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Abstract

Network analysis can provide insight into key organizational principles of brain structure and help 

identify structural changes associated with brain disease. Though static differences between 

diseased and healthy networks are well-characterized, the study of network dynamics, or how 

brain networks change over time, is increasingly central to understanding ongoing brain changes 

throughout disease. Accordingly, we present a short review of network models of spread, network 

dynamics and network degeneration. Borrowing from recent suggestions, we will divide this 

review into two processes by which brain networks can change: “Dynamics on networks,” which 

are functional and pathological consequences taking place atop a static structural brain network; 

and “dynamics of networks,” which constitutes a changing structural brain network. We focus on 

diffusion MRI-based structural or anatomic connectivity graphs. We address psychiatric disorders 

like schizophrenia; developmental disorders like epilepsy; stroke; Alzheimer’s disease and other 

neurodegenerative diseases.

Keywords

brain networks; connectomics; graph theory; diffusion tensor imaging; neurodegeneration; 
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1. Introduction

The brain is a large complex network whose processing elements communicate along neural 

projections. At various spatial scales the processing elements can be neurons, local circuits 

or large gyri, and the connections between them may be constituted by local dendritic and 
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axonal arbors, all the way to long range bundles of axonal projections. Recent advances in 

graph-based network analyses make it possible to model, from a local to a global level, the 

structural wiring that supports the brain’s functional behavior (1–4). The mechanistic role of 

structural networks for shaping brain dynamics is a key rationale for mapping the human 

connectome (4). The emerging field of network neuroscience visualizes the brain network as 

a graph consisting of vertices representing regions and edges as connections between them. 

Edges can be constructed from a wide array of noninvasive human neuroimaging 

methodologies to represent both structural and functional networks.

Quickly following the birth of the connectome came pathoconnectomics, which focuses on 

mapping abnormal brain networks, with the overall goal of understanding brain disorders at 

the causal mechanistic level (5, 6). Disturbances in global and local network organization are 

well documented in psychiatric disorders like schizophrenia (SZ) (7–11), developmental 

disorders like epilepsy (12), stroke (13, 14), severe brain injury (15) as well as 

neurodegenerative diseases including Alzheimer’s disease (AD) (16), frontotemporal 

dementia (17) and amyotrophic lateral sclerosis (18). For reviews, see (6, 19–22).

Though static differences between diseased and healthy networks are well-characterized, 

ongoing brain changes throughout disease are less understood. Hence, this review will focus 

on a narrower set of concepts involving spread on networks rather than network statistics. 

This motivates the exploration of network dynamics, or how networks change over time 

(23). The mechanistic role of structural networks for shaping brain dynamics is a key 

rationale for mapping the human connectome (24). Here we review recent advances on how 

network dynamics induced by neurological diseases cause widespread impairment, with a 

specific focus on the analysis of diffusion MRI-based structural connectivity graphs.

Broadly, disease can affect the anatomic network in two possible ways: First, disease can 

cause malfunctioning of the nodes of the graph directly and cause either localized or 

widespread functional impairment by propagating the disease effect along neural 

connections to other areas. Second, some diseases primarily target the neural connections 

themselves, for instance via demyelination and axonal injury, leading to anomalous 

connectivity that then cause widespread information-processing impairments and aberrant 

function (22).

We will refer to these two modes respectively as disease dynamics on brain networks, and of 
brain networks. This rubric is borrowed from a recent discussion by Bassett and Sporns in 

2017 (Figure 1). This review identifies how various diseases induce dynamics of and on 

networks, and extends the latter to include pathology transmission on networks, especially 

pertinent to emerging models of neurodegeneration. This of/on dichotomy is a slight over-

simplification of network degeneration, since some diseases can have both kinds of effects 

(23). For example, AD exhibits dynamics both “of” and “on” networks (25, 26). 

