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Biologically plausible algorithms for motion saliency and visual tracking are

proposed. First a spatiotemporal saliency algorithm, based on a center-surround frame-

work, is introduced. The algorithm is inspired by biological mechanisms of motion-

based perceptual grouping, and extends a discriminant formulation of center-surround

saliency previously proposed for static imagery. Under this formulation, the saliency of

a location is equated to the power of a pre-defined set of features to discriminate be-

tween the visual stimuli in a center and a surround window, centered at that location.

The features are spatiotemporal video patches, and are modeled as dynamic textures,

to achieve a principled joint characterization of the spatial and temporal components of

saliency. The combination of discriminant center-surround saliency with the modeling
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power of dynamic textures yields a robust, versatile, and fully unsupervised spatiotem-

poral saliency algorithm, applicable to scenes with highly dynamic backgrounds and

moving cameras. The related problem of background subtraction is treated as the com-

plement of saliency detection, by classifying non-salient (with respect to appearance

and motion dynamics) points in the visual field as background. The algorithm is tested

for background subtraction on challenging sequences, and shown to substantially out-

perform various state of the art techniques. The biological plausibility of the framework

is demonstrated by showing that it can predict human psychophysics data on salient

moving stimuli.

Second, a biologically inspired discriminant object tracker is proposed. It is ar-

gued that discriminant tracking is a consequence of top-down tuning of the saliency

mechanisms that guide the deployment of visual attention. The principle of discrimi-

nant saliency is then used to derive a tracker that implements a combination of center-

surround saliency, a spatial spotlight of attention, and feature based attention. In this

framework, the tracking problem is formulated as one of continuous target-background

classification, implemented in two stages. The first, or learning stage, combines a fo-

cus of attention mechanism and bottom-up saliency to identify a maximally discrimi-

nant set of features for target detection. The second, or detection stage, uses a feature

based attention mechanism and a target-tuned top-down discriminant saliency detector,

to detect the target. Overall, the tracker iterates between learning discriminant features

from the target location in a video frame and detecting the location of the target in the

next. The statistics of natural images are exploited to derive an implementation which

is conceptually simple and computationally efficient. The saliency formulation is also

shown to establish a unified framework for classifier design, target detection, automatic

tracker initialization, and scale adaptation. Experimental results show that the proposed

discriminant saliency tracker outperforms a number of state-of-the art trackers in the

literature.

Finally, it is hypothesized that such saliency based tracking model is biologi-

cally plausible and could underlie tracking in primate visual systems. This hypothesis,

denoted the saliency hypothesis for tracking, is tested for plausibility in three ways.

First, results from a set of human behavior studies on the connection between saliency

xxii



and tracking show that 1) successful tracking requires targets to be salient, 2) tracking

success has a dependence on feature contrast, between target and background, that is

remarkably similar to that of saliency, and 3) as for widely accepted models of saliency,

tracking also involves a center-surround mechanism with the involvement of a local-

ized background. Second, saliency based tracking is shown to be neurophysiologically

plausible, by derivation of a tracking network that is fully compliant with the standard

physiological models of V1 and MT, and with what is known about attentional control in

area LIP. Finally, this network is shown to 1) replicate electrophysiological recordings

from MT neurons in feature-based attention experiments, and 2) explain the results of

the psychophysics experiments.
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Chapter 1

Introduction

1.1 Introduction

The consumer electronics revolution combined with the advent of the Inter-

net age has led to an explosion in the amount of multimedia content being generated.

Youtube alone has over 100 million videos most of which are user generated clips with

vast variability in terms of video quality. The ubiquity of surveillance cameras has also

produced large amounts of video data. This data represents a massive source of informa-

tion that can be mined for valuable information. For instance, indexing and categorizing

videos in Youtube can help in better monetization potential, while scrutinizing surveil-

lance videos is essential for security applications, detection of anomalous events and

even modeling consumer behavior.

However, analyzing and extracting useful information from such videos has been

a challenge. Video data is far more voluminous than images, and hence the need for

automatic analysis is acute. Further, handling video data is significantly harder than for

images. In videos, the common problems associated with images, such as lighting, view

point variability, and scale are compounded with many other challenges. For instance,

the video could be shot using hand-held cameras and could include egomotion, as seen

in the videos shot by users in Youtube. Additionally, the objects of interest might be

amidst background clutter that itself could be moving or varying from frame to frame.

This has prevented the development of reliable solutions for video analysis.

Most of the current approaches for video analysis aim to solve a specific problem

1
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in isolation. For instance, background subtraction in videos has been studied extensively,

but the most no solution exists for situations with egomotion. Similarly, tracking of ob-

jects in videos has also received considerable attention for over two decades. However,

few approaches provide an integrated framework for automated video analysis that can

be applied to diverse scenarios and for multiple application domains.

On the other hand, the human visual system is extremely efficient at the task of

perceiving and processing moving stimuli. In the human visual system, one of the most

important mechanisms driving rapid scene perception is visual saliency. This enables

higher level cognitive processing to focus attention only on the most salient locations of

the visual field, and allows complex visual tasks to be solved with modest amounts of

computation. Further, in biological visual systems, saliency and tracking tasks are not

fundamentally different. Once a target is declared salient, it is likely to stay salient for

some period of time. It appears sensible to use the computations already performed for

saliency to keep track of where the object is. Hence, it can be argued that there is some

evolutionary pressure for a common solution to the two problems.

Recent work on the computational modeling of saliency [65] has led to efficient

saliency algorithms that have been applied to computer vision problems involving static

images. This has led to improved approaches for interest point detection [62], and object

recognition [59, 69] in images. Inspired by this work, we propose an extension to the

model that can compute motion saliency. We further show that, as in biological systems,

the same framework used for motion saliency can be used to track objects in videos. We

show this by constructing an algorithm where tracking could be performed through top-

down tuning of the mechanisms already in place for bottom-up saliency. This provides

a unified view of motion saliency and tracking. Further it reduces target initialization

to a special case of discriminant tracking that can be handled using the same computa-

tional principles. The framework results in an automated tracker that can be used for

surveillance and monitoring.

Finally, we study the connection between tracking and saliency and try to find

evidence of its biological plausibility. For this we perform human behavior studies to

show that tracking and saliency could be sharing a common underlying mechanism.

We also attempt to construct a biologically plausible network model that uses the same
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architecture to solve both saliency and tracking.

The specific contributions of this work are discussed below.

1.2 Contributions

1.2.1 Motion saliency and background subtraction

We propose an algorithm for motion saliency and show that this algorithm repli-

cates the psychophysics of salient moving stimuli. Based on this motion saliency al-

gorithm, we derive a robust and versatile procedure for background subtraction, which

is successful even for scenes with highly dynamic backgrounds and those shot using

moving cameras. This is the first such solution for scenes with moving cameras and

extremely dynamic backgrounds.

1.2.2 Discriminant tracking

We show that discriminant tracking follows naturally from the discriminant for-

mulation of visual saliency. In particular, tracking can be implemented with a com-

bination of bottom-up center-surround discriminant saliency and spatial attention for

learning, feature-based attention for feature selection, and top-down saliency for target

detection. We also show how the same framework can be used to automatically identify

the size of the target in each frame. This provides a unified solution to the problems of

classifier design, target detection, automatic tracker initialization, and scale adaptation.

1.2.3 Evidence of biological plausibility of discriminant tracking

We suggest that the connections between saliency and tracking exploited in the

discriminant saliency tracker could be the basis of tracking in biological visual systems.

We provide evidence that supports this hypothesis in three ways. First, human behavior

experiments show that tracking requires discrimination between target and background

using a center-surround mechanism, and that tracking reliability and saliency have a

common dependence on feature contrast. Second, the hypothesis is shown to be neuro-

physiologically plausible, through construction of a tracking model that can be imple-
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mented with widely accepted models of cortical computation. Specifically, a tracking

model based on MT neurons is constructed, and it is shown that saliency based tracking

can be implemented with a feature selection mechanism akin to the well known phe-

nomenon of feature-based attention in MT. Finally, this tracker is shown to accurately

replicate electrophysiological data from MT neurons, and the results of the human be-

havior experiments.

1.3 Organization of the thesis

A brief review of discriminant center surround saliency is presented in Chap-

ter 2. This is followed by the motion saliency and background subtraction algorithm in

Chapter 3. The biological plausibility of the motion saliency algorithm is discussed in

Chapter 4. The saliency based approach for tracking algorithm is developed in Chap-

ter 5. Chapter 6 introduces the saliency hypothesis for tracking, while Chapter 7 details

the human behavior studies that validate the hypothesis. The biologically plausible ver-

sion of the saliency based tracker is constructed in Chapter 8. Validation of the model

on the human behavior data and electrophyisiological data is presented in Chapter 9.



Chapter 2

Discriminant Saliency

2.1 Visual saliency

The perception of complex scenes by biological vision systems is heavily de-

pendent on attentional mechanisms. These mechanisms allocate the limited perceptual

resources available to the scene regions that matter the most, increasing efficiency and

robustness to clutter. Attention is itself driven by saliency mechanisms, which assign to

each region of the visual field a degree of saliency, or importance. The different regions

of the scene are then explored sequentially, according to their saliency. There are two

types of saliency mechanisms, commonly denoted bottom-up and top-down. Bottom-up

saliency is completely stimulus driven, i.e. independent of the higher level goals of the

perceptual system. It is, for example, responsible for the high saliency of a “danger”

sign posted on a wall, which pops-out [124] even when we are not looking for danger

signs.

One of its common manifestations is the pop-out phenomena [124] illustrated by

the left display of Figure 2.1. When subjects are instructed to find an outlying bar (target)

in this display, they locate the red bar immediately, independently of the total number

of green bars (distractors). The red bar is highly salient and “pops-out”, commanding

attention.

Top-down saliency mechanisms can be tuned by feedback from high-level cor-

tical areas, according to the tasks to be performed. For example, the eye fixations of a

subject trying to identify a person in a photograph will be overwhelmingly located on

5
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(a) (b)

Figure 2.1: Two types of saliency mechanisms (a) bottom-up: the red bar is salient

among the green distractors and “pops-out” (b) top-down: there is no immediate pop-

out, but when attention is focused on red-bars, the bar in the 3rd row and 3rd column can

easily be singled as the odd one out.

the faces present in that picture [188]. Two main types of tuning are possible: a spa-

tial focus of attention mechanism, also known as the spotlight of attention [137], and

feature-based attention [168] which manipulates attention by inhibiting or enhancing

groups of features.

Both can be perceived by inspecting the display on the right of Figure 2.1. Like

the one on the left, this display contains a target that is different from all distractors.

However, the difference can only be perceived through a conjunction of color and orien-

tation (the target shares the color of some distractors and the orientation of others), and

because feature conjunctions are not salient [167], there is no effect of pop-out. This

makes the target much more difficult to identify than on the left display. Nevertheless,

as the reader can verify, the target is easily identifiable when the subject is instructed

to look at the vicinity of the bar in the 3rd row and 3rd column. This results from the

subject directing his/her spotlight of attention at the target, in response to the additional

location information. While this spotlight narrows down the field of view, feature-based

attention performs the equivalent of feature selection. Its mechanisms manipulate at-

tention by inhibiting or enhancing groups of features. This can, again, be perceived

by inspecting the display of Figure 2.1(b), where the non-salient target becomes salient

when subjects are instructed to concentrate on the red bars. Once the green bars are

ignored, the target differs from the distractors only in terms of orientation, and there is

a percept of pop-out.
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2.2 Computational Models for Saliency

While many bottom-up [99, 88, 105, 139, 113, 93, 27, 108, 152, 70, 74, 57] and

top-down [63, 149, 179, 183, 55, 20, 9, 120] saliency algorithms have been proposed

in the computer and biological vision literature, most approaches lack a unified com-

putational theory to explain both the saliency mechanisms. However, there have been

Bayesian formulations for saliency [163, 192, 65] that provide a unified framework for

both modes.

Bayesian models for saliency are rooted in a decision theoretic interpretation of

perception: that perceptual systems evolve with the goal of producing decisions about

the state of the surrounding environment that are optimal in a decision-theoretic sense.

In this context, the computation of saliency leads to a classification based framework:

that salient features are those which best allow visual systems to decide between dif-

ferent hypothesis, regarding the nature of the visual stimulus. For bottom-up saliency

search, these two hypotheses are that the stimulus either belongs to the target or back-

ground classes, while for top-down saliency search,they correspond to the stimulus be-

longing to either the target or the distractor classes.

In addition to the several saliency models that have an explicit Bayesian formu-

lation [163, 192], there are many others which can be interpreted as specific cases of the

formulation [26].

In the next section, we review the recently proposed decision theoretic formula-

tion for saliency termed discriminant saliency [65].

2.3 Discriminant saliency

Discriminant saliency is a mathematical formulation for visual saliency. Two

classes of visual stimuli are first defined: a target class of stimuli of interest, and a back-

ground or null hypothesis of non-salient stimuli. The visual stimulus is not observed

directly, but through projection into a number of features. Saliency is the result of opti-

mal classification (in a decision-theoretic sense) of feature responses into the target and

background hypotheses [63]. More precisely, the saliency of each location of the visual

field is equated to the expected classification accuracy for the features extracted from it.
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Locations of smallest probability of error are most salient.

This formulation can be applied to various vision problems, by suitable defini-

tion of target and null hypotheses. For example, it can be used to implement one-vs-all

object detection, by defining the target as an object class, and the null hypothesis as the

set of natural images [63]. This is an instance of top-down saliency, due to the necessity

of specifying task-related object classes. Alternatively, target and null hypotheses can

be defined as the visual stimuli contained in a pair of center and surround windows,

at every location of the visual field [65]. This is a purely stimulus driven definition,

which implements bottom-up saliency. Implementations of the discriminant saliency

principle have various properties of interest for both biological and computer vision. In

the area of biological modeling, they can be mapped into a biologically plausible neural

architecture, which has been shown to 1) replicate the computations of the standard neu-

rophysiological model of the visual cortex [65], 2) predict a large body of psychophysics

of human saliency [60], and 3) accurately predict human fixations in natural scenes [61].

In computer vision, they have been shown successful for interest point detection [62],

and object recognition [59, 69].

2.4 Mathematical Formulation of Discriminant Saliency

Discriminant saliency is defined with respect to two classes of stimuli: the class

of stimuli of interest, and the background or null hypothesis, consisting of stimuli that

are not salient. The locations of the visual field that can be classified, with lowest ex-

pected probability of error, as containing stimuli of interest are denoted as salient. This

is accomplished by setting up a binary classification problem which opposes the stimuli

of interest to the null hypothesis. The saliency of each location in the visual field is then

equated to the discriminant power (expected classification error) of the visual features

extracted from that location in differentiating the two classes.

Formally, letV be a d dimensional dataset indexed by location vector l ∈ L ⊂ Rd

and consider the responses to visual stimuli of a predefined set of features Y (e.g. raw

pixel values, Gabor or Fourier features), computed from V at all locations l ∈ L. A

classification problem opposing two classes, of class label C(l) ∈ {0, 1}, is posed at
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Figure 2.2: Illustration of discriminant center-surround saliency. Center and surround

windows are defined around each image location, and the distribution of a previously

defined set of features Y estimated from the two windows. The saliency of the location

is a measure of how disjoint the two feature distributions are.

location l. Two windows are defined: a neighborhood W1
l

of l which is denoted as

center, and a surrounding annular windowW0
l

which is denoted as the surround. The

union of the two windows is denoted the total window,Wl =W0
l
∪W1

l
. Let y( j) be the

vector of feature responses at location j. Features in the center, {y( j)| j ∈ W1
l
}, are drawn

from the class of interest (or alternate hypothesis) C(l) = 1, with probability density

pY |C(l)(y|1). Features in the surround, {y( j)| j ∈ W0
l
}, are drawn from the null hypothesis

C(l) = 0, with probability density pY |C(l)(y|0). An illustration of the center-surround

classification problem, for a static image, is shown in Figure 2.2.

The saliency of location l, S (l), is the extent to which the features Y can dis-

criminate between center and surround. This is quantified by the mutual information

between features, Y , and class label, C,

S (l) = Il(Y ; C) =

1
∑

c=0

∫

pY ,C(l)(y, c) log
pY ,C(l)(y, c)

pY (y)pC(l)(c)
dy. (2.1)

This mutual information is an approximation to the expected probability of correct clas-
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sification (more precisely one minus the Bayes error rate) of the classification problem

that opposes center to surround [172]. Hence, a large S (l) implies that center and sur-

round have a large disparity of feature responses, i.e. large local feature contrast, which

enables their discrimination with low probability of error. Conversely, the locations

where the classification has the smallest expected probability of error can be identified

by searching for maxima of S (l). The function S (l), l ∈ L is referred to as the saliency

map of the datasetV. It can also be written as

S (l) =

1
∑

c=0

pC(l)(c)

∫

pY |C(l)(y|c) log
pY |C(l)(y|c)

pY (y)
dy (2.2)

=

1
∑

c=0

pC(l)(c)KL
(

pY |C(l)(y|c) ‖pY (y)
)

(2.3)

where

KL (p ‖q ) =

∫

X
pX(x) log

pX(x)

qX(x)
dx.

is the Kullback-Leibler (KL) divergence between the probability distributions pX(x) and

qX(x) [101]. This allows an alternative interpretation of saliency as a measure of the

average distance between the feature distribution over each window and the average of

the two distributions. This is a measure of the (lack of) overlap between the distributions

associated with center and surround.

2.4.1 Mathematical formulation of top down saliency

For top-down saliency problems, such as object recognition [63, 59], the target

class, of label C = 1, is the object class to recognize, and the background class, with

label C = 0, the class of natural images. Features Y have probability pY |C(y|1) under

the target hypothesis and probability pY |C(y|0) under the background hypothesis. Unlike

bottom-up saliency, where the absence of any objects can be salient (e.g. a void region is

salient within a textured background), recognition requires the detection of the object of

interest. This implies that top-down saliency measures must have a bias towards target

presence.

This bias is accomplished with a two-step saliency measure. A likelihood ratio

test is first used to identify the set of likely target locations
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S =

{

l

∣

∣

∣

∣

∣

PC,Y (1, y(l))

PC(1)PY (y(l))
>

PC,Y (0, y(l))

PC(0)PY (y(l))

}

. (2.4)

These are the locations where the likelihood of the feature responses is larger under the

hypothesis of target presence than target absence. As before, the saliency of location l

is defined by the amount of information in the visual stimulus for optimal classification

into one of the two classes, using the information measure

I(C; Y = y(l)) =

1
∑

i=0

pC|Y (y(l)|i) log
pY ,C(y(l), i)

pY (y(l))pC(i)
. (2.5)

However, to guarantee that only locations likely to contain the target are declared salient,

the saliency computation is restricted to S. This leads to the saliency measure [59, 69]

S (l) =



















I(C; Y = y(l)) if l ∈ S

0, otherwise.
(2.6)

Locations where this measure is large have both 1) larger likelihood under the target

than background hypothesis, and 2) feature responses that are highly informative for

classification.

In the following Chapters, we use these formulations to construct biologically

plausible algorithms for motion saliency and visual tracking.



Chapter 3

Motion Saliency and Background

Subtraction

3.1 Introduction

Natural scenes are usually composed of several dynamic entities. As illustrated

by Figure 3.1, objects of interest often move amidst complicated backgrounds that are

themselves moving, e.g. swaying trees, other objects such as a crowd, or a flock of birds,

moving water, waves, and snow, rain, or smoke-filled environments.

Even when the scene is static, egomotion of the imaging sensor can originate

a highly variable background, as shown in Figure 3.2. In the most extreme situations,

egomotion and scene motion can combine to produce quite complex background motion

patterns. We refer to scenes with any of these types of variability as dynamic scenes.

Since such scenes are plentiful in the natural world, successful discrimination between

the background motions they induce and moving objects of interest (henceforth denoted

as foreground objects) is a strong survival advantage, for example in terms of being able

to identify potential predators or prey. Not surprisingly, biological visual systems have

evolved to be extremely efficient in this task [14, 79].

In computer vision, background subtraction is useful for diverse applications.

Algorithms that can produce reliable “figure-ground” segmentation are used as a pre-

processing step for object and event detection [44], activity and gesture recognition [185],

12
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Figure 3.1: Examples of dynamic scenes. A skier skiing amidst falling snow, a surfer

riding a wave, birds frolicking in moving water, a helicopter flying amidst heavy smoke.

tracking [190], surveillance [52], and video retrieval [176]. For example, in robotic path

planning, an autonomous device could benefit from a background subtraction module to

simplify the task of identifying objects that approach it. Unlike biological vision, back-

ground subtraction has proven quite challenging for computer vision. After decades of

research on this problem (see [154] for a review), there has been little progress in the

development of methods that are robust and generic enough to handle the complexities

of most natural dynamic scenes. In result, even the most advanced techniques exhibit

at least one from a number of common shortcomings. For example, various approaches

rely on the assumption of a static camera, and are unsuitable for video shot with hand-

held cameras or from moving platforms (as in the robotics scenario) [158, 51, 118, 162].

In fact, the dominant approach to background subtraction in the presence of egomotion

is to first explicitly [119], or approximately [143], compensate for the camera motion,

and then rely on background subtraction techniques that assume a stationary imaging

sensor. Accurate compensation of egomotion is, however, cumbersome and can be quite

difficult when the background is itself dynamic.

Another frequent shortcoming is the adoption of several (often unjustified) as-
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(a) (b)

(c)

Figure 3.2: (a) and (b) Two frames from a video sequence shot with a panning camera

that tracks two cyclists riding against a mostly stationary background. (c) the optical

flow information overlaid on (a). The background is highly variable, but there is no

consistent pattern of optical flow in the region of the foreground objects.

sumptions regarding the motion of the foreground objects. For instance, it is often as-

sumed that these objects move in a consistent direction (an assumption that we denote

as temporal coherence) [182, 104, 29], and have faster variations in appearance than

the background [154]. As illustrated by Figure 3.2, such assumptions are particularly

questionable when there is egomotion, e.g., a camera that tracks a moving object. The

figure shows two consecutive frames from a video sequence shot with a panning camera,

in a manner such that the foreground objects, viz. the two cyclists, undergo very small

motion in image coordinates. Figure 3.2 (c) shows the optical flow between the two

frames. While the background changes rapidly, there is no consistent pattern of flow in

the foreground region, where the flow is indeed close to null. This type of attentional

tracking is the norm in biological vision, where eyes tend to follow objects of inter-

est, and desirable for most computer vision applications that involve moving objects, as
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demonstrated by the very extensive literature in object tracking [190]. Nevertheless, the

inversion (with respect to the stationary camera scenario) of the motion characteristics

of background (which is, in this case, fast moving and temporally coherent) and fore-

ground (whose motion is barely existent and mostly random) can be a major challenge

for existing background subtraction techniques.

A third common shortcoming is the requirement of an explicit model of the back-

ground scene. This implies a bootstrapping phase, where the algorithm is presented with

frames containing only the background [118, 158, 196] or where the background is esti-

mated by batch processing, e.g. median filtering [44], of a large number of video frames.

We refer to these techniques as implicitly supervised, and to the initial phase as a train-

ing step for learning background parameters. This training has several shortcomings,

including the facts that 1) it is difficult to perform for dynamic backgrounds, where the

background model must be continuously updated, and 2) it must be repeated for each

scene where background subtraction is to be deployed. Furthermore, global background

models tend to be brittle, and difficult to manage when there is significant egomotion.

