node levels is selected
as lb. It is possible to choose the average level of
this list, however we have found that the resulting
binning grid is often too fine.

4 Local Tetrahedral Mesh Generation

Points inside a given 3 × 3 × 3 stencil of binning
grid cells are used to construct a local tetrahedriza-
tion. The stencils are centered in alternate cells to
avoid excessive tetrahedrization overlap, see Figure
3. We use Delaunay methods to tetrahedrize the
stencil point set. We note that the tetrahedrization
provides starting point information for sampling the
isosurface and not a globally consistent interpolat-
ing function.

Constructing local tetrahedrizations in this man-
ner solves the domain cover problem. Consider that
points are added to the outer layer of binning grid
cells. The convex hull of these outer layer points
form an axis-aligned box that contains the domain
of the data points. After regularization, each cell
of the binning grid contains at least one point. The
union of the stencil tetrahedrizations cover the box
formed by the outer layer points, since these tetra-
hedrizations span the space covered by the grid
cells. This remains true for non-stencil-center cells
since the tetrahedrizations either conform or over-
lap at their boundaries. Thus, since the union of
the stencil triangulations cover the outer layer grid,
and the outer layer grid contains the domain of the
scattered data, the domain of the scattered data is
appropriately covered.

Figure 3 shows 2D examples of conforming and
overlapping local triangulations. Our algorithm nat-
urally produces meshes that conform. However, we
note that it is not necessary for the local meshes to
conform to achieve domain cover. The local tetra-
hedrizations do not need to be computed a priori,
but rather are generated on-the-fly and later dis-
carded when the stencil is no longer needed. This
greatly reduces the memory requirement for stor-
ing tetrahedrizations and enables a distributed im-
plementation.
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Figure 2: Overview of our algorithm. Given a scattered data set, our method constructs stencil point sets.
A tetrahedrization is computed over each stencil point set. The local tetrahedrizations provide a domain
cover. The portion highlighted in yellow (left) represents the portion that solves the domain cover problem.
Isosurface generation is accomplished using point-based techniques.

5 Interpolation

For interpolation, we reuse the octree data struc-
ture computed for regularization. Our interpolation
method uses the algorithmic structure of the multi-
level partition-of-unity (MPU) implicits method of
Ohtake et al. [20]. This method constructs a global
approximation by blending local quadric approxi-
mations placed with the aid of an octree. Instead
of using piecewise quadric approximations at oc-
tree nodes, we use local radial basis function (RBF)
interpolants. During octree construction, we com-
pute at each node information about the number of
points contained in each cell as well as the radius of
a sphere of influence centered at the centroid of the
cell. The radius is computed to be αd, where d de-
notes the length of the octree node’s diagonal. (We
use α = 0.75, which was shown to be an effective
choice of α in the MPU implicits method.)

We use Hardy’s multiquadric RBF method [14],
since it offers high interpolation quality for a rela-
tively low computational cost. Given a set of sam-
ple points S defined by a set of points {p

i
}, i =

1, 2, . . . , |S|, let fi be the scalar value associated
with pi. Let x be an arbitrary location at which
we wish to evaluate the interpolant. We construct

Hardy’s interpolant

H(x) =

|S|
∑

i

λiφi(x),

where
φi(x) =

√

|x − pi|2 + c2.

Here, c denotes Hardy’s constant, which we have
set to 0.025 in our implementation, a value we have
observed to be good in previous experimentation for
data sets we have used. In order to construct a local
interpolant, we build S from the set of points inside
the sphere of influence of an interpolation node in
the octree.

