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Dark Matter Freeze-out during SU(2)L Confinement
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bDepartment of Physics, Carleton University, Ottawa, ON, Canada
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E-mail: jnhoward@uci.edu, sipek@physics.carleton.ca, ttait@uci.edu,
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Abstract: We explore the possibility that dark matter is a pair of vector-like fermionic
SU(2)L doublets and propose a novel mechanism of dark matter production that proceeds
through the confinement of the weak sector of the Standard Model. This confinement phase
causes the Standard Model doublets and dark matter to confine into pions. The dark pions
freeze-out before the weak sector deconfines and generate a relic abundance of dark matter.
We solve the Boltzmann equations for this scenario to determine the scale of confinement and
constituent dark matter mass required to produce the observed relic density. We determine
which regions of this parameter space evade direct detection, collider bounds, and successfully
produce the observed relic density of dark matter. For a TeV scale pair of vector-like fermionic
SU(2)L doublets, we find the weak confinement scale to be ∼ 700 TeV.
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1 Introduction

The identity of the dark matter and its role in a theory of fundamental interactions remains
one of the most pressing open questions today, and drives a vibrant program of experimental
and theoretical research into Physics beyond the Standard Model (SM) [1]. A key property
that distinguishes among different possibilities is the nature of the interactions between the
dark matter and the ingredients of the Standard Model, typically characterized by the masses
and couplings of the mediator particles.

An economical choice is to allow the dark matter to transform under the SM’s SU(2)L

weak interaction, repurposing the electroweak bosons of the Standard Model (W , Z, and h)
as the mediators. This results in a prototypical weakly interacting massive particle (WIMP),
whose abundance in the Universe can be naturally understood as a result of it freezing out
after an initial period of chemical equilibrium with the SM plasma [2]. While attractive, an
SU(2)L-charged WIMP whose abundance is set by freeze-out is highly constrained. The TeV
masses favored by the dark matter abundance often predict signals which are expected to have
been visible at colliders [3, 4], in searches for ambient dark matter scattering with heavy nuclei
[5], and by searches for high energy annihilation products which make their way to the Earth
[6]. With dominant couplings typically fixed by SU(2)L gauge invariance, a specific choice
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of SU(2)L-charged WIMP freezes out with the correct abundance for only a very narrow
range of masses. While windows of viable parameter space exist (see e.g. Ref. [7]), many
types of SU(2)L-charged WIMPs naively appear to be excluded as relics whose abundance is
determined by freeze-out.

An SU(2)L-charged WIMP typically freezes out at a temperature ' M/20, which for an
electroweak-sized mass corresponds to a period of cosmology that is much earlier than Big
Bang Nucleosynthesis, and thus during an epoch that is relatively unconstrained by observa-
tional data. At this time, the Universe may deviate dramatically from our extrapolation based
on the SM, due to unforeseen Physics beyond the Standard Model. Indeed, explorations of
non-standard cosmological histories, including a period of early matter domination [8], late
entropy injection [9], and modifications of fundamental parameters such as the strength of the
SU(3) coupling [10, 11] have all been shown to lead to dramatically different expectations in
the mapping of WIMP parameter space onto its predicted abundance in the early Universe.

This article explores a non-standard cosmology that can dramatically change the favored
mass range for an SU(2)L-charged WIMP, which makes up the bulk of the dark matter.
We introduce dynamics that modify the value of the SU(2)L interaction strength very early,
causing it to confine [12]. This weak confinement causes the left-chiral quarks and leptons of
the SM, and a new vector-like pair of fermionic doublets that plays the role of dark matter, to
bind into composite pion-like states that are SU(2)L neutral. The freeze-out process involves
those pions containing the dark matter annihilating into lighter pions composed entirely of
SM fermions. At some time after freeze-out, the SU(2)L interaction returns to its currently
observed value, at which point the pions deconfine, leaving behind the frozen out dark matter.
A sketch of this cosmological history is shown in Fig. 1.

Our work is organized as follows: in Section 2, we introduce the description of the Universe
during an early period of SU(2)L confinement, including an additional vector-like pair of
fermionic doublets which can play the role of dark matter. In Section 3 we discuss the freeze-
out process in detail and identify the parameter space leading to the observed abundance of
dark matter today and our results are summarized in Fig. 4. The more realistic case including
three generations of SM fermions is discussed in Section 4. Finally, we conclude in Section 5
and provide technical details in the appendices.

2 Weak Confinement and Dark Matter

Our dark matter production mechanism involves a temporary cosmological era of SU(2)L

confinement. The possibility that the weak sector was strong in the early universe was initially
proposed in [13–16] (see also [17–20]) and the cosmological consequences of such a scenario
were studied in Ref. [12]. We refrain from rederiving the complete results of Ref. [12], which
gives a detailed discussion of the gauge and global symmetry breaking patterns as well as the
particle content of the confined phase, and instead highlight some key results pertinent for
this work:
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Figure 1: Upper panel: A sketch of the cosmological history of the Universe where we assume
a period of weak confinement begins at ΛW , at which point the DM (χ1, χ2) and SM (q, `)
doublets are bound into weak pions. During this epoch, the freeze-out of dark pions takes
place at Tfo, followed by deconfinement at Tdc. Lower panel: The evolution of the dark
pion abundance for a representative value of the freeze-out temperature xfo = m1/Tfo ' 30,
corresponding to a temperature of 0.2mDM. In our notation, m1 and mDM denote the lightest
dark pion and the constituent dark matter masses respectively, see Section 3 for details.

