
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Rapid Classification of NifH Protein Sequences using Classification and Regression Trees

Permalink
https://escholarship.org/uc/item/9h08x452

Author
Frank, Ildiko E.

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9h08x452
https://escholarship.org
http://www.cdlib.org/


i 
 

UNIVERSITY OF CALIFORNIA 

SANTA CRUZ 

Rapid Classification of NifH Protein Sequences  

using Classification and Regression Trees 

A thesis submitted in partial satisfaction 

of the requirements for the degree of 

MASTER OF SCIENCE 

in 

OCEAN SCIENCES 

by 

Ildiko Frank 

June 2014 

The Thesis of Ildiko Frank 

is approved: 

 

 

______________________________  

Professor Jonathan Zehr, Chair 

 

 

_______________________________ 

Professor Chad Saltikov 

 

 

_______________________________ 

Professor Marilou Sison-Mangus 

________________________________ 

Tyrus Miller 

Vice Provost and Dean of Graduate Studies 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by 

Ildiko Frank 

2014 

 



iii 
 

Table of Contents 

Title ……………………………..……………………………………………………. i 

Copyright ………………………..…………………………………………………... ii 

Table of Contents ........................................................................................................ iii 

Abstract .…………..…………..…….……………………………………………....  iv 

Acknowledgement .………………………………………..………………………... vi 

Chapter I: Introduction .……………..………………………...………….…...…...… 1 

Chapter II:  Rapid Classification of NifH Protein Sequences using Classification and 

Regression Trees ……….…………………………...........……..………………..….. 9 

Introduction .…………………………………………………..……….…… 10 

Materials and Methods .…………...……………………………………...… 13 

Results and Discussion .……………………………………………..…...… 17 

Figures .……………………………………………………………………... 31 

Tables .…………………………………………………………………..….. 43 

References .…………………………………………………………………..…...… 47 

 

  



iv 
 

Abstract 

Rapid Classification of NifH Protein Sequences using  

Classification and Regression Trees 

by 

Ildiko Frank 

 

Grouping and classifying nifH gene sequences, molecular proxies for studying 

nitrogen fixation, are essential steps in diazotroph community analysis, and the 

increasing size of environmental sequence libraries necessitates a fast and automated 

solution. We present a novel approach to classify NifH protein sequences into well-

defined phylogenetic clusters that provide a common platform for cross-ecosystem 

comparative analysis. Cluster membership can be accurately predicted with 

Classification and Regression Trees (CART) statistical models that identify and 

utilize signature residues in the protein sequences. The decision tree-based 

classification models were trained and evaluated with the publicly available cluster-

annotated nifH gene database and further assessed with model-independent sequence 

sets from diverse ecosystems. Network graph-based exploration of cluster structures 

led to models for sequence classification even at finer taxonomic levels.  We 

demonstrate the utility of this novel sequence binning approach in a comparative 

study where joint treatment of diazotroph assemblages from a wide range of habitats 

identified specialists and generalists and revealed a marine – terrestrial distinction in 
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the community composition. Our rapid and automated cluster assignment circumvents 

extensive analysis of the nifH database and calculating phylogenies; hence, saves time 

and resources in studying nitrogen fixation. 
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Chapter I: Introduction 

 

Microorganisms drive Earth’s biogeochemical cycles and shape the ecology 

of marine as well as terrestrial provinces (Falkowski et al., 2008). Microbial 

communities are characterized by a few dominant species and a long tail of low-

abundance taxa (Sogin et al., 2006). The majority of microbial diversity is found in a 

mere fraction of soil (Elshahed et al., 2008) and marine (Pedros-Alio, 2006) biomass. 

The number of microbial species in the ocean is estimated to be a few million; it 

could be a magnitude larger in soil (Curtis et al., 2002). Some studies suggest even 

greater diversity, but its significance in microbial community function and evolution 

remains an open question (Zehr, 2010).  

Since less than 1% of microorganisms can be grown in the laboratory, and 

half of the prokaryotic phyla lack cultured representatives (Rappe and Giovannoni, 

2003), molecular techniques are essential proxies for studying environmental 

microbial assemblages (Zehr et al., 2009). For most ecosystems, cultivation-

independent molecular surveys are indispensable, because biogeochemical and 

ecological interactions cannot be investigated in a laboratory setting (DeLong, 2009). 

Instead of directly observing phenotypes, molecular proxies are used to decipher 

“who is there” and “what they are capable of doing”. In the last few decades, 

molecular tools have greatly expanded our knowledge of phylogenetic as well as 

functional diversity of microbial communities; yet, microbial ecology is still far 
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behind plant and animal ecology in understanding spatial and temporal patterns and 

large-scale variability (Fierer and Ladau, 2012).   

 Marker gene amplification is one of the molecular techniques first used in 

microbial ecology. In contrast to metagenomics, which is the genomic analysis of 

microbial assemblages (Handelsman, 2004), the marker gene approach targets a 

single conserved gene, usually with DNA amplification and sequencing, to quantify 

microbial diversity or assess specific biogeochemical functions. Pace and Woese 

pioneered the universally conserved small subunit ribosomal RNA, 16S rRNA, as a 

primary phylogenetic marker for describing prokaryotic phylogeny (Fox et al., 1980; 

Lane et al., 1985). Later, protein-coding markers emerged and provided a finer 

resolution and better distinction of closely related strains in some taxa than the 16S 

rRNA gene, which often falls short in informative characters (Santos and Ochman, 

2004). "Functional" gene targets, that represent biogeochemically-important 

processes, include nasA in nitrate assimilation (Allen et al., 2001), nirS in 

denitrification (Ward et al., 2009), dsr in dissimilatory sulfate reduction (Wagner et 

al., 1998), nosZ in nitrous oxide reduction (Jones et al., 2013), and  nifH in biological 

nitrogen fixation (Zehr and McReynolds, 1989).  

Biological nitrogen fixation, the reduction of atmospheric N2 gas to 

ammonium, is an important biogeochemical process that plays an indispensable role 

in the global nitrogen cycle (Ward et al., 2007).  The amount of fixed nitrogen is 

estimated to be 128 Tg per year (Galloway et al., 2004). This new source of nitrogen 

bolsters the trophic web in nutrient-limited provinces including vast areas of the 
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ocean (Vitousek and Howarth, 1991) and is linked to atmospheric carbon dioxide 

fixation and carbon export from surface waters (Falkowski, 1997). The rest of the N 

cycle is composed of unrelated reversible metabolic pathways and is catalyzed by 

different multispecies microbial communities that are often spatially and temporally 

separated (Falkowski et al., 2008). The oxidative pathway, called nitrification, 

involves two groups of prokaryotes; the first group converts ammonium to nitrite, 

which is further oxidized to nitrate by a second group (Zehr and Kudela, 2011).  

These low energy compounds are then utilized as electron acceptors in anaerobic 

respiration, called denitrification. The anammox process, a redox reaction that 

involves ammonium and nitrite, is a recently discovered third component in the cycle 

of opposing processes (Mulder et al., 1995).  