We use partition-of-unity weight functions to
construct a global approximation of the scalar field
by blending together local RBF interpolants. The
local RBF interpolants are placed adaptively using
our octree by associating them with the centroids
of selected octree nodes, called interpolation nodes.
We partition the data points into clusters manage-
able by the matrix solver [8]. At a given node, we
collect the points inside the node’s sphere of influ-
ence for the local interpolant. If the number of col-
lected points is above a user-defined threshold N ,
we traverse the octree deeper until the matrix prob-
lem size is less than or equal to N . It is possible
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Figure 3: Illustration of boundary conditions in
stencil triangulations. Top: Local triangulations are
constructed from points inside 3×3 stencil of cells,
shown in blue and red. Middle: An example of
two neighboring stencil triangulations that overlap.
Three triangles from the blue triangulation overlap
three triangles of the red triangulation; the overlap
is shaded in light orange. Bottom: An example of
two neighboring stencil triangulations conforming
at their boundaries, shaded in light orange. The fact
that local triangulations either overlap or conform
guarantee domain cover.

for the sphere of a leaf node in the octree to con-
tain “too many” points, in which case, we augment
the tree with further subdivisions until the threshold
is satisfied. (In our implementation, we chose N

to be 100 because the linear system can be solved
relatively quickly while still produce high-quality
results.)

Evaluation of the approximation is performed us-
ing a recursive routine in O(log m) time, where m

is the number of interpolation nodes in the octree
[20]. The contribution of each local interpolation is
calculated, the sum of the weights is accumulated,
and the final value is normalized by dividing the
sum of the contributions by the sum of the weights.
It is important to note that only the original sample
points are used for interpolation.

6 Isosurface Contouring

To construct isosurfaces from scattered data sets,
we adapt a point-based, meshless isosurface gen-
eration method [8]. Our adaptation uses march-
ing tetrahedra to obtain an initial triangle approx-
imation for the isosurface of interest. These trian-
gles are decomposed into points and projected to
the actual isosurface as defined by the interpolation
scheme. Since the triangles are derived from data
points using the original data set, we believe the tri-
angles serve as a reasonable initial approximation
to the final surface.

The resulting surfaces are continuous point-
based representations. The initial set of triangles
resulting from the local tetrahedrization may be dis-
continuous. Once these triangles are decomposed
into points and projected to the implicit surface de-
fined by the interpolating function and the isovalue,
the discontinuities disappear, and the surface de-
fined by the interpolating function can be seen.

Isosurfaces are accurately generated in our sys-
tem. Point projection is achieved through the use
of Newton-Raphson iteration. Convergence of the
iteration scheme is achieved when the displacement
of the point between iterations is less than a user-
defined threshold. (In our results, this threshold was
set to 0.01.) In this way, isosurfaces accurate to
within a user-defined threshold are produced.

The isosurface generation process is performed
in a streaming fashion, such that only the current
stencil tetrahedrization needs to be stored in main
memory at any given time. A marching stencil
generates the tetrahedrization, the triangles approxi-
mating the isosurface, and the resulting point-based
isosurface on-the-fly.

7 Results

We implemented a parallel version of the isosurface
contouring method, where the machines concur-
rently generate isosurface fragments while march-
ing through separate stencils. We implemented
a simple master-slave architecture, where a single
master monitors the progress of slaves generating
the isosurface geometry. We used a cluster of eleven
desktop PCs communicating through MPI over a
100 Mb/s line. We employed a hybrid comput-
ing network consisting of computers with proces-
sors ranging from 2.80 GHz to 3.20 GHz and mem-
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(a) (b) (c)

(d) (e) (f)

Figure 4: Visualizations of the irregular data point distributions for (a) a silicium, (b) buckyball, and (c)
HighResHead data set. Point-based isosurface extracted from each scattered data set, (d), (e), (f).

Data set
Octree

construction
Local RBF

construction
Regular-
ization

Preprocess
Total

Isosurface
generation

silicium 0.1 s 3.2 s 0.1 s 3.4 s 176.3 s
buckyball 0.2 s 3.1 s 0.1 s 3.4 s 69.2 s

HighResHead 1.9 s 48.8 s 45.5 s 96.2 s 375.1 s

Data set
Number of
data points

Number of
local RBFs

Number of
empty cells

silicium 17,532 4,180 2,519
buckyball 20,000 4,096 31

HighResHead 345,452 92,022 1,758,408

Table 1: Summary of data sets and results of the timing experiments.
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ory ranging from 1 GB to 4 GB. Given this config-
uration, we performed isosurface generation for a
variety of data sets, measuring preprocessing time
(octree construction, local RBF construction, and
regularization) to assess the effectiveness of the ap-
proach. Timing results for the preprocessing are
given in Table 1.