• Weak confinement causes the SU(2)L doublets to condense into bound states analogous
to the mesons and baryons of QCD. The lowest-lying states are mesons, Π and η′,
composed of the SM lepton and quark doublets, l and q respectively. These states are
contained in the complex antisymmetric scalar field, Σij , where i, j = 1, ...., 2Nf with
2Nf of left-chiral Weyl fermion fields. For the Standard Model with three generations,
Nf = 6.

• Following intuition based on chiral symmetry breaking in QCD [21, 22] and evidence
from lattice simulations, there is a chiral condensate spontaneously breaking the global
symmetry: SU(2Nf )→ Sp(2Nf ) [23–29]. This pattern of symmetry breaking is encoded
by the antisymmetric field Σij acquiring a vacuum expectation value 〈Σij〉 = (Σ0)ij that
satisfies Σ†0Σ0 = Σ0Σ†0 = 1. Neglecting the other SM gauge interactions and Yukawas,
this symmetry breaking results in 2N2

f −Nf − 1 massless Goldstone bosons (GBs) and
a single massive pseudo-Goldstone boson (PGB), analogous to the η′ of QCD.

• The dynamics of the confined theory are described by an infrared Lagrangian which is
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constructed from the scalar field Σij that contains the massive PGB and massless GBs:

Σ = exp
[
iη′/

√
Nff

]
exp

[∑
a

2iXaΠa/f

]
Σ0 , (2.1)

whereXa
ij are the 2N2

f−Nf−1 broken generators of Sp(2Nf ) and f is the decay constant.
Considering the three SM generations of SU(2)L doublets, there are 65 massless pions.
However, loop-induced corrections from the SM gauge and Yukawa interactions provide
masses to 58 of the 65 pions.

• Weak confinement breaks the gauge symmetry of the Standard Model from SU(3)C ×
U(1)Y to SU(2)C × U(1)Q, resulting in four massless gauge bosons (G1,2,3, A′) and five
massive gauge bosons, which can be arranged into a pair of complex gauge bosons (W ′±)
and single real vector boson (Z ′).

We augment the SM particle content by two SU(2)L doublets, χ1 and χ2 (of hypercharges
±1/2, respectively), which play the role of dark matter. They are assembled into a pseudo-
Dirac state,

Lχ = iχ†1σ̄
µDµχ1 + iχ†2σ̄

µDµχ2 +mDM χ1χ2 + h.c , (2.2)

where Dµ is a covariant derivative of the unconfined phase and mDM is the mass of the
constituent dark matter. This Lagrangian is invariant under a U(1)χ symmetry under which
χ1 (χ2) are charged ±1 that ensures their stability.

The infrared Lagrangian, describing the dynamics of the confined theory, has the form

LIR ⊃
f2

4
Tr
[
DµΣ†DµΣ

]
+ Λ3

WTr[MΣ + Σ†MT ] + κΛ2
Wf

2Re[det Σ] + ∆L , (2.3)

where Dµ is a covariant derivative of the confined phase, ΛW ∼ 4πf is the weak confinement
scale, κ is an O(1) dimensionless number, and M is the mass matrix, treated as an SU(2Nf )-
breaking spurion in the limit mDM � ΛW. In the simplified case where we consider a single
generation of SU(2)L doublets together with the dark matter, 2Nf = 6 and the mass matrix,
defined in the basis {`, qR, qG, qB, χ1, χ2} where R, G, and B denote the colors of SU(3)C, is:

M =
mDM

2



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


. (2.4)
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The infrared Lagrangian also contains operators reflecting the explicit breaking of SU(2Nf )

by the gauging of SU(3)C and U(1)Y:

∆L = CGΛ2
W f

2 g2
s

16π2

∑
a=1,2,3

Tr[LaΣ†LaTΣ] + CAΛ2
W f

2
e2
Q

16π2
Tr[QΣ†QΣ]

+ CWΛ2
W f

2 g
2
s/2

16π2

∑
±

∑
i=1,2

Tr[Li±Σ†Li±Σ] + CZΛ2
W f

2
e2
Q/s

2
Qc

2
Q

16π2
Tr[JΣ†JΣ] ,

(2.5)

where the dimensionless coefficients, CG, CA, CW , and CZ , encode the non-perturbative
SU(2)L dynamics, and are expected to be O(1) [30, 31]. The SU(2)C and hypercharge
couplings are denoted as gs and g′, respectively, and sin θQ = g′/

√
3g2
s + g′2 with eQ ≈ g′

in the limit, g′ � gs. The generators of the SU(2)C and U(1)Q are denoted as La and Q,
respectively, and L± is a combination of SU(3)C generators which couple to the massive vector
fields W ′±. Finally, J is a combination of an SU(3)C and an U(1)Q generator which couple to
the massive Z ′ gauge boson (see Appendix A and Ref. [12] for further details).