Nonetheless, this framework provides a parsimonious and convenient understanding of 

network effects. Exceptions and caveats will be noted wherever applicable.
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1.1. Current techniques of network construction, graph theory metrics and their 
limitations

A technical overview of current methods of constructing brain anatomic networks is 

contained in the supplemental information; this description is selective and brief rather than 

thorough, and the reader is pointed to several comprehensive review papers on this topic. 

Before discussing network spread, it is important to understand that network construction 

comes with several caveats, which have been reviewed comprehensively (27, 28). Briefly, 

tractography is known to yield false-positive and false-negative connections, where as a 

consequence, spurious tracts might be detected as plausible and genuine ones as invalid. 

Erroneous or biased conclusions can result from missing, partial or duplicate fibers (28). 

Similarly, graph theory metrics of structural networks suffer from pitfalls arising from lack 

of reliable approaches to edge thresholding, binarization and multiple comparisons (29, 30). 

These choices can affect the size, robustness and intrinsic organization of a network. Several 

network summary metrics (e.g., efficiency and path length) are non-linear and sensitive to 

such error because they are defined in respect to implied neighbors. These metrics are 

examined extensively in prior reviews, see (19–22).

2. Neurodegeneration: Dynamics ON or OF brain networks?

Nearly all neurodegenerative disorders are characterized by stereotypical patterns of disease 

progression measurable from longitudinal volumetric MRI analysis (e.g. FreeSurfer) (31). 

AD-associated atrophy, tau pathology, amyloid pathology and metabolic load all display 

highly stereotyped progression into brain circuits, from entorhinal cortex and hippocampus 

to temporal, parietal and eventually frontal regions (32, 33). This closely mirrors 

pathological tau spread first observed by Braak (34, 35). These converging results suggest 

that all relevant biomarkers of disease - atrophy, tau and amyloid – exhibit progression that 

follows fiber pathways rather than proximity (36–41). This section describes recent studies 

of network spread in neurodegeneration, with a focus on Alzheimer’s disease, the most 

prevalent degenerative disease.

2.1 Network degeneration implies dynamics of networks.

Conventionally, degeneration is thought to cause progressive disconnections of vulnerable 

fiber pathways via secondary Wallerian degeneration, loss of signaling, axonal retraction and 

post-synaptic dendrite retraction (36–38, 42), collectively referred to as network 
degeneration; for a review see (43). Affected brain regions send disordered information to 

connected regions, where they cause dysfunction and atrophy over time (42). Although 

neither Powell et al., 2018 (44) nor Oxtoby et al., 2017 (26) found significant alteration in 

global network statistics in AD, the latter, using a data-driven event-based model for 

sequencing the progression of AD patients, demonstrated that node-level measures of 

network hubs deteriorate. This deterioration causes progressive anatomical network 

disruption, not just neurodegeneration. A wider body of evidence suggests different 

dementias selectively target distinct intrinsic functional networks (33, 36, 42, 45) perhaps 

due to differential patterns insults governed by genetic, molecular, metabolic or oxidative 

factors (46). This is an example of dynamics of networks, since network topology is itself 
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progressively altered. For a graph-theoretic exploration of progressive disconnection see 

(47), and for a comprehensive review see (22).

2.2 Networked spread of misfolded proteins: An example of dynamics on networks.

An alternate view has emerged, that instead of being primarily impaired in degeneration, the 

network serves mainly as a conduit for the transmission of disease – an example of 

dynamics on networks. Recently, it was shown (44) that despite measurable changes in 

integrity of specific fiber tracts, the overall structural network organization in AD is 

preserved, with similar graph metrics to controls. The authors state that the combined effect 

of edge thresholding, binarization and non-inclusion of subcortical regions might be 

responsible for global topological disturbances found in previous reports. Structural 

connectivity was found to mediate the relationships between regional atrophy, metabolism 

and amyloid in AD (15). This idea is underpinned by evidence that progression might occur 

via “prion-like” protein aggregation followed by trans-synaptic transmission of toxic 