To address these limitations, we propose a novel paradigm for background sub-

traction. This paradigm is inspired by biological vision, where background subtraction

is inherent to the task of deploying visual attention. This can be done in multiple ways,

but frequently relies on motion saliency mechanisms, which identify regions of the vi-

sual field where objects move differently from the background. We equate background

subtraction to the problem of detecting salient motion, and propose a solution based

on a generic hypothesis for biological salience, which is referred to as the discriminant

center-surround hypothesis. Under this hypothesis, bottom-up saliency is formulated as

the result of optimal discrimination between center and surround stimuli at each location

of the visual field. A set of visual features are collected from the center and surround

of each location, and the locations where the discrimination between the features of the

two types can be performed with smallest expected probability of error are declared as

most salient. Background subtraction is then equivalent to simply ignoring the locations

declared as non-salient.

This strictly local approach to background subtraction has various advantages

over the traditional global procedures. First, there is no need to train or maintain a
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global model of the background. As the latter changes, so do the surround windows

at all locations of the visual field. Thus, the local saliency measures are automatically

adapted to variations in the background, and there is no need to keep track of, or update,

a global model. Second, background modeling is considerably simplified. While, glob-

ally, a dynamic background is rarely homogeneous (e.g. different trees have different

motion), the assumption of spatial homogeneity is usually accurate locally. This enables

the use of much simpler probabilistic models (e.g. unimodal distributions vs. mixtures)

which are easier to learn and update. Third, because discriminant saliency compares the

center and surround regions, it depends only on the relative disparity between their mo-

tion characteristics, and therefore is invariant to camera motion. Finally, discriminant

saliency can be adapted to various problems by simply modifying the features and prob-

abilistic models used to discriminate between center and surround. For example, motion

features can be complemented with depth measurements, if range sensors are available,

and different types of models can be chosen to account for different background dynam-

ics. In this work, we choose dynamic texture models, due to their versatility in modeling

complex moving patterns, ability to replicate the motion of natural scenes, and the rich

statistical formulations they lend themselves to [49, 43, 193].

Overall, the main contributions of this work are three-fold. First, the proposed

algorithm is completely unsupervised and does not require initial training with back-

ground only frames. In effect, it is a bottom-up approach that can adapt to any situation.

Second, due to its locally discriminant nature, the algorithm is insensitive to egomotion,

and applicable to video shot with moving cameras. Third, by relying on dynamic tex-

tures as models for the video, it accounts for joint saliency in motion and appearance

in a principled manner, and is robust enough to handle backgrounds of complex dy-

namics. Experimental results on a diverse collection of sequences with such dynamics

shows that the proposed algorithm substantially outperforms the current state-of-the-art

in background subtraction.
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3.2 Previous Work on Background subtraction

Due to its potential application to a wide range of vision problems, background

subtraction is a well studied topic in computer vision. Comprehensive reviews of prior

work in this area appear in [154, 135]. One possible taxonomy for existing approaches is

to group the different methods according to the spatial and temporal models adopted for

video representation. In this context, a popular cue for background subtraction is optical

flow. For example, Wixson [182] and Tian et al. [106] find salient regions by grouping

pixels that move in a consistent direction. Mittal and Paragios [117] complement optical

flow with color, modeling their probability distributions with kernel density estimates.

These techniques tend not to perform well when all components of the scene (including

the background) are dynamic, or when the variability of background optical flow is

larger than that of the foreground objects (as in the panning example of Figure 3.2).

A popular alternative is to rely on appearance-based representations. In this

case, the background can be represented as a probability distribution of certain features

extracted from each pixel. Individual pixel distributions are estimated over time, up-

dated regularly, and the background model is the union of all pixel models. A pixel is

classified as belonging to background or foreground according to its probability under

the background model. Examples of pixel representations include a single Gaussian for

pixel color [185] and a mixture of Gaussians for pixel intensity [158, 196]. Temporal up-

dating of the Gaussian parameters is sometimes achieved using Kalman filters [95, 100].

A strong limitation of all these approaches is that they do not model spatial appearance.

Extensions that address this limitation use local features extracted from a neighborhood

of each pixel, including texture [75], spatio-temporal volumes [136], local kernel his-

tograms and contour features [122], or even SIFT-like descriptors [195]. Elgammal et al.

propose a non-parametric kernel density estimate (KDE) [51] to model pixel intensity,

but incorporate spatial information by searching for the best match of a pixel to classify

among all neighboring pixel models. While this adds some robustness to background

motion, dynamic scenes pose a significant challenge for global background models built

as ensembles of spatially rigid pixel models.

Moving away from pixel representations, various types of region models have

also been proposed. These range from image windows, whose statistics are modeled
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with time series, to full-fledged models of global image appearance. Among the meth-

ods based on time series, Zhong and Scarloff [193] use a patch-based autoregressive

moving average (ARMA) model whose parameters are learned with principal com-

ponent analysis (PCA). A robust Kalman filter is then used to temporally update the

model parameters, and predict foreground regions. Monnet et al. [118] also rely on

video patches and an autoregressive model, updating the parameters of the latter with

an incremental PCA algorithm. The ‘Wallflower’ method [165] combines a pixel level

background model with region and frame level components that allow for spatial ho-

mogeneity and increased robustness. Other techniques rely on Markov random fields

(MRF) to enforce spatial consistency. In this category, Bugueau and Perez [29] perform

mean shift clustering to group optical flow and color information, and use a maximum

a posteriori probability (MAP) rule to assign each cluster to either foreground or back-

ground. Sheikh and Shah [154] use an MRF to achieve spatial coherence of foreground

and background labels. The MRF includes different observation models, learned with

KDE, for foreground and background. The foreground model accounts for temporal

persistence of foreground objects, and includes an outlier process to identify new fore-

ground regions. Pixels are assigned to background or foreground through an MAP rule.

Global methods that use eigenspace models of the entire background have also been

proposed [131, 104].

While most of these techniques assume no egomotion, approaches have been

developed specifically for non-stationary cameras. For example, camera pan and tilt are

modeled probabilistically in [71], where the resulting models are used to compensate

for camera motion before resorting to static background subtraction methods. Never-

theless, nearly all the approaches discussed so far rely on an explicit background model,

and assume that the algorithm will be initialized with background-only frames. Some

techniques even rely on strongly supervised training of classifiers, such as support vec-

tor machines (SVM), for pixel- or region-level foreground detection, using manually

annotated images [162, 36].

A few techniques deviate from region models rigidly defined a priori. These

techniques treat video as layers containing foreground and background motion, and

equate background subtraction to the extraction of foreground layers [180, 186, 174].
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However, the decomposition into layers requires segmentation of the video into all its

component objects, a problem which is more complex than background subtraction it-

self.

Significantly less attention has been given to biologically inspired solutions to

background subtraction, or the formulation of background subtraction as the detection

of non-salient locations. A notable exception, in this context, is SUNDay [191] and the

work of Itti et al., consisting of a number of motion saliency mechanisms [84, 86, 87].

The most popular among these is the “surprise” model of [86, 87] which maintains

probabilistic models for several pixel features, and computes divergences between prior

and posterior distributions (based on these models) to find regions that are novel. The

“surprise” model has been successfully applied to scenes with relatively simple back-

grounds, but its performance on scenes with complex dynamic backgrounds, that might

themselves trigger spurious “surprise” responses, has not been previously studied in

great detail.

3.3 Biological motivation

There is evidence that in biological vision bottom-up saliency is achieved through

center surround mechanisms [81, 167, 129, 89], i.e. mechanisms tuned to detect stimuli

that are distinct from stimuli in their surround. Extensive psychophysics experiments

have shown that these mechanisms can be driven by a variety of features, including

intensity, color, orientation or motion, and local feature contrast plays a predominant

role in the perception of saliency [125]. For example, Nothdurft has shown that simple

visual concepts, such as bars, can be very salient when viewed against a background of

similar visual concepts that differ from them only in terms of low-level properties, such

as color, orientation, or motion [126, 127].

Figure 3.3 shows some displays used in classical psychophysics experiments de-

signed to determine the role of feature contrast on judgments of motion saliency [125,

127]. In one experiment [127], subjects were shown a display of moving dots such as

that depicted in Figure 3.3 (a) (the videos are available in [3]). While all dots (whose

motion is indicated, in the figure, by arrows) were subject to motion different from that
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(a) (b)

Figure 3.3: Saliency perception due to local contrast [127]. Each panel shows a quiver

plot of the stimuli (dots, whose direction of motion is indicated by arrows of length

proportional to the speed of that motion). In (a), three targets which move in the same

direction, amongst a field of distractors, are perceived as the vertices of a moving tri-

angle. When, as in (b), one target moves in a direction different than those of the other

two, observers still perceive a moving triangle.

of their immediate neighbors, three (referred to as the targets, and indicated by circles

in the figure) had substantially larger motion contrast than the others. The targets could

be in different configurations, two of which are shown in the figure: (i) “similar” (Fig-

ure 3.3 (a)) where all three targets moved in the same direction, and (ii) “dissimilar”

(Figure 3.3 (b)) where one target moved in a direction different than that of the other

two. In all cases, subjects reported the percept of pop-out of a “moving triangle ”, with

similar detection rates. While motion pop-out was already well established, these exper-

iments showed that both motion saliency and the perceptual organization of the points

into a triangle do not depend on absolute quantities, such as the direction of motion of

the targets, how coherent their motion is, or the type of background motion. Instead, the

fact that the targets are coherently perceived as a triangle, even when the vertex motions

are incoherent and the background motion cannot be easily explained by a physical ge-

ometric transformation, suggests that both motion saliency and perceptual organization

are rooted in measurements of local motion contrast. Indeed, neurophysiological ex-

periments on primates have also shown that neurons in the middle temporal visual area

(MT) use local motion contrast in a center-surround mechanism that may underlie the
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perception of figure-ground motion segmentation [22, 21].

From a computer vision point of view, this also appears to be a good idea. Note

that, if motion contrast is defined as dissimilarity of optical flow, the saliency judgments

are robust to egomotion. As long as the background motion field is smooth, as would

typically be the case for a static scene and a moving camera, any foreground objects

(either moving or stationary) will be identified as salient with high probability (i.e. bar-

ring the unlikely coincidence where object motion is the same as background motion at

object location). Furthermore, there is no need for a “global background model”, or any

type of training. Instead, saliency can be computed efficiently with resort to purely local

computations, without any assumptions on scene geometry, and it immediately adapts

to previously unseen environments. We will see, in later sections, that these properties

still hold for dynamic scenes, under a more general definition of motion contrast. On the

other hand, these experiments suggest that background subtraction techniques which 1)

rely on grouping of features by motion similarity to identify foreground objects, or 2)

require compensation of camera motion, will have difficulties to match the performance

of biological systems.

3.4 Discriminant Center-Surround Approach for Mo-

tion Saliency

Using biology for motivation, we rely on local measurements of motion contrast

as the central source of information for the motion saliency detector now proposed.

To produce a quantitative measure of saliency we rely on the principle of discriminant

saliency [63, 61] described in Chapter 2. As described earlier, this is a generic saliency

principle, applicable to a broad set of problems. Here we consider bottom-up motion

saliency, using a center-surround architecture and motion models which are suitable for

dynamic scenes.

The discriminant saliency measure of (2.1) is defined in a generic sense, which

does not depend on the type of stimulus or features Y . It can be shown that for static

saliency, under the popular model of Gabor features and generalized Gaussian natural

image statistics [80, 178], it can be mapped into a biologically plausible neural archi-
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tecture, which replicates the computations of the standard neurophysiological model of

V1 [64, 30]. It is, thus, not surprising that this network also replicates a large body of

psychophysics of human saliency [61]. In what follows we show that, by adopting suit-

able models for spatio-temporal stimulus statistics, this formulation is robust enough to

compute motion saliency in highly dynamic scenes. This enables the design of power-

ful background subtraction algorithms by simple reduction of background subtraction

to the complement of saliency detection.

3.5 Background subtraction

Under the definition of saliency as the expected accuracy of the classification

problem which opposes stimulus at location and surround, locations of minimal saliency

are those where the distinction between the two stimuli can be made with lowest con-

fidence. This provides a natural, objective, definition of background based on strictly

local computations: background points are those of lowest center-surround saliency.

Under this formulation, the design of a background subtraction algorithm capable of

handling highly dynamic scenes only requires the use, in (2.3), of probability models

pY |C(l)(y|c) that can capture the variability associated with such scenes. We adopt the

dynamic texture (DT) model of [49], due to its ability to account for this variablity,

while jointly modeling the spatial and temporal characteristics of the visual stimulus in

an elegant unified stochastic framework.

3.5.1 Modeling spatio-temporal stimulus statistics

A DT is an autoregressive generative model that represents the appearance of the

stimulus yt ∈ R
m (the two-dimensional image stimulus is first converted into a column

vector of length m), observed at time t, as a linear function of a hidden state process

xt ∈ R
n (n << m) subject to Gaussian observation noise. The state and appearance

processes form a linear dynamical system (LDS)

xt = Axt−1 + vt

yt = Cxt + wt

(3.1)
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Figure 3.4: Illustration of a dynamic texture model. The first three basis images are

shown on the left, and the corresponding state space variables plotted as a function of

time. At each time instant, a video frame is represented as a linear combination of the

basis images, with weights given by the value of the corresponding state variable.

where A ∈ R
n×n is the state transition matrix, C ∈ R

m×n the observation matrix, and

vt ∼iid N (0,Q) and wt ∼iid N (0,R) are Gaussian state and observation noise processes,

respectively. The initial state is assumed to be distributed as x1 ∼ N (µ1, S1), and the

model is parameterized byΘ = (A,C,Q,R,µ1, S1). The hidden state space sequence xt

is a first order Markov chain that encodes stimulus dynamics, while yt is a linear com-

bination of prototypical basis functions (the columns of C) and encodes the appearance

component of the stimulus at time t. Dynamic texture modeling of a sequence of images

is illustrated in Figure 3.41.

3.5.2 Learning dynamic textures

Given center and surround regions, DT parameters could in principle be learned

by maximum likelihood (using expectation-maximization [155], or N4SID [132]). How-

ever, due to the high dimensionality of video sequences, these solutions are too complex

1The bottle sequence from [193] is used in this example.
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for motion saliency. A suboptimal alternative, that works well in practice[49], is to learn

the spatial and temporal parameters separately. Given N sequences, y
(1)
1:τ, . . . , y

(N)
1:τ , of τ

frames each (where y
(i)
1:τ = [y(i)

1 . . . y
(i)
τ ]), sampled from a DT, let Y1:τ = [y(1)

1:τ, . . . , y
(N)
1:τ ] ∈

R
m×Nτ be the matrix composed by concatenating all sequences. If Y1:τ = USVT is its

singular value decomposition (SVD), the DT parameters are estimated as follows,

Ĉ = U[1 : n] (first n columns of U) (3.2)

x̂
(i)
1:τ = ĈT y

(i)
1:τ (3.3)

Â = X̂2:τ(X̂1:τ−1)† (3.4)

Q̂ =
1

N(τ − 1)

N
∑

i=1

τ−1
∑

j=1

v̂
(i)
j

(v̂(i)
j

)T (3.5)

R̂ =
1

N(τ − 1)

N
∑

i=1

τ−1
∑

j=1

ŵ
(i)
j

(ŵ(i)
j

)T (3.6)

(3.7)

where, X̂1:τ = [x̂(1)
1:τ, . . . , x̂

(N)
1:τ ] is the matrix of state estimates, M† the pseudo-inverse of

M, v̂
(i)
t = x̂

(i)
t+1 − Âx̂

(i)
t , and ŵ

(i)
t = y

(i)
t − Ĉx̂

(i)
t , for t ∈ 1 . . . τ. Finally, the initial state

parameters are estimated as,

µ̂1 =
1

N

N
∑

i=1

x̂
(i)

1
(3.8)

Ŝ1 =
1

N

N
∑

i=1

x̂
(i)

1
(x̂(i)

1
)T − µ̂1µ̂1

T (3.9)

3.5.3 Probability Distributions

Since the states of a DT form a Markov process with Gaussian conditional prob-

ability for xt given xt−1 (for any t), and Gaussian initial state conditions, the joint distri-

bution of the state sequence, x(τ) =
[

xT
1 · · · xT

τ

]T

, is also Gaussian [35]

pX (x(τ)) ∼ N (µ(τ),Σ(τ)) (3.10)



25

with parameters defined by the recursions,

µ(τ) =

















µ(τ − 1)

µτ

















(3.11)

Σ(τ) =

















Σ(τ − 1) ΥT (τ)

Υ(τ) Sτ

















, (3.12)

where

µτ = Aµτ−1 (3.13)

Sτ = ASτ−1AT +Q (3.14)

Υ(τ) =
[

AΥ(τ − 1) ASτ−1

]

, (3.15)

for τ ≥ 2 and, µ(1) = µ1, Σ(1) = S1, Υ(2) = AS1.

Similarly, the sequence of observations y(τ) =
[

yT
1 · · · yT

τ

]T

, has joint distri-

bution

pY (y(τ)) ∼ N (γ(τ),Φ(τ)) (3.16)

with parameters defined by the recursions,

γ(τ) =

















γ(τ − 1)

Cµτ

















(3.17)

Φ(τ) =

















Φ(τ − 1) ζT
(τ)CT

Cζ(τ) CSτC
T + R

















(3.18)

ζ(τ) =
[

Aζ(τ − 1) ASτ−1CT

]

(3.19)

for τ ≥ 2, and γ(1) = Cµ1,Φ(1) = CS1CT +R, ζ(2) = AS1CT . Using the parameter es-

timates obtained with (3.2)-(3.9), from a collection of spatio-temporal patches extracted

from the center and surround windows, in (3.10) and (3.16) produces the probability

distributions required by (2.3), for the center, surround, and total windows.

3.5.4 KL Divergence between DTs

The final step for the computation of S (l), with (2.3), is the evaluation of the

KL divergence between DTs. Let pY |C(l)(y(τ)|i) ∼ N (γi(τ),Φi(τ)) , i ∈ {0, 1} be the
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class-conditional probabilities of a sequence of τ frames under two DTs parameterized

by Θi(l), i ∈ {0, 1}, respectively, and pY (y(τ)) ∼ N (γ(τ),Φ(τ)) the probability under

the marginal DT parametrized by Θ(l).

Since all distributions are Gaussian, the KL divergence between the densities has

the closed-form [42]

KL
(

pY |C(l)(y(τ)|i) ‖pY (y(τ))
)

= (3.20)

1

2

[

log
|Φ(τ)|
|Φi(τ)|

+ tr
(

Φ(τ)−1
Φi(τ)

)

+ ‖γi(τ) − γ(τ)‖2
Φ(τ) − mτ

]

(3.21)

where m is the number of pixels in each frame, and

||z||A = zT A−1z

is the Mahalanobis norm of z with respect to covariance A, |A| the determinant of A, and

tr(A) its trace. Direct evaluation of (3.21) is intractable since the matrices Φ(τ), Φi(τ)

have size mτ × mτ. Using several matrix identities, it is possible to rewrite all terms in

recursive form, which only requires nτ×nτmatrices (recall that n is the dimension of the

state space and n ≪ m). The recursions are derived in full generality in [34]. Here, we

only consider the case where the image noise is independently distributed, i.e., where

the covariances R, Ri of the noise term wt in (3.1) are diagonal, R = σ2I, Ri = σ
2
i
I.

Using the recursive definitions for means γ(τ) and µ(τ) and covariances Φ(τ),

and Σ(τ) (in (3.17), (3.11), (3.18), (3.12) respectively), the Mahalanobis term of (3.21)

can be written as :

‖γi(τ) − γ(τ)‖2
Φ(τ) = ‖γi(τ − 1) − γ(τ − 1)‖2

Φ(τ−1) + ‖zi‖2
Φ̂

(3.22)

where the update term is given by,

‖zi(τ)‖2
Φ̂
=

1

σ2
‖zi(τ)‖2 −

1

σ4
zT

i (τ)CΓ
−1(τ)CT zi(τ) (3.23)

zi(τ) =
1

σ2
CΥ(τ)∆(τ)νi(τ − 1) − γi,τ + γτ (3.24)

νi(τ − 1) =

















νi(τ − 2)

CT Ciµi,τ−1 − µτ−1

















,νi(1) = CT Ciµi,1 − µ1, (3.25)

∆(τ) = I − 1

σ2
β(τ) (3.26)

Γ(τ) =

[

Sτ −
1

σ2
Υ(τ)∆(τ)ΥT (τ)

]−1

+
1

σ2
I (3.27)
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with,

β(τ) =

















H−1(τ) H−1(τ)GT (τ)

G(τ)H−1(τ) β(τ − 1) +G(τ)H−1(τ)GT (τ)

















(3.28)

where

H(τ) = Ξ +
1

σ2
−Ω

T H−1(τ − 1)Ω (3.29)

Ξ = S−1
1 + AT Q−1A (3.30)

Ω = −Q−1A (3.31)

G(τ) = −
















H−1(τ − 1)Ω

G(τ − 1)H−1(τ − 1)Ω

















(3.32)

with initial conditions G(2) = −β(1)Ω, H(2) = Ξ + 1
σ2 I − Ω

Tβ(1)Ω and β(1) =
[

S−1
1 +

1
σ2 I

]−1
. This computation requires the inverse of Γ(τ) and

[

Sτ − 1
σ2Υ(τ)∆(τ)ΥT (τ)

]

,

both n × n matrices. The other matrices requiring inversion are H(τ) and
[

S−1
1 +

1
σ2 I

]

,

also of size n × n.

The trace term has recursion

tr
[

Φ
−1(τ)Φi(τ)

]

= ωi(τ) − tr[β(τ)Ψi(τ)] (3.33)

where

ωi(τ) =
1

σ2
tr[Si,τ] + m

σ2
i

σ2
−
σ2

i

σ4
tr[H−1(τ)] −

σ2
i

σ4
tr[H−1(τ)GT (τ)G(τ)] + ωi(τ − 1)

Ψi(τ) =

















Ψi(τ − 1) ξT
i (τ)TT

i

Tiξi(τ)
1
σ4 TiSi,τT

T
i

















(3.34)

ξi(τ) =
1

σ4

[

Aξi(τ − 1) ASi,τ−1TT
i

]

, (3.35)

with Ti = CT Ci, and initial conditions, ωi(1) = 1
σ2 tr[Si,1] + m

σ2
i

σ2 −
σ2

i

σ4 tr
[

S−1
1 +

1
σ2 I

]

,

Ψi(2) = 1
σ4 TiSi,1TT

i , ξi(1) = 1
σ4 ASi,1TT

i . Note that, because β(τ) andΨi(τ) are symmetric

matrices of equal size, the trace of their product is simply the sum of the entries of the

Hadamard product. Finally, the determinant of Φ(τ) is given by

log |Φ(τ)| =
n

∑

k=1

log

(

λ(k)

σ2
+ 1

)

+ m logσ2 (3.36)

where λ(k) is the kth eigenvalue of Σ(τ). This reduces the problem of computing the

determinant of an m × m covariance matrix to that of computing the n eigenvalues of

Σ(τ). The determinant of Φi(τ) can be computed in a similar manner.
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3.5.5 Recursive Evaluation of KL Divergence

Direct computation of the KL divergence between image sequences containing τ

frames is intractable since the covariance matricesΦi are mτ×mτ, where m is the number

of pixels per frame. Using several matrix identities, it is possible to rewrite the terms of

the KL divergence in a recursive form that is computationally efficient and only requires

storing nτ × nτ matrices, where n is the dimension of the state space (n ≪ m). The

recursions are derived in [34] and, for completeness, reproduced here without derivation.

We only consider the case where the image noise is indpendently distributed, i.e., where

the covariance matrices R of the noise term wt in (3.1) are diagonal, Ri = σ
2
i
I, i ∈ {0, 1}.