For the remainder of this Section, we consider a simplified toy model consisting of one
SM generation of fermionic doublets together with χ1 and χ2 (corresponding to Nf = 3, for
which there are 14 broken generators of the SU(6) flavor symmetry). This allows us to extract
the most important points in a framework that is simpler to analyze. We return to the more
realistic case of three generations plus χ1,2 (corresponding to Nf = 14) in Section 4.

2.1 Pion Masses and Mass Eigenstates

The mass spectrum of the pions during weak confinement is determined from the terms
of Eq. (2.3) that are quadratic in the meson fields, LIR → −(1/2)(M2

Π)abΠ
aΠb. Following

Ref. [12], we define M2
Π in the basis Π = {η′,Πa} where a = 1...14. In contrast to the case

studied in [12], the resulting mass matrix contains non-diagonal entries mixing the η′ with the
meson dominantly composed of χ1χ2:

M2
Π =


M2

0,0 . . . M2
0,14

. M2
1,1 . . .

. . . . .

. . . M2
13,13 .

M2
0,14 . . . M2

14,14

 , (2.6)

and thus the interaction and mass eigenstates are not aligned. We rotate to the mass basis
via the unitary transformation Π→WΠ, for which

M2
diag = WM2

ΠW
−1 , (2.7)
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where W is a unitary matrix

W =


cos θ . . . sin θ

. 1 . . .

. . . . .

. . . 1 .

− sin θ . . . cos θ

 , (2.8)

with

tan 2θ = 2
M2

0,14

(M2
0,0 −M2

14,14)
, (2.9)

and

M2
0,0 = 24κΛ2

W +
2Λ3

WmDM

3f2
, M2

0,14 = −
2
√

2Λ3
WmDM

3f2
, M2

14,14 =
4Λ3

WmDM

3f2
. (2.10)

Substituting Eq. (2.10) into Eq. (2.9), we find that

tan 2θ =
2
√

2πmDM

πmDM − 9κf
≈ −2

√
2πmDM

9κf
+O

(
m2

DM

f2

)
, (2.11)

where we have taken ΛW = 4πf . Throughout we assume that mDM � f and this implies that
the mixing between η′ (which we label as Π0) and the χ1χ2 (which we label as Π14) state is
small, cos θ ≈ 1 and sin θ ≈ θ, and this leads to:

Πmass
0 ≈ Πint

0 + θΠint
14 , (2.12a)

Πmass
14 ≈ Πint

14 − θΠint
0 , (2.12b)

where Πmass
i = Πint

i for i = 1, ..., 13. The masses of Πmass
0 and Πmass

14 are:

M2
0 ≈ 384π2f2κ

(
1 +

πmDM

9κf
+O

(
m2

DM

f2

))
,

M2
14 ≈

256π3

3
fmDM

(
1− πmDM

9κf
+O

(
m2

DM

f2

))
.

(2.13)

Table 1 shows the approximate masses of the 15 mesons for the one generation SM case, as
well as their representations under the residual U(1)Q × SU(2)C gauge symmetries, in the
small mixing limit.

The specific pion masses depend on the non-perturbative coefficients CG, CA, CZ , CW ,
and κ. These could in principle be determined from lattice simulations, and are expected
to be O(1) based on arguments from naive dimensional analysis [32]. We proceed under the
assumption that CG = CA = CZ = −1 and CW = κ = 1. As is evident from Table 1, the
masses of Πmass

1,2,3,4 are independent of mDM, reflecting the fact that they are purely composed
of SM quark and lepton doublets, with masses generated via SM gauge interactions, Eq. (2.5),
and are typically the lightest of the massive pions. The Πmass

0 is significantly heavier than
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Pion Mass2 U(1)Q SU(2)C content

Πmass
0 384π2f2κ 0 1 χ1, χ2

Πmass
1,2,3,4 −1

2CAe
2
Qf

2 − 3
2CGf

2g2
s + CW f

2g2
s +

CZe
2
Qf

2

6s2Q
+ 1

2CZe
2
Qf

2 ±1 2 `, qD, qS

Πmass
5,8 64π3fmDM 0 1 χ1, χ2, qS

Πmass
6,7 −2CAe

2
Qf

2 − 2CZe
2
Qf

2s2
Q + 2

3CZe
2
Qf

2 + 64π3fmDM ±1 1 `, χ1, χ2, qS

Πmass
9,10,11,12 −1

2CAe
2
Qf

2 − 3
2CGf

2g2
s +

CZe
2
Qf

2

18s2Q
+ 64π3fmDM ±1 2 χ1, χ2, qD

Πmass
13 0 0 1 `, qS

Πmass
14

256
3 π3fmDM 0 1 χ1, χ2

Table 1: Masses of the pions (for the one SM generation case) in the small mixing limit,
along with their U(1)Q×SU(2)C charges and constituent SU(2)L doublet content.