proteins along neuronal pathways (48–54). Indeed, toxic tau and other proteins have the 

capacity to misfold, induce non-folded tau to adopt pathological conformations in a 

template-directed manner, travel across synapses into connecting neurons, and finally march 

throughout local and then long-range circuits, slowly ramifying across widespread brain 

circuits (48, 50, 52–54). In this manner pathology can spread along axonal pathways either 

anterogradely, or retrogradely toward the cell body, or both (52–54). The cellular processes 

involved in the transmission of synuclein, for example, were recently reviewed 

comprehensively by Bieri et al (55), and pictorially depicted in Figure 2A. In Figure 2B the 

graph analog of these cellular-level transneuronal transmission and transport processes is 

illustrated on the whole brain network.

2.3 Models of trans-neuronal network propagation

The first aspect of the emerging model – template-driven protein aggregation - has benefitted 

from quantitative modeling using differential equations, mainly in the prion disease context. 

For a recent review see (56). These include the original heterodimer model (57), nucleated 

polymerization (NPM) (58) and Smoluchowski aggregation model (59, 60). The 

incorporation of classical spatial diffusion was proposed into prion aggregation models (61), 

into NPM model (62) and into truncated Smoluchowski’s equations (60). Models are listed 

and briefly described in Table 1.

The misfolded and aggregated proteins can travel along propagation pathways (63) via 

spatial gradient-driven processes, which would imply dependence on fiber length. However, 

it is not clear whether protein transmission occurs via passive diffusion, active axonal 

transport or other distance-independent processes – see reviews (64, 65). In the latter case, 

the overall density of fiber projections, captured via the connection strength measure used in 

graph theory, would assume higher importance than fiber distance-dependent spatial 

diffusion (see Figure 2B). Franziska Matthäus (62) implemented an epidemiological spread 

model on a simple lattice network topology, as did (66). The Network Diffusion Model 

(NDM) mathematically derived the behavior of protein transmission as a graph heat 

equation under a connectivity-driven rather than spatial- or fiber distance-driven mechanism 

(39). They obtained an analytical, closed-from solution for transneuronal propagation on 
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whole brain structural connectivity networks. The macroscopic patterns predicted by the 

model, via spatially distinct Laplacian “eigen-modes,” were consistent with known patterns 

of atrophy in various dementias. An epidemic spreading model of network spread was given 

by (25), which included, in contrast to the NDM model, explicit production/clearance terms, 

and accessed via stochastic rather than analytical equations. The ESM model was 

successfully validated on PET Amyloid-ß patterns in 733 patients. Other network models 

were described in (67).

Although these network models were initially applied to human data, recently it was shown 

that network spread is equally effective at predicting the progression of tau pathology in 

transgenic mouse models (68), see Figure 3. This study showed using a series of statistical 

linear mixed models that the contribution of network connectivity far exceeds innate region-

specific molecular factors governed by regional gene expression of AD-implicated genes. A 

caveat here is that network transmission models perform with higher accuracy for tau 

pathology than for beta amyloid, which appears to accommodate spatial diffusion with equal 

or higher plausibility, as shown recently (69). In similar vein, it was recently shown (70) via 

a series of mixed statistical models with both NDM and regional gene expression as 

predictors, only the former was a significant predictor of regional atrophy of human AD 

patient. This finding suggests innate properties of brain regions are insufficient to explain 

regional vulnerability to AD, whereas network transmission is a reliable predictor. Finally, 

general, high-level graph models of communication dynamics are also available; see (71). A 

graph model of cooperative spread illustrated that more central “hub” regions (those that are 

most well connected to the rest of the brain) in the network facilitate early spreading. 

Conversely, short paths (the set of graph connections required to connect any two nodes with 

the smallest sum of connection weights) accelerate communication cascades (72).

Clinical utility.—By successfully formalizing qualitative neuropathological observations 

into quantitative network models, these emerging approaches can have wide applicability. 