Denoting matrices (and vectors) of (3.21) at time τ as Aτ. For simplicity, we

refer to the image at time τ as y, the state at time τ as x, the sequence of preceding

τ − 1 images as Y, and the sequence of preceding states as X. The means γi and µi and

covariancesΦi, and Σi, i ∈ {0, 1}, of (3.10) and (3.16) are defined recursively as

γτ1 =

















γτ−1
1

γ1y

















, µτ1 =

















µτ−1
1

µ1x

















,Φτ1 =

















Φ
τ−1
1
Φ1Yy

Φ1yY Φ1yy

















,Στ1 =

















Σ
τ−1
1
Σ1Xx

Σ1xX Σ1xx

















(3.37)

γτ2 =

















γτ−1
2

γ2y

















, Φτ2 =

















φτ−1
2
φ2Yy

φ2yY φ2yy

















(3.38)

Similarly, we can define µ1x, µ1X,Σ1XX,Σ1Xx,Σ1xX,Σ1xx for the probability of a

state sequence under p1, and likewise for p2.

Mahalanobis Distance Term

For the Mahalanobis distance, we have the following recursion,

‖γ1τ − γ2τ‖2Φ2τ
=

∥

∥

∥γτ−1
1 − γτ−1

2

∥

∥

∥

2

Φτ−1
2

+ ‖z‖2
Φ̂2

(3.39)
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where

‖z‖2
Φ̂2
=

1

σ2
2

‖z‖2 − 1

σ4
2

‖z‖2
(C2γ̂

−1
2

CT
2

)−1 (3.40)

z =
1

σ2
2

C2Σ2xX∆2(Tµτ−1
1 − µτ−1

2 ) − γ1y + γ2y (3.41)

∆2 = I − 1

σ2
2

(βτ2)−1 (3.42)

βτ2 = (Στ2)−1 +
1

σ2
2

I (3.43)

γ̂2 = γ−1
2 +

1

σ2
2

I (3.44)

γ2 = Σ2xx −
1

σ2
2

Σ2xX∆2Σ2Xx (3.45)

and T = CT
2C1 is a n(τ − 1) × n(τ − 1) block diagonal matrix with T = CT

2
C1 at each of

its diagonal entries. The computation of the distance requires the inverse of γ2 and γ̂2,

both n × n matrices, and β2, an n(τ − 1) × n(τ − 1) matrix. The inverse of β2τ can be

computed recursively with.

(β2τ)
−1 =

















V−1
τ V−1

τ UT
τ

UτV
−1
τ (βτ−1

2 )−1 + UτV
−1
τ UT

τ

















(3.46)

where

Vτ = Ξ +
1

σ2
2

−Ω
T V−1
τ−1Ω (3.47)

Ξ = Q−1
2 + AT Q−1

2 A2 (3.48)

Ω = −Q−1
2 A2 (3.49)

Uτ = −
















V−1
τ−1Ω

Uτ−1V−1
τ−1Ω

















(3.50)

(3.51)

with initial conditions U2 = −(β1)−1
Ω, V2 = Ξ +

1
σ2 I − Ω

T (β1)−1
Ω and β1

= Q + 1
σ2 I.

The only matrices requiring inversion are Vτ and β1, both n × n matrices.

Trace term

The trace term is

tr
[

(Φ2τ)
−1Φ1

]

= ατ − tr[(β2τ)
−1Ψτ] (3.52)
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where

ατ =
1

σ2
2

tr[Σ1xx] + m
σ2

1

σ2
2

−
σ2

1

σ4
2

tr[V−1
τ ] −

σ2
1

σ4
2

tr[V−1
τ UT

τUτ] + ατ−1 (3.53)

Ψτ =





















Ψτ−1 1

σ4
2

TΣ1XxT
T

1

σ4
2

TΣ1xXT
T 1

σ4
2

TΣ1xxTT





















(3.54)

(3.55)

Note that β2τ and Ψτ are symmetric matrices with the same size, thus the trace of their

product is simply the sum of the entries of the Hadamard product.

Determinant Term

Finally, the determinants of Φτ
i
, i ∈ {0, 1} are given by

log
∣

∣

∣Φτi

∣

∣

∣ =

n
∑

k=1

log















λ
(k)
i

σ2
i

+ 1















+ m logσ2
i (3.56)

where λ(k)
i

is the kth eigenvalue of Στ
i
. This reduces the problem of computing the deter-

minant of a m × m covariance matrix to that of computing the n eigenvalues of Σ.

3.5.6 Background subtraction algorithm

Background pixels are identified by computing the saliency measure S (l) at each

location l. Center and surround windows are centered at the location, and a collection of

spatio-temporal patches extracted from each window. DT parameters are then learned

from the center, surround, and total windows, to obtain the densities pY |C(l)(y(τ)|1),

pY |C(l)(y(τ)|0), and pY (y(τ)), respectively. S (l) is finally computed with (2.3), using the

recursive implementation of (3.21) given by (3.22)-(3.36). The procedure is summarized

in Algorithm 1, and illustrated in Figure 3.5. All locations whose saliency is below a

threshold are assigned to the background.

3.6 Experimental evaluation

To evaluate background subtraction performance, Algorithm 1 was tested on

18 sequences collected on the web. Frames from some of these sequences are shown in
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Figure 3.5: Illustration of the center and surround windows used to compute the saliency

of location l. Conditional distributions are learned from the center and surround window,

while the marginal distribution is learned from the total window. The saliency measure

S (l) is finally computed with (2.3).

panel (a) of Figures 3.6 - 3.11. In all cases, the background is highly dynamic, consisting

of water, smoke, fire or even a flock of birds. In addition, most sequences were shot

with significant camera motion. Figure 3.6 (a), presents frames from a sequence which

depicts two people skiing in a heavy snowfall. The sequence of Figure 3.7 (a) shows a

surfer riding a low frequency sweeping wave, which is interspersed with high frequency

components due to turbulent wakes (due to the surfer and the crest of the sweeping

wave), creating significant challenges for background subtraction. A pair of cyclists

ride through a grassy plain in Figure 3.8 (a), birds walk against a background of wave

crests in Figure 3.9 (a), a helicopter flies amidst heavy smoke in Figure 3.10 (a), and a

boat moves through water, against a background of flying birds, in Figure 3.11 (a).

3.6.1 Comparison to previous methods

To compare the performance of the proposed algorithm (denoted in short as Disc-

Sal) with existing methods, we selected four representatives of the current state of the art

in background subtraction - the modified Gaussian mixture model (GMM) of [196, 2],
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Algorithm 1 Computing Discriminant Center Surround Motion Saliency

1: Input: Given videoV indexed by location vector l ∈ L ⊂ R3, state-space dimension

n, center window size nc, patch size np, temporal window τ.

2: for l ∈ L do

3: Identify centerW1
l

and surroundW0
l
.

4: List all overlapping patches of size np × np × τ inW1
l

andW0
l

5: From the patches learn dynamic texture parameters for center Θ1(l), surround

Θ0(l) and the total Θ(l) using (3.2)-(3.9).

6: Compute the mutual information, S (l), between class-conditional and total den-

sities (2.3), using the recursive implementation of (3.21) given by (3.22)-(3.36).

7: end for

8: Output: Saliency map for S (l), l ∈ L

the non-parametric kernel density estimator (KDE) of [51], the linear dynamical model

of Monnet et al. [118], and the “surprise” model proposed by Itti and Baldi [86, 85].

The original implementation of Monnet et al. [118] is not publicly available, and the

algorithm requires explicit training with background frames. Since no training data was

available for the sequences considered, we implemented an adaptive version, where the

auto-regressive model parameters were estimated from the 20 frames preceding the lo-

cation under consideration. The higher adaptiveness of this version allows for a fairer

comparison to saliency-based background subtraction.

The sequences were converted to grayscale, and at each pixel location, the cen-

ter window occupied 16 × 16 pixels and spanned 11 frames - 5 past frames, the current

frame, and 5 frames in the future (nc = 16, τ = 11). A causal version of Algorithm 1

(denoted DiscSal-Causal) was also implemented, by considering only the current and 10

past frames. In both cases, the surround window was set to 6 times the size of the center

(i.e 96 × 96 × 11). DTs with a 10-dimensional state space, patch dimension np = 8, and

temporal dimension τ = 11, were learned using overlapping 8× 8× 11 patches from the

center and surround windows. Saliency maps obtained with DiscSal, DiscSal-Causal,

Surprise, KDE, Monnet, and GMM are shown in panels (b)-(f), respectively, of Fig-

ures 3.6-3.11 (since the results for DiscSal and the causal version, DiscSal-Causal, were

very similar we omit the latter). Videos of the maps obtained for all sequences are avail-
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.6: Results on skiing: (a) original (b) DiscSal (c) surprise (d) Monnet et al. (e)

KDE (f) GMM.

able in [3]. The proposed algorithms clearly outperform all other methods, detecting

the foreground motion and almost entirely ignoring the complex moving background.

For all other methods, foreground detection is very noisy, and does not adapt well to

the fast background dynamics. In result, the saliency maps contain substantial energy in

background regions, sometimes missing the foreground objects completely.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.7: Results on surf: (a) original (b) DiscSal (c) surprise (d) Monnet et al. (e)

KDE (f) GMM.

3.6.2 Quantitative analysis

To enable a quantitative analysis, all sequences were manually annotated with

segmentation groundtruth for the objects of interest. The saliency maps were then

thresholded at a large number of values, and the false alarm (α) and detection rate (β)

computed. The resulting receiver operating characteristic (ROC) curves are shown in

Figure 3.12. It is clear that the proposed algorithm achieves better performance than

all others. The equal error rate (EER), defined as the error at which false alarm equals

miss rate (α = 1 − β), was also computed for all methods. Table 3.1 shows the EERs



35

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.8: Results on cyclists: (a) original (b) DiscSal (c) surprise (d) Monnet et al.

(e) KDE (f) GMM.

of the various methods (DiscSal, DiscSal-Causal, Surprise, KDE, Monnet, and GMM,

referred to in the table as DS, DS(C), Su, KDE, Mo, and GMM, respectively) measured

on all sequences, as well as the average over the sequence set. The proposed methods

outperformed all others, achieving average EERs of 7.6% (DiscSal) and 9.3% (DiscSal-

Causal), versus 16% for the closest competitor (the method of Monnet et al. [118]).

3.6.3 Sensitivity analysis

The size of the center window, nc is the only free parameter with a significant

impact on the performance of the proposed background subtraction algorithm. It de-

termines the scale at which the saliency operation is computed. In all results shown

in the previous section, it was set to nc = 16, making the center 16 × 16 pixels spa-
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.9: Results on birds: (a) original (b) DiscSal (c) surprise (d) Monnet et al. (e)

KDE (f) GMM.

tially. To evaluate the impact of this parameter on saliency performance, we selected the

‘birds’ and ‘cycle jump’ sequences, varying nc in the range [8, 64]. The sequences have

156 × 242 pixels, and the average size of the foreground object (across all frames in the

sequence) is 30 × 40 pixels for ‘birds’ and 60 × 100 for ‘cycle jump’.

A plot of EER as a function of scale is shown in Figure 3.13. The algorithm is

fairly robust to variations in the scale parameter, achieving low error rates over a broad

range of nc values. Also, the lowest error rates are obtained at scales that match the

size of the foreground object. This suggests that a standard multi-scale implementation

can be used to automatically select the best value. Such schemes may also be used to
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.10: Results on helicopter: (a) original (b) DiscSal (c) surprise (d) Monnet et

al. (e) KDE (f) GMM.

estimate the size of the salient object.

3.7 Discussion

In this work, we have proposed an algorithm for background subtraction based

on center-surround saliency. The new algorithm is inspired by biological vision, namely

the psychophysics of motion-based perceptual grouping, and extends a discriminant for-

mulation of center-surround saliency previously proposed for static imagery [63, 65].

This extension is based on the representation of video with dynamic texture models,
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.11: Results on flock: (a) original (b) DiscSal (c) surprise (d) Monnet et al. (e)

KDE (f) GMM.

and is applicable to dynamic scenes. The algorithm combines spatial and temporal

components of saliency in a principled manner, and is completely unsupervised. The

combination of the discriminant center-surround saliency framework with the modeling

power of dynamic textures leads to a robust and versatile background subtraction, which

is successful even for scenes with highly dynamic backgrounds and a moving camera.

Experimental evaluation on challenging sequences with complex backgrounds (snow,

smoke, fire, water and flocks of birds) shows that the proposed algorithm substantially

outperforms various state of the art background subtraction techniques. Quantitatively,

the average error rates of the new algorithm are almost half that of the best competitor.
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Figure 3.12: Performance of background subtraction algorithms on: (a) skiing (b) surf

(c) cyclists (d) birds (e) helicopter (f) flock (g) boats (h) cycle jump
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Table 3.1: Equal Error Rates for different saliency models. The average over all se-

quences is shown in the last row.

DS DS(C) Su KDE Mo GMM

skiing 3% 4% 26% 46% 11% 36%

surf 4% 5% 30% 36% 10% 23%

cyclists 8% 19% 41% 44% 28% 36%

birds 5% 9% 19% 20% 7% 23%

chopper 5% 5% 13% 43% 8% 35%

flock 15% 17% 23% 33% 31% 34%

boat 9% 11% 9% 13% 15% 15%

jump 15% 15% 25% 51% 23% 39%

surfers 7% 8% 24% 25% 10% 35%

bottle 2% 3% 5% 38% 17% 25%

hockey 24% 27% 28% 35% 29% 39%

land 3% 5% 31% 54% 16% 40%

zodiac 1% 1% 19% 20% 3% 40%

peds 7% 7% 37% 17% 11% 11%

traffic 3% 4% 46% 39% 9% 34%

freeway 6% 10% 43% 21% 31% 25%

ocean 11% 11% 42% 19% 11% 30%

rain 3% 6% 10% 23% 17% 15%

Avg 7.6% 9.3% 26.2% 33.1% 16% 29.7%

It is interesting to compare the performance of the different algorithms in light of

their saliency representation. There are at least two significant differences between the

previous methods and that now proposed. First, the GMM, KDE, and “surprise” models

lack a sophisticated unified representation for the spatial and temporal components of

saliency. For complex dynamic scenes where local variation in the background, either

spatially or temporally, is significant, this leads to many false-positives. In this respect,

the dynamic texture representation is a significant asset. Second, both the method of

Monnet et al. and the GMM/KDE approaches, rely uniquely on models of the back-
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Figure 3.13: Effect of scale parameter nc on EER for : (a) birds : mean EER = 5.86%,

standard deviation = 1.29%; (b) cycle jump: mean EER = 9.36%, standard deviation =

4.31%; while the rates are low for all scales, a preference towards scales of the order of

the object size is observable.

ground, treating foreground objects as outliers. Outlier detection can be a difficult prob-

lem, and is frequently more difficult than the problem of discriminating between two

classes. Once again, this increased difficulty is exacerbated for highly dynamic scenes,

where it is difficult to account for the large variability of background pixels with a single

model. In this respect, the discriminant nature of the proposed saliency framework is

a significant asset. Overall, both the discriminant formulation and the unified spatio-

temporal representation seem to be necessary for good performance. This can be seen

from the relative error rates of the various techniques, as shown in Table 3.1. The al-

gorithm now proposed (DS) exhibits both properties and performs best. Methods that

exhibit only one property (“surprise” discriminates between prior and posterior distribu-

tions, Monnet relies on a spatio-temporal representation similar to that of DS) achieve

the next best levels of performance. Finally, methods that lack the two properties (GMM,
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and KDE) perform quite poorly.

The proposed saliency detector can be applied to video processing tasks such

as frame rate up-conversion [91] and in other computer vision tasks, such as tracking,

activity recognition, and surveillance. The close parallels, previously shown to exist,

between static discriminant saliency [65] and the neurophysiology of the early stages of

the human visual system, also suggest that the proposed saliency detector is biologically

plausible. We investigate this in the following chapter.
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Chapter 4

Biological Plausibility of Motion

Saliency

4.1 Introduction

An important property of human saliency is its ubiquity: saliency mechanisms

have been observed for various cues, including orientation, color, texture and motion

[167, 123]. It has also been suggested that orientation and motion saliency could be

encoded by similar mechanisms [126, 90]. In this Chapter we verify the hypothesis

that the discriminant saliency detector for motion stimuli is biologically plausible by

providing evidence of its ability to predict human psychophysics.

4.2 Biologically plausible motion saliency detector

We first derive discriminant saliency detectors for motion stimuli, using a bio-

logically plausible approach to compute motion information from video sequences. For

this we adopt the spatiotemporal filtering approach of [8], and [73] in place of the dy-

namic textures used in Chapter 3. Spatiotemporal filtering is a biologically plausible

mechanism for motion estimation, and has been shown to comply with the physiology

and psychophysics of the early stages of the visual cortex [8]. Since spatiotemporal

orientation is equivalent to velocity, a set of 3-D Gabor (spatiotemporal) filters, tuned
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to a specific orientation in space and time, is used to extract the motion energy asso-

ciated with different velocities. The algorithmic implementation of the spatiotemporal

filters used in this work was based on the separable spatiotemporal filters of [73]. We

considered only one spatial scale, and the spatial frequency of each Gabor filter was

fixed to 0.25 cycles/pixel. Three temporal scales (temporal frequencies of 0, ±0.25 cy-

cles/frame) and 4 spatial orientations (0, π/4, π/2 and 3π/4) were used, in a total of 12

filters. The standard deviation of the spatial Gaussian was set to 1, and that of the tem-

poral Gaussian to 2. This set of filter parameters were chosen for simplicity, we have

not experimented thoroughly with them. We have also only considered the intensity of

the input video frames, and all color information was discarded. These intensity maps

were convolved with the 12 spatiotemporal filters, to produce the feature maps used by

the saliency algorithm. Saliency was then computed as in the Chapter 2, using (2.1) and

(2.3).

4.2.1 Consistency with psychophysics of motion perception

To evaluate the compliance of the discriminant saliency detector with the psy-

chophysics of human motion saliency [126, 90], we start with some qualitative observa-

tions1. [90] showed that search asymmetries also hold for moving stimuli. For example,

searching for a fast-moving target among slowly-moving distractors is easier than the re-

verse. We applied the motion-based discriminant saliency detector to a set of sequences

used to demonstrate the asymmetries of motion pop-out [90], with the results illustrated

in Figure 4.1. The figure presents quiver plots of the motion stimuli, under the two

conditions, and one frame of the resulting discriminant saliency map. The conspicuous

saliency peak at the target in Figure 4.1 (a) shows a strong pop-out effect when the target

speed is greater than that of the distractors. No noticeable pop-out effect is observed in

Figure 4.1 (b), where the distractor speed is greater than that of the target. This shows

that the discriminant saliency detector can replicate the asymmetries of motion saliency.

As was the case for static stimuli in the work of [65], we complemented this

qualitative observation with a quantitative analysis of the saliency predictions made by

the discriminant detector. [126] found that human saliency responses to motion are very

1All motion stimuli sequences in the experiments were generated using the Psychtoolbox [24].
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(a) (b)

Figure 4.1: Discriminant saliency detector output for (a) a fast-moving target among

slowly-moving distractors, and (b) a slowly-moving target among fast-moving distrac-

tors. Top row shows quiver plots of the stimuli (the direction of motion is specified by

the arrow whose length indicates the speed), and bottom row the corresponding saliency

maps.

similar to those observed for orientation: the perception of saliency of moving targets

increases nonlinearly with motion contrast, and shows significant saturation and thresh-

old effects. To test the compliance of discriminant saliency with this nonlinearity, we

applied it to the motion displays of [126]. An example is shown in plot (a) of Figure 4.2,

where (b) shows a plot of the human saliency data, reproduced from the original figure

of [126], and (c) presents the predictions made by discriminant saliency. The two plots

are very similar, both exhibiting threshold and saturation effects.
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Figure 4.2: The nonlinearity of human saliency responses to motion contrast (repro-

duced from Figure 9 of Nothdurft, 1993) (b) is replicated by discriminant saliency (c).

A quiver plot of one instance of the motion display used in the experiment (with back-

ground contrast (bg)=0, target contrast (tg)=60) is illustrated in (a). The direction of

motion is specified by the arrow, whose length indicates the speed.

surround hypothesis for visual saliency”, Journal of Vision, 8(7):13, 1-18, June 2008.

The dissertation author was a primary researcher and an author of the cited material.



Chapter 5

Tracking

5.1 Introduction

In the biological world, object tracking is closely related to the task of fixating

objects of interest. The goal is to keep an object on the fovea of the observer, even when

either or both are moving. This is achieved with a combination of overt and covert eye

movements, and underlies the mechanisms for identification of moving objects [133].

Due to the evolutionary advantage of solving these tasks accurately, it is not surprising

that biological vision has evolved extremely efficient tracking mechanisms, in terms of

accuracy, robustness, and speed. It has been hypothesized that the effectiveness of these

mechanisms, even under the most adverse conditions, involving clutter, low-light etc., is

a consequence of the availability of robust saliency mechanisms, that cause pre-attentive

pop-out of certain locations of the visual field [133]. These salient locations become the

focus of attention (FoA) for the post-attentive stages of visual processing, where top-

down feedback from higher level cortical layers is used to solve problems such as object

recognition or visual search [183].

In this Chapter, we make a connection between tracking and saliency, by postu-

lating that tracking is simply a manifestation of the continuous computation of saliency

over time. More precisely, we frame tracking as a byproduct of the center-surround

saliency mechanisms that are prevalent in biological vision [65, 33]. This is done with

recourse to the computational of visual saliency, denoted discriminant saliency formu-

lation discussed in Chapter 2.

47
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Figure 5.1: Overview of discriminant tracking. Tracking iterates between two main

steps: classifier design and target detection.

Object tracking is a classical problem in computer vision, and a pre-requisite for

many of its important applications, such as surveillance, activity or behavior recognition

and video retrieval. Decades of research on this topic have produced a diverse set of

approaches and a rich collection of tracking algorithms [190]. Many of the these are

based on appearance modeling. They learn (and maintain) a model of target appearance,

which is used to locate the target as time evolves [83, 41, 17, 92]. The main limitation

of these methods is that they rely uniquely on models of object appearance, and do

not take the background into account. This limits tracking accuracy when backgrounds

are cluttered, or targets have substantial amounts of geometric deformation, such as

out-of-plane rotation. To address this limitation, various authors have noted that it is

frequently easier to model the differences between target and background than to model

the target itself. This has led to the idea of discriminant tracking, where the tracking

problem is framed as one of continuous object detection, through incremental target vs.

background classification [39, 12, 66]. Discriminant tracking has two main steps, which

are illustrated in Figure 5.1. Given an initial target bounding box, say at time t, the first

step consists of classifier design: a classifier is trained by selecting visual features that

discriminate between target and background, and a decision rule is learned based on

these features. In the second step, denoted target detection, the classifier is applied to

every location of the visual field, so as to determine the most likely location of the target

at time t+1. The target bounding box is moved to this location, and the process iterated.

This generic formulation has been used to design various trackers [39, 12, 66,

67, 13]. Although these efforts have demonstrated that discriminant tracking can achieve

state-of-the-art performance in computer vision [66], this performance is still far from
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that of the tracking mechanisms implemented by biological vision.