Nitrogen-fixing microbes, called diazotrophs, comprise just a small subset of 

prokaryotes from diverse taxonomic groups with physiologies that range from aerobic 

to anaerobic and includes oxygen-evolving as well as non-oxygen-evolving 

photoautotrophy (Triplett, 2000). Nitrogen-fixers, autotrophs as well as heterotrophs, 

thrive in all marine environments from surface waters (Farnelid et al., 2011) to the 

deep sea (Mehta et al., 2003), as well as in terrestrial ecosystems in bulk soil (Hsu 

and Buckley, 2009), the rhizosphere (Deslippe and Egger, 2006), and phyllosphere 

(Furnkranz et al., 2008). 

Despite the large variation in genome size and physiology, all diazotrophs rely 

on the same oxygen sensitive enzyme, called nitrogenase, for nitrogen reduction 

(Stacey et al., 1992). Nitrogenase is composed of two proteins: the heterotetramer 
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() dinitrogenase performs the reduction, and the homodimer dinitrogenase 

reductase provides the electrons (Hamilton et al., 2011). Based on their metal 

cofactors, the former is called iron-molybdenum protein and the latter is referred to as 

iron protein, where the two subunits are covalently linked by a 4Fe:4S cluster. 

Although the operon(s) encoding and regulating the enzyme may contain as many as 

twenty genes, the main structural genes are nifD ( component), nifK ( component), 

and nifH (iron protein).  In addition to these key coding regions, three more genes, 

nifE, nifN, and nifB, are assumed to be essential for a functional enzyme (Dos Santos 

et al., 2012).  All diazotrophs contain one or more subtypes of the enzyme; the nif 

gene set that codes the molybdenum-dependent (Mo-Fe) enzyme is replaced by the 

vnf set in the vanadium-dependent (V-Fe) alternative enzyme or by the anf set in the 

iron-only (Fe-Fe) alternative enzyme.  The first alternative nitrogenase was identified 

in Azotobacter vinelandii (Bishop and Joerger, 1990), and the number of diazotrophs 

identified with anf and vnf operons has been growing since (Betancourt et al., 2008). 

Sequence and structure of the nifH encoded iron protein have been well 

studied. Crystallography provided the first 3D details of the protein isolated from 

Azotobacter vinelandii more than 20 years ago (Georgiadis et al., 1992). Several 

highly conserved regions sandwiched between variable ones were identified based on 

59 full genome sequences (Schlessman et al., 1998). Conserved elements include the 

P loop and two switch regions that are essential in nucleotide binding. These positions 

can be used to screen sequences, but contain no phylogenetic information. The 

potential of the so called 60’s loop in distinguishing sequences from different taxa 
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was recognized early on (Schlessman et al., 1998), but the relationship between 

diverged positions and the established nifH clusters has yet to be examined. The 

extant large collection of nifH sequences does contain such relational information that 

could be explored with statistical models including feature selection and utilized for 

rapid sequence classification. 

The highly conserved nifH gene is well-suited for phylogenetic and ecological 

analyses of nitrogen-fixing organisms. A phylogenetic tree published two decades 

ago groups the nifH sequences into four main clusters labeled by Roman numerals 

(Chien and Zinder, 1994). Despite some disagreement (Raymond et al., 2004; Gaby 

and Buckley, 2011), this division is widely accepted. The bulk of the sequences that 

form cluster I originate mainly from Cyanobacteria, Proteobacteria, Firmicutes, or 

Actinobacteria (Zehr et al., 2003). Most organisms in this cluster contain Fe-Mo 

nitrogenase. Cluster II, a considerably smaller group, contains sequences from 

Bacteria with alternative V-Fe or Fe-Fe enzymes and from some methanogenic 

Archaea. The distantly related sequences in Cluster III come predominantly from 

anaerobic Bacteria or Archaea. Paralogs of nifH that are not involved in nitrogen 

fixation group in cluster IV. With the steady accumulation of environmental 

sequences came the need for a finer level characterization. Subclusters were defined 

based on the phylogenetic information amassed in the large publicly available nifH 

database (Zehr et al., 2003)  http://www.pmc.ucsc.edu/~wwwzehr/research/database/.  

This sequence database is a valuable resource that has bolstered numerous 

studies of nitrogen fixation in a wide range of habitats including open ocean (Farnelid 

http://www.pmc.ucsc.edu/~wwwzehr/research/database/


6 
 

et al., 2011; Turk et al., 2011; Halm et al., 2012; Bonnet et al., 2013), coastal waters 

(Moisander et al., 2007; Bombar et al., 2011; Hamersley et al., 2011), lakes (Steward 

et al., 2004), caves (Desai et al., 2013), phyllosphere (Furnkranz et al., 2008), 

rhizosphere (Duc et al., 2009),  and symbiont hosts (Yamada et al., 2007; Mohamed 

et al., 2008; Desai and Brune, 2012; Lema et al., 2012). Although not as extensive as 

the rRNA sequence collections in the Ribosomal Database Project (Cole et al., 2014), 

GreenGenes (DeSantis et al., 2006), or SILVA (Pruesse et al., 2007), the nifH 

database similarly poses great challenges to its curators and users in collecting, 

organizing and analyzing large amounts of molecular data. Clustering and 

classification of sequences are two key components of the analysis pipeline typically 

followed in ecological studies including those focused on diazotrophs. 

Clustering, often the first processing step, is used to group sequences into so 

called operational taxonomic units (OTU) (Wooley et al., 2010). Number and 

taxonomic annotations of the emerging OTUs are a priori unknown. Sequences are 

merged based on pairwise similarity or distance measures. The resulting OTUs 

depend on the sequence region considered, the measure applied, and the linkage 

algorithm selected. The mothur software, which is popular in analyzing 

environmental sequence data, clusters sequences using nearest, furthest, or average 

neighbor linkage (Schloss et al., 2009). Non-distance-based clustering algorithms, 

like cd-hit (Li and Godzik, 2006) and UCLUST (Edgar, 2010) are the method of 

choice for large data sets where speed and size are critical issues. Similar to distance-



7 
 

based methods, these fast algorithms do not guarantee intra- and inter-OTU similarity 

properties. 

In contrast to clustering, classification assigns sequences to categories defined 

in the reference database (Bazinet and Cummings, 2012). Three different 

methodologies are widely used to classify sequences into predefined taxonomic 

groups: sequence similarity search, sequence composition model, and phylogenetic 

method. BLAST, the almost exclusively used sequence similarity search, matches 

sequences against annotated databases and identifies closest relatives, often with 

known taxa labels (Altschul et al., 1990). This procedure is implemented in 

CAMERA (Seshadri et al., 2007), and MG-RAST (Meyer et al., 2008) environmental 

sequence analysis platforms. Naïve Bayesian Classifier is one of the most popular 

sequence composition models. It is based on oligonucleotide (8-mer) frequencies and 

is implemented in Ribosomal Database Project (Wang et al., 2007). The algorithm is 

fast, does not require sequence alignment, and works well with sequence fragments.  

The phylogenetic method works only with marker genes, for example, FastTree 

(Price et al., 2010); it attempts to “place” query sequences on a phylogenetic tree 

where branch clusters are defined and labeled. This approach is implemented in the 

ARB software environment (Ludwig et al., 2004), and used in 16S rRNA as well as in 

nifH sequence-based analyses. None of these solutions are simple and cannot be 

represented visually. The decision algorithms behind the classification are 

implemented as black-boxes without a user-friendly interface to quickly identify 

mislabeled sequences. Consequently, there is a need for a simple, graphically 
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enhanced methodology to improve the ease of application and transparency of the 

results. 