The NDM was shown to have high ability to predict future disease patterns from the baseline 

scans of AD spectrum patients (40). However, this approach has yet to be replicated by 

others. Interestingly, these models can also be used to infer the likely regions of origin in 

individual cases. Seeding patterns from potentially multiple pathologic attacks over time 

were inferred by (73) using a sophisticated but expensive gradient descent algorithm. A 

simplified and less computationally demanding algorithm for the inference of likely initial 

seed patterns was proposed by (74) using the sparsity-preserving approach. Normally, model 

fitting is accomplished by minimizing a suitable cost function that is designed to penalize 

deviation from observed data. This method fails when the problem is ill-posed, whereby 

there is no unique minimum. The approach of (73) and (74) resolve this problem by adding a 

sparsity-preserving penalty, under the assumption that the desired initial pathology seeding 

pattern must be non-zero at only a small number of sites. Such penalty terms are widely used 

in the field of inverse problems, especially in image processing, in cases where there is a 

prior expectation that the solution be sparse.
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2.4 Other degenerative diseases

Pathological commonality and overlap is observed in various dementias, and specific 

biochemical properties of the pathologic entity may be inconsequential for the macroscopic 

and chronic clinical manifestation of disease (36, 45). Tau, A-beta and alpha-synuclein are 

present to varying degree in most degenerative diseases: AD, semantic dementia, 

Frontotemporal Dementia (FTD) (75), dementia with Lewy bodies (DLB) and posterior 

cortical atrophy (76). Furthermore, it was shown that resting-state functional connectivity of 

healthy brain regions is correlated with vulnerability to atrophy in five different 

neurodegenerative diseases (36, 45). Utilizing expression of a DNA binding protein, 

pTDP-43, from post-mortem brain tissue, Schmidt and colleagues constructed a network 

model to simulate pathology spread in Amyotrophic lateral sclerosis (ALS) and found that 

pTDP-43 in ALS may exhibit dynamics similar to amyloid and/or tau in dementia, following 

a topological pattern of spread along the brain’s anatomical pathways (77). In a rare 

neurodegenerative tauopathy called Progressive Supranuclear Palsy (PSP), pathology 

patterns were likewise recapitulated utilizing a structural connectome-based NDM (41); see 

Figure 4. This work also highlights the potential utility of using a directional connectome, as 

defined by the polarity of individual axonal projections (soma to axonal terminal or vice 
versa). Although not available from dMRI, a directional connectome can be inferred from 

tracer studies in mouse models (41). Alternatively, directionality of the connectome can be 

inferred from emerging methods involving metabolic activity mapping (78).

Together, these network dynamic models provide a mechanical explanation of macroscopic 

archetypal patterns of regional specificity in various dementias, whereby diverse 

degenerative etiologies share a common network-based progression mechanism. Network 

dynamics might be sufficient to explain archetypal patterns of regional specificity in various 

dementias, with no particular need to invoke region- or tissue-specific factors of selective 

vulnerability. In this view the observed patterns of disease are simply a mechanical result of 

the way the disease moves around within the brain network (39).

3. Schizophrenia: Dynamics “on” or “of” networks?

There is evidence for schizophrenia (SZ) for being a disorder “on” as well as “of” networks. 

However, network models capable of simultaneously testing competing hypotheses have not 

yet been developed. The following section will review evidence for both hypotheses, 

highlighting the need for additional network models to be tested in psychiatric disease.