In this Chapter, we start by showing that optimal (in a decision theoretic sense)

discriminant tracking can be implemented with a combination of operations that are well

documented in the biological attention literature: center-surround saliency [88], a spa-

tial spotlight of attention [137], and feature-based attention [168]. It is then shown that,

under the discriminant saliency formulation, these operations are mapped into statistical

operations such as feature selection or target detection. This enables the derivation of

optimal trackers that can be implemented with simple and highly efficient computations,

two important requirements for the practical feasibility of any tracker. The saliency

formulation is next shown to also establish a unified framework for classifier design,

target detection, automatic tracker initialization, and scale adaptation. While the steps

of classifier design and target detection are addressed by all discriminant trackers in

the literature, previous solutions cannot cope with the initialization and scale adapta-

tion problems. Finally, it is shown that the proposed discriminant tracker outperforms a

number of state-of-the-art tracking approaches in the literature.

5.2 Related work on object tracking

Many popular approaches to object tracking are based on appearance modeling.

They learn and maintain a model of target appearance, which is used to locate the tar-

get as time evolves. Conditional density propagation [83] is one of the most popular

methods in this class. Targets are represented by some type of visual features, e.g. their

contours or deformable templates [194], and the temporal evolution of these features is

modeled with a particle filter. Alternatively, target appearance is frequently represented

by kernel weighted color histograms, which are combined with the mean shift procedure

to identify the most likely position of the target in the next frame [41]. Representations

of the target and/or background with probabilistic models, e.g. a mixture of Gaussian

(MoG) models, have also been proposed [159, 68]. Equally popular are subspace meth-

ods, which maintain a low-dimensional representation of target appearance [17, 77].

Recently, there has been an interest in making these representations adaptive, by updat-

ing subspaces incrementally, using online principal component analysis [145]. More so-
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phisticated appearance models include a combination of short term descriptors and long

term stable representations [92], specialized representations tailored to specific entities,

such as people [141], or multiple image patch representations, such as “FragTrack” [7].

Appearance based trackers have limited accuracy when backgrounds are clut-

tered, or targets have substantial amounts of geometric deformation, such as out-of-

plane rotation. Discriminant trackers frequently achieve better performance in these

scenarios [66] by framing tracking as incremental target vs. background classifica-

tion [39, 12]. Collins et al. [39] rely on a feature set composed of histograms of filter

responses to the R,G,B channels of the visual stimulus. Discriminant features are se-

lected with a variant of the Fisher discriminant, and the classifier is implemented with a

likelihood-based decision rule. Fisher discriminants are also used to classify foreground

from background in [107] and [121]. The “ensemble tracking” method of Avidan [12]

uses a combination of histograms of oriented gradients [46] and R,G,B pixel values as

features. A set (“ensemble”) of weak hyperplane classifiers are trained to separate target

from background, and combined into a decision rule, using AdaBoost [58]. Grabner et

al. [66] have proposed an alternative ensemble tracker, based on online boosting. This

maintains a set of weak learners that are updated at every time step. More recently,

online boosting has been combined with a semi-supervised update of the weak learners

to increase tracker robustness [67]. A multiple instance learning (MIL) based approach

has also been proposed in [13], to minimize the ensemble tracker sensitivity to outliers

due to misalignment of the target bounding box.

The robustness of biological tracking mechanisms has inspired computer vi-

sion researchers to augment conventional trackers with FoA mechanisms. For instance,

Toyama and Hager [164] proposed an incremental FoA procedure to combine multiple

trackers, leading to increased robustness. Nevertheless, there has been little work aimed

at deriving a principled understanding of what computational mechanisms could be used

by biological vision to solve the tracking problem, how these mechanisms relate to the

state-of-the-art algorithms from computer vision, and how these connections could be

exploited to achieve increased computer vision performance. In this work, we present a

formulation of tracking that addresses these questions.
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5.3 Discriminant tracking

The central hypothesis of this work is that discriminant tracking can be imple-

mented with a combination of bottom-up and top-down saliency detection. In this sec-

tion, we build on this hypothesis to propose a saliency-based discriminant tracker.

5.3.1 The connection to saliency

We start by relating discriminant tracking to saliency. Given an initial target lo-

cation at time t, l∗, the first step of discriminant tracking is to design a target/background

classifier. The target and background hypotheses are defined by the feature responses

in a window centered at l∗, the target window, and a surrounding annular background

window. Hence, like bottom-up saliency, discriminant tracking requires the computa-

tion of the discriminant power of each feature in Y with respect to a center-surround

discrimination problem. The main difference is that, while bottom-up saliency performs

the computation at each location of the visual field, discriminant tracking only requires

it at location l∗. This is equivalent to computing bottom-up saliency after application

of a spatial focus of attention mechanism tuned to the target location. Given a measure

of how discriminant each feature is for target/background discrimination at time t, the

next step is to find the target in the next frame, i.e. at time t + 1. This is formulated

as a target detection problem. It requires the selection of the most discriminant features

in Y , and a decision rule for target detection. Since the discriminant power of each

feature is already known, feature selection reduces to suppression of non-discriminant

features and enhancement of discriminant ones. This type of manipulation is exactly

the function of a feature-based attention mechanism. Finally, target detection can be

implemented with a top-down saliency measure trained from the feature responses in

the target and background windows at time t. The position of the target at time t + 1 is

determined by a search for the location of largest saliency within a neighborhood of the

target position at time t. This restriction of the search space reduces the computation

needed to identify the new target location, by ignoring regions peripheral to the current

focus of attention. It is consistent with the “center bias” observed in the human visual

system, where a saccade to a new fixation location is biased to be close to the current
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center of view [161, 169].

The overall process is illustrated in Figure 5.2. The display in a) shows two disks

(one red, one brown) moving against a background of green distractors. Assume that the

red disk is the target and that the feature set Y consists of a number of color detectors.

At time t, the spatial focus of attention mechanism narrows the field of view to the

neighborhood of the target, as shown in b). This makes the target salient. Computation

of center-surround saliency, as in c) finds the red color to be the most discriminant

feature. Training a top-down saliency measure for target/background classification in

this area produces a detector of red disks. For simplicity, we assume that this a threshold

on the red channel of the visual stimulus. Target detection at time t + 1 starts with the

application of feature-based attention, which strengthens the red channel and inhibits all

others. This is illustrated in d) and e) where we present the display at time t + 1, and

its projection on the selected feature, i.e. its red color channel. Note how the feature-

based manipulation of attention eliminates much of the clutter in the scene. In fact, only

the red disk elicits a strong response after feature selection. Further application of the

top-down saliency detector (red threshold classifier), followed by a search for maximum

saliency within a neighborhood of the previous target location, leads to the identification

of the red disk, as shown in f).

5.3.2 The core tracking procedure

The discussion of the previous section suggests that discriminant tracking can

be implemented with discriminant saliency measures. Starting with the target location

l∗ at time t, and the associated target (W1
l∗) and background (W0

l∗) windows, the tracker

is implemented as follows.

• Learning: at time t, estimate the probability distributions pY |C(l)(y|i), i ∈ {0, 1}
using the feature responses inWi

l∗ , as training sample, and the distribution pY (y)

from the responses inWl∗ =W0
l∗ ∪W1

l∗ .

• Feature selection: Among the N available features, select the subset of K < N

that maximizes the saliency measure of (2.3).
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Illustration of saliency-based tracking. (a) two disks, one red and one brown

are salient amongst green distractors; (b) defining the red disk as the target, at time t,

focuses spatial attention on it; (c) computing center surround saliency at this location

leads to the selection of the feature “red” as the most salient; (d) the position of the

disks at time t + 1, shown with the focus of attention from time t; (e) feature based

attention suppresses all but the red feature channel, which has non-zero response only

at the locations of the red and brown disks; (f) the location of the target has the largest

saliency inside the focus of attention.
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• Classification: using these K features compute, at time t + 1, the top-down

saliency of each location l of the visual field, using the saliency measure of (2.6).

Move the target/background windows to the location of largest saliency within a

neighborhood of l∗, and iterate the process.

While optimal in theory, this implementation has a number of practical limitations. First,

the saliency measures of (2.3) and (2.6) require the evaluation of the joint probability

distribution of the features in Y . This is too complex for most applications of saliency

and infeasible for tracking, where there is a premium on computational efficiency. Var-

ious simplifications can be achieved by restricting the features to bandpass filters, and

exploiting the statistical regularities of the responses of such features to natural images.

However, a classifier built from bandpass features may not have the robustness nec-

essary to track complex objects subject to non-planar motion. This type of robustness

usually requires more abstract features. Finally, the classifier should operate across mul-

tiple scales, so as to enable scale adaptation as the distance between objects and camera

varies. These issues are addressed in the remainder of this section.

5.3.3 Salient Feature Selection

Feature selection is naturally implemented under discriminant saliency, since

the saliency measure is itself a measure of discrimination. In fact, extremely efficient

implementations are possible when the features belong to the class of bandpass filters.

Assuming this to be the case, let the feature space Y have dimension N, and denote

Y = (Y1, . . . , YN). Salient feature selection involves the identification of the subset of

K < N features that maximizes discrimination between target and background. One

possibility to accomplish this is to define Y1,k = (Y1, . . . , Yk), and expand the mutual

information of (2.1) into [170]:

I(Y ; C) =
∑

k

I(Yk; C) +
∑

k

[I(Yk; Y1,k−1|C) − I(Yk; Y1,k−1)] (5.1)

where

I(Y ; C|Z) =
∑

i

∫

PY ,C,Z(y, i, z) log
PY ,C|Z(y, i|z)

pY |Z(y|z)pC|Z(i|z)
dydz (5.2)
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is the conditional mutual information between Y and C given the observation of Z.

In (5.1), the term I(Yk; C) is the marginal mutual information (MMI) between the kth

feature and the class label. It measures how discriminant the kth feature is individually.

The terms I(Yk; Y1,k−1|C)− I(Yk; Y1,k−1) quantify the discriminant information contained

in feature dependencies between the kth feature and the set of k − 1 previously selected

features [170]. This decomposition allows a substantial simplification of the mutual in-

formation, by exploiting a well known property of band-pass features extracted from

natural images: that such features exhibit consistent patterns of dependence across an

extremely wide range of natural image classes [28, 80]. This implies that the dependen-

cies between features carry little information about the class from which the features are

extracted, allowing the approximation of (5.1) by

I(Y ; C) ≈
N

∑

k=1

I(Yk; C). (5.3)

As noted in Section 2, the mutual information I(Yk,C) measures the extent to

which feature Yk discriminates between target and background classes. However, a large

mutual information does not imply that the feature is characteristic of the target. In fact,

a feature that is totally absent from the target but prevalent in the background is highly

discriminant for target/background classification. In the tracking context, it is usually

undesirable to rely on such features, since the background can vary drastically as the

target, the camera, or both, move. For example, the target can move from an area of the

scene where the background is highly textured (e.g. vegetation) to an area where is has

virtually no texture (e.g. a white wall). A tracker that relies on features characteristic

of the background texture to detect the target can lose the latter as it moves into the

textureless regions of the scene. Hence, features that are discriminant but absent from

the target can lead to unstable tracking, and should be discarded. For bandpass features,

whose responses to natural images have zero mean and probability density functions

that decay with the distance to the origin, the detection of features that are expressed in

the target is fairly straightforward. It suffices to select features that have larger variance

under the target class than under the background class. Since the feature responses have

zero mean, this can be written as

EYk |C[y2
k |1] > EYk

[y2
k |0]. (5.4)
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This condition can be combined with (5.3) to obtain a very efficient salient fea-

ture selection mechanism. Since the mutual information is always non-negative, the

selection of the optimal subset of K (K < N) salient features reduces to 1) ordering the

N features by decreasing MMI, I(Yk,C), 2) discarding features that do not satisfy the

variance condition of (5.4) and 3) selecting the first K. This is denoted feature selection

by maximum marginal diversity in [171].

5.3.4 Efficient computation of saliency measures

In addition to efficient feature selection, the combination of (5.3) and the statis-

tics of bandpass responses to natural images also simplifies the discriminant saliency

measures. This follows from the well known observation that the probability distribu-

tion of feature responses of a bandpass feature, to natural images, follows a generalized

Gaussian distribution (GGD) [80]

PY(y;α, β) =
β

2αΓ(1/β)
exp















−
(

|y|
α

)β














, (5.5)

where Γ(z) =
∫ ∞

0
e−ttz−1dt, t > 0, is the Gamma function, α a scale parameter, and β a

shape parameter. The β parameter controls the rate of decay of the GGD, from the peak

value (e.g. Laplacian when β = 1 or Gaussian when β = 2). It has been shown that

β ∈ (0.5, 0.8) provides a good fit to large corpora of natural images [157]. We found

β = 0.7 to work best and we adopt this parameter value throughout this work.

Given β, the only parameter that remains to be learned is the scale α. This can

be done by the method of moments [153], which exploits the fact that the scale αk,i of

the response of feature Yk under class C = i can be derived from

αk,i =

√

√

√

σ2
k,i
Γ(1
β
)

Γ(3
β
)

(5.6)

with

σ2
k,i = EYk |C[y2

k |i] ≈
1

n

∑

j|y j

k
∈Di

(

y
j

k

)2
, (5.7)

where σ2
k,i

is the variance of Yk under the class C = i,Di = {y1
k
, . . . , yn

k
} a training sample

from this class, and we have used the fact that the responses of bandpass filters have zero
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mean. In summary, given a sample of feature responses from the target and background

windows, the estimation of the scale parameters is trivial.

We next note that, for bottom-up saliency, the approximation of (5.3) reduces

(2.3) to

S (l) =
∑

k

Il(Yk; C) (5.8)

where, Il(Yk; C) =
∑1

i=0 pC(l)(i)KL[pYk |C(l)(yk|i)||pYk
(yk)]. Combining this with the KL

divergence between two GGDs [47]

KL[PY(y;αi, β)||PY(y;α, β)] = log

(

α

αi

)

+
1

β

[

(

αi

α

)β

− 1

]

, (5.9)

leads to the simplified bottom-up saliency measure

S (l) =
∑

k

1
∑

i=0

πi













log

(

αk

αk,i

)

+
1

β













(

αk,i

αk

)β

− 1

























, (5.10)

where πi = PC(i) is the prior for class i, and αk, αk,i the scale parameters of

pYk
(yk), pYk |C(l)(yk|i).

With respect to top down saliency, (2.6) reduces to

S (l) =
∑

k

S k(l), S k(l) =



















I(C; Yk = yk(l)) if l ∈ Sk

0, otherwise.
(5.11)

Sk =

{

l

∣

∣

∣

∣

∣

∣

PC,Yk
(1, yk(l))

PC(1)PYk
(yk(l))

>
PC,Yk

(0, yk(l))

PC(0)PYk
(yk(l))

}

. (5.12)

We next note that [65], when pYk |C(yk|i), i ∈ {0, 1} are GGDs with scale parameters αk,i,

I(C; Yk = yk) = s[gk(yk)] log
s[gk(yk)]

π1

+ s[−gk(yk)] log
s[−gk(yk)]

π0

, (5.13)

with s(y) = (1 + e−y)−1 a sigmoid function, πi = PC(i), and

gk(y) = ξk|y|β − Tk, ξk =
1

α
β

k,0

− 1

α
β

k,1

, Tk = log
αk,1π0

αk,0π1

. (5.14)

Furthermore, it follows from (5.14) and (5.6) that the variance condition of (5.4) is

equivalent to ξk > 0. Under this condition, the sets Sk can be simplified into

Sk = {l | |yk(l)| > tk } with tk =

(

1

ξk
log
αk,1

αk,0

)
1
β

(5.15)
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Using this in (8.1) leads to the simplified top-down saliency measure

S k(l) =



















∑1
i=0 hi[ξk|yk(l)|β − Tk] if |yk(l)| > tk

0, otherwise,
(5.16)

with hi(x) = s{(−1)1−ix} log
{

1
πi

s{(−1)1−ix}
}

. The form of (5.16) suggests the interpre-

tation of salient features as matched filters for the detection of visual attributes of the

target class. This is due to the constraint |yk(l)| > tk, which only assigns saliency to the

regions where the kth feature response has large magnitude. These are regions where the

visual stimulus resembles the feature.

In summary, for bandpass features, both salient feature selection and saliency

detection are quite simple. Given a sample of responses from feature Yk in the target and

background windows, the parameters αk,i, ξk, Tk, and tk are estimated with (5.6), (5.14),

and (5.15). Features Yk for which ξk ≤ 0 are then discarded. The remaining are ordered

by decreasing mutual information I(Yk,C), using (5.8) and (5.9), and the top K selected.

Saliency detection is then performed with these features, using (8.1) and (5.16). The

simplicity of all these operations is crucial for discriminant tracking, where they have to

be repeated at each time step.

5.3.5 Spatial Importance Maps

The implementation of a discriminant tracker requires trade-offs between detec-

tor robustness, computational complexity, and adaptivity. Typically, robustness requires

decision functions with many features, and learned from a large number of examples.

Such functions are difficult to learn and adapt. Adaptation is particularly challenging,

since both the feature subset added at a given time step, and the examples from which

it is learned tend to be overwhelmed by those of the previous steps. The more robust

a classifier becomes, the more difficult it is to adapt to variations in the statistics of the

two classes. However, adaptation is crucial for tracking, where the difficulty is exactly

to track objects as they change appearance, due to variations in lighting, pose, back-

ground, etc. The saliency-based discriminant tracker of the previous section is highly

adaptive, since learning is reinitialized at each frame. The price is that, due to lim-

ited training data and computation available, it can only use a small number of simple
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features. Hence, as an object detector, it is not very robust.

One of its major limitations is that no positional information is stored for the

filter responses. As a result, the saliency assessments of (5.16) do not require spatial

consistency of feature responses. For example, it is indifferent if a feature only has large

response in the top or bottom half of the target window. Since salient features are usu-

ally not expressed in the entire target window, this can lead to noisy saliency maps for

target detection. An obvious improvement is to define a feature for each combination

of bandpass filter and location within the target window, as is popular in face detec-

tion [175]. This is, however, infeasible for tracking, due to the extensive amounts of

computation and training data required. A better alternative is to learn a second layer of

features, that model configurations of feature responses. This is inspired by recent work

in HMAX networks [151]. These are biologically inspired object recognition networks,

composed of two layers. The first layer can be seen as a (weak) object detector, based

on simple bandpass features (Gabor functions) such as those used in this work. The sec-

ond is an equivalent classifier, but uses more complex features. These are obtained by

randomly sampling the responses of the first layer to objects in the target class, and can

be interpreted as representative templates of first layer response. In fact, the first layer

of the HMAX network can be expanded to perform top-down saliency detection [69], in

which case the second layer filters are saliency templates. These summarize the saliency

configurations that appear during training, providing a rough characterization of object

shape. In this way, the addition of the second HMAX layer increases the robustness of

the saliency detector implemented by the first [69].

While the training complexity of a full HMAX network is too large for tracking,

the idea of accounting for positional information through the inclusion of saliency tem-

plates can still be used. In fact, there is a very natural template to use at time step t + 1:

the map of saliency responses, within the target windowW1
l∗ , of each salient feature at

time t. This is denoted the spatial importance map, and computed as

Tk(l) =
< S k(l) >t

∑

l∈W1
l∗
< S k(l) >t

, l ∈ W1
l∗ (5.17)

where < S k(l) >t is a local average over 4 × 4 pixels of the kth saliency response at time

t. The proposed normalization guarantees that Tk(l) sums to 1, giving it the interpreta-

tion of a weighting function that emphasizes regions of strong feature response. Since
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Figure 5.3: Spatial importance maps. For each selected feature, a saliency template is

stored at time t. At time t + 1, the saliency of (5.16) is correlated with this template, to

enforce spatial consistency of the saliency detection over time.

1) salient features are discriminant for target/background classification, and 2) bandpass

features respond to image landmarks, such as edges, corners or texture, these are regions

of landmarks that distinguish target from background. In summary, the spatial impor-

tance map models the spatial configuration of a set of distinctive target landmarks. This

is illustrated in Figure 5.4(a).

The consistency of the saliency patterns of (5.16), at times t and t + 1, can be

verified by computing the cross-correlation between the saliency map S k at time t + 1

and the spatial importance map Tk learned at time t,

Rk(l) =
〈

S k|W1
l
,Tk

〉

, (5.18)

where S k|W1
l

is the restriction of S k to the target windowW1
l
, and < ·, · > a dot-product.

The final saliency measure for the set of K feature responses is

S T (l) =

K
∑

k=1

Rk(l). (5.19)

Its computation is illustrated in Figure 5.4(b).

The location l∗
t+1 of largest saliency, within a neighborhoodWs

l∗t
of the last known

target position l∗t , is selected as the new position of the target at time t + 1. The feature
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(a)

(b)

Figure 5.4: (a) Spatial importance map (SIM) : for each feature, a saliency template of

the target is stored at time t. (b) Target localization at t + 1: for each selected feature, a

top-down saliency map is computed with (5.16), and then correlated with the SIM from

time t using (5.18). These saliency maps are combined to produce the overall saliency

map, the maximum of which is taken to be the new location of the target.

statistics of target and background windows are updated in an online manner, using

σ2
k,i(t + 1) =



















1−λ
n

∑

j|y j

k
∈Di
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)2
+ λσ2

k,i
(t), if t > 0

1
n

∑

j|y j

k
∈Di

(

y
j

k

)2
if t = 0

(5.20)

where Di is the sample of examples collected from class i at time t + 1, and λ a decay

factor. These statistics are then used for target detection at time t + 2, and the procedure

is iterated.

5.3.6 Scale Adaptive Tracking

Target scale can vary significantly as targets move towards or away from the

camera. Trackers that do not adapt to these variations end up relying on a target window
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Figure 5.5: Saliency-based scale adaptation. The mutual information between the se-

lected salient features and the class label is evaluated over a scale space. The scale at

which saliency peaks is chosen as the optimal tracker scale. This is the scale of largest

discrimination between target and background.

that either 1) includes background (when the target shrinks) or 2) excludes foreground

(when it grows), and can easily drift. This has motivated a number of scale adaptive

extensions of tracking algorithms, ranging from the combination of tracking and scale

space representations [25] to specific enhancements applicable only to some trackers,

e.g. mean shift [40, 15, 189]. However, scale adaptivity has received little attention in

the discriminant tracking literature. Saliency-based tracking offers a natural solution to

this problem, since scale and saliency are strongly related [93]. In fact, scale adaptation

can be achieved as a byproduct of discriminant center-surround saliency: the scale of the

target is simply that of the center-surround operator that maximizes target/background

discrimination. To determine this scale, at a given target location, it suffices to search

over a discrete scale space s ∈ (smin, smax) of target and background window sizes. For

each s, the GGD parameters αs
k,i
, αs

k
are computed from the feature responses in the

target and background windows. This can be done efficiently through the use of integral

images [175]. For each feature k, an integral image of the second moment of feature

responses Ik(l) =
∑

j�l

(

y
j

k

)2
, where j � l if location j is not below or to the right of

location l, is first computed. The variance estimate of (5.20) within a window Di of

scale s determined by bottom-right, upper-right, bottom-left and upper-left coordinates

ls
br

, ls
ur, ls

bl
, ls

ul
is then

(σ2
k,i)

s =
1

n
[I(ls

br) − I(ls
ur) − I(ls

bl) + I(ls
ul)], (5.21)

where n is the number of pixels in Di. The GGD parameters are finally estimated

with (5.20) and (5.6).
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Given a set of estimates of the GGD parameters αs
k,i
, αs

k
, at all window sizes

s ∈ (smin, smax), the optimal scale is that at which the center-surround saliency measure

peaks:

s∗ = argmax
s:s∈Sp

∑

k

Is(Yk,C) (5.22)

Is(Yk,C) =

1
∑

i=0
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As illustrated in Figure 5.5, this is the scale at which the discrimination between target

and background is largest.