Classification And Regression Trees (CART) methodology might fit this 

need. CART, popular in data mining and machine learning, is a classification method 

specifically designed to model large complex data sets characterized by non-linear 

relationships among the variables (Breiman et al., 1983). Category prediction is based 

on a hierarchy of simple decision rules that are organized and displayed as a binary 

decision tree. It has been applied in a wide range of studies including ecological 

analyses (De'ath and Fabricius, 2000; Usio et al., 2006; Clarke et al., 2008; Pesch et 

al., 2011). Although, CART has not been utilized for sequence classification, it may 

be a successful competitor to the above discussed methodologies.  

This thesis presents a novel NifH protein sequence classification based on 

CART models, tests its accuracy, and demonstrates the utility of the newly derived 

sequence characterization in a comparative study of ecosystems. The sequence 

labeling procedure is automated in a Python script and is available for general use at 

the website: http://pmc.ucsc.edu/~wwwzehr/research/. In-depth discussion of the 

classification models includes assessment of their accuracy using statistical 

estimation and network analysis. The latter is based on sequence groups resulting 

from a novel algorithm that ensures specified intra- and inter-group similarity. A 

cross-ecosystem analysis of published sequence sets originating from a wide range of 

marine and terrestrial habitats illustrates the power of uniformly applied cluster labels 

that create a common platform for comparative analysis. 

http://pmc.ucsc.edu/~wwwzehr/research/
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Chapter II: Rapid Classification of NifH Protein 

Sequences using Classification and Regression 

Trees 

 
Abstract 

Grouping and classifying nifH gene sequences, molecular proxies for studying 

nitrogen fixation, are essential steps in diazotroph community analysis, and the 

increasing size of environmental sequence libraries necessitates a fast and automated 

solution. We present a novel approach to classify NifH protein sequences into well-

defined phylogenetic clusters that provide a common platform for cross-ecosystem 

comparative analysis. Cluster membership can be accurately predicted with 

Classification and Regression Trees (CART) statistical models that identify and 

utilize signature residues in the protein sequences. The decision tree-based 

classification models were trained and evaluated with the publicly available cluster-

annotated nifH gene database and further assessed with model-independent sequence 

sets from diverse ecosystems. Network graph-based exploration of cluster structures 

led to models for sequence classification even at finer taxonomic levels.  We 

demonstrate the utility of this novel sequence binning approach in a comparative 

study where joint treatment of diazotroph assemblages from a wide range of habitats 

identified specialists and generalists and revealed a marine – terrestrial distinction in 

the community composition. Our rapid and automated cluster assignment circumvents 
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extensive analysis of the nifH database and calculating phylogenies; hence, saves time 

and resources in studying nitrogen fixation. 

 

Introduction 

Biological nitrogen fixation is a prokaryote-driven biogeochemical process 

that sustains the trophic web in nitrogen limited habitats including vast areas of the 

ocean (Vitousek and Howarth, 1991) and is linked to atmospheric carbon dioxide 

fixation and carbon export from surface waters (Falkowski, 1997). Since the 

microbial majority is recalcitrant to cultivation (Rappe and Giovannoni, 2003), and 

biogeochemical interactions cannot be investigated in a laboratory setting (DeLong, 

2009), cultivation-independent molecular surveys are indispensable in assessing 

microbial diversity and metabolic complexity (Zehr et al., 2009). While the small 

subunit ribosomal RNA became the primary phylogenetic marker (Lane et al., 1985), 

nifH gene was proposed as molecular proxy in nitrogen fixation studies (Zehr and 

McReynolds, 1989) that led to the recognition of unexpected diazotroph diversity 

(Ueda et al., 1995; Zehr et al., 1995) and the discovery of widely distributed nitrogen-

fixers with unusual physiology (Zehr, 2011). The publicly available nifH sequence 

database available at http://www.pmc.ucsc.edu/~wwwzehr/research/database/ (Zehr 

et al., 2003) is a valuable resource that has bolstered numerous investigations of 

nitrogen-fixing assemblages in marine (Moisander et al., 2007; Zehr et al., 2007; 

Fong et al., 2008; Moisander et al., 2008; Bombar et al., 2011; Farnelid et al., 2011; 

Hamersley et al., 2011; Turk et al., 2011; Halm et al., 2012; Bonnet et al., 2013; 

http://www.pmc.ucsc.edu/~wwwzehr/research/database/
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Rahav et al., 2013) and terrestrial environments (Steward et al., 2004; Furnkranz et 

al., 2008; Duc et al., 2009; Desai et al., 2013) as well as in host symbionts (Yamada 

et al., 2007; Mohamed et al., 2008; Desai and Brune, 2012; Lema et al., 2012).  

Diazotroph diversity assessment necessitates classifying nifH sequences into 

annotated taxonomic groups. Despite some disagreement (Raymond et al., 2004; 

Gaby and Buckley, 2011), a phylogenetic division of four main clusters (Chien and 

Zinder, 1994) is largely accepted. Cluster I is composed mainly of Cyanobacteria, 

alpha-, beta-, and gamma-Proteobacteria, Firmicutes, or Actinobacteria (Zehr et al., 

2003). Sequences from prokaryotes with alternative nitrogenase enzymes (Betancourt 

et al., 2008) and from methanogenic Archaea (Chien et al., 2000) form cluster II.  The 

distantly related sequences in cluster III come predominantly from anaerobic 

organisms, whereas the cluster IV sequences are nifH paralogs that are not involved 

in nitrogen fixation.  

Exponential growth of the nifH database and increasing size of environmental 

nifH libraries necessitated finer-level sequence grouping in diazotroph community 

analyses. Such groups are derived either by merging sequences into more manageable 

but a priori unknown number of operational taxonomic units, OTUs, or by classifying 

sequences into subclusters, intra-cluster branches of the nifH phylogenetic tree (Zehr 

et al., 2003). OTUs can be calculated by distance-based hierarchical clustering, 

implemented for example in the mothur package (Schloss et al., 2009), or by fast 

clustering algorithms suited for large data sets, for example, cd-hit (Li and Godzik, 

2006) or UCLUST (Edgar, 2010). The resulting groups are study specific, not 
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comparable across ecosystems and, in contrast to subclusters, do not provide a 

common platform for abundance and diversity analyses. Subcluster assignment of 

newly acquired sequences currently is performed by a time-consuming and 

computationally demanding “placing on the tree” approach (Price et al., 2010). A 

rapid solution would greatly facilitate this essential step of ecological analyses. 

In addition to the above phylogeny-based sequence characterization, 

implemented for example in the ARB software environment (Ludwig et al., 2004), 

sequence similarity and sequence composition are also utilized to classify sequences 

into established taxonomic groups (Bazinet and Cummings, 2012). BLAST (Altschul 

et al., 1990), available in metagenomic platforms CAMERA (Seshadri et al., 2007) 

and MG-RAST (Meyer et al., 2008), matches sequences against an annotated 

database. However, sequences without close relatives are likely to be misclassified in 

this sequence similarity-based approach. Naïve Bayesian Classifier is a fast sequence 

composition-based technic that calculates oligonucleotide (8-mer) frequencies. It is 

implemented and widely used for rRNA sequence classification in the Ribosomal 

Database Project (Wang et al., 2007), but was found to be inferior to BLAST in 

classifying sequences of pmoA, a functional marker gene of methanotrophs (Dumont 

et al., 2014). 