the other mesons, rendering it unimportant for the freeze-out dynamics due to Boltzmann
suppression. We observe that Πmass

14 is 4/3 times heavier than Πmass
5,8 and hence, we can ignore

the effect of Πmass
14 in calculating the dark matter dynamics. In Fig. 2, we show the pion

masses as a function of mDM for f = 65 TeV, corresponding to ΛW ≈ 800 TeV (this choice
is motivated by discussions of DM abundance in Section 3). We examine two benchmark
cases: BP1 where gs, g′ and sQ = g′/

√
3g2
s + g′2 are found by evaluating the running SM

coupling constants to approximately ΛW and BP2, which is similar to a regime of interest
from Ref. [12]. More specifically:

BP1 gs = 0.8 , eQ = 0.5 , s2
Q = 0.12 ,

BP2 gs = 0.1 , eQ = 0.01 , s2
Q = 3.3× 10−3 .

Fig. 2 indicates that M5,8,M6,7 and M9,10,11,12 differ slightly due to the loop contributions,
and that M5,8 are the lightest massive states. BP2 has values of gs, eQ which are smaller than
those in BP1, leading to much smaller differences betweenM5,8,M6,7 andM9,10,11,12, resulting
in a more compressed spectrum.

2.2 U(1)χ Eigenstates

U(1)χ remains unbroken during the confined phase, and it is convenient to organize the pions
based on their U(1)χ charges. This is evident from the fact that the U(1)χ generator,

Qχ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


, (2.14)
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Figure 2: Pion masses as a function of mDM, assuming CG = CA = CZ = −1, CW = 1

and κ = 1, for two benchmark points: BP1 where gs, eQ ' g′ and sQ ' g′/
√

3g2
s + g′2 are

found by running gs and g′ to ΛW = 4πf ' 800 TeV; and BP2 where we take gs = 0.1 and
eQ = 0.01. M13 = 0 is not shown.

leaves the vacuum invariant: QχΣ0 + Σ0Qχ = 0. To infer the U(1)χ charges of the pions, we
transform Σ by an infinitesimal U(1)χ rotation:

Σ
U(1)χ−−−→ eiQχθχΣ(eiQχθχ)T ≈ Σ + iθχ (QχΣ + ΣQχ) + . . . , (2.15)

and expand Σ to first order, Σ ' Σ0 + i
fΠaXaΣ0 + ..., from which we can extract the trans-

formation of each pion:

Πb
U(1)χ−−−→Πb + iθχ 2ΠaTr[[Qχ, Xa], Xb]︸ ︷︷ ︸

δΠb

. (2.16)

Using the specific form of the generators Xa and Qχ we can explicitly evaluate δΠa for each
a = 0, ...14, and construct complex linear combinations of pions fields that have definite U(1)χ
charge:

Π̃±1 ≡
1√
2

(Πmass
5 ∓ iΠmass

8 ) ,

Π̃±2 ≡
1√
2

(Πmass
6 ∓ iΠmass

7 ) ,

Π̃±3 ≡
1√
2

(Πmass
9 ∓ iΠmass

12 ) ,

Π̃±4 ≡
1√
2

(Πmass
10 ∓ iΠmass

11 ) ,

(2.17)
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and Π̃0
i ≡ Πmass

i for i ∈ {0, 1, 2, 3, 4, 13, 14} are left as zero-charge real scalar fields. Note that
these redefinitions commute with the mass basis, as expected.

2.3 Pion Interactions

The most important interactions of the pions, for our purposes, are four-point vertices arising
as residual strong interactions from the confined SU(2)L force. These are encoded in the
infrared Lagrangian as higher order terms (in powers of Π/f). Expanding Σ to second order:

Σ(x) = exp

[
iη′√
Nff

]
exp

[
i
2Πa(x)Xa

f

]
Σ0

≈

[
1 + i

(
2Πa(x)Xa

f

)
− 1

2

(
2Πa(x)Xa

f

)2

+O
(

Π3

3!f3

)]
Σ0 ,

(2.18)

where the relevant terms from Eq. (2.3) take the form:

L4 =
4

f2
Tr1(a, b, c, d) ΠaΠb∂

µΠc∂µΠd +
2mDMΛ3

W

3f4
Tr2(a, b, c, d) ΠaΠbΠcΠd , (2.19)

with flavor tensors Tr1 and Tr2 defined by

Tr1(a, b, c, d) ≡ 1

4

(
Tr [XcXaXdXb] + Tr [XaXcXdXb]

)
− 1

12

(
Tr [XcXaXbXd] + Tr [XaXcXbXd]

)
− 1

3
Tr [XaXbXcXd] ,

Tr2(a, b, c, d) ≡ −Tr [AXaXbXcXd] , (2.20)

where A ≡ diag(02x2, ...,02x2,12×2). These expressions are written in the mass basis, and can
be transformed into states of definite U(1)χ charge via Eq. (2.17).