To test the method, we utilized three data sets
from a variety of sources. The buckyball data set
was obtained by sampling a 1283 buckyball data set
for 20,000 points using a uniform random distribu-
tion. For many of the data sets, we used levels of
detail obtained from a meshless multiresolution hi-
erarchy [7]. Data points in the hierarchy are deter-
mined using an iterative refinement process based
on principal component analysis and binary space
partitioning. While the original data sets are regu-
lar grid structures, the point distributions resulting
from the meshless hierarchy are irregularly spaced.
We used the meshless multiresolution hierarchy to
generate the silicium data set and “HighResHead”
data set. Table 1 provides a summary of the size
of each data set. Visualizations of the data distribu-
tions as well as of the point-based isosurfaces ex-
tracted in the timing experiments are shown in Fig-
ure 4. We note that the bumpiness in the isosurfaces
of Figure 4f is part of the data and not an artifact of
our surface reconstruction.

In the case of HighResHead, regularization in-
creases the number of data points by over a factor
of five. This observation is indicative of the high
density regions of data points focused around fine
features in the data (see Figure 4), which influence
the binning grid level in favor of a higher resolution
binning grid. One remedy to avoid storing a large
number of additional samples is the generation of
samples in the empty cells on-the-fly. Nevertheless,
regularization allows our system to easily generate
local tetrahedrizations that are guaranteed to cover
the domain. This is an important advantage of our
algorithm, since it opens up the possibility to ex-
ploit the computational power of several machines
by processing local tetrahedrizations in parallel.

8 Discussion

Octree construction time is O(n logn) where n is
the number of points in the data set. The time
complexity of the local RBF construction depends
heavily on the distribution of the data points. Reg-

ularization is proportional to the number of cells
in the binning grid that are empty. The stencil
containing the largest number of data points deter-
mines an upper bound for the construction of the
stencil tetrahedrizations. While pathological point
distributions can be artificially generated causing
the tetrahedrization of a possibly large number of
points, our method works well for data sets com-
monly encountered in practice.

Our system’s performance is sensitive to the
computational requirements of the interpolation
method, which in the case of scattered data is slow.
However, the quality of the images is better. While
the speed advantage of resampling techniques and
trilinear interpolation may justify the potential lack
of accuracy in the visualized result in certain ap-
plications, we attempt to retain the information and
the related context of the original data to the great-
est degree possible and not introduce any biases into
the visualization. Our technique scales to large par-
allel computational systems and can be easily modi-
fied to utilize new interpolation methods as they be-
come available.

9 Conclusion and Future Work

We have presented an algorithm to extract isosur-
faces from large-scale scattered data using a set of
local tetrahedrizations. We compute a binning grid
that balances the need for fine cells where the data
distribution is dense against the need for coarse cells
where the distribution is sparse. The distribution is
regularized using the binning grid, and local tetra-
hedrizations are constructed using a marching sten-
cil approach. Our system is an attractive solution to
data exploration because it is a local method that re-
quires a fairly modest memory footprint and lends
itself naturally to parallel implementation.

Future work will focus on further improvement
of our method. We have developed a system to han-
dle point clouds representing a volume, where the
domain is assumed to be the convex hull of the point
set. Thus, adjustments to our system must be made
to accommodate data sets consisting of non-convex
domains. Although heuristics have been described
to reduce the development of holes in the resulting
surface [8], holes may still appear. We plan to inves-
tigate the use of surface splatting algorithms, which
are able to fill small holes during rendering.
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