Classification And Regression Trees (CART), a statistical methodology 

popular in data mining and machine learning, was specifically designed to handle 

large complex data sets (Breiman et al., 1983). The CART model consists of a 

hierarchy of simple decision rules, each based on a single predictor, which are 



13 
 

organized and graphically presented as a binary decision tree. Among its many 

applications, it has been used in various ecological studies to model abundance data 

and correlate environmental and biological parameters (De'ath and Fabricius, 2000; 

Usio et al., 2006; Clarke et al., 2008; Pesch et al., 2011), but has not been tested for 

environmental amplicon classification. 

This study presents and evaluates a novel cluster assignment of NifH protein 

sequences based on CART classification models and demonstrates the utility of a 

uniform sequence grouping and classification in a comparative ecosystem analysis. 

The rapid cluster assignment proved to be a successful replacement for the currently 

used time-consuming phylogeny-based procedure. CART models identified signature 

residues that contain sufficient information to distinguish among the established 

phylogenetic clusters as well as to screen for key nitrogen-fixing Cyanobacteria.  

 

Materials and Methods  

Training Set for CART Modeling 

The publicly available nifH sequence database (Zehr et al., 2003) at 

http://www.pmc.ucsc.edu/~wwwzehr/research/database/ was utilized to train 

classification models and calculate sequence network graphs. It contains 22,497 

sequences that are assigned to main clusters I (17,321), II (542), III (3,876), and IV 

(758). A subset of sequences (16,567) is further assigned to 43 subclusters of uneven 

sizes. The largest groups are 1B (3,304) and 1K (3,239), whereas the smallest 

subclusters 1, 2, 2D, 3, 3B, 3S, 4, and 4G contain only a dozen or less sequences. 

http://www.pmc.ucsc.edu/~wwwzehr/research/database/
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Most of the sequences originate from environmental samples and only a small portion 

(663) was obtained from fully sequenced genomes.  CART models were trained with 

protein sequences, where positions were labeled according to the Azotobacter 

vinelandii residues from A1 to A290 (Schlessman et al., 1998). 

 

Test Set for CART Evaluation 

A set of 1,558 unique nifH sequences derived from soil samples were 

imported into the ARB database and assigned to four main and seventeen subclusters 

(Collavino et al., 2014). As in the training set, most sequences (90%) belong to 

cluster I. This training set-independent data is composed of protein fragments 

covering positions between A45 and A153 and was used to evaluate the CART 

models’ cluster assignment accuracy. 

 

Environmental Data Sets for Ecosystem Comparison 

Thirteen published nifH coded protein sequence sets, were downloaded from 

the GenBank database (http://www.ncbi.nlm.nih.gov) for further model accuracy 

assessment and cross-ecosystem analysis (Table 1). Sequence coverage varies 

between positions A7 and A206, but most sets include the A45 – A153 range. Six 

terrestrial sets originate from bulk soil (G, S), rhizosphere (AR), phyllosphere (R), 

geothermal mats (Y), and termite gut (T). Seven marine sets encompass a wide 

geographical and depth range representing coastal waters (C, M, MK), open ocean 

http://www.ncbi.nlm.nih.gov/
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surfaces (A, P, SP), and extreme water depth (D). In all cases, sequences are assigned 

into the four main clusters, but the finer level grouping is study specific. 

 

Data Analysis 

Aligned and cluster-annotated protein sequences were exported in fasta format 

from a nifH gene sequence database stored in ARB (Ludwig et al., 2004). Sequence 

logos for visual exploration of the amino acid variation along the NifH protein 

sequence were created by WebLogo (Crooks et al., 2004). Statistical analysis was 

performed in R, an open source data analysis environment (R Development Core 

Team, 2013). Sequences were imported into R using package “seqinr” (Charif et al., 

2012). Mantel test to compare ecosystem similarities calculated from cluster versus 

OTU counts was calculated in R package “vegan” (Oksanen et al., 2013). 

Correspondence analysis to visualize ecosystem similarity was performed in R 

package “ca” (Nenadic and Greenacre, 2007).  

CART (Classification And Regression Trees) models (Breiman et al., 1983) 

were calculated to predict cluster assignments of NifH protein sequences. One model 

classifies into main clusters, and four separate models further characterize sequences 

by subclusters. Positions in the protein sequence were used as categorical predictor 

variables that may have twenty different amino acids as levels. Cluster assignment 

defined in the database was the categorical response to be predicted. Each decision 

node of the tree was defined in terms of a primary protein sequence position and a list 

of amino acids that determined how sequences traversed down the tree all the way to 
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the terminal nodes corresponding to nifH clusters. When a primary position was 

missing from a sequence, cluster prediction was based on the corresponding surrogate 

protein position. Such “backup” positions, identified for each decision node in the 

model, are highly correlated with the primary positions and their use does not 

diminish the classification performance.  Due to the uneven sizes of the categories, 

main clusters and subclusters, categories were weighted in inverse proportion to their 

size. Ten-fold cross-validation was applied to quantify the predictive power of each 

model. R packages “rpart” (Therneau et al., 2014) and “rpart.plot” (Milborrow, 2014) 

were used to calculate, evaluate, and display the CART models. 

Similarity between sequence pairs was quantified as normalized Hamming 

distance, i.e. number of sequence positions with different amino acids divided by the 

sequence length. This measure ranges from 0 to 1, where 0 indicates identical 

sequences, and was calculated by the command “daisy” in R package “cluster” 

(Maechler et al., 2014). A novel algorithm was developed to group protein sequences 

at a finer than subcluster level. The resulting groups are referred to as OTUs 

(operational taxonomic units) with similarity level indicated; for example, OTU98 for 

groups merged at 98% similarity. OTUs were defined by the following algorithm: 

 

Calculate distances between all sequence pairs: Dij for i and j = 1, nseq.  

Define sequence connectivity dij at specified similarity level set by dmax (e.g. 98% similarity 

corresponds to dmax = 0.02): if Dij < dmax then dij = 1 (sequence pair connected), else dij = 0.  

Loop through the following steps until all sequences are assigned to an OTU:  

- count number of connections for each sequence: j dij for i = 1, nseq;      
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- select the sequence with the largest number of connections as representative of the next OTU; 

- representative and all its connections form the next OTU; exclude them from further grouping. 

Update sequence connectivity by removing inter-OTU connections. 

 

The resulting sequence connectivity matrices were transformed into networks where 

vertices represent sequences and edges indicate intra-OTU sequence connections. 

Networks were created and plotted with package “network” (Butts et al., 2014). 

 

Results and Discussion 

Amino Acid Variation and Sequence Coverage 

We hypothesized that a small set of variable NifH protein sequence positions 

may contain sufficient information for accurate cluster assignment based on statistical 

modeling. Graphical exploration with sequence logo (Figure S1) confirms previously 

identified conserved residues (Schlessman et al., 1998). Strings of single letters 

clearly set apart four formerly named regions: P loop (A9-A19), Switch I (A38-A48), 

Metal Cluster Coordination (A86-A102), and Switch II (A125-A142). These nearly 

constant positions are useful to screen environmental sequences, but can be ignored in 

sequence similarity calculation and in statistical modeling. Between the extended 

constant regions, however, the sequence contains variable positions, including the 

previously identified 60’s loop (Schlessman et al., 1998). Sequence logos calculated 

for each main cluster separately reveal positions where the amino acid content is 

cluster dependent and exhibit high inter-class coupled with low intra-class variability 

(Figure 1.)  
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Sequence coverage in the training set that varies among residues (Figure S2) 

may also affect which positions are included in a model. Dominance of 

environmental sequence fragments explains the observed high coverage between 

positions A45 and A153 defined by the commonly used primer sets (Gaby and 

Buckley, 2012). Number of sequences including positions before A39 (start of the 

nifH3 primer) and after position A153 (end of the PolR primer) is extremely low. 