Thepions charged under SU(2)C and U(1)Q will also have gauge interactions with those
gauge bosons, contained in the kinetic terms of Eq. (2.3). However, we have verified that
these couplings are small enough at the scales of interest (leading to cross-sections of O(10−3)

smaller than those characterizing annihilation into SM pions) that they can be neglected in
our freeze-out analysis.

3 Dark Matter freeze-out

At the time of freeze-out, the dark matter particles are bound into dark pion (DP) states,
and the final abundances of χ1,2 are determined by the frozen-out densities of Π̃±1,2,3,4 (each of
which contains one χ) and Π̃0

0 and Π̃0
14 (each of which contains two χs). In practice, because of

the large mass hierarchy between Π̃0
0,14 and Π̃±1,2,3,4, it is sufficient to neglect the contributions

from the two neutral states and to focus on the U(1)χ-charged ones.
The relic abundance of the Π̃±i is controlled by the temperature, Tfo, at which their

number-changing interactions freeze-out from thermal equilibrium, which in turn depends
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Figure 3: Four-point pion interaction diagrams contributing to the process ΠaΠb → ΠcΠd.
The dashed lines denote fields on which derivatives act, contributing a factor of the correspond-
ing momentum. An incoming (outgoing) field contributes a negative (positive) momentum
factor to the matrix element.

sensitively on their annihilation cross sections into the lightest neutral pions comprised of
SM doublets: Π̃+

i Π̃−j → Π̃0
13Π̃0

13. The charged states are typically sufficiently close in mass
(∆m/Tfo ∼ 10−2) that coannihilation processes can be important [33, 34], and are included
in our calculations. Nonetheless, the relic abundance is dominated by the annihilation of the
lightest DP state into the zero-mass SM pion: Π̃+

1 Π̃−1 → Π̃0
13Π̃0

13.

3.1 Annihilation Cross-Section

The rate for ΠiΠj → ΠcΠd is determined by the Feynman diagrams shown in Fig. 3, where
the dashed (solid) lines indicate legs on which derivatives do (do not) act in the corresponding
operator. We define the incoming legs to correspond to the pion flavors i, j, and outgoing to
c, d. The resulting matrix element,M, takes the form

iM = −i4(pc · pd)
f2

G1 + i
4(pi · pc)

f2
G2 − i

4(pi · pj)
f2

G3 + i
4(pj · pd)

f2
G4

+ i
4(pj · pc)

f2
G5 + i

4(pi · pd)
f2

G6 + i
128π3mDM

3f
G7 ,

(3.1)

where we used ΛW = 4πf and define:

G1 = Tr1(i, j, c, d) , G2 = Tr1(d, j, c, i) , G3 = Tr1(c, d, i, j) , G4 = Tr1(i, c, j, d) ,

G5 = Tr1(i, d, c, j) , G6 = Tr1(c, j, i, d) , G7 = Tr2(i, j, c, d) ,
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where Tr1 and Tr2 are given in Eq. (2.20). Subsequently, the annihilation cross-section can
be expressed as,

σij(s) =
1

16π

1

λ(s,m2
i ,m

2
j )

[
Cconst(t+ − t−) +

1

2
Clin(t2+ − t2−) +

1

3
Cquad(t3+ − t3−)

]
, (3.2)

where λ is the well-known Källén function, λ(x, y, z) ≡ (x− y − z)2 − 4yz, and

t+ = m2
c +m2

i − 2EcEi + 2|~pc||~pi| ,
t− = m2

c +m2
i − 2EcEi − 2|~pc||~pi| .

(3.3)

The above traces define the coefficients inside the square brackets as:

Cconst ≡
(

128π3mDM

3f

)2

|C|2 +
4s2

f4
|G13,56|2 −

2s

f2

(
128π3mDM

3f

)[
C∗G13,56 + CG∗13,56

]
,

Clin ≡
4s

f4

(
G13,56G

∗
24,56 +G∗13,56G24,56

)
− 2

f2

(
128π3mDM

3f

)[
C∗G24,56 + CG∗24,56

]
,

Cquad ≡
4

f4
|G24,56|2 ,

(3.4)
with

C ≡ G7 +
3m2

i

64π3fmDM
(G2 +G3 −G5) +

3m2
j

64π3fmDM
(G3 +G4 −G6)

+
3m2

c

64π3fmDM
(G1 +G2 −G6) +

3m2
d

64π3fmDM
(G1 +G4 −G5) ,

G13,56 ≡ G1 +G3 −G5 −G6 ,

G24,56 ≡ G2 +G4 −G5 −G6 .

(3.5)

Note that 64π3fmDM is the mass squared of the lightest pion with DM constituent. In the
non-relativistic limit, the 2 → 2 scattering cross-section can be expanded in terms of the
relative velocity, v = |~vi − ~vj |, of the incoming particles,

〈σv〉 = σ0 + σ2〈v2〉+ .. (3.6)

At freeze-out, the leading (s-wave) term of this expansion dominates over the order higher
terms and hence the velocity averaged cross-section is:

〈σijv〉s−wave =
λ1/2(s,m2

c ,m
2
d)

32πEaEbs

[
Cconst + ClinW1 + CquadW

2
1

]
, (3.7)

where
W1 = m2

i +m2
c −

1

2s
(s+m2

i −m2
j )(s+m2

c −m2
d) . (3.8)

Further, assuming that the incoming particles are non-relativistic implies that s = (mi+mj)
2.