5.3.7 Features

Discriminant tracking can be implemented with any set of bandpass features. In

this work, we rely on a combination of discrete cosine transform (DCT) filters to account

for spatial information and 3D spatiotemporal Gabor filters to account for motion. DCT

features are computed by representing each frame as a Gaussian pyramid and convolving

each layer of the pyramid with 8 × 8 DCT basis functions. The spatiotemporal features

are based on the 3D Gabor filters of [8, 73].

g(x, y, t) =
1

√
2π

3
2σxσyσt

sin(2πωx0
x + 2πωy0

y + 2πωt0t)e
−( x2

2σ2
x
+

y2

2σ2
y
+ t2

2σ2
t

)
(5.23)

where ωx0
, ωy0

is a spatial frequency, ωt0 a temporal frequency, and the 3D Gaussian

envelope has standard deviations σx, σy, σt. This type of filtering is biologically plausi-

ble and has been shown to comply with the physiology and psychophysics of the early

stages of the visual cortex [8]. Filters tuned to a single spatial frequency of 0.25 cy-

cles/pixel and temporal frequencies of 0 cycles/frames (stationary objects) and ±0.25

cycles/frames (objects moving to the left or right) were chosen, for a total of 3 motion

based filters.

It should be noted that, while the discriminant tracker does not require explicit

modeling of target dynamics (e.g. through Kalman or particle filtering [83]), the inclu-

sion of spatiotemporal features guarantees their implicit modeling. For example, if a
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Figure 5.6: Target initialization. A saliency map is computed for each feature, accord-

ing to (5.10). Feature saliency maps are combined to produce the overall saliency map,

the maximum of which is taken to be the initial location of the target.

target is moving to the right at time t, the associated spatiotemporal filter is likely to

be discriminant at that time. The selection of this filter as a salient feature implies that

locations of right-moving objects are more likely to be declared salient at time t + 1.

Hence, the tracker has some ability to predict the dynamics of the target. This ability

obviously increases with the addition of spatiotemporal filters to the feature set. The

limited set used in this work is mostly due to the desire to guarantee low complexity.

The implicit modeling of target dynamics is further reinforced by the restriction of the

target search to the windowWs
l∗ . This assumes that targets do not instantaneously jump

beyond the region of the focus of attention, i.e. that target motion is smooth.

5.3.8 Automatic tracker initialization

Most tracking algorithms assume a known initial target location l∗ and bounding

boxW1
l∗ [39, 12]. However, these are not available in most tracking applications. While

many initialization strategies, such as background subtraction and blob or motion detec-

tion, have been proposed [39], they are mostly heuristic. A more principled approach,

based on bootstrapping a weak and generic target model for automatic initialization, was

proposed in [166]. However, it requires a pre-specified target model, and some degree
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of supervision to adapt it to different scenes. Saliency-based tracking provides a more

natural solution to the initialization problem: to declare as targets the locations of largest

bottom-up saliency. This is implemented by evaluating (5.10) at all locations of the vi-

sual field, and finding the most salient (or the set of most salient locations if multiple

objects are to be tracked). If desired, the search can also be performed over target scales,

i.e.

(l∗, s∗) = argmax
l,s

∑

k

Il,s(Yk,C) (5.24)

where,

Il,s(Yk,C) =

1
∑

i=0
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where the parameters αl,s

k,i
, αl,s

k
are learned from the windows associated with a center-

surround operator of scale s centered at location l. As before, these parameters can be

computed efficiently with resort to integral images. Overall, the initialization proce-

dure finds the regions whose motion and appearance is most distinct from those of the

surrounding background.

The use of (5.24) has a number of appealing properties. First, it can be seen as

an optimal (in the discriminant sense) form of background subtraction. In fact, it is a

simplification of a state-of-the-art formulation of background subtraction that performs

well even on highly dynamic backgrounds [111]. The proposed simplification sacri-

fices the ability to model complex dynamics for the sake of computational tractability.

Second, while the use of spatiotemporal features enables it to account for both target

appearance and motion, it is robust to camera motion. This follows from the fact that

only motion different from that of the background can be declared salient. For example,

an object followed by a panning camera is considered salient. Third, it reduces initial-

ization to a special case of discriminant tracking. In the absence of prior information

about which features are discriminant for target detection, the tracker simply uses all

of them. This unification of tracker initialization and operation is not possible for most

previous trackers.
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5.4 Experiments and Results

The performance of the proposed discriminant saliency tracker (DST) was eval-

uated with an extensive set of experiments. We next report the results of this evaluation.

5.4.1 Comparison to previous trackers

The saliency based tracker was compared to four trackers in the literature: three

discriminant trackers, the MILTracker of [13], the method of Collins et al. [39], and the

ensemble tracker of [12], and the incremental visual tracker (IVT) of [145]. The latter

represents the state of the art in appearance-based tracking. Software for the MILTracker

and IVT was obtained from the authors’ webpages. Since no implementations are pub-

licly available for the Collins and ensemble trackers, these algorithms were implemented

according to the descriptions in [39, 12].

The performance of all five methods was evaluated against manual groundtruth.

The tracking error for a frame at time t was defined using the overlap measure of [53]

as the normalized lack of overlap between the groundtruth target bounding box, Gt, and

that produced by the tracker, Bt. Performance is evaluated by the average tracking error

over a sequence of T frames,

ǫ =
1

T

∑

t
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where the error ǫ = 0 for perfectly correct tracking, while for complete loss of tracking,

ǫ = 1.

The test video sequences were selected from diverse sources (e.g previous works,

standard databases, and the web). All sequences include challenging tracking scenar-

ios, such as varying illumination, complete object rotation, or change in perspective.

For instance, the “motinas toni change ill” sequence of [109] shows a person turning

by 360◦, in extremely low light (Figure 5.8(a)), while the “athlete” sequence includes

extreme variations of appearance due to occlusion and strong video compression arti-

facts (Figure 5.8 (b)). The “skater” sequence (Figure 5.8 (d)), and “CAVIAR” sequence

(from [1]) have severe partial occlusions. To increase the difficulty of the tracking task,
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all sequences were converted to grayscale. To account for this, the Collins tracker was

implemented with DCT features, instead of the R,G,B color features proposed in [39].

All five algorithms were manually initialized with target bounding box in the first frame.

The background bounding box was assumed to have an edge 4 times larger than the cor-

responding edge of the target box.

The saliency based tracker used a two-level Gaussian pyramid, leading to a total

of N = 3+64×2 = 131 features (8×8 DCT features per level plus three spatiotemporal

Gabor features). The number of selected salient features, K, is a tunable parameter. To

understand its impact on tracking performance, it was varied in the range [1, 29], for

two representative sequences. Good performance was obtained for any K ≥ 3, albeit

tracking accuracy improved with the number of features, at the expense of increased

computation. To guarantee a realistic balance between tracking performance and com-

putation, K was set to 5 in all subsequent experiments. Figure 5.7 shows the 5 selected

features for the first 50 frames in two representative sequences. The plot shows that the

same or very similar features are selected in successive frames, and the set of selected

features is fairly stable over time. The search neighborhood,Ws
l∗ , was set to a rectan-

gular region centered at the current target position l∗ with size twice that of the object

bounding box.

To explicitly understand the contribution of two of the components of the saliency

based tracker - a) the spatial importance map (SIM) and (b) spatio-temporal features,

we created four variants of the tracker depending on which of the two components

where included. These are termed “Sal” (only using the saliency measure of (8.1) and

the spatial DCT features), “Sal+SIM” (saliency and SIM), “Sal+ST” (saliency with

spatio-temporal Gabor features included along with DCT features, but no SIM) and

“Sal+SIM+ST” (saliency including spatio-temporal features and the SIM). These four

variants were also included in the experimental evaluation.

Table 5.1 presents the errors measured on a set of 13 sequences. First, the results

show that spatio-temporal features help improve tracking performance, as seen from

lower average error rate for “Sal+ST” over the baseline version “Sal”. As discussed in

Section 5.3.7, these features provide the tracker with some implicit ability to account

for the motion of the target, which are an important discriminatory cue for most objects.
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Figure 5.7: Features selected in the first 50 frames on (a) “karlsruhe” and (b)

“sylvester”. The spatial features are numbered from 1 to 64, and correspond to the zig-

zag scanning order of the DCT basis functions, while the three spatio-temporal features

are numbered from 70 to 72.

Additionally, it is seen that the spatial importance map (“Sal+SIM”) also leads to a

significant improvement in tracking accuracy. Finally, it is clear that the effects of SIM

and spatio-temporal features are complementary and the version with both components,

performs the best on average. In the following discussion, we refer to this version as the

discriminant saliency tracker (DST).

Overall, DST or its variants are the top performers on 8 sequences. Among

the remaning methods, MIL is the best performer, with lowest error rates on three se-

quences. More importantly, the tracking error of DST is very close to that of the best

performing method in most of the sequences where it does not produce the best results.

On the other hand, in the sequences where it is the top performer, the error of DST tends

to be substantially smaller than those of all other methods. This is captured by fact that

the average error, across sequences, of DST is about 64% that of the next best method

(MIL). Alternatively, it can be seen from the fact that, while DST never loses track, this

happens for all other methods in four of the sequences (“ram”, “skater”, “motinas”, and

“athlete”).

Figure 5.8 illustrates the tracking results on four of the sequences considered.

The qualitative performance of IVT and the ensemble tracker is quite poor, as these

methods lose the target in most scenes. Somewhat better performance is achieved by

the Collins and MIL trackers. However, these methods lose the target when it under-
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Table 5.1: Average tracking error of the five trackers compared. 0 indicates perfect

tracking, 1 complete lack of overlap between groundtruth and target bounding box pro-

duced by the tracker.

Sequence IVT Collins Ensemble MIL Sal Sal+SIM Sal+ST DST

coke11 0.97 0.76 0.71 0.68 0.62 0.68 0.63 0.68

tiger2 0.80 0.78 0.88 0.38 0.64 0.77 0.78 0.44

karls 0.64 0.47 0.93 0.29 0.52 0.30 0.53 0.31

dtneu 0.93 0.27 0.96 0.49 0.21 0.21 0.15 0.26

plushtoy 0.11 0.37 0.38 0.17 0.16 0.26 0.21 0.25

ram 0.77 0.86 0.87 0.64 0.36 0.77 0.33 0.33

ballroom 0.62 0.38 0.70 0.34 0.39 0.46 0.38 0.44

roadcrossing 0.51 0.74 0.83 0.46 0.87 0.78 0.77 0.45

motinas 0.60 0.47 0.73 0.61 0.95 0.22 0.92 0.24

athlete 0.98 0.78 0.94 0.92 0.75 0.41 0.75 0.37

skater 0.94 0.49 0.62 0.93 0.47 0.33 0.36 0.30

CAVIAR 0.34 0.56 0.96 0.48 0.29 0.33 0.73 0.31

seq10 0.03 0.99 0.94 0.08 0.95 0.89 0.14 0.14

average 0.63 0.61 0.80 0.50 0.55 0.49 0.51 0.35

goes extreme appearance variations, due to partial occlusions, illumination changes or

rotation. On the other hand, DST tracks the targets successfully in all sequences. The

results on “seq10”, a very long sequence used in [67], show that DST is also able to

track over long durations reliably without drifting (Figure 5.8(c)).

Overall, it is clear that DST has the best performance. Videos of all tracking

results are available from [5].

5.4.2 Scale Adaptive Tracking

To test scale adaptivity, the performance of the DST was evaluated on various

sequences of widely varying target size. The comparison was restricted to IVT, since

no scale adaptive extensions are available for the other methods. The initial position

and size of the target were manually specified, since IVT has no ability for automatic

initialization. Examples of the tracking results are shown in Figures 5.9. Note that these

sequences are challenging in many ways. Besides wide scale variability, the target can

change appearance quite dramatically due to a 360◦ rotation, and non-rigid motion (on
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(a)

(b)

(c)

(d)

(e)

Figure 5.8: Tracking results on a) “motinas toni change ill” [109] - the person turns

around and the illumination changes drastically, b) ‘athlete”- a person running inside a

stadium. The video is very noisy and the target appearance changes widely, c) “seq10” -

extremely long video sequence used in [67] to test for drifting, (d) “skater” on a pedes-

trian walkway - the target undergoes partial occlusions on multiple occasions and (e)

“ram” walking in the woods. Target locations: DST - thick red box, Collins - thick

green box, ensemble - cyan dashed box, IVT - blue dashed box, MIL - magenta dashed

box.
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“gravel” the subject turns, picks a rock, and throws it in the water), as well as perspective

effects (on “dirtbike” the motorcycle approaches the camera from the left and leaves to

the right), and the background varies substantially (sky, then sand dunes, then strongly

shaded background on “dirtbike”). While IVT loses track in both cases, DST is able

maintain track throughout the sequences, accurately tracking the target position. This

robustness is due to the continuous updating of the features used to represent both target

and background, and the discriminant nature of the tracker. Panels on the extreme right

of Figure 5.9 present plots of the variation of target scale over time. It is clear that DST

is able to handle a wide variability of target scales, while IVT loses track (“gravel”) or

dwindles into an infinitesimal target box (“dirtbike”). Table 5.2 summarizes the errors

measured on these and two other sequences, confirming the superior performance of

DST. Videos of the sequences are again available from [5].

Table 5.2: Comparison of average tracking error of IVT and DST when target scale

varies widely

Name IVT DST

dirtbike 0.86 0.33

speedboat 0.45 0.38

gravel 0.76 0.44

baseball 0.96 0.44

average 0.76 0.40

Table 5.3: Comparison of tracking errors for the DST using automatic and manual

tracker initialization

Name Auto Init Manual Init

dirtbike 0.33 0.33

surfer 0.33 0.32

dog 0.38 0.37

skiing 0.27 0.28
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Figure 5.9: Scale adaptive tracking on (a) “gravel” and (b) “dirtbike”. Target locations:

DST - red box, IVT - dashed blue box. Plots of target scale, expressed as the ratio of

target size at a frame to size in the initial frame for the respective sequences are shown

below the frames.
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5.4.3 Automatic Initialization

Finally we performed a set of experiments designed to evaluate automatic tracker

initialization using DST. Since none of the other methods have this capability, no com-

parison was performed for these sequences. Examples of DST results are shown in

Figure 5.10. The tracker uses the bottom-up discriminant saliency procedure of Sec-

tion 5.3.8 to identify the object to track. The region of maximal saliency is then input to

the scale adaptive DST algorithm, which tracks the target through the remaining frames.

The leftmost column of Figure 5.10 shows the bottom-up saliency map, and the columns

on the right show a few of the subsequent frames (target bounding box shown in red).

The tracker initializes the target correctly, and tracks it through substantial variations of

scale and pose (note the 3D rotation in “dog”).

Table 5.3 presents the error measures obtained for these sequences. The error

of DST with automatic initialization is compared to that obtained when the tracker is

manually initialized with the groundtruth target bounding box. There is no substantive

difference. Overall, these results demonstrate the ability of the DST to perform robust

target initialization and accurate scale adaptive tracking, in scenes with complex motion.

Videos of all sequences are available in [5].

5.5 Connections to other discriminant trackers

At an abstract level, the proposed DST is similar to previous discriminant track-

ers [39, 12, 13]. Like the DST, these are center-surround discriminators, equating target

to center and background to surround. In fact, they rely on classifier design and target

detection operations that are similar in spirit to those of DST. There are, nevertheless,

differences of detail that significantly affect tracking performance. As summarized in

Table 5.4, these report to the features used, the method employed for their selection, and

the confidence measure used for target detection.

All discriminant trackers include a classifier design stage which begins with fea-

ture extraction. This maps the space of image pixels into (a presumably lower dimen-

sional) feature space Y, where it is easier to discriminate target from background. The

transformation can be linear or non-linear. Collins et al. [39] use linear combinations of
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(a)

(b)

(c)

(d)

Figure 5.10: Automatic initialization and tracking. Bottom-up saliency map used to

initialize the tracker is shown on the left column. Target bounding boxes are shown in

red. a) “surfer” b) “dog” (c) “surfer” and (d) “skiing”. Target locations in subsequent

frames are shown in red.
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Table 5.4: Connections between the four discriminant trackers in terms of the compo-

nents used.

Method Features Feature selection Confidence Mea-

sure for Target

Detection

Collins RGB features Fisher discriminant

like variance ratio

Log-likelihood ra-

tio

Ensemble RGB+HoG fea-

tures

Boosting of hyper-

plane classifiers

Margin from

boundary

MIL Haar features Boosting of deci-

sion stumps

Posterior target

class probability

DST DCT+Gabor filters Salient features se-

lected by MMI

Information mea-

sure

R,G,B pixel values, ensemble tracking [12] complements R,G,B values with histograms

of oriented gradients [46], and MIL [13] relies on Haar wavelets. DST relies on a combi-

nation of DCT and spatiotemporal filters. In our experience, feature selection in tracking

is not different from feature selection in any other learning problem. More features will

generally improve performance, at the price of higher computational complexity. While

the gains tend to saturate after a relatively rich set of features is available, many feature

sets can be used. Gradient histograms, Haar wavelets, and DCT filters are all good ex-

amples. We caution, however, against the standard practice of relying solely on color

histograms [41]. While color is a sufficiently discriminant cue for many sequences, it

can artificially inflate the effectiveness of the tracker. For example, it is not difficult

to track an extremely complex object that rotates in 3D, if it is the only red blob in

the scene. Our choice of grayscale sequences was intended to minimize these types of

effects.

First, our results show that it is important for the feature set to include a com-

bination of spatial and spatiotemoporal features. As discussed in Section 5.3.7, these

features provide the tracker with some implicit ability to predict the dynamics of the

target, which are an important discriminatory cue for most objects. As an illustration,

consider the “roadcrossing” sequence of Figure 5.11. Panels (a) and (b) show tracking
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(a) (b)

(c) (d)

Figure 5.11: (a) and (b) tracking on “roadcrossing”. Target locations: full DST - red

box, DST with spatial features only - blue box. The average tracking error is 0.1 for the

former and 0.51 for the latter. (c) and (d) are associated saliency maps for the frame in

(b). (c) shows full DST, and (d) DST with spatial features alone.

results with (red box) and without (blue box) spatiotemporal features. The substantial

amount of background clutter in this scene hampers the learning of a tracking model

from spatial features alone, causing the tracker to fail. The addition of spatiotemporal

features provides a discriminant cue (different motion of pedestrian and background)

that is much easier to model and detect, even though both target and background are

moving (panning camera). This can be confirmed by inspecting the saliency maps as-

sociated with the frame where the spatial tracker starts to lose track. It is clear that the

addition of spatiotemporal features enables the discrimination, despite the background

clutter (Figure 5.11(c)), but this is not possible in their absence (Figure 5.11(d)).

With respect to feature selection and classifier design, all discriminant trackers

analyze the feature set for target/background discrimination. Collins et al. [39] first com-

pute histograms of filter responses on the R,G,B channels of both target and background,

and construct a log likelihood ratio between the two class histograms, considering this
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a new non-linear feature. Feature discrimination is evaluated by a Fisher discriminant-

like variance ratio that measures how tightly clustered the log-likelihood ratios are for

the two classes. This is equivalent to transforming the features into a non-linear space

and learning a linear classifier in that space. It is optimal, in the minimum probability

of error sense, only when the classes are Gaussian and have equal covariance, after the

feature transformation. Overall, the tracker suffers from the fact that this discrimina-

tion measure is somewhat heuristic. The distribution of log-likelihood ratios is hard to

characterize [37], the assumption of unimodality (Gaussianity) does not hold in gen-

eral (i.e. for all features), and is especially troubling when there is background clutter.

There is even less evidence in support of the assumption of equal class variance. These

observations could account for the limited effectiveness of the tracker.

The ensemble tracker [12] relies on a set (“ensemble”) of weak hyperplane clas-

sifiers to separate target from background. Each weak learner implements a threshold

on a linear combination of the original features. A simpler approach is used by the MIL

tracker [13], where each weak learner is a decision stump, i.e. a threshold on one of

the original features. Both trackers rely on the classification error rate as measure of

discrimination for feature selection. While this is a close approximation to the mutual

information used by the DST [171], the feature selection procedure is quite different:

both the ensemble and MIL trackers rely on boosting (AdaBoost and MILBoost re-

spectively). Boosting has a number of disadvantages for tracking. The first is that it

is too sensitive to outliers. This a major limitation, since the target and background

classes of a tracking problem are rarely exclusive. On the contrary, a certain amount of

background is usually covered by the target window and vice-versa. When the learning

procedure lacks robustness, the resulting outliers can easily bias the decision rule, and

the tracker tends to drift. As this happens, the number of outliers increases, and the tar-

get and background classes become gradually more ill-defined, until tracking is simply

lost. The sensitivity of boosting to outliers is well known in machine learning, where a

number of extensions have been proposed to address the problem [115]. This is indeed

the difference between the ensemble and MIL trackers. The latter implements boosting

under the MIL formalism, exactly to decrease outlier sensitivity. The excessive outlier

sensitivity of the ensemble tracker justifies the fact that it has the weakest performance
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of all methods tested. By minimizing this problem, MIL achieves significantly better

results.

A second limitation of boosting is that it tends not to perform well with the

amounts of data and computation available to tracking problems. This is not a limitation

of boosting per se, but of boosting the weak learners commonly used in vision applica-

tions. Since the decision function to approximate can be fairly complex, the space has

non-trivial dimensionality, and the weak learners are very simple (e.g. a simple feature

threshold for decision stumps), a large number of weak learners are needed to produce a

good classifier. This is infeasible for tracking, where 1) not enough computation is avail-

able to perform a large number of boosting iterations between two video frames, and 2)

not enough training data is available to constrain the learning of a large combination of

weak learners. The second problem could be minimized by extending the training set,

e.g. by collecting target samples over a large number of frames, but this would increase

the difficulty of the first problem. Furthermore, the tracker would have great difficulty in

adapting to object variability. Instead, boosting-based trackers try to solve the problem

with a small number of learners and a limited training set (a few frames, at most). This

produces a classifier with little generalization ability, which does not perform well when

there are large variations of appearance, due to effects such as the rotating objects or the

noisy athlete sequence of Figure 5.8.

The results above show that the proposed DST, and associated MMI feature se-

lection, have a better trade-off between complexity and generalization. A similar obser-

vation has been reported for image classification, where mutual information based fea-

ture selection has been shown to outperform boosting based methods [56]. For tracking,

this translates into a better trade-off between robustness and adaptivity of the decision

rule, and justifies the superior performance of DST even when the outlier sensitivity of

boosting is minimized (i.e. in comparison to MIL).

5.5.1 Target detection

Given a set of discriminant features, all discriminant trackers use some measure

of classification confidence to detect the target in the next video frame. Collins [39]

suggests a decision rule based on the log-likelihood ratio between the target and back-
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ground hypotheses. This is not fundamentally different from the information measure

of (2.5). The confidence measure of the ensemble tracker is the classification margin

of the boosted ensemble. This is a measure of the level of belief in the classification

result, and is directly analogous to the saliency measure (2.1). For the MIL tracker, the

confidence measure is the posterior target probability given the feature responses at each

image location. This has an exact correspondence to the information measure of (2.5),

which is simply a monotonic non-linear function of the posterior target probability. In

summary, the confidence measures used by the Collins, ensemble, and MIL trackers are

not fundamentally different from the saliency measure of the DST.