There are notable dips in the number of sequences at positions A67 and A68, and 

especially at position A119. The first two anomalies are mainly due to deletions in 

cluster III sequences, whereas at position A119 the gap occurs mainly in cluster I.  

 

Classification Model for Main Clusters 

A CART classification model, developed on the training set, successfully 

assigns sequences into the well-established four main nifH clusters. Instead of 

considering phylogeny and sequence similarity, our model labels sequences based on 

amino acids at select residues. The streamlined CART tree contains only three 

decision nodes and four terminal nodes that correspond to the main clusters (Figure 

2).  All three primary positions (A109, A49, and A53) are within the range of high 

sequence coverage. The CART cluster assignment shows very good agreement (95% 

to 99%) with the main cluster labels defined in the database, and high classification 

accuracy was obtained also by ten-fold cross-validation. Classification of a model-

independent sequence set confirmed the good results observed on the training set: 

overall accuracy of main cluster assignment was 98%. 
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The CART model trained on the smaller set of full genome derived sequences 

has a similar structure (decision tree not shown). The number of splits and resulting 

terminal nodes in the two models are identical, but the selected primary positions 

match only in the first decision node. The second split is based on position A37 and 

the third split on position A144.  Since these residues are outside of the typical 

environmental sequence range, their surrogates, A49 and A53, are used in classifying 

environmental sequence fragments. These surrogates are the same positions as the 

primary positions in the model calculated from the training set. This match between 

the two decision trees suggests that environmental sequences do not contain 

additional information for main cluster assignment. 

Two-class models, separating one main cluster from the other three, identify 

signature residues unique to each main cluster. Sequence logos, constructed for each 

main cluster separately, confirm divergence at the selected primary and surrogate 

positions. These signature residues, many located in the so called 60’s loop, form a 

fingerprint of the corresponding main cluster (Figure 1). In clusters I and III the red 

arrow points to the primary positions highly conserved within the cluster, i.e. 

dominated by a single amino acid. The signature phenylalanine residue at position 

A109 in cluster I is replaced by a similarly hydrophobic leucine and methionine in 

clusters II and III. The highly conserved basic lysine at position A53 observed in 

cluster I and II is uniformly replaced by the hydrophobic leucine in cluster III 

sequences. In contrast, the primary positions in cluster II and IV show high intra-

cluster amino acid variation.  
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At the highest taxonomic level, the nifH phylogeny is strikingly different from 

the phylogeny based on 16S rRNA; main cluster division precedes the split between 

Bacteria and Archaea (Zehr et al., 2003). This phylogeny mismatch is confirmed by a 

classification model distinguishing seven categories (only Bacteria in cluster I) where 

decision nodes split sequences into the four main clusters before the Archaea – 

Bacteria division (Figure S3). Classification results perfectly match the domain and 

main cluster labels for all Archaea and for Bacteria sequences in clusters I and II. In 

cluster III and IV this match is 98% and 97%, respectively. A closer examination of 

the last two decision nodes revealed that all Bacterial sequences that were separated 

at these nodes from Archaea belong to organisms living in extreme environments; for 

example, Desulforudis audaxviator was isolated from groundwater miles below the 

surface and Dethiobacter alkaliphilus was extracted from Mongolian soda lake 

sediments. Such high similarity between sequences from different domains might 

indicate lateral transfer of the nitrogenase genes. 

 

Classification Model for Subclusters 

CART decision trees based on a handful of signature residues were also found 

effective in characterizing sequences by subclusters. Cluster I, mainly Proteobacteria 

and Cyanobacteria, includes about 80% of the training set sequences. This group is 

split into twelve subclusters that exhibit approximate correspondence with the 16S 

rRNA phylogeny (Zehr et al., 2003). The classification tree ends in twelve terminal 

nodes, one for each subcluster (Figure S4). The decision nodes involve only eight 
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residues, most in the so called 60’s loop located at the interface between the two 

nitrogenase components in the 3D protein structure. Classification accuracy is above 

96% in most subclusters.  Most test set sequences (1,423 / 1,558) group with cluster I, 

where the overall agreement between CART’s prediction and the published subcluster 

assignments is 91%.  

Subcluster 1B, composed exclusively of Cyanobacteria sequences, holds 

special interest in ecological studies; hence merits a rapid screening. A two-class 

CART model can distinguish Cyanobacteria from other cluster I sequences with 97% 

accuracy based on a single decision node (decision tree not shown). The primary 

position, A103, is located in the same alpha helix as the signature residue A109 of 

cluster I. These two residues contain sufficient information for a simple screen: if 

A109=F (phenylalanine) and A103=I (isoleucine), then with high probability the 

sequence belongs to a Cyanobacteria. This algorithm resulted in 7% false negative 

(3,087/3,304 Cyanobacteria identified) and 1% false positive (138 / 13,263) in the 

training set. 

CART subcluster labeling has high accuracy also in Cluster II, where 

sequences, mainly from organisms with alternative nitrogenase, are split into five 

subclusters. Classification, based on a tree with four decision nodes (A54, A67, 

A115, and A117) and five terminal nodes, matches 99% of the subcluster labels in the 

database (Figure S5). Except for the two poorly represented small subclusters (2 and 

2D), the predictive power of the model is equally impressive.  
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Classification accuracy is disappointing within cluster III, which is composed 

of sequences mostly from anaerobic organisms from diverse Archaea and Bacteria 

taxa. Currently, the database defines eighteen subclusters, which is possibly an overfit 

of sequence variation. The overall match is 76%, and it drops considerably lower in 

some groups (Figure S6). Most primary positions in the model are between A76 and 

A87, a region distinct from the 60’s loop featured in cluster I and II. This sequence 

range straddles two beta sheets towards the edge of the 3D structure. We recommend 

revisiting the phylogeny-based subcluster definition in this group. 

Cluster IV protein sequences are the most divergent since they belong to non-

nitrogen-fixing Archaea and Bacteria and consequently are under less evolutionary 

pressure. Despite the high amino acid variability at most positions (Figure 1), CART 

classification matches the database labels with 97% overall accuracy (Figure S7). The 

primary positions in the decision nodes are located considerably further from the N 

terminus than those selected in models for the other main clusters.  

 

Classification Model for Cyanobacteria 

Classification models can also be developed to identify sequences at genus, 

species, strain, or ecotype level when an annotated training set is available. We 

successfully modeled UCYN-A (Candidatus Atelocyanobacterium thalassa) and 

Trichodesmium spp., two Cyanobacteria that hold special importance in the marine 

environment (Zehr, 2011). Since sequences are labeled only at main and subcluster 

levels in the database, OTU groups within subcluster 1B were examined in order to 
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identify sequence groups from single taxa and annotate training sets for classification. 