3.1 Support for dynamics “on” networks in SZ

Regional atrophy in SZ shows progressive waves of tissue loss over time (79–83), which 

might be mediated by connectivity – an example of dynamics “on” networks. Such 

topological changes may be the outcome of different growth processes and 

neurodevelopmental abnormalities in SZ that impact large multimodal cortical organization 

(84). Indeed, functional network models of SZ suggest changes in synaptic excitation and 

inhibition in schizophrenia disrupt delta rhythm-mediated cortico-cortical communication, 

while enhancing thalamocortical communication. The contrasting relationships between 

delta and higher frequencies in thalamus and cortex generate frequency mismatches in inter-
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regional connectivity, leading to a disruption in temporal communication between higher-

order brain regions (85). Since these functional connectivity changes between regions take 

place atop a fixed structural network, they may be modeled as different modes of activity 

spread on the anatomic network, e.g. using theoretical network spread models (86, 87).

3.2 Support for dynamics “of” networks in SZ

Functional changes, such as cortical atrophy and EEG, are accompanied by extensive 

structural damage (88), which lends support to dynamics “of” networks hypotheses. 

Diffusion MRI studies report altered WM integrity in SZ (89–92) and graph theory analysis 

shows widespread disturbances in structural organization, as reflected by metrics such as 

path length, centrality, efficiency and clustering coefficient (8, 10, 93–96).

Age-dependent network alternations.—As in any developmental disorder, many of 

the network-level alterations in SZ have a strong age effect. Some studies suggest brain 

abnormalities exist early in the disease that lessen over time as the brain appears to 

normalize (97–101). However, age-related normalization is controversial, as other work 

suggests network integrity deteriorates throughout disease (102–105). There are differing 

perspectives on how the network changes in SZ as a joint function of disease, age and 

regional gene expression (83).

Powell et al. 2018 computationally modeled age-and genetic expression-related structural 

network changes in SZ (100). In a cross-sectional design, they found that control network 

topology degrades in a stereotyped linearly degrading manner, while corresponding patient 

networks experience a degree of post-onset compensatory rewiring. Younger adult patients 

(ages 20–37), show compromised topology, whereas older adult patients (ages 38–68) show 

linear network degradation and less pronounced network differences between patients and 

controls. This was presented as evidence of compensatory rewiring, reflective of the 

dynamic nature “of” brain networks.

4. Epilepsy: Utilizing network models to test competing hypotheses of 

dynamics

Epilepsy is a canonical example of neural dysfunction caused by the spread of 

hypersynchrony and hyperactivity on the anatomic network. Morphometric analysis using 

MRI indicates progressive extra-hippocampal and extra-temporal atrophy (106–111) in 

temporal lobe epilepsy (TLE), likely a result of seizures (112). Since damaged regions tend 

to be functionally and anatomically connected to seizure-prone structures (108, 113), this 

suggests a strong network effect confirmed by graph theory analysis (12, 110, 114) see 

reviews in (6, 115, 116).

Atrophy distribution in TLE may either be consequence of the propagation of epileptogenic 

activity (113, 117) resulting from excitotoxicity (12, 118, 119) (dynamics on networks); or 

due to a progressive deafferentation process followed by gradual and progressive neuronal 

loss in connected remote regions (dynamics of networks). Several mechanisms for 

deafferentation-induced atrophy are known (120, 121). Further, seizure spread may not be 
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related to atrophy (122), while white matter fiber integrity was correlated with remote 

atrophy (120). To understand which of these models is more predictive of empirical atrophy 

patterns in TLE, Abdelnour and colleagues (123) modeled both processes using network 

spread, following prior theoretical work (86, 87). They found that while both models can 

reproduce the empirical atrophy distribution, the model corresponding to dynamics of 
networks, out-performs the hyperactivity spread model corresponding to dynamics on 
networks. However, further graph theoretic research incorporating EEG and MEG networks 

(124) is needed to resolve this matter. A good example of what is needed is provided by 

(125) where a detailed network of spiking neurons was used to simulate the spread of 

hyperexcitability. Apart from analytical models like network diffusion (86, 87), other graph 

theoretic models of the structure-function relationship are available on human neuroimaging 

data, for example (126).