5.6 Conclusion

In this work, we have shown that discriminant tracking follows naturally from

the discriminant formulation of visual saliency. In particular, optimal tracking (in the

decision-theoretic sense) can be implemented with a combination of bottom-up center-

surround discriminant saliency and spatial attention for learning, feature-based attention

for feature selection, and top-down saliency for target detection. This was exploited

to construct a simple and computationally efficient framework for tracking, which is

consistent with what is known about the attentional mechanisms of biological vision,

and provides a unified solution to the problems of classifier design, target detection,

automatic tracker initialization, and scale adaptation. Experimental comparison with

previous trackers shows that the proposed discriminant saliency tracker is significantly

more robust. An implementation of this tracker in C, without any optimization, currently

runs at ∼ 1.5 frames per second (fps), on a standard PC without special hardware. On the

same machine, the running times of other discriminant trackers are comparable (∼ 4fps

for MIL and ∼ 3fps for the Collins tracker).

Among its shortcomings, DST does not explicitly retain target features that ap-

pear in the previous frames. Therefore, it cannot handle prolonged partial or complete

occlusions. Also, as the approach depends on finding features that can discriminate the

target from the background, DST is not suitable when there are objects very similar to

the target in the background or for tracking large targets with inadequate backgrounds.
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Finally, DST has been designed for tracking single targets. To track multiple targets,

DST has to be augmented with additional modules such as an identity management

scheme.
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Algorithm 2 Tracking Using Discriminant Saliency

Input: Initial target location l∗, t = 0, initial frame I0 (M pixel locations), feature set

Yk, k ∈ {1, . . . ,N}, and a target number of features K.

while Next frame exists do

Learning and Feature Selection:

Extract targetW1
l∗ and surroundW0

l∗ windows from It.

for k = {1, . . . ,N} do

From the responses of Yk in Wi
l∗ , i ∈ {0, 1}, estimate the variances σ2

k,i
us-

ing (5.20), and the scale parameters αk,i, using (5.6).

From the responses of Yk inW1
l∗ ∪W0

l∗ , estimate the variances σ2
k

using (5.20),

and the scale parameters αk, using (5.6).

Compute the parameters ξk, Tk, and tk, using (8.6) and (5.15) .

Compute I(Yk,C), using (5.9).

Compute spatial importance map Tk using (5.17).

end for

Output: return the K features with ξk > 0 and largest I(Yk ,C), the corresponding

parameters ξk, Tk, tk, and spatial importance maps Tk.

Set t = t + 1.

Target detection:

for k = {1, . . . ,K} do

for m = {1, . . . ,M} do

Compute the response ym of Yk, and the saliency values S k(lm), at location lm

of pixel m of It, using (5.16).

Compute Rk(lm), using (5.18).

end for

end for

for m = {1, . . . ,M} do

Compute the saliency S T (lm), at lm, with (5.19).

end for

Output: Set l∗ = argmaxlm
S T (lm), {m ∈ Ws

l∗}.
end while



Chapter 6

The Saliency hypothesis for tracking

6.1 Introduction

Biological vision systems have evolved sophisticated tracking mechanisms, ca-

pable of tracking complex objects, undergoing complex motion, in challenging envi-

ronments, e.g. cluttered scenes in low-light. These mechanisms have been an area of

active research in both neurophysiology [45, 148] and psychophysics [130], where re-

search has been devoted to the study of object tracking by humans [140]. This effort

has produced several models of multi-object tracking, that account for the experimental

evidence from human psychometric data [130]. Prominent among these are the FINST

model of Pylyshyn [140], and the object file model of Kahnemman et al [94]. However,

these models are not quantitative, and only explain the psychophysics of tracking simple

stimuli, such as dots or bars. They do not specify a set of computations for the imple-

mentation of a general purpose tracking algorithm, and it is unclear how they could be

applied to natural scenes. While some computational models for multiple object track-

ing (MOT) such as the oscillatory neural network model of Kazanovich et al. [97], and

the particle filter based model of Vul et al. [177], have been proposed, there have been

no attempts to demonstrate their applicability to real video scenes.

In the previous chapter, we noted that the best results among tracking algo-

rithms are obtained for discriminant trackers which object tracking as incremental tar-

get/background classification [110, 39, 12, 66]. These train a classifier to distinguish

target from background at each frame. This classifier is then used to determine the loca-

82
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tion of the target in the next frame. Target and background are extracted at this location,

the classifier updated, and the process iterated.

The explicit modeling of the visual information that differentiates target from

background, i.e. discriminant features of object appearance and/or motion, leads to

a much more accurate determination of the object support than what is possible with

classical predictive tracking, e.g. modeling of target dynamics with Kalman filtering or

condensation [83]. This improves the tracker accuracy and minimizes the contamination

of the target model. The superior performance of discriminant trackers is consistent

with what is known about biological tracking. For example, there is clear evidence that

human perception of target correspondences relies much more on appearance features

than on the prediction of object dynamics [54], and that motion extrapolation is not used

in object tracking [98].

The discriminant saliency based tracker we proposed in Chapter 5 has, in fact,

postulated a connection between saliency, one of the core processes of early biological

vision, and discriminant tracking: that the ability to track objects is a side-effect of the

saliency mechanisms that are known to guide the deployment of attention. More pre-

cisely,we have hypothesized that tracking is a simple consequence of object-based tun-

ing, over time, of the mechanisms used by the attentional system to implement top-down

saliency. We refer to this as the saliency hypothesis for tracking. Under this hypothesis,

in Chapter 5 we proposed a tracker based on the discriminant saliency principle of [65].

This is a principle for bottom-up center-surround saliency, which poses saliency as dis-

crimination between a target (center) and a null (surround) hypothesis. Center-surround

discriminant saliency has previously been shown to predict various psychophysical traits

of human saliency and visual search performance [60]. The extension proposed in Chap-

ter 5, to the tracking problem, endows discriminant saliency with a top-down feature

selection mechanism. This mechanism enhances features that respond strongly to the

target and weakly to the background, transforming the saliency operation from a search

for locations where center is distinct from the surround, to a search for locations where

target is present in the center but not in the surround. Chapter 5 has shown that this

tracker has state-of-the-art performance on a number of tracking benchmarks from the

computer vision literature.
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Besides improved tracking algorithms for computer vision, the potential con-

nection between saliency and tracking is interesting in multiple ways. First, it could

unify the study of the two processes. While there are universally accepted protocols for

the study of attention, e.g. extensive saliency psychophysics [129] and a large visual

search literature [184], the study of visual tracking is much less developed. If the pro-

cesses are indeed related, variations of the protocols used to study attention could be

applied to tracking. Second, it could lead to unified computational models for the neural

circuits that solve the two tasks. This would place more stringent conditions on the mod-

els, which would have to explain data from both saliency and tracking, and provide a

stronger evolutionary justification for models that meet such conditions. Third, it could

provide novel justifications for both the neurophysiology and the behavior of various

neural circuits of early vision, e.g. the need for a combination of circuits that modulate

saliency spatially (by implementing a spotlight of attention [138]) and by attribute (by

enhancing/suppressing the responses of entire feature channels [116]).

In the next chapters we discuss our contributions along these three areas. We first

present results of several psychophysics experiments on the dependence between tar-

get saliency and human tracking performance, and demonstrate that the saliency based

tracker of Chapter 5 is compliant with this data. These experiments build on well un-

derstood properties of saliency, such as pop-out effects, to show that tracking requires

discrimination between target and background using a center-surround mechanism. In

addition, we characterize the dependence of tracking performance on the extent of dis-

crimination by gradually varying feature contrast between target and distractors in the

tracking tasks. The results show that both tracking performance and saliency show

highly similar patterns of dependency on feature contrast. This provides strong evi-

dence for the proposed connection between saliency and tracking. Second, we show

that the hypothesis has biological support by mapping the saliency-based tracker into

a network compliant with the widely accepted neurophysiological models of neurons

in area V1 [30] and the middle temporal area (MT) [156], and with the emerging view

of attentional control in the lateral intra-parietal area (LIP) [16]. This mapping extends

the substantial connections between discriminant saliency and the standard model that

have already been shown [65]. In particular, we show that all information required
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for optimal (in a decision-theoretic sense) feature selection can be obtained by divi-

sive normalization, across feature channels, of the responses of the saliency network.

The resulting network is a biologically plausible optimal model for both saliency and

tracking. Finally, we show that the tuning of top-down saliency associated with this

feature selection mechanism explains the well-known phenomenon of feature-based at-

tention [168]. In particular, we show that the tracking network replicates data from

feature-based attention experiments with MT neurons. This provides a functional justi-

fication for feature-based attention (tracking) which complements the functional justifi-

cation previously available for spatial attention (center-surround saliency) [89].

6.2 Tracking and attention

Various authors have suggested that, in the human visual system, 1) tracking is

achieved by attentional mechanisms [32, 10] and 2) the underlying processes could be

feature based [112]. For example, a target can be tracked as its appearance changes (in

terms of features like orientation, spatial frequency or color), even when superimposed

on a distractor [18]. Conversely, it has been shown that attentional tracking fails when

the target features cannot be individuated [173, 31]. Additionally, experiments based

on the “bouncing-streaming” [150] paradigm have shown that the perceived correspon-

dence of an object in successive time-slices depends much more on the similarity of

its featural attributes (shape, orientation, color, texture etc.) than on the predictability

(smoothness) of the resulting trajectory [54]. This does not mean that object motion is

irrelevant: it is known that targets can easily be tracked even when they have identical

appearance to the distractors, as long as they are spatio-temporally distinguishable from

the latter [140, 82]. It is thus believed that both spatial and spatio-temporal attributes of

the target are attended to, for tracking purposes [18]1. Overall, while there is plenty of

evidence in support of the hypothesis that target features are important for the percep-

tion of object persistence, it is not clear which feature subset is actually selected within

a tracking task. In fact, there have been no attempts, in the biological tracking literature,

to understand the computational principles that underlie the selection of such features.

1In fact, it is thought that for the purposes of attention, stimulus location can be treated as just another

feature [134].
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Substantially more research has been devoted to the computational modeling of

visual attention [27, 183, 88, 65]. A well studied attentional mechanism, thought to play

a role in tracking [48], is spatial attention. It enables the visual system to direct attention

towards a specific spatial neighborhood of the visual field, commanding what is often

referred to as the spotlight of attention [50]. A second mechanism, whose connections

to tracking have still not been explored, is feature-based attention. It enables the visual

system to attend to specific visual features, such as direction of motion, orientation, and

color [116], enhancing the responses to such features throughout the visual field.

It is also widely believed that stimulus saliency plays an important role in at-

tention. For example, it is difficult not to attend to stimuli that “pop-out” [88]. Two

types of saliency mechanisms are well known. Bottom-up saliency is entirely stimulus

driven, and thought to result from a center-surround operation [33]. It identifies stimuli

that are distinct from the surrounding background as salient, and facilitates the direc-

tion attention to the specific locations of such stimuli. It is thus primarily related to

spatial attention. Top-down saliency is tunable for the detection of target features or ob-

jects [188]. It is primarily related to feature-based attention mechanisms, and reinforces

(suppresses) the responses of salient (non-salient) features. This allows the rapid iden-

tification of stimuli in a target class, e.g. faces, by suppressing the responses of features

that are not informative about that class.

Discriminant saliency reviewed in Chapter 2 is a generic saliency principle that

equates saliency to discrimination between target and background classes [65]. It can be

specialized to either bottom-up or top-down saliency. This has been exploited in Chap-

ter 5 to propose a saliency-based approach to discriminant tracking. An object is initially

declared salient by a bottom-up saliency detector, establishing a target to be tracked. The

classifier stage of the discriminant tracker (cf. Figure 5.1) is achieved by identifying the

most salient target features which are then used to design a top-down saliency detec-

tor tuned for target detection in the next time step. The object is then detected and the

process iterated. Figure 5.4 illustrates the main steps involved in the saliency tracker.

The resulting tracker has been shown to achieve state-of-the-art performance in various

tracking benchmarks. While the feature selection operation of Chapter 5 (which itself

is based on top-down saliency) closely follows what is known about the mechanisms
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of feature-based attention, it is not clear if the computations proposed in Chapter 5 are

biologically plausible. This motivates two inter-related questions: 1) is it likely that

top-down tuning of discriminant saliency could drive tracking in biological visual sys-

tems as proposed in Chapter 5? and 2) Is top-down tuning of saliency a plausible model

for feature-based attention?

In addition to the good experimental performance reported in Chapter 5, there

are several compelling reasons to believe that top-down saliency could be the basis for

tracking. The first is that the saliency and tracking tasks are not fundamentally different.

Once a target is declared salient, it is likely to stay salient for some period of time. It

appears sensible to use the computations already performed for saliency to keep track of

where the object is. Hence, there is some evolutionary pressure for a common solution

to the two problems. Second, the evidence from the tracking and saliency literatures

suggests that both problems are effectively solved by a discriminant formulation, where

the goal is to find locations where the center is different from the surround (background).

The only difference is that, for tracking, the center must also contain the particular ob-

ject to track. This suggests that tracking could be performed through top-down tuning

of the mechanisms already in place for bottom-up saliency. Namely it would suffice

to complement center-surround saliency with a feature-based attention mechanism that

suppresses features not informative for target presence. In the succeding chapters we

study the hypothesis that saliency is the basis for tracking. We seek evidence in three

domains: 1) psychophysics support for the hypothesis 2) biologically plausible imple-

mentation of tracking by discriminant saliency, 3) neurophysiological support for this

implementation.

We start by reporting on experiments investigating the connections between the

psychophysics of tracking and saliency in the next Chapter.
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Chapter 7

Human Behavior Studies on Saliency

and Tracking

7.1 Introduction

A frequently used approach to test biological plausibility of computational mod-

els involves comparison of the model predictions to human behavior (psychophysics)

data on appropriate visual stimuli. Since there are no reports in the literature on psy-

chophysics experiments studying the relation between attentional tracking of a single

target and its saliency, we designed our own experiments. In the following paragraphs,

we describe these experiments.

7.2 Experiment1: Saliency affects tracking performance

7.2.1 Method

Participants Thirteen subjects with normal or corrected to normal vision participated

in the study (age range 22-35, 4 female). The subjects for this and all subsequent exper-

iments reported here provided informed consent and were compensated $8 per hour for

their participation. The entire study was approved by the IRB at UCSD.

89
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Apparatus The video stimuli were designed using the Psychtoolbox [24] with Mat-

lab v7, running on a Windows XP PC. A 27 inch LCD monitor of size 47.5◦×30◦ visual

angle with resolution set to 1270 × 1068 pixels was used to present the stimuli, and the

viewing distance was set at 57 cm. The same apparatus was used for all subsequent

experiments in this work.

Stimuli The experimental setting was inspired by the tracking paradigm of Pylyshyn

[140]. Subjects viewed displays containing a green target disk surrounded by 70 red

distractor disks, identical in shape to the target, and a static fixation square.

Procedure At the start of each trial, the target disk was cued with a bounding box,

in the first frame of the stimulus. The subjects were asked to track the target covertly,

without moving their eyes from the fixation point. On a keystroke from the subject, all

disks moved independently, with random motion, for around 7 seconds. Then, the disks

stopped moving and the colors of three disks were switched to three new colors - cyan,

magenta and blue. Of these, one was the target and the other two the spatially closest

distractors. The subjects were asked to identify the target among the three highlighted

disks. Participants performed 4 trials each, divided into 2 versions of 2 conditions.

Design The first version tested how tracking is affected by target saliency under two

different conditions involving two types of displays. In the first, denoted salient, the tar-

get remained green throughout the presentation, changing randomly to one of the three

highlight colors at the end of the 7 seconds. In the second, denoted non-salient, the

target remained green for the first half of this period, switched to red for the remain-

ing time, finally turning to a highlight color. While in the first condition the target is

salient throughout the presentation, the second makes the target non-salient through-

out the latter half of the trial. To eliminate potential effects of any other variables (e.g.

target-distractor distances and motion patterns), the non-salient display was created by

rotating each frame of a salient display by 90◦ (and changing the green disk to red in the

second half of the presentation). Figure 7.1 shows typical frames from the two types of

displays.

If tracking is driven by saliency, the rate of successful target tracking should be
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(a) (b) (c)

Figure 7.1: Displays used in the first psychophysics experiment. Subjects were asked

to focus on the black fixation square in the center. The disks moved randomly, with

velocity indicated by the arrows. (a) In the salient condition, target (shown circled) and

distractors differ in color, (b) in the non-salient condition, both have the same color.

The display of (b) was obtained by a counterclockwise rotation of that in (a) by 90◦.

(c) Display used in the “locally salient” condition. The target (shown circled) is locally

salient, and seven nearest neighbors of the target are of a different color.

much higher for salient than for non-salient displays. This, however, could be explained

as a side-effect of bottom-up saliency. Since the target is the only green disk in salient

displays, it continuously popped-out. Hence, subjects could be not tracking at all, but

simply acquiring the target at every time step. The second version of the experiment

ruled out this hypothesis by using a different type of display for the salient condition. In

this case, the target was a red disk, and its 7 nearest spatial neighbors were green. All

other distractors were randomly assigned to either the red or green class. This eliminated

the percept of pop-out. As before, the display for the non-salient condition was created

by rotation and color switch of the target on the second half of the presentation. The

video displays are available online at [4].

7.2.2 Results and Discussion

Figure 7.2 presents the rate of successful tracking in the two versions. In both

cases, this rate was much higher in the salient than in the non-salient condition. In the

latter, the tracking performance was almost at the chance level of 1
3
, suggesting com-

plete tracking failure. Overall, tracking performance was vastly improved for salient

targets even when they did not pop-out. In fact, the similarity of detection rates in
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(a) (b)

Figure 7.2: Tracking success rate when targets are (a) globally salient (pop-out), and

(b) locally saliency (do not pop-out).

the two experiments suggests rather than pop-out, it suffices for the target to be locally

salient. This is consistent with the hypothesis that tracking is guided by a top-down

center-surround saliency mechanism. Since all other parameters were equal under the

two conditions, the difference in performance can only be attributed to the saliency or

discriminability of the target. While this experiment used color as a discriminant cue, the

same conclusions apply when other features are salient. For example, studies on mul-

tiple object tracking with identical targets and distractors have reported tracking failure

when target and distractors are too close to each other [82]. This is easily explained in

the discriminant framework: when target and distractors are identical, the target must be

spatio-temporally salient (by its trajectory or position) in its neighborhood to be tracked

accurately.

7.3 Experiment 2: Tracking performance and saliency

as a function of feature contrast

The results of the first experiment show that tracking is related to saliency. While

a salient target is tracked reliably, non-salient targets are difficult to track. Experiment

2 aimed to investigate the connection between the two phenomena in greater detail,

namely to quantify how tracking reliability depends on target saliency. Since saliency

is not an independent variable, it can only be controlled indirectly. This is usually done

by manipulating feature contrast between the target and distractors. It is well known

that when the target differs from distractors in terms of color, luminance, orientation or
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texture it can be perceived as salient [128, 124]. In particular, Nothdurft [126] quantified

the dependence of saliency on orientation contrast in static displays. His work has shown

that perceived target saliency increases with the orientation contrast between target and

neighboring distractors. This increase is quite non-linear, exhibiting the threshold and

saturation effects shown in Figure 7.2(c), where we present curves of saliency as a func-

tion of orientation contrast between target and distractors for three levels of distractor

homogeneity. The relationship between tracking reliability and target saliency can thus

be characterized by using orientation contrast as a proxy for target saliency, and mea-

suring its effect on tracking performance. If saliency and tracking share common neural

mechanisms, the variation of the two with orientation contrast should be identical. In

particular, increasing orientation contrast between target and distractors should result

in a non-linear increase of tracking reliability, similar to that observed for saliency by

Nothdurft.

7.3.1 Method

Participants Twelve subjects (8 male and 4 female) in the age range 21-35 partici-

pated in the study.

Stimuli The experimental setting was adapted from the work of Makovski and Jiang

[112]. The display on the monitor was of size 26◦×26◦ (700 × 700 pixels) and consisted

of 23 ellipses, all of color blue, against a black background. Each ellipse had a major

axis of ∼ 0.56◦ (15 pixels) and minor axis of ∼ 0.19◦ (5 pixels). The orientation of the

ellipses depended on the condition from which the trial was drawn.

Procedure At the start of a trial, one of the ellipses was designated as target (cued

with a white bounding box). Subjects were asked to track the target covertly, while

fixating on a white square at the center of the screen. On a keystroke, the ellipses started

moving and continued to do so for ∼ 8-10 sec. At the end of the trial, all ellipses were

completely occluded by larger white disks and the subjects asked to click on the disk

corresponding to the target. Each subject performed 30 trials under 7 conditions, for a

total of 210 trials. No feedback was given on the accuracy of their selection.
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(a) (b) (c)

Figure 7.3: Typical frames of stimuli from the three versions in Experiment 2. (a) only

the target had orientation different from the distractors (b) 4 of the distractors shared the

orientation of the target and (c) 9 distractors in target orientation.

Design The seven conditions corresponded to different levels of orientation contrast

between target and distractor ellipses. Distractor orientation, defined by the major axis

of the distractor ellipses, was always 0◦. Target orientation, determined by the major

axis of the target ellipse, was selected from 7 values: 0◦, 10◦, 20◦, 30◦, 40◦, 60◦ or 80◦.

This made orientation contrast equal to the target orientation. To keep all other variables

(e.g. distance between items, motion patterns, distance from target to fixation square)

identical, a trial was first created for one condition (target orientation 0◦). The trials

of all other conditions were obtained by applying a transformation to each frame of

this video clip. This consisted of an affine transformation of the grid of ellipse centers,

followed by the desired change in target orientation.

Versions To study the effect of distractor heterogeneity [126], three versions of the

experiment were conducted with different numbers of ellipses in the target orientation.

In the first version, only one ellipse (the actual target) was in target orientation. In this

case, there was no distractor heterogeneity. In the second version, 18 of the 23 ellipses

were in distractor orientation, and the remaining 5 in target orientation. One of the latter

was the actual target. Finally, in the third version, 13 ellipses were in distractor and 10

in target orientation, for the largest degree of distractor heterogeneity. Frames from the

three different versions, for target orientation of 40◦, are shown in Figure 7.3.
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Figure 7.4: (a) saliency vs. orientation contrast (adapted from [126]) (b) human tracking

success rate vs. orientation contrast. (c) scatter plot of saliency values from (a) vs

tracking accuracy from (b), r = 0.975. (d) tracking success rate vs. orientation contrast

for the discriminant tracker.

7.3.2 Results and Discussion

As shown in Figure 7.4(a), the curves of tracking accuracy vs. orientation con-

trast, obtained in all three versions of the experiment, were remarkably similar to the

saliency vs. orientation contrast curves of Nothdurft. As is the case for saliency, 1)

distinct threshold and saturation effects were observed for tracking, with tracking accu-

racy saturating when orientation contrast increases beyond 40◦, and 2) increased distrac-

tor heterogeneity caused a decrease in tracking accuracy. The near perfect correlation

(r = 0.975) between tracking accuracy and saliency is evident from the scatter plot of

Figure 7.4(c). Each point in this plot corresponds to a different combination of hetero-

geneity and orientation contrast. In summary, tracking has a dependence on orientation

contrast remarkably similar to that of saliency.
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7.4 Experiment 3: Effect of background on tracking per-

formance

The results of the Experiments 1 and 2 establish a strong connection between

saliency and tracking, and provide evidence in favor of the saliency hypothesis. In re-

lating saliency and tracking, the hypothesis proposes that tracking uses center-surround

mechanisms to identify salient features that make the target distinct from their back-

ground. The involvement of a center-surround mechanism in tracking is consistent with

the results of Experiment 2, where the tracking performance is seen to depend on dis-

tractor heterogeneity - if the surround were not involved in the tracking process, the

performance would not depend on the number of distractors similar to the target in the

surround and the three curves of Figure 7.4(b) would be identical.