For statistical purposes, a single taxon OTU is useful only if its size reaches at least 8-

10% of the 2,069 unique Cyanobacteria sequences. Distance metric based on the A45 

- A153 range and our novel algorithm was used to group Cyanobacteria sequences. 

This algorithm assures that within an OTU, similarity between a member and a 

representative sequence is equal to or higher than the specified level. Furthermore, 

each sequence is connected to one and only one OTU representative, and similarity 

between representatives from different OTUs is always less than the specified level. 

At 98% similarity, 495 OTU98s were generated, whereas at 95% similarity, 

sequences grouped into 179 OTU95s. Protein BLAST search against the reference 

protein database was used to identify the representative sequences.    

At 98% similarity, the largest group contained 151 sequences, and at 95% 

similarity, the size of this group increased to 176 sequences. In both cases, the 

representative sequences were identified as UCYN-A at 100% identity (second match 

only at 91%). A two-class CART model based on residues A78 and A85 correctly 

classified all 176 sequences and identified additional two sequences as UCYN-A. 

According to pBLAST, the closest relative of these sequences was also UCYN-A, but 

only at 93% identity.  

The second largest OTU98 contained 140 sequences and the representative 

sequence was a perfect match with Trichodesmium. Grouping sequences at 95%, this 

group contained 222 sequences. A two-class CART model identified a sequence as 

Trichodesmium based on residues A61 and A83.  In addition to the 222 sequences, 
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eight other sequences were labeled as Trichodesmium. Protein BLAST search 

matched them at 92-94% identity with Trichodesmium (second match only at 81-

82%).  

These results indicate that sequences of Trichodesmium and UCYN-A form 

two groups that stand apart from other Cyanobacteria. In both cases, the intra-group 

distances vary between 1 – 7% in the A45 - A153 range. Identification of other 

Cyanobacteria taxa (e.g. Crocosphaera) for model training has failed. Representative 

of the third largest OTU98 had no match in the reference protein database above 90% 

identity, and the next largest three groups contained sequences from three or more 

genera. Consequently, other Cyanobacteria taxa could not be uniquely identified 

based on the A45 – A153 region, which is the typical fragment of environmental 

NifH protein sequences. 

 

Model Evaluation with Network Graphs 

Good performance of the CART model-based cluster assignment was further 

confirmed with thirteen nifH sequence sets selected from the literature (Table 1). All 

studies split the sequences into main clusters, presented on one or more phylogenetic 

trees. Only three sets (D, M, and R) encompass all four main clusters (Table 2), 

cluster I is the only group in the Pacific and Soil sets, but missing from the Termite 

set. CART cluster prediction matches the published groups with less than 1% error 

rate. 
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 Unfortunately, group label comparison is not possible beyond the main 

clusters because each paper relies on a unique grouping method, group labels are not 

deposited as metadata, and NCBI accession numbers are rarely reported on the trees. 

Matching the CART derived subcluster labels with groups defined in these studies is 

challenging and often can be done only qualitatively by comparing group proportions. 

Our Trichodesmium and UCYN-A recognition algorithm proved reliable in five data 

sets (A, M, MK, P, SP) where these Cyanobacteria were reported. 

Since direct comparison between the published sequence groups and the 

CART derived subclusters was only qualitative, our subcluster prediction was 

evaluated based on sequence networks that provide visual and numerical 

identification of potentially mislabeled sequences as well as graphical exploration of 

intra-cluster sequence variations. Networks from sequence sets with high variability 

(e.g. Termite), contain many singletons and disconnected small OTUs (Figure 3, top 

panel), whereas networks from low variability sequence sets (e.g. Atlantic), are 

dominated by few large OTUs that comprise the majority of sequences (Figure 3, 

bottom panel). OTUs and sequence connections for network analysis were defined 

using our novel sequence grouping algorithm. Networks of OTU98 and OTU90 

(Table 2) were explored because 98% represents species level similarity, whereas 

90% similarity is close to the average subcluster variation. Indeed, in most sequence 

sets, the number of OTU90s were close to the number of subclusters (Table 2); the 

strong positive correlation between these numbers is highly significant (Spearman 

correlation = 0.87, p = 0.0001). Proportions of mislabeled sequences in each data set 
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were calculated based on OTU98 and OTU90 label purity (Table 3). An OTU is 

called pure if all its sequences are assigned to the same subcluster and a sequence is 

flagged mislabeled if its CART derived cluster assignment does not match the 

majority label within the OTU.  

With OTU98, network-based classification error rate is very low (2 % or less), 

and with OTU90, it goes above 10% only in three data sets (C, M, MK). Two 

OTU90s in the Chesapeake set contain mixed cluster III labels. As noted previously, 

grouping within cluster III is questionable and ill-modeled.  The high error rate in the 

Mediterranean set at 90% similarity is mainly due to merging 1O and 1P labeled 

sequences. These are neighboring subclusters on the phylogenetic tree; therefore, it is 

reasonable that they form a single OTU. The CART model separates 1O and 1P 

sequences only at the bottom of the decision tree, which is another indication of the 

potential overlap of these two groups. Fusion of 1O and 1P sequences at 90% 

similarity is also observed in the Atlantic and Mekong sets. Another overlapping 

subcluster pair is 1J and 1K. Again, 1K and 1J are next to each other on the 

phylogenetic tree and separated only at the bottom of the CART tree. We recommend 

to annotate these subcluster pairs with a single label. 

 

Cross-ecosystem Analysis 

Analyzing sequences sets of different origins together illustrated the power of 

uniformly applied cluster labels, and joint sequence binning helped to identify 

generalist and specialist diazotrophs. Cluster structure and OTU identities across 
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ecosystems were compared by merging thirteen data sets and binning the sequences 

together. Two combined sets were analyzed: the complete set (2,433) contained all 

sequences and reflected OTU abundances, whereas the unique set (1,233) included 

only sequences unique within each set and was used to explore intra-group sequence 

variation. In both cases, the A45 – A153 primer-defined region was considered in 

calculating sequence similarity and OTU binning. These merged sets represented all 

four main clusters and 38 of the 43 subclusters that are defined in the database. As in 

the training set, 80% of sequences belong to cluster I, and the dominant subclusters 

are 1K+1J, 1B, 1G, and 1A. 

At 98% similarity, the unique set sequences grouped into 408 OTU98s from 

which 276 are singletons, whereas the complete set resulted in 406 OTU98s with 247 

singletons. Majority cluster label and origin of sequences were recorded for the 

largest groups in the unique set, and their representative sequences were identified by 

protein BLAST search (Table 4). Only few representatives were unidentifiable and 

many matched at 98% - 100% identity with known diazotrophs. Although the 

majority of non-singleton OTUs contained sequences from a single origin, 29 

OTU98s were composed of sequences from multiple habitats (Figure 4).  

The largest group was of marine origin mainly composed of Atlantic 

transcripts, was labeled 1G, and its representative matched closest to Pseudomonas 

stutzeri. The second and third largest groups contained sequences of marine as well as 

terrestrial origins, both were labeled 1K, and their representative sequences matched 

with Burkholderia xenovorans and Azospirillum amazonense, respectively. These 
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sequences may be either contaminants or extracted from truly generalist diazotrophs. 

The same three groups led also the list obtained from the complete set. Several other 

OTU98s merged terrestrial and marine sequences and were identified as Nodosilinea 

nodulosa, Bradyrhizobium elkanii, Nostoc punctiforme, Dechlorosoma suillum, and 

Fischerella muscicola. 