For the most significant annihilation processes, Π̃+
1 Π̃−1 → Π̃0

13Π̃0
13, mc = md = 0 and m2

i '
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m2
j ' 64π3fmDM. In this limit, the parametric dependence of the s-wave annihilation cross

section is:

〈σijv〉s−wave ∝ constant× mDM

f3
, (3.9)

where the overall constant is a combination of various traces and found to be O(1) from
numerical analysis.

3.2 Freeze-out

The number density of the dark pions, nDP = nΠ±
1

+nΠ±
2

+nΠ±
3

+nΠ±
4
, evolves according the

Boltzmann equation [33]:

ṅDP + 3HnDP = −〈σeffv〉(n2
DP − n2

DP,eq) , (3.10)

where H =
√

8π3g∗/90T 2/MPl is the Hubble rate during radiation domination, nDP,eq =

g∗m
2
1T/(2π

2)K2(m1/T ) is the equilibrium number density of the lightest dark pion and m1

is the mass of the lightest DP freezing out, more specifically the mass of Π̃±1 . The effective
co-annihilation cross-section is defined as

σeff =

4∑
i,j=1

σij
gigj
g2

eff

(1 + ∆i)
3/2 (1 + ∆j)

3/2 e−x(∆i+∆j) ,

with geff =
4∑
i=1

gi (1 + ∆i)
3/2 e−x∆i ,

(3.11)

where x = m1/T , σij is the cross section for the reaction Π̃±i Π̃∓j → Π̃0Π̃0 given in Eq. (3.7)
(summed over all kinematically accessible SM pions in the final state), gi = 2 is the number of
degrees of freedom of Π̃±i , and ∆i ≡ (mi −m1) /m1 is the mass difference between the heavier
dark pions and Π̃±1 .

In Fig. 4 we present 〈σeffv〉 for a range of f and mDM. By fitting our numerical results
to the approximation given in Eq. (3.9), we find the velocity-averaged effective cross-section
to be

〈σeffv〉 ' (1.5− 2)× 10−11 GeV−2
( mDM

5 TeV

)(65 TeV

f

)3

, (3.12)

where the lower and higher values correspond to one or three generations of SM fermions
respectively. For smaller f and larger constituent DM mass, 〈σeffv〉 is larger, resulting in
too much annihilation and hence not enough dark pions left over to produce the observed
abundance of the dark matter. Conversely, a lighter constituent dark matter mass and higher
confinement scale result in a lower dark pion annihilation cross-section and an overabundance
of dark matter.
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3.3 Deconfinement

The freeze-out of the dark pions determines the final comoving number density of dark pions,
which has an associated energy density, ρDP = m1nDP. At the time of deconfinement, each
dark pion flies apart into one χ as well as SM radiation. At that point, the dark matter
consists of freely streaming χ particles, with energy density,

ρDM =
mDM

m1
× ρDP = mDM × nDP , (3.13)

which is to be compared with the observed abundance of dark matter from cosmological
measurements, Ωh2 = 0.1200± 0.0012 [35].

We assume that the weak sector deconfines at temperature Tdc, where Tdc ∼ m1/100. In
estimating the relic density of χ, we assume that the entropy dump into the thermal plasma
from the deconfinement process is negligible1. After deconfinement, the free χ particles could
begin to annihilate into SM through the now unbound weak interactions, for which the cross-
section is parametrically σW ≈ α2

Wπ/m
2
DM, where αW ∼ 0.1 has presumably returned to the

value measured by experiments today. In our numerical scans, we verify that σW nDP � H

at x = 100 for the regions of (mDM, f) of interest, ensuring that no period of thermalization
after deconfinement occurs and therefore alters the dark matter relic density from Eq. (3.13).

3.4 Numerical Results

We numerically solve Eq. (3.10), adapting the infrastructure of ULYSSES [36], a publicly
available Python package developed to solve Boltzmann equations associated with leptogene-
sis. For each benchmark point, we determine the regions of the parameter space, (mDM, f) that
are consistent with the measured relic abundance. To perform this task, we use ULYSSES in
conjunction with MultiNest [37–39] (more precisely, pyMultiNest [40], a wrapper around
Multinest written in Python). We place flat priors on the parameters (mDM, f) and employ
the log-likelihood as the Multinest objective function:

logL = −1

2

(
Ωh2(mDM, f)− Ωh2

PDG

∆Ωh2

)2

, (3.14)

where Ωh2(mDM, f) is the calculated relic density for a point in the model parameter space,
Ωh2

PDG is the best-fit value of the relic density and ∆Ωh2 is the 1-σ experimental uncertainty
range of the relic abundance [35]. In the left panel of Fig. 4, we show the regions for which
the predicted relic abundance of dark matter is consistent with the observed abundance at
the one and two sigma. We find that multi-TeV χ masses (and f ∼ 60 TeV) are favored and
consistent with the perturbative unitarity bound [41], which, using the approximate analytic
form of 〈σeffv〉 Eq. (3.9), takes the form:

〈σeffv〉s−wave ≈
0.8mDM

f3
.