To test the involvement of a center-surround mechanism in tracking further, we

designed Experiment 3. In this experiment the distance between the target and the clos-

est similar distractor (i.e. one with the same orientation as the target) is controlled so that

a region of fixed radius around the target is devoid of any similar distractors. By vary-

ing this target-similar distractor distance (ttsd), and observing the tracking performance,

three possible scenarios can be evaluated :

• (a) a localized surround region is involved in the tracking process: in this case,

when ttsd is varied, there should be a distance, which we shall denote as tcritical,

beyond which all similar distractors are outside the surround region relevant for

tracking. So for large enough values of ttsd, i.e. ttsd > tcritical, distractor hetero-

geneity should not affect tracking performance.

• (b) the entire visual field is involved: if the entire visual field is involved, no such

distance, tcritical, should exist and distractor heterogeneity should affect tracking

performance for all values of ttsd.

• (c) no surround region is included in the tracking process: in this case, the suc-

cess rate of tracking should be identical in all versions regardless of the distractor

heterogeneity
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As the results of Experiment 2 already showed that conjecture (c) does not hold, Exper-

iment 3 was designed to determine which among conjectures (a) and (b) holds.

7.4.1 Method

Participants 9 subjects (7 male and 2 female) in the age range 21-35 participated in

the study.

Stimuli and Procedure The experimental setting, stimuli and procedure were identi-

cal to those in Experiment 2.

Design The target orientation for all stimuli was fixed at 40◦. Two versions of the

experiment were conducted with different numbers of ellipses in the target orientation

corresponding to two values of distractor heterogeneity. As in Experiment 2, in the

first version, 18 of the 23 ellipses were in distractor orientation, and the remaining 5

in target orientation, one of the latter being the actual target. In the second version, 13

ellipses were in distractor and 10 in target orientation. In each version, the stimulus

sequence could be in one of four conditions depending on the average value of ttsd, i.e.

the average, over all frames in the sequence, of the distance between the target and the

nearest similar distractor. In each condition, the sequences were designed such that this

quantity was in the range 1.67◦ to 5.01◦ (about 45 pixels to 135 pixels).

7.4.2 Results and Discussion

Figure 7.5(a) presents the rate of successful tracking in the two versions as a

function of the average distance to nearest similar distractor. Also shown in the figure

is the tracking accuracy for the version with no similar distractors at target orientation

of 40◦ from Experiment 2. As there are no distractors similar to the target in this case, a

flat line is used to denote the tracking accuracy over all values of the abscissa.

The results show that tracking performance improves as the average distance to

nearest similar distractor increases under both versions with non-zero distractor hetero-

geneity. Further, for large enough value of the distance, tracking accuracy in the two

versions are nearly the same as the one with no distractor heterogeneity. This shows that
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Figure 7.5: The effect of background on tracking performance. (a) Tracking accuracy

of human subjects for two versions of distractor homogeneities are plotted as a function

of the average target-similar distractor distance. Also shown, in blue, is the tracking

accuracy for the version with no similar distractors at target orientation of 40◦ from

Experiment 2. (b) model prediction for the same data using the saliency based model.

conjecture (a) holds, i.e. a localized surround region of limited size is involved in the

tracking task, and tcritical ≈ 4◦. When the identical distractors are kept out of this region,

adding more such distractors does not impact tracking performance.

In summary, the results of the human behavior studies show that there is strong

evidence for the hypothesis that tracking performance is determined by the saliency

of the target, and that tracking and saliency share common neural mechanisms based on

center-surround discrimination. In the forthcoming Chapters, we reinforce this evidence

by deriving a neurophysiologically plausible network that solves the two tasks. This

network is based on the computational framework of discriminant saliency [65], which

we briefly review next.
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hadevan, and N. Vasconcelos, “Biological plausibility of the saliency hypothesis for
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Chapter 8

Biological plausible model for the

tracking

8.1 Introduction

In this section, we study the question of whether saliency and tracking can be

implemented with common neural mechanisms. We build on an existing saliency archi-

tecture and consider its extension to the tracking problem. This includes the identifica-

tion of the mechanisms required to extend a saliency network to the tracking problem,

and how these mechanisms can be implemented in a biologically plausible manner.

8.2 Discriminant saliency network for tracking

As reviewed in Chapter 2, discriminant saliency equates saliency to optimal

decision-making between two classes of visual stimuli, with label C ∈ {0, 1}, C = 1

for stimuli in a target class, and C = 0 for stimuli in a background class. Saliency is

defined in a center-surround manner where, at each location l, the target class is associ-

ated with stimuli within a target windowW1
l
, and the background class with stimuli in

a surrounding background windowW0
l
. The saliency of the location l is then equated

to the expected accuracy of the target/background classification, given the stimuli in the

two windows. The stimuli are not observed directly, but through projection onto a set of
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Figure 8.1: The non-linearity used in the saliency computation of (8.2). It thresholds

the posterior at value 0.5.

n features, of responses Z(l) = (Z1(l), . . . , Zn(l)). Locations that can be classified with

largest expected accuracy are denoted salient. The expected accuracy of classification is

measured for each feature, and averaged across features, leading to another version of

the overall saliency measure

S (l) =
1

n

∑

k

S Zk
(l) (8.1)

S Zk
(l) = EZk(l){γ[PC(l)|Zk (l)(1|z)]}, (8.2)

γ(x) =



















x − 1
2

x ≥ 1
2

0 x < 1
2

(8.3)

where γ(x) is a nonlinearity (shown in Figure 8.1) that thresholds the posterior

probability, PC(l)|Zk (l)(1|z), that the response of the kth feature at l, Zk(l), was generated by

the target class, C(l) = 1. Therefore, the saliency measure S Zk
(l) is the expected confi-

dence with which the feature response Zk(l) belongs to the target class. The nonlinearity

γ(x) prevents locations declared as not belonging to the target class, by the Bayes deci-

sion rule
(

PC(l)|Zk (l)(1|z) ≤ 1
2

)

, from contributing to the saliency. This tunes the saliency

measure to respond only to the presence of target stimuli, not to its absence.

The work of [65] has shown that the computation of (8.2) can be mapped to the

standard neurophysiological model of area V1, when the features are Gabor-like and

stimulus consists of static natural images. We briefly review the relevant findings here.
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8.2.1 Mapping saliency computation to area V1

When the feature Zk extracted from the target/background region is of bandpass

nature, as is common in biological vision, the feature response follows a generalized

Gaussian distribution (GGD) of scale scale α and shape β [80],

PZk
(z;α, β) =

β

2αΓ(1/β)
exp















−
(

|z|
α

)β














, (8.4)

where Γ(a) =
∫ ∞

0
e−tta−1dt, t > 0.

In the discriminant saliency formulation for this case, the posterior probability

of the target class is given by [65],

PC(l)|Zk (l)(1|z) = σ[g(z)], (8.5)

where σ(z) = (1+ e−z)−1 is a sigmoid, and g(z) the log-likelihood ratio between the two

class-conditional GGDs,

g(z) = log
PZk(l)|C(l)(z|1)

PZk(l)|C(l)(z|0)
=
|z|β0

α
β0

0

− |z|
β1

α
β1

1

+ T, T = log
α0β1π1Γ(1/β0)

α1β0π0Γ(1/β1)
. (8.6)

The scale parameters for class 0 and class 1, α0 and α1 respectively, are estimated by

the maximum a posteriori probability (MAP) method, with conjugate (Gamma) priors,

according to

αβc

c =
1

κc



















νc +
∑

l′∈Wc
l

|z(l′)|βc



















∀c ∈ {0, 1}. (8.7)

The shape parameters βc, ∀c ∈ {0, 1} are quite consistent across image classes, and can

be set to the value βc = 1, which provides a good fit to natural images. Finally, replacing

expectations by empirical averages, the bottom-up saliency for the feature Zk can be

written as:

S Zk
(l) = EZk(l){γ[PC(l)|Zk (l)(1|z)]} (8.8)

≈ 1

|Wl|
∑

l′∈Wl

γ{σ(g[z(l′)])}, Wl =W0
l ∪W1

l (8.9)

The computations of (8.6)-(8.9) can be mapped into a neural network that replicates the

standard neurophysiological model of V1 neurons [30]. In particular, combining (8.6)
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and (8.7), it follows that g[z(l′)] computes a differential divisive normalization of the fea-

ture response z(l′) by the responses of the feature Zk in the neighborhoodsWc
l
. Hence,

σ(g[z(l′)]) implements the computations of V1 simple cells under the standard model: a

sequence of linear filtering, rectification, divisive normalization, and output saturation.

(8.9) then pools the outputs of simple cells inWl after passing them through the non-

linearity γ(x). These are the computations performed by V1 complex cells, under the

standard model. The mapping is illustrated in Figure 8.3.

In the case of motion processing and tracking, the feature set needs to include

velocity tuned spatio-temporal features. These are processed in area MT of the vi-

sual pathway and it is known that neurons in area MT receive input from V1 complex

cells [23]. Therefore, computational models for MT are usually constructed by combin-

ing the outputs of V1 complex cell afferents [156, 146]. As simple and complex cells

in V1 are well modeled by the saliency network discussed above [65], a model for MT

that can process velocity tuned features can be constructed by substituting the saliency

network model in place of the standard model for V1 in the approach of Simoncelli and

Heeger [156].

We next show how this saliency based model for MT can be constructed and also

show that the output of such a model computes saliency of the velocity tuned features.

8.3 Model for an MT neuron and saliency for velocity

tuned features

In the saliency based V1 model, as in [156], the linear filtering in the V1 simple

cell stage is achieved using spatio-temporal Gabor features Zk(l) that are sensitive to

motion. The output of the model V1 complex cell then computes bottom-up saliency

for the corresponding spatio-temporal feature using (8.9), making it selective to the

component of stimulus velocity orthogonal to the spatial orientation of the feature, but

not truly direction selective. By combining the responses of a set of such features, a unit

responding to velocity in a specific direction can be constructed using the approach of

Heeger [73].
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8.3.1 Computations of weights for the MT model

The weight w jk used in (8.22) to compute the response of the kth velocity tuned

feature Yk, from the jth spatio-temporal Gabor feature Z j can be evaluated using the

Gabor energy approach of [73]. The feature response corresponding to Z j is the output of

the visual stimulus passed through a sine-phase three dimensional Gabor filter g j(x, y, t)

of the form:

g j(x, y, t) =
1

√
2π

3
2σxσyσt

sin(2πωx j
x + 2πωy j

y + 2πωt j
t)e
−
(

x2

2σ2
x
+

y2

2σ2
y
+ t2

2σ2
t

)

(8.10)

where ωx j
, ωy j

is the spatial frequency, ωt j
the temporal frequency, and the 3D Gaussian

envelope has standard deviations σx, σy, σt.

The Fourier transform of this Gabor filter is given by [72]:

Fg j
(ωx, ωy, ωt) =

i

2
{e−2π2σ2

x(ωx−ωx j
)2 − e

−2π2σ2
x(ωx+ωx j

)2

+ (8.11)

e
−2π2σ2

y (ωy−ωy j
)2 − e

−2π2σ2
y (ωy+ωy j

)2

+

e
−2π2σ2

t (ωt−ωt j
)2 − e

−2π2σ2
t (ωt+ωt j

)2}

The energy of feature responses to the filter of (8.10) can be computed if its

power spectral density (PSD) is known. As the filter is separable in its three dimen-

sions, we first illustrate the computation of PSD of a 1-D Gabor filter from its Fourier

response [72]:

g(x) =
1

√
2π

3
2σx

sin(2πωx j
x)e
− x2

2σ2
x (8.12)

Fg(ωx) =
i

2
{e−2π2σ2

x(ωx−ωx j
)2 − e

−2π2σ2
x(ωx+ωx j

)2} (8.13)

The PSD of the filter is then

|Fg(ωx)|2 =
1

4
{e−4π2σ2

x(ωx−ωx j
)2

+ e
−4π2σ2

x(ωx+ωx j
)2

+ 2e
−2π2σ2

x(ωx−ωx j
)2−2π2σ2

x(ωx+ωx j
)2}

=
1

4
{e−4π2σ2

x(ωx−ωx j
)2

+ e
−4π2σ2

x(ωx+ωx j
)2

+ e
−4π2σ2

x(ω2
x+ω

2
x j

)} (8.14)

≈ 1

4
{e−4π2σ2

x(ωx−ωx j
)2

+ e
−4π2σ2

x(ωx+ωx j
)2} (8.15)

where the third term,

D(ωx) = e
−4π2σ2

x(ω2
x+ω

2
x j

)
, (8.16)
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Figure 8.2: Approximation of the PSD of a sine phase Gabor filter in 1D. The thick

blue curve shows the quantity in (8.15) for typical values of σx and ωx j
, and the dotted

curve shows 104 times the difference between the quantities in (8.15) and (8.14)

can be ignored because it is upper-bounded by e
−4π2σ2

xω
2
x j , a quantity that is much smaller

than 1. This is illustrated in Figure 8.2.

Similarly, the PSD of the 3D Gabor filter can be given by,

|Fg j
(ωx, ωy, ωt)|2 ≈

1

4
{e−4π2σ2

x(ωx−ωx j
)2

+ e
−4π2σ2

x(ωx+ωx j
)2

+ (8.17)

1

4
{e−4π2σ2

y (ωy−ωy j
)2

+ e
−4π2σ2

y (ωy+ωy j
)2} +

1

4
{e−4π2σ2

t (ωt−ωt j
)2

+ e
−4π2σ2

t (ωt+ωt j
)2}

= P j(ωx, ωy, ωt) (8.18)

For a sinusoidal grating moving with a given velocity, v̄k = vkxêx + vkyêy, its

energy in the frequency domain is contained in a plane defined by [181]:

vkxωx + vkyωy − ωt = 0 (8.19)

To construct a unit tuned to velocity v̄k we compute a weighted combination of

the outputs of a set of 3D Gabor filters following the approach of [156]. The weight

assigned to each Gabor filter in the set is in proportion to the energy contained in the

intersection between the PSD of the filter and the plane corresponding to v̄k. This can

be computed as:

w jk(ωx j
, ωy j
, ωt j
, v̄k) ∝ (8.20)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
P j(ωx, ωy, ωt) dωxdωydωt

∣

∣

∣

vkxωx+vkyωy−ωt=0
(8.21)

=
1

2

∫ ∞

−∞

∫ ∞

−∞

(

e
−2π2σ2

x(ωx−ωx j
)2

+ e
−2π2σ2

y (ωy−ωy j
)2

+ e
−2π2σ2

t (vkxωx+vkyωy−ωt j
)2)

dωxdωy
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where the second step follows due to the symmetry between the two lobes of the PSD.

The integral can be evaluated using the procedure outlined in [73].

In this work we use a total of 12 spatio-temporal filters, each with a center fre-

quency (ωx j
, ωy j
, ωt j

), j = 0 . . . 11. We consider 12 neurons each tuned to motion with

constant speed in one of 12 different directions spread uniformly in (0◦, 360◦), corre-

sponding to velocities v̄k, k = 0 . . . 11.

w jk is then the weight assigned to the jth filter for computing motion in the kth

direction.

Let S Z j
(l) be the model output at the V1 stage for the jth spatio-temporal feature,

Z j, using (8.9). Then the output of a unit tuned to velocity v̄k, corresponding to feature

Yk, is given by:

S k(l) =
∑

j

w jk(v̄k)S Z j
(l) (8.22)

where the weights w jk(v̄k) are computed using the approach of [73] (see Appendix 8.3.1).

This is equivalent to computing the saliency of a complex spatio-temporal fea-

ture Yk, designed to respond to stimuli moving with a specific velocity v̄k, from a com-

bination of simple spatio-temporal Gabor features:

Yk(l) =
∑

j

w jk(v̄k)Z j(l) (8.23)

The expression for saliency of Yk in (8.22) ignores the effect of dependencies between

the simple spatio-temporal features, Z j, which has been shown to be a reasonable ap-

proximation when the features are bandpass [170], as is the case for the Gabor features

used in the construction of the model.

Finally, as in [156], the output of the unit is divisively normalized by the re-

sponses of other units:

S td
k (l) =

S k(l)
∑

j S j(l)
(8.24)

Each model unit corresponding to a feature Yk, tuned to velocity v̄k, can be

thought of as being equivalent to a neuron in MT. The computed model output is analo-

gous to the neuron’s firing rate and responds maximally when the input stimulus moves
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with v̄k, the velocity to which the feature is tuned. This velocity is referred to as the pre-

ferred velocity of the model neuron. The interpretation, given by (8.24), is that velocity

selective tuning is a reflection of the neuron’s function as a detector of salient motion

configurations in a particular velocity channel. The resulting network is illustrated in

Figure 8.3.

The model for MT proposed above is built from neurophysiologically plausible

units, using the same architecture as [156]. So arguments for biological plausibility

of the V1 stage [65] and of the architecture [156] extend to the proposed MT model.

Further, by using a center-surround architecture in the V1 stage, the model accounts for

the surround antagonism observed in MT neurons [160, 22], but not modeled by [156].

8.4 Neurophysiologically plausible feature selection

A key component of the saliency tracker of [110] is a feature selection procedure

that continuously adapts the saliency measure of (8.2) to the target. The basic idea is to

select, at each time step, the features in Y(l) = (Y1(l), . . . , Ym(l)) that best discriminate

between target (center) and background. This changes the saliency from a bottom-up

identification of locations where center and surround differ, to a top-down identification

of locations containing the target in the center and background in the surround. How-

ever, the procedure of [110] (based on feature ranking) is not biologically plausible.

To derive a biologically plausible feature selection mechanism, we replace the saliency

measure of (8.1) with a feature-weighted extension

S (l) =
∑

k

αkS k(l),
∑

k

αk = 1 (8.25)

where αk is the weight given to the saliency of the kth feature channel. To determine

these weights we need a biological measure of feature saliency. For this, we associate

a binary variable Fk with each feature Yk, such that Fk = 1 if and only if Yk is the most

salient feature of the target. We then assume that, given the knowledge of which feature

is most salient, target presence at location l is independent of the remaining feature

responses

PC(l)|Y(l),Fk
(1|y, 1) = 2γ[PC(l)|Yk (l)(1|y)], (8.26)
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where γ(x) is the non-linearity of (8.2). This reflects a conservative strategy, where

features cannot be considered salient unless they are individually discriminant for target

presence.

Given the location l∗ where the target has been detected, the posterior probability

of feature saliency can then be computed by Bayes rule

PFk |C(l∗)(1|1) =
PC(l∗)|Fk

(1|1)PFk
(1)

∑

j PC(l∗)|F j
(1|1)PF j

(1)
(8.27)

where

PC(l∗)|Fk
(1|1) =

∫

PC(l∗)|Y(l∗),Fk
(1|y, 1)PY(l∗)|Fk

(y|1)dy (8.28)

=

∫

2γ[PC(l∗)|Yk(l∗)(1|y)]PYk(l∗)(y)dy (using (8.26)) (8.29)

= 2EYk(l∗){γ[PC(l∗)|Yk(l∗)(1|y)]} = 2S k(l
∗), (8.30)

and the last equality follows from (8.2). Hence,

PFk |C(l∗)(1|1) =
S k(l

∗)PFk
(1)

∑

j S j(l∗)PF j
(1)
. (8.31)

These posterior probabilities serve as weights αk in (8.25). Under reasonable assump-

tions of persistence of the dominant features in the target, this analysis can be extended

over time, by denoting the state of Fk and l∗ at time t by F t
k

and l∗t , respectively, and

the sequence of target locations till time t by l∗t = (l∗t , l
∗
t−τ . . . l

∗
0). Using Bayes rule, the

posterior probability of feature Fk being the most salient feature can be written as,

PFt
k
|C(l∗t )(1|1) = PFt

k
|C(l∗t ),C(l∗t−τ)(1|1, 1) ∝ PC(l∗t )|Ft

k
,C(l∗t−τ)(1|1, 1)PFt

k
|C(l∗t−τ)(1|1) (8.32)

We do not assume an explicit motion model or motion extrapolation. However it

is reasonable to assume that the probability of finding the target is uniformly distributed

in a small neighborhood around l∗t−τ, and if the velocity of the target is not too high, l∗t is

in this neighborhood. We can then write,

PC(l∗t )|Ft
k
,C(l∗t−τ)(1|1) ∝ PC(l∗t )|Ft

k
(1|1) (8.33)
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Using this in (8.32), we get,

PFt
k
|C(l∗t )(1|1) ∝ PC(l∗t )|Ft

k
(1|1)PFt

k
|C(l∗t−τ)(1|1) (8.34)

∝ PC(l∗t )|Ft
k
(1|1)

∑

i

PFt
k
,Ft−τ

i
|C(l∗t−τ)(1, 1|1) (8.35)

∝ PC(l∗t )|Ft
k
(1|1)

∑

i

PFt
k
|Ft−τ

i
,C(l∗t−τ)(1|1)PFt−τ

i
|C(l∗t−τ)(1|1) (8.36)

The probabilities PFt
k
|Ft−τ

i
,C(l∗t−τ)

(1|1, 1) encode the likelihood of transition from

state i to state k. Since dominant features of the target tend to stay dominant for

some time in the neighborhood of the last known position of the target, we assume

PFt
k
|Ft−τ

i
,C(l∗t−τ)(1|1, 1) = 1 if i = k and null otherwise (this is the likelihood of transition

only using the information from the previous time step, it does not preclude new features

from being selected if they become salient at t). Using this, and (8.30), in (8.36) we get

the recursion,

PFt
k
|C(l∗t )(1|1) =

S k(l
∗
t )PFt−τ

k
|C(l∗t−τ)(1|1)

∑

j S j(l
∗
t )PFt−τ

j
|C(l∗t−τ)(1|1)

. (8.37)

Hence, the posterior probability of feature k being the most salient, at time t,

is computed by divisively normalizing a modulated version of the bottom-up saliency

of the feature response at the target location, by those of the remaining features. The

saliency of each feature is modulated by the posterior probability of the feature being

the most salient at time t − τ. The posterior at time t − τ is fed back with a delay, to

become the prior at time t. This enhances the most salient features, suppressing the

non-salient ones, and is equivalent to applying a soft-thresholding to select only the

dominant features.

Comparing (8.24) with (8.32), it can be seen that the output of the model for an

MT neuron when is there no top-down feedback, given by (8.24), simply corresponds

to the posterior probability of Zk being the most salient feature when the prior feature

probabilities are equal, i.e.

PFk
(1) =

1

K
(8.38)

This feature selection mechanism involving selective enhancement and suppres-

sion of features, and operating on the output of the MT stage bears a close resemblance

to the phenomenon of feature-based attention [116]. Infact, the proposed approach to
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feature selection has similarities with previous models of feature-based attention, which

rely on a Bayesian formulation and include divisive normalization [142, 144, 102, 38].

8.4.1 Neurophysiological plausibility of feature selection

Neurophysiological studies have found evidence for the origin of attentional

modulation in three distinct areas of the brain : the lateral intraparietal lobe (LIP) of the

post-parietal cortex (PPC), the frontal-eye field (FEF) and the superior colliculus [187].

Among these, the LIP in particular is thought to compute a priority map that combines

both bottom-up inputs and top-down signals, and the peak of this map response is used

to guide visual attention [16]. Further, neuroanatomical studies have shown that LIP has

cortico-cortical connections to area MT [103], and attentional control is thought to be

fed-back from LIP to MT [147]. Therefore, area LIP is a plausible candidate for the re-

gion where feature selection is performed in our model. We next describe a mechanism

by which LIP can achieve this.