Sequences in OTU98 #5 originated from three marine locations and the group 

representative was identified as UCYN-A. Trichodesmium was identified as 

representative of OTU98 #6, another group of purely marine origin. Both OTUs were 

among the eight largest bins in the complete set indicating great abundance of these 

marine Cyanobacteria. 

Subclusters approximately represent sequence groups at 90% similarity. 

Ecosystem similarities calculated from subcluster proportions and from OTU90 

proportions were significantly correlated (Mantel test cor = 0.80, p = 0.001). Similar 

diazotroph communities have similar cluster composition and group on a 

correspondence analysis projection (Figure 5, top panel). Not surprisingly, 

communities from the deep sea (D) and termite gut (T) stand apart because they 

harbor the most unique diazotroph compositions. Except for the rainforest (R) 

community, sequence sets of terrestrial origin (Y, G, AR, S) tightly group at the lower 

right corner, whereas marine assemblages (A, P, SP, MK, M, C) that stretch along a 

diagonal vary more in composition. Projection of communities characterized by ten 

largest OTU90 proportions show a similar divide between marine and terrestrial 

communities (Figure 5, bottom panel). 
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Conclusion 

With statistical modeling, we supported a hypothesis that the nifH coded 

protein sequence includes signature residues with sufficient information for 

phylogenetic cluster membership prediction. A potential of distinguishing sequences 

from different taxa based on certain sequence regions was suggested early on (Zehr et 

al., 1997; Schlessman et al., 1998), but the hypothesized relationship was not 

quantified with mathematical models. Similar classification models could be 

developed for other functional genes, making use of available annotated training sets. 

Although subcluster divisions have been applied to characterize sequences from a 

wide range of ecosystems (Mohamed et al., 2008; Moisander et al., 2008; Duc et al., 

2009; Hamersley et al., 2011; Bonnet et al., 2013; Collavino et al., 2014), these 

phylogenetically defined groups are not prevalent in the diazotroph studies. Instead, 

diversity and sample similarity analyses are often based on operational taxonomic 

units defined at various similarity levels (Hsu and Buckley, 2009; Hamilton et al., 

2011; Turk et al., 2011), or on study specific sequence groups called clades (Deslippe 

and Egger, 2006), operational protein units (Lema et al., 2012), or simply groups 

(Man-Aharonovich et al., 2007). As demonstrated in our cross-ecosystem study, 

uniformly applied sequence characterization reveals information not present in 

individual studies.  The rapid and automated cluster assignment that is presented here 

will be available for general use in the form of a Python script at 

http://www.pmc.ucsc.edu/~wwwzehr/research/.  This novel sequence classification 

does not require accessing the database or calculating phylogenies and it can be 

http://www.pmc.ucsc.edu/~wwwzehr/research/
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accomplished with less resources and expertise; hence, it will greatly facilitate the 

exploration and comparison of diazotroph communities.   
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Figure 1. Sequence logos of NifH in A49 – A113 range are calculated for each main 

cluster. Arrows point to signature residues identified by two-class CART models: 

red=primary position, blue=first surrogate, black=subsequent surrogate positions. 
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Figure 2. Graphical representation of the CART classification model that 

successfully assigns sequences into main clusters based on three residues. The four 

terminal nodes correspond to clusters I, II, III, and IV. Each decision node lists the 

protein sequence position and the amino acids in the left group of sequences. For 

example, if a sequence has phenylalanine (F), tryptophan (W), or tyrosine (Y) at 

position A109, then it belongs to cluster I. Accuracy of the classification was 

calculated on the training set (Fit%), on the test set (Test%), and estimated by ten-fold 

cross-validation (Pred%). 

 

 
 

Cluster I II III IV TOTAL 

Size 17,321 542 3,876 758 22,497 

Fit% 99 98 95 96 98 

Pred% 99 96 94 95 98 

Test% 99 100 92 100 98 
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Figure 3. Network graphs of NifH sequences at 98% similarity. Top panel: Termite 

set of 33 unique sequences grouped into 27 OTU98s.  Bottom panel: Atlantic set of 

281 unique sequences grouped into 66 OTU98s. Sequences are color coded by main 

cluster: I, II, III, IV and labeled by subcluster. 
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Figure 4. Network of 1,233 sequences merged from thirteen ecosystems and grouped 

at 98% similarity. Sequences color coded as terrestrial and marine and labeled by 

origin. 
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Figure 5. Similarity among diazotroph communities visualized by projections on the 

first two correspondence analysis components. Communities are color coded as 

terrestrial or marine and labeled by origin. 

Top panel: projection calculated from contingency table of subcluster proportions. 

Bottom panel: projection calculated from ten largest OTU90 proportions. 
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Figure S1. Sequence logo calculated from 22,497 NifH protein sequences. Amino 

acids are represented by single letter code. Letter size indicates amino acid 

proportion, and color indicates polarity (red=acidic, blue=basic, green=polar, 

purple=neutral, black=hydrophobic).  
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Figure S2.  Sequence coverage is uneven in the database. Sequence positions are 

numbered according to the Azotobacter vinelandii NifH protein positions. Green bars 

indicate conserved residues where at least 98% of sequences have identical amino 

acids.  
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Figure S3. Graphical representation of the CART classification model that splits 

sequences according to the main clusters before Bacteria and Archaea domains are 

distinguished. Terminal node labels B1 – B4 indicate Bacteria sequence groups in 

main clusters I – IV, and labels A2 – A4 denote Archaea sequence groups in main 

clusters II – IV. 
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Figure S4. Graphical representation of the CART classification model that assigns 

sequences into subclusters within cluster I. Terminal nodes correspond to the twelve 

subclusters defined in the database. Accuracy of the classification was calculated on 

the training set (Fit%), on the test set (Test%), and estimated by ten-fold cross-

validation (Pred%). 

 
Cluster 1 1A 1B 1C 1D 1E 1F 1G 1J 1K 

Size 4 1,436 3,304 260 566 131 60 1,461 1,451 3,239 

Fit% 100 99 96 98 99 96 98 98 94 93 

Pred% 75 99 95 97 99 97 95 98 94 93 

Test% 0 99 100 100 17 94 -- 100 90 82 
 

Cluster 1O 1P TOTAL 

Size 304 421 12,637 

Fit% 91 96 96 

Pred% 89 95 96 

Test% 100 100 91 
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Figure S5. Graphical representation of the CART classification model that assigns 

sequences into subclusters within cluster II. Terminal nodes correspond to the five 

subclusters defined in the database. Accuracy of the classification was calculated on 

the training set (Fit%) and estimated by ten-fold cross-validation (Pred%). 

 

 

 
 

Cluster 2 2A 2B 2C 2D TOTAL 

Size 6 80 78 171 11 346 

Fit% 83 99 97 99 100 99 

Pred% 0 99 95 99 36 95 
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Figure S6. Graphical representation of the CART classification model that assigns 

sequences into subclusters within cluster III. One of the eighteen subclusters defined 

in the database, 3Q, is represented by two terminal nodes. Accuracy of the 

classification was calculated on the training set (Fit%) and estimated by ten-fold 

cross-validation (Pred%). 