4π

64π3fmDMv
⇒ m2

DM .
5f2

64π2v
, (3.15)

1The vacuum energy in the confined phase is ∼ c0Λ4
W , where c0 is a constant. We require that this energy

is always smaller than the contribution from relativistic degrees of freedom in the Universe, g∗T 4. Assuming
deconfinement happens at a temperature Tdc = 10−4ΛW , requiring c0Λ4

W < g∗T
4
dc would imply that c0 . 10−14.
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Figure 4: The region of interest for the constituent dark matter mass, mDM, and the weak
confinement scale, f , for one generation (left) and three generation (right) cases. The solid
and dashed lines show where the DM relic density is consistent with observations at 1 and 2
σ respectively. We show the velocity-averaged effective cross section during freeze-out given
in Eq. (3.11). The grey shaded area is inconsistent with unitarity constraints. Note that for
both cases we start our scan at mDM = 500 GeV and that the highest points for our scans are
mDM = 8.5 TeV and 10.5 TeV for one generation and three generation case respectively. For
the benchmark shown above, BP1, gs = 0.8, eQ = 0.5 and s2

Q = 0.12.

where we substitute m2
DP = 64π3fmDM. For a freeze-out temperature of Tfo ' m1/30, the

unitarity limit constrains mDM . 1.3f , which cuts into the parameter regime favored by the
relic density at around mDM ∼ 10 TeV. Fig. 4 shows the unitarity limit on the region of
interest using the numerical results for 〈σeffv〉s−wave. The numerical results for BP1 and BP2
are qualitatively very similar. Our code, which calculates the effective cross-section and solves
the Boltzmann equations, for both the one- and three-generation case, is publicly available at
�.

4 Three Generations of Standard Model doublets and Dark Matter

For simplicity, we have outlined the freeze-out dynamics in the case of a single generation of SM
doublets together with the pair of vector-like fermionic SU(2)L doublets ({`, qr, qg, qb, χ1, χ2}).
In this Section, we generalize to three generations ({`i, qri , q

g
i , q

b
i , χ1, χ2} with i = 1, 2, 3) where

there are 90 pseudo-Goldstone bosons and an η′. The mass matrix is 91× 91 and, due to the
added complexity of three generations of SM doublets, the mass2 matrix contains off-diagonal
entries which depend non-trivially on the scan parameters (mDM, f). Therefore, unlike in the
one generation case, where we could perform the diagonalization of the mass squared matrix
analytically, in the three-generation case, we instead rely on a numerical diagonalization of the
mass-squared matrix to transform from the interaction to the mass basis for each parameter
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Pion # Mass squared U(1)Q SU(2)C
(mass basis) value charge charge

Πmass
1 1 64π2f

(
7fκ+ πmDM +

√
49f2κ2 − 10πfκmDM + π2m2

DM

)
0 1

Πmass
2 24 −1

2CAe
2
Qf

2 − 3
2CGf

2g2
s + CW f

2g2
s − 1

2CZe
2
Qf

2s2
Q +

CZe
2
Qf

2

6s2Q
+ 1

3CZe
2
Qf

2 ±1 2

Πmass
3 14 0 0 1

Πmass
4 6 −2CAe

2
Qf

2 − 2CZe
2
Qf

2s2
Q −

2CZe
2
Qf

2

9s2Q
+ 4

3CZe
2
Qf

2 ±1 1

Πmass
5 12 −1

2CAe
2
Qf

2 − 3
2CGf

2g2
s − CW f2g2

s − 1
2CZe

2
Qf

2s2
Q +

CZe
2
Qf

2

6s2Q
+ 1

3CZe
2
Qf

2 ±1 2

Πmass
6 6 64π3fmDM 0 1

Πmass
7 6 −2CAe

2
Qf

2 − 2CZe
2
Qf

2s2
Q + 2

3CZe
2
Qf

2 + 64π3fmDM ±1 1
Πmass

8 9 −4CGf
2g2
s 0 3

Πmass
9 12 −1

2CAe
2
Qf

2 − 3
2CGf

2g2
s − 1

2CZe
2
Qf

2s2
Q +

CZe
2
Qf

2

18s2Q
+ 64π3fmDM ±1 2

Πmass
10 1 64π2f

(
7fκ+ πmDM −

√
49f2κ2 − 10πfκmDM + π2m2

DM

)
0 1

Table 2: Table of mass squared values corresponding to mass basis states along with the
relevant SU(2)C ×U(1)Q charges. Three SM generations with χ1 and χ2 are included.

scan point. We perform the same procedure outlined in Section 2.1 to transform from the mass
to the U(1)χ basis, and compute annihilation cross-section as described in Section 3.1, but in
the three-generation case, there are 12 charged dark pion states. We find that there are ten
distinct pion masses as shown in Table. 2. Rather than provide the complete indexing of states,
we provide the number of pions (second column) with each mass eigenvalue. Interestingly,
several new states, such as the color triplet, appear in the multi-generational case.