The feature saliency maps from each feature from area MT are fed forward to

the LIP which sums them up to form the final saliency map. As noted in [16], LIP can

also include top-down input in forming the saliency map. But in the case of tracking, we

assume that top-down modulation results only due to the salient attributes of the target

(e.g features and position) seen in the previous time instances.

Once the saliency map has been computed, a maximum detector possibly based

on integration using a Gaussian window, is applied to identify the peak of the saliency

map. Spatial attention then shifts to this location, and feature weights are computed

based on the features at the attended location, assigning higher weights to features that

are present and attentuating those that are absent. These weights are then fed back

to the MT area as feature-based attentional control. The delay in finding the peak of

the saliency map and feeding back the attentional signal could account for the observed

latency of ≈ 60ms between attentional modulation in areas LIP and MT [76]. In addition

to feature weights, a retinotopic spatial attentional control is also fed back to areas MT

and V1 to supress the regions that are not near the attended location.

In the next section, we put together the units discussed above to construct a

neurophysiologically plausible version of the discriminant tracking algorithm of [110].
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8.5 Neurophysiologically plausible discriminant tracker

A neurophysiologically plausible version of the discriminant tracker of [110] can

be constructed with the discriminant saliency measure of (8.2), and the feature selection

mechanism of (8.37). As in [110], in the absence of top-level information regarding

the target, initialization can be treated as discrimination between the visual stimulus

contained in a pair of center (target) and surround windows, at every location of the

visual field. In this case, there is no explicit top-down guidance about the object to

recognize, and the saliency of location l is measured by the saliency of all unmodulated

feature responses. This consists of using the bottom-up saliency measure of (8.25) with

αk = PF0
k
(1), where PF0

k
(1) is a uniform prior for feature selection, at time t = 0. The

outputs of all features or neurons are then summed with equal weights to produce a

final saliency map at the LIP. The peak of this map represents the location which is

most distinct from its surround, based on the responses of the motion sensitive spatio-

temporal features. Spatial attention then is shifted to the peak of this map.

Once the initial target location is attended, the feature selection mechanism

modulates the saliency response of the individual feature channels, using the weights

of (8.37). The final saliency value at that location also becomes the normalizing con-

stant for the divisive normalization of (8.37). These feature weights are fed back to

MT neurons, where each feature map is enhanced or attenuated depending on the corre-

sponding feature weight given by (8.39). This enhances the features that are salient for

target detection, and suppresses the non-salient ones. The LIP also feds back the retino-

topic weight map corresponding to spatial attention, causing a suppression of feature

responses in all areas other than a neighborhood of the current locus of attention.

Using these new feature weights and spatial weights, the modulated feature maps

are then fed forward to LIP, where the updated saliency map is computed by simple

summation. The top-down saliency of location l at time t + τ is then given by

S td(l) =
∑

j

S td
j (l) =

∑

j

S j(l)PFt
j
|C(l∗t )(1|1). (8.39)

where S j(l) is the modulated saliency response of the jth feature.

The peak of this saliency map is again computed and spatial attention is shifted

to that location at time t + τ2. As attentional signals have downweighted all but a neigh-
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Figure 8.3: The network for tracking using feature selection. The discriminant saliency

network of [65] is used to construct a model for an MT neuron. Feature selection,

performed possibly in area LIP and fed-back to MT, is achieved by the modulation of

the response of each feature channel by its saliency value after divisive normalization

across features.

borhood of the last known target location l∗t , and the feature-based attentional control has

downweighted all but the features present in the target and discriminative with respect

to the background, the peak of the new saliency map corresponds to the new position of

the target. The process is iterated, so as to track the target over time, as in [110]. The

entire tracking network is shown in Figure 8.3. The computation, in V1, of S bu
j

(l) is im-

plemented with the bottom-up network of [65]. V1 outputs are then linearly combined

with weights w jk (which are described in supplement [6]) to obtain the MT responses

S k(l). The remaining operations, possibly in LIP, compute the probabilities of (8.37)

and the top-down saliency map of (8.39).

8.6 Discussion

The saliency hypothesis for tracking has been shown to be neurophysiologically

plausible, through construction of a tracking model that can be implemented with widely

accepted models of cortical computation. Specifically, we have constructed a tracking

model based on MT neurons and shown that saliency based tracking can be imple-

mented with a feature selection mechanism akin to the well known phenomenon of
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feature based attention in MT. In the next section we validate the biological plausibility

of the top-down saliency network by comparing its predictions to psychophysics and

neurophysiological data.
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Chapter 9

Model validation on psychophysics and

neurophysiological Data

9.1 Introduction

In this Chapter we discuss the validation of the biological plausibility of the top-

down saliency network of Figure 8.3 introduced in Chapter 8 by evaluating the tracking

reliability of the extended network. This is done by comparing its performance to the

human psychophysics of Chapter 7 and the behavior of its units to neurophysiological

recordings.

9.2 Model Prediction for Human Behavior Experiments

Experiment 1 Model Prediction

We applied the network to the sequences used in the psychophysics experiment

of Section 7.1. Representative frames of the result of tracking on the displays of the

experiment are shown in Figure 9.1. The videos are available from [4]. The model

replicates the trend observed in both psychophysics experiments, accurately tracking

the target in the salient conditions, and losing track in the non-salient condition.

113
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(a)

(b)

Figure 9.1: Tracking results for a) “salient” and b) “non-salient” conditions. Target

detections by DST are marked with a thick red box. The target is tracked through all

frames in (a), while tracking fails in (b) after target color changes from green to red.

The actual target is shown circled. In both, only a portion of the display is shown.

Experiment 2 and 3 Model Predictions

The results of applying the top-down saliency network model of 8.5 to the stimuli

in Experiments 2 and 3 are shown in Figures 7.4(b) and 7.5(b) respectively. It is seen that

the model predictions accurately match the trend observed in all three versions of the

Experiment 2. The model also predicts the effect of background seen in Experiment 3.

The ability of the model to predict these human behavior trends reinforces its biological

plausibility.

9.2.1 Comparison to human behavior data on tracking targets with

distinct features

The results of the two experiments described above show a strong relationship

between saliency and tracking and provide evidence for a top-down mechanism. The

saliency hypothesis proposes a feature-based strategy for this top-down mechanism.An

alternative hypothesis to explain this observation can be that an object representation of

the target is learned and stored in memory and used subsequently to track the target. This

is similar to the tracking-by-recognition paradigm in the computer vision literature [12,

13], where an object detector is trained at the current location of the target, and applied
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in the next frame to detect the best location of the target.

Evidence for a feature-based strategy, as opposed to an object-based mechanism,

for tracking can be found in recent psychophysics studies that have analyzed track-

ing performance in MOT with unique targets. Horowitz et al. [78] found that tracking

performance improved when the objects were unique, but it was observed that object

identities were not retained during the tracking task. In particular, it was found that if

observers do recover lost targets during the course of a trial, they appear to recover only

their locations, not their identities. This demonstrates that complete object information

may not be stored while tracking, and argues against a object-recognition based model

for tracking. In a related study, Makovksi and Jiang [112] explored the effect of target

uniqueness further and showed that the enhancement in tracking performance for unique

targets is feature-based. We describe their study below and illustrate how the results are

consistent with the saliency hypothesis.

The experimental set-up of the study in [112] is similar to that of Experiment

2. The stimulus consisted of eight objects, four targets, and the rest distractors. In

a typical trial, the targets and distractors moved independently for several seconds and

subjects were asked to identify the targets at the end of the trial. Each trial could be from

one of three conditions - “homogeneous”, “unique” and “conjunction-distinct”. In the

“homogeneous” condition, all eight objects were identical. In the “unique” condition,

the targets were of a unique color and orientation, and no distractor shared either of

these features. A frame from each of these conditions is shown in Figure 9.4(a) and

(b) respectively. In the “conjunction-distinct” condition (Figure 9.4(c)), the targets were

unique when both features, i.e. color and orientation, were considered together. For

each target, there was one distractor sharing a feature with that target. For instance,

in (Figure 9.4(c)), the target shown inside a red box, is distinct from other objects by

virtue of being the only object that is blue and oriented horizontally. However, there is

a distractor of the same color, but with different orientation, and another distractor with

the same orientation but in green.

The goal of the study was to investigate whether making the targets distinct

conferred an advantage over the “homogeneous” condition in the tracking task. The

results obtained in the study are shown in Figure 9.2(a). It was seen that while tracking
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(a) (b)

Figure 9.2: Target tracking rate (a) from [112] (b) results obtained using the saliency

based tracking model.

performance was enhanced in the “unique” condition, no improvement was seen in the

“conjunction-distinct” condition. If color and orientation were both integrated with the

location of the target, it would be perceived as being unique and the performance should

have been comparable to the “unique” condition. However, this was not seen making it

clear that the target features were not completely bound to their moving locations. Infact,

the authors suggest that feature memory acts independently of the location processing.

The observations made by Makovski and Jiang are entirely compatible with

properties of feature-based attention and the results of the study can be explained by the

saliency hypothesis for tracking. To test this hypothesis, the saliency based tracker of

Section 8.5 was extended to multi-object tracking by assuming that upto 4 independent

objects can be tracked without any resource constraints. Around 100 clips for each of

the three conditions - “homogeneous”, “unique” and “conjunction distinct”, were gen-

erated using Psychtoolbox [24] code provided by the authors [112]. For each clip, four

independent saliency-based trackers were initialized and allowed to track till the end of

the clip. Tracking was considered a success when all four target items were success-

fully tracked. The performance of the saliency model for each of the three conditions

is shown in Figure 9.2(b). It is seen that the model replicates the trend reported in the

original study (Figure 9.2(a)). The tracking rate in the “unique” condition is higher than

in the “homogeneous” and “conjunction-distinct” conditions.

To understand the results in the context of the saliency hypothesis, we start by

considering a well-studied phenomenon involving conjunctions of features in static dis-

plays of the type illustrated in Figure 9.3(b) [167]. The bar in the 3rd row and 3rd column

of the display is the only item that is both red in color and tilted right. However, it does

not pop-out, unlike the clear perception of pop-out in Figure 9.3(a) where the red bar is
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(a) (b)

Figure 9.3: Saliency and feature conjunctions (from [60]) (a) the red bar is salient

among the green distractors and “pops-out” (b) the bar in the 3rd row and 3rd column is

different from other bars when both color and orientation are considered. There is no

perception of pop-out. (c) the saliency map of (b) obtained using the discriminant center-

surround approach of Section 8.2. The saliency value for the bar is not significantly

different from other bars.

unique in terms of just one feature, i.e. color. This has been shown to be replicated us-

ing the discriminant center surround saliency model of Section 8.2 because it ignores the

effect of dependencies between feature responses in discriminating between the target

and background classes [60]. This leads to an overall saliency measure which is simply

a sum of the saliency for each feature ((8.1)). As the target is not salient in either feature

channel, color or orientation, its overall saliency value is not significantly different from

other bars in the display. This is illustrated in Figure 9.3(c).

The feature selection strategy of the saliency hypothesis is based on the same

principle of ignoring feature dependencies and combining the top-down tuned saliency

maps of different features using (8.39). The top-down tuning enhances features that

make the target salient - those features are predominantly present in the target and absent

in the surround. However, as there are distractors sharing features with the target, these

distractor locations are also enhanced in the corresponding saliency map, leading to

multiple peaks in the overall saliency map. Hence, the target can be confused with the

distractor leading to lower performance compared to the “unique” condition. This is

illustrated using representative saliency maps from the three conditions shown in the

bottom row of Figure 9.4. The saliency map for the “unique” condition has a single

dominant saliency peak, while those of the other two conditions have several dominant

locations. These dominant distractors could lead to errors when searching for the best
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(a) (b) (c)

(d) (e) (f)

Figure 9.4: Top row shows frames from stimuli used in the experiment of [112]. Three

conditions were tested (a) homogeneous (b) distinct and (c) conjunction distinct. The

bottom row shows the confidence maps obtained by the saliency network for the frames

in the top row. The confidence of the target as compared to distractors is highest in the

case of (e) corresponding to the “unique” condition. In both other conditions (d) and (f)

there are distractors that display high confidence, creating a possibility of tracking loss.

target location in the next frame.

9.3 Comparison of Model to Electrophysiological Record-

ing Data

The selective enhancement and suppression of features with the mechanism

of Section 8.4 bears a close resemblance to the phenomenon of feature-based atten-

tion [116]. As further validation of the biological plausibility of the tracking network,

we measured its responses to random dot pattern (RDP) stimuli, and compared them

to the responses reported in the literature from electrophysiological recordings of MT

neurons. A hallmark property of these neurons is that feature based attention increases

the gain of direction-selective neurons [168]. Trujillo and Treue showed that the mod-
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Figure 9.5: The multiplicative modulation of tuning curves. (a) and (b) are reproduced

with permission from [168]. (c) Results obtained using the proposed saliency based

network model. The enhancement of the response when Pattern B is attended, and

attenuation when Pattern A is attended match the observed data in (b).

ulation is multiplicative [168]. In their experiment, they recorded the response from

MT neurons in a macaque monkey when two RDPs were shown in the visual field lo-

cated inside the receptive field (RF) of a neuron as illustrated in Figure 9.5. One of the

RDPs (denoted Pattern A in the figure) always moved in the anti-preferred direction of

the neuron. The second RDP (denoted Pattern B) moved in one of 12 possible direc-

tions. Recordings from the neuron were obtained under three conditions (i) attention

to Pattern A (ii) attention to Pattern B, and (iii) attention to a task irrelevant fixation

point, corresponding to the baseline sensory response. It was observed that, compared

to the baseline in the third condition, the response of the neuron was enhanced in the

first condition, and suppressed in the second.

In a subsequent experiment, Trujillo and Treue showed that the extent of mod-

ulation follows a monotonically decreasing function of the angular difference between

the attended motion direction and the neuron’s preferred direction [114]. To show this,
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they used two RDPs, one of which was located inside the receptive field of the neuron

whose response was being recorded, while the other RDP was located outside. The RDP

inside the RF moved in the same direction as the one outside. There were two settings

depending on the location the macaque was attending to. In the first setting, termed

attend fixation, the monkey attended to a fixation point that was stationary, while in the

second, denoted attend same, the monkey attend to the RDP stimulus outside the RF.

These two settings are illustrated in Figure 9.6 (a). In each setting, the response of the

neuron was recorded when the RDP moved in one of 12 different directions at a uniform

spacing of 30◦. The average firing rate recorded from one of the neurons is reproduced

in Figure 9.6 (b). The average modulation ratio, defined as the ratio of the response

in the attend-same condition to that in the attend-fixed condition, for the 135 neurons

studied is plotted in Figure 9.6 (c).

To investigate if these results can be accounted for by the saliency hypothesis,

12 model MT neurons tuned to stimulus moving with the same uniform speed but in

12 different directions, 0◦, 30◦, . . . 330◦, were constructed using the saliency model of

Section 8.3. Twelve RDPs were generated using the Psychtoolbox [24], moving in each

of the 12 preferred directions of the neurons.

To replicate the experiment of [168], one model neuron with preferred direction

of 60◦ was considered, and one RDP corresponding to Pattern A and RDPs moving in

the 12 directions corresponding to the 12 different directions for Pattern B were used.

For each of the 12 RDPs, the three conditions were simulated, by initially training top-

down feature weights using (i) Pattern A, i.e. one moving in the anti-preferred direction

of the RF, (ii) on Pattern B and (iii) no training, i.e. the top-down weights were assigned

equally, corresponding to a uniform prior. The output of the model neuron as a function

of the direction of Pattern B, in all three conditions is shown in Figure 9.5(c). It is clear

that the model replicates the multiplicative modulation observed in the recordings.

To reproduce the results of [114] in the attend fixation condition, no moving

stimulus used to train the top-down weights and the response of the 12 neurons was

computed without the feature selection mechanism of Section 8.4. In the case of the

attend same condition, the RDP outside the RF is attended to. This was simulated by

computing the responses of the 12 neurons to that RDP, and including the top-down
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Figure 9.6: Comparison of responses of the model with the recordings from MT neu-

rons. The top row, reproduced with permission from [114] shows (a) The panel on

the top represents the attend-same condition, the one below represents attend-fixation

(b) the average firing rate of an MT neuron in the two conditions as a function of the

direction of RDP, and (c) average modulation ratios between the responses in the two

conditions. (d) and (e) show the results obtained using the proposed model

feature weights in the saliency computations for the RDP inside the RF. The modu-

lation ratio for each neuron was computed using (8.37). The responses of the model

neurons under the two conditions are shown in Figure 9.6 (d) and the modulation ra-

tio in Figure 9.6 (e). The model faithfully replicates the modulation trend observed in

the neuronal recordings, showing enhancement for neurons whose preferred direction is

close to that being attended, and suppression for anti-preferred directions. Finally, the

monotonic fall of the modulation ratio is also accurately replicated by the model.

The proposed saliency based model is also qualitatively compatible with other

findings from physiology. For instance, Katzner et al. [96] found that attention to a fea-

ture of the object also affects un-attended features. This is consistent with the feedback

based update of the model which enhances features based on both the prior probability
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of the feature being selected and the bottom-up saliency. If the un-attended features

make the object salient, their weight in the saliency computation of (8.39) also increases

after a few iterations. In fact, Boehler et al. [19] observed a delay of ∼ 80msec between

the onset of attention to a feature of the object and the enhancement of irrelevant fea-

tures, which can be accounted for by the delay-based feedback of feature weights in the

network of Figure 8.3.

Several previously proposed models for feature-based attention also rely on a

Bayesian formulation and incorporate a divisive normalization in the computation [142,

144, 102, 38]. However, these models are merely computational and often do not pro-

vide a physiological justification. On the other hand, th computations involved in the

proposed network have been shown to naturally follow from the saliency based formu-

lation, and can be mapped onto a plausible architecture. Other models for feature based

attention such as the microcircuit model [11] have little neurophysiological support.

9.4 Discussion

This experiments in this chapter substantially strengthen the saliency hypothesis

for tracking, by providing evidence that supports it in two ways. First, the biologically

plausible saliency based tracking model introduced in Chapter 8 accurately predicts the

results of the psychophysics experiments of Chapter 7. Second, the model also replicates

electrophysiological data from MT neurons.
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Chapter 10

Conclusions

In this work, we have shown that the center-surround discriminant saliency for-

mulation can be used to identify salient regions in moving stimuli. The motion saliency

algorithm proposed is inspired by biological vision, and is consistent with the psy-

chophysics of motion-based perceptual grouping, and extends a discriminant formula-

tion of center-surround saliency previously proposed for static imagery [65]. It combines

spatial and temporal components of saliency in a principled manner, and is completely

unsupervised. The combination of the discriminant center-surround saliency framework

with the modeling power of dynamic textures leads to a robust and versatile procedure

for background subtraction, which is successful even for scenes with highly dynamic

backgrounds and those shot using moving cameras.

Further, we have shown that the discriminant formulation of motion saliency

can be extended to perform discriminant tracking. The resultant framework is simple

and computationally efficient which is consistent with what is known about the atten-

tional mechanisms of biological vision, with an implementation that combines bottom-

up center-surround discriminant saliency and spatial attention for learning, feature-based

attention for feature selection, and top-down saliency for target detection. This provides

a unified solution to the problems of classifier design, target detection, automatic tracker

initialization, and scale adaptation.

Finally, we suggest that the connections between saliency and tracking exploited

in the discriminant saliency tracker could be the basis of tracking in biological visual

systems. We have provided evidence that supports this hypothesis in three ways. First,
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we performed human behavior studies that show tracking requires discrimination be-

tween target and background using a center-surround mechanism, and that tracking

reliability and saliency have a common dependence on feature contrast. Second, the

hypothesis was shown to be neurophysiologically plausible, through construction of a

tracking model that can be implemented with widely accepted models of cortical com-

putation. Specifically, a tracking model based on MT neurons was constructed, and it

was shown that saliency based tracking can be implemented with a feature selection

mechanism akin to the well known phenomenon of feature-based attention in MT.

10.1 Future Work

The work in this dissertation opens up several avenues for future research.

In computer vision, the saliency based tracker proposed here can be improved to

handle complete occlusions or re-entry of targets that have left the scene. It can also be

extended to track multiple targets. This would involve augmenting the tracker with ad-

ditional modules such as an identity management scheme that controls the initialization

or termination of targets when necessary and can match potential tracks with targets.

This work is a preliminary attempt to understand the computational basis of

visual tracking in biological vision. Much more research is needed to elucidate the con-

nections between processing of saliency and tracking in the primate visual system. In

this direction, more human behavior studies can be performed to understand the effect

of different types of features e.g. shape, color, and motion etc. on tracking perfor-

mance. Further, neurophysiological measurements from V1, MT and LIP neurons in

customized experiments could be extremely helpful in validating the discriminative na-

ture of saliency processing and tracking and to get direct evidence for the role of feature

based attention in tracking



Appendix A

Implementation Details

A.1 Motion saliency and background subtraction

At each location, the center window occupied 16 × 16 pixels and spanned 11

frames - 5 past, current, and 5 future (nc = 16, τ = 11). The causal version of Algo-

rithm 1 (denoted DiscSal-Causal) was implemented, by considering only the current and

10 past frames. In all cases, the surround window was set to 6 times the size of the center

(i.e 96 × 96 × 11). DTs with a 10-dimensional state space, patch dimension np = 8, and

temporal dimension τ = 11, were learned using overlapping 8× 8× 11 patches from the

center and surround windows.

For the version with a biologically plausible motion model, we used spatio-

temporal Gabor filters. We considered only one spatial scale, and the spatial frequency

of each Gabor filter was fixed to 0.25 cycles/pixel. Three temporal scales (temporal

frequencies of 0, ±0.25 cycles/frame) and 4 spatial orientations (0, π/4, π/2 and 3π/4)

were used, in a total of 12 filters. The standard deviation of the spatial Gaussian was set

to 1, and that of the temporal Gaussian to 2

A.2 Discriminant tracking

The value of the scale parameter for GGD was set to β = 0.7.

The decay factor, λ, in estimating the parameters of the GGD in (5.20) is set to
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0.35.

For the spatio-temporal features, a single spatial frequency of 0.25 cycles/pixel

was used for all Gabor filters. Since most sequences considered have predominantly

horizontal motion, a single spatial orientation of 0◦ (aligned with the horizontal axis)

was used. Temporally, three frequencies of 0 cycles/frames (stationary objects) and

±0.25 cycles/frames (objects moving to the left or right) were chosen, for a total of 3

motion energy filters. The number of pyramid levels for the DCT basis functions was

taken to be 2. Therefore the total number of features was N = 3+ 64× 2 = 131 features

(8 × 8 DCT features per level plus three spatiotemporal Gabor features)

To guarantee a realistic balance between tracking performance and computation,

the number of salient features K was set to 5.

The search neighborhood,Ws
l∗ , was set to a rectangular region centered at the

current target position l∗ with size twice that of the object bounding box.

For scale adaptive tracking, the range over which scale was searched is s ∈
(0.8, 1.2), in steps of 0.05, of the current target size (both height and width vary with the

aspect ration being fixed). The scale adaptation is only done once in 2 frames.

A.3 Biologically plausible model for tracking

For the MT model we use a total of 12 spatio-temporal filters, each with center

frequency (ωx j
, ωy j
, ωt j

), j = 0 . . . 11. We consider 12 neurons each tuned to motion

with constant speed in one of 12 different directions spread uniformly in (0◦, 360◦),

corresponding to velocities v̄k, k = 0 . . . 11.

The value of the scale parameter for GGD was assumed to be β = 1.
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