 

Cluster 3 3A 3B 3C 3E 3G 3H 3I 3J 3K 

Size 10 167 5 228 771 255 192 341 196 50 

Fit% 80 92 100 77 84 90 93 54 74 90 

Pred% 70 91 80 77 82 91 92 66 76 86 
 

Cluster 3L 3M 3N 3P 3Q 3R 3S 3T TOTAL 

Size 263 28 114 331 50 34 14 72 3,121 

Fit% 73 100 74 44 90 97 86 90 76 

Pred% 75 98 75 35 66 97 79 81 76 
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Figure S7. Graphical representation of the CART classification model that assigns 

sequences into subclusters within cluster IV. Terminal nodes correspond to the eight 

subclusters defined in the database. Accuracy of the classification was calculated on 

the training set (Fit%) and estimated by ten-fold cross-validation (Pred%). 

 

Cluster 4 4A 4B 4C 4D 4F 4G 4I TOTAL 

Size 9 62 88 24 94 150 12 24 463 

Fit% 100 87 100 100 95 100 100 96 97 

Pred% 89 77 100 100 95 97 100 83 94 
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Table 1. Origin and type of the thirteen environmental sequence sets used in cross-

ecosystem analysis. 

 

Symbol 

Name 

Reference Type of Environment  

Origin of Sequences 

AR 

Arctic 

(Deslippe and Egger, 2006) Terrestrial, Rhizosphere,  

Arctic Canada shrubs 

A 

Atlantic 

(Turk et al., 2011) Marine, Surface, 

Cape Verde, Atlantic Ocean 

C 

Chesapeake 

(Burns et al., 2002) Marine, Sediment,  

Chesapeake Bay and Neuse river 

D 

Deep 

(Mehta et al., 2003) Marine, Deep, 

NE Pacific Ocean 

G 

Glacier 

(Duc et al., 2009) Terrestrial, Soil, 

Swiss Alps glaciers 

M 

Mediterranean 

(Man-Aharonovich et al., 

2007) 

Marine, Surface, 

East Mediterranean Sea 

MK 

Mekong 

(Bombar et al., 2011) Marine, Surface, 

Mekong River Plume, South China Sea 

P 

Pacific 

(Zehr et al., 2007) Marine, Surface, 

Pacific Ocean, near Hawaii 

R 

Rainforest 

(Furnkranz et al., 2008) Terrestrial, Phyllosphere, 

Costa Rica rainforest  

S 

Soil 

(Hsu and Buckley, 2009) Terrestrial, Soil, 

New York State 

SP 

Sponge 

(Mohamed et al., 2008) Marine, Symbiont, 

Key Largo sponges 

T 

Termite 

(Du et al., 2012) Terrestrial, Symbiont, 

Chinese termite gut  

Y 

Yellowstone 

(Hamilton et al., 2011) Terrestrial, Microbial mat, 

Yellowstone Park geothermal springs 
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Table 2. Size and structure of the thirteen environmental sequence sets used in cross-

ecosystem analysis. 

 

Set Sequence Unique OTU98 OTU90 Main clusters Subclusters 

AR 42 30 20 9 I, IV 7, 1 

A 603 281 66 27 I, II, III 10, 1, 8 

C 17 17 17 11 I, III 4, 6 

D 120 85 36 17 I, II, III, IV 4, 2, 4, 5 

G 318 139 56 20 I, II, III 9, 2, 7 

M 191 103 38 15 I, II, III, IV 9, 2, 4, 1 

MK 57 40 24 7 I, III 6, 3 

P 86 60 23 7 I 4 

R 137 103 28 5 I, II, III, IV 3, 1, 1, 1 

S 415 162 55 8 I 9 

SP 347 123 26 7 I, II, III 3, 1, 3 

T 34 33 27 18 II, III, IV 1, 3, 5 

Y 66 57 27 11 I, II, III 9, 1, 1 

ALL 2433 1233 443 162 I, II, III, IV 12, 4, 15, 7 
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Table 3. Potentially mislabeled sequence proportions estimated by network analysis 

of thirteen environmental sequence sets. An OTU is called pure if all its sequences 

are assigned to the same subcluster and a sequence is flagged mislabeled if its CART 

derived cluster assignment does not match the dominant label within the OTU. 

 

 98% similarity 90% similarity 

Set OTU Pure 

OTU 

Mislabeled 

sequences 

% miss 

 

OTU Pure 

OTU 

Mislabeled 

sequences 

% miss 

 

AR 20 20 0/42 0 9 8 1/42 2 

A 66 61 9/603 1 27 22 48/603 8 

C 17 17 0/17 0 11 9 2/17 12 

D 36 34 2/120 2 17 13 6/120 5 

G 56 55 1/318 <1 20 17 23/318 7 

M 38 35 3/191 2 15 10 38/191 20 

MK 24 24 0/57 0 7 6 8/57 14 

P 23 23 0/86 0 7 7 0/86 0 

R 28 26 2/137 1 5 4 3/137 2 

S 55 54 1/415 <1 8 4 42/415 10 

SP 26 26 0/347 0 7 6 1/347 <1 

T 27 27 0/34 0 18 18 0/34 0 

Y 27 27 0/66 0 11 9 5/66 8 
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Table 4. Identity of the largest OTU98s resulting from joint binning of thirteen 

environmental sequence sets. Each group is identified by the majority subcluster 

label, by the origin of its sequences, and by the closest relative (pBLAST) of its 

representative sequence. Type is called “unique” if all sequences are from a single 

data set, and “mixed” if sequences originate from terrestrial and marine habitats. 

 

ID Size Label Origin Type Representative’s match Identity % 

1 75 1G A, M, MK, P marine Pseudomonas stutzeri  94 

2 64 1K A, G, M, P, S, 

SP, Y 

mixed Burkholderia xenovorans 100 

3 51 1K A, M, S mixed Azospirillum amazonense 100 

4 38 1G A unique Azotobacter vinelandii 97 

5 34 1B A, M, P marine UCYN-A 100 

6 32 1B A, MK, P, SP marine Trichodesmium erythraeum 100 

7 21 1G A, P marine Pseudomonas stutzeri 95 

8 21 1B R unique Nostoc. sp. PCC7107 100 

9 21 1B SP unique Cyanothece sp. 94 

10 19 2B D unique uncultivated -- 

11 19 3E SP unique Desulfovibrio oxyclinae 94 

12 18 1A AR, G, S terrestrial Geobacter uraniireducens 97 

13 18 1B G, SP, Y mixed Nodosilinea nodulosa 98 

14 15 1B A, P, SP marine Fischerella muscicola 98 

15 14 1J A unique Sinorhizobium meliloti 96 

16 14 2 R unique Dickeya dadantii 98 

17 14 1B A, SP marine Trichodesmium erythraeum 97 

18 13 1P A, M marine Dechloromonas aromatica 96 

19 12 1K S, SP mixed Bradyrhizobium elkanii 97 

20 11 3M G unique uncultivated -- 

25 10 1B G, R mixed Nostoc punctiforme 97 

29 8 1J A, M, S mixed Dechlorosoma suillum 100 

30 8 1K G, Y terrestrial Methylocystis parvus 96 

31 8 1G A, P marine Allochromatium vinosum 96 

33 7 2 A, SP marine Desulfovibrio desulfuricans 100 

36 7 1B P, Y mixed Fischerella muscicola 100 

40 6 1A G, S terrestrial Geobacter uraniireducens 96 

42 6 1A A, M, MK marine Desulfuromonas acetoxidans 99 
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