In the right panel of Fig. 4, we show the regions for which the predicted relic abundance
of dark matter in the three generation case is consistent with the observed abundance. The
favored region that explains the DM abundance in the three-generation case is approximately
the same as the simplified one generation case but favors slightly higher f values for a given
mDM. Another slight difference is that the unitarity constraint is more stringent due to the
higher values of 〈σeffv〉s−wave in the three-generation case.

5 Outlook

Our results indicate that a modification to the strength of the SU(2)L weak coupling dra-
matically transforms the nature of the freeze-out process for an SU(2)L-charged WIMP. For
a vector-like pair of doublets, we find that the weak confinement scenario favors a range of
masses (depending on the early SU(2)L confinement scale) around O(1− 10) TeV and can be
much larger than the ' 1.1 TeV favored by a standard cosmological history [2]. This highlights
the possibility that the physics of the dark matter itself could be drastically different at the
time of freeze-out from today. In particular, the constraints on a several TeV WIMP are quite
different from those restricting a ∼ 1 TeV mass particle.
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Direct searches for WIMPs scattering with heavy nuclei remain an important challenge.
At ∼ 10 TeV, XENON1T data restricts the cross-section to scatter with a nucleon to be smaller
than about ∼ 10−44 cm2 [5], which is still incompatible with the cross-section mediated by
full strength Z boson exchange (∼ 10−38 cm2). However, this bound can be avoided by
introducing Majorana masses via a dimension-5 operator of the form,

L∆M =
1

M1
(H†χ1)(H†χ1) +

1

M2
(Hχ2)(Hχ2) + h.c. (5.1)

whereM1,2 parameterize the interaction strength and parentheses indicate how SU(2)L indices
are contracted. After electroweak breaking, these operators result in Majorana masses of order
v2/M1,2, which split the Dirac χ into two Majorana fermions, in close analogy with the see-
saw mechanism for generating neutrino masses. The Majorana particles have vanishing vector
currents, and thus Z boson exchange mediates inelastic scattering, which is kinematically
suppressed once the mass splitting is larger than the typical kinetic energy of the WIMPs
in the Galactic halo [42, 43]. Provided the scales M1 and M2 are sufficiently large, these
operators play essentially no role in freeze-out, and do not themselves mediate an observable
scattering with nuclei via Higgs boson exchange.

Despite its full-strength electroweak interactions, a multi-TeV dark matter particle is too
heavy to be accessible at the LHC. Even when kinematically accessible, unless there is mixing
with another nearby state via electroweak symmetry-breaking, the signatures at colliders are
challenging because the charged state is expected to be degenerate with its neutral counter-
part to within a few hundred MeV [44], and thus requires mono-jet or disappearing track
analyses. As a result, even a future 100 TeV hadron collider is expected to struggle to reach
sensitivity to TeV mass electroweak doublets [45].

Indirect searches for the annihilation products of WIMP annihilation, for example, from
observation of high energy γ-rays, can reach sensitivity to around 10 TeV for electroweak-sized
annihilation cross-sections [6], particularly for masses for which the annihilation experiences
a Sommerfeld-like enhancement due to the exchange of weak bosons. These bounds exhibit
a considerable sensitivity to the distribution profile of the dark matter around the Galactic
center, which is not well constrained by observation (see, e.g. Ref. [7] for discussion). Despite
these challenges, a future gamma-ray observatory such as the Cherenkov Telescope Array [46]
could offer the best chance of a direct observation of dark matter in such a scenario.

Looking forward, it would be interesting to explore further the consequences of a period
of early SU(2)L confinement. It may be that such an epoch could enable new possibilities to
understand other mysteries of the early Universe, such as the primordial asymmetry between
baryons and anti-baryons. And more widely, our results illustrate the general truth that
the early Universe may well turn out to have been more weird and wonderful than simply
extrapolating the SM to high temperatures would lead us to expect. Exploring the space
of possibilities and how to constrain them with experimental measurements will remain an
essential task for particle physics.
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A Matrices for One Generation

The explicit form of the matrices in Eq. (2.3) for a single generation of Standard Model
doublets in addition to χ1 and χ2 are:

L1 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1
2 0 0

0 0 1
2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, L2 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 − i
2 0 0

0 0 i
2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, L3 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1
2 0 0 0

0 0 0 −1
2 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

Q =



1
2 0 0 0 0 0

0 −1
2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1
2 0

0 0 0 0 0 −1
2


, L1,+ =



0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, L2,+ =



0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

L1,− =



0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, L2,− =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, M =

mDM

2



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


,

J =



− s2Q
2 0 0 0 0 0

0
s2Q
2 −

1
3 0 0 0 0

0 0 1
6 0 0 0

0 0 0 1
6 0 0

0 0 0 0 − s2Q
2 0

0 0 0 0 0
s2Q
2


.

(A.1)
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