5. Summary and Outlook

This mini review was aimed at surveying current approaches of modeling the network effect 

of neurodegenerative and psychiatric diseases, under the rubric of dynamics on versus of 
brain networks. This scheme is pedagogically useful but clearly has limitations. Many brain 

disorders, including those highlighted here, do not sort themselves neatly into one or the 

other box. Generally, any process that impairs neural systems will also secondarily alter the 

network itself, hence a strong interplay may be expected. Further, any model of network 

dynamics, whether of or on, cannot address disease etiology or pathophysiology; its value 

lies in showing that the macroscopic effect of network dynamics can largely explain the 

stereotyped patterns of disease irrespective of individual subjects’ and diseases’ etiologic 

factors. Nonetheless, this review suggests that a distinction between dynamics on and of 

networks is important in understanding how disease ramifies on brain networks. Too 

frequently, current graph theoretic research takes statistical or descriptive approaches aimed 

at demonstrating disease-induced alterations in network statistics but are unable to trace the 

underlying network dynamical processes that cause those changes. The value of network 

dynamics is that understanding the manner of network ramification can lead to clinical, 

diagnostic and therapeutic interventions. The field of network dynamics and network spread 

may well be the next big frontier in brain-related graph theory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dynamic network models. Adapted (permission pending) from Bassett and Sporns, 2017. In 

the field of network science, two types of dynamic processes are studied in some detail: 

Dynamics on networks and dynamics of networks. (a) Dynamics on networks indicates that 

the activity (or some other property of interest) of nodes changes as a function of time. Here 

we illustrate decreasing activity (pink), increasing activity (gray) and changes in the pattern 

of activity (blue) over time in distinct network modules or communities. (b) Dynamics of 

networks indicates that the edges of the network themselves change either in their existence/

absence or in their strength. Here we illustrate the coalescence of modules (blue and yellow), 

as well as the transfer of allegiance of a single region from one module (pink) to another 

(yellow) over time.
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Figure 2. 
Modeling the process of pathology transmission between neurons using network spread. A: 

Pictorial example of transmission of α-syn between neurons. α-Syn fibrils can be 

internalized both in the dendrite/cell body compartment and in axons. α-Syn fibrils are 

actively transported along microtubules in both anterograde and retrograde direction, 

whether directly in the cytoplasm or in transport vesicles following endocytosis. 

Aggregation occurs via the growth of α-syn fibrils upon misfolding and recruitment of 

soluble endogenous α-syn proteins. Figure adapted with permission from Bieri, et al, 2018. 

B: Illustration of the whole brain connectivity network, with nodes representing brain 

regions, and connection strengths Cij representing fiber connectivity between regions i and j. 
On this network the cellular-level trans-neuronal transmission and transport processes 

depicted in panel A are modeled via macroscopic network spread shown in orange.
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Figure 3. 
Network Diffusion of Tau Pathology. Network diffusion model implemented on the 

mesoscale mouse connectome, starting from hippocampal seeding (top row) closely 

recapitulates the 3- and 6-month follow up pattern of tau proliferation in a transgenic AD 

mouse model (bottom row). Spheres represent mouse brain structures, color coded by lobe 

(cortical = cyan, limbic = red), and sphere size represents tau concentration. This kind of 

validation of network spread is critical since mouse data can directly measure both 

connectivity (via viral tracers) and tau pathology (via AT8 staining). Adapted with 

permission from Mezias et al., 2017.
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Figure 4. 
Demonstration of NDM in predicting PSP atrophy. Top: Regional PSP group atrophy t-

statistic. Middle: NDM predicted atrophy pattern from a seed placed at the hypothalamus. 

Bottom: snapshots of time-resolved NDM seeded at hypothalamus, showing progressive 

atrophy of subcortical and temporal areas. Spheres are color coded by lobe 

(green=subcortical, blue = temporal, brown = frontal, red = parietal, yellow = occipital). 

Spheres are sized according to regional atrophy. Reproduced with permission from (Pandya 

et al, 2017a).

Ashish and Fon Page 19

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ashish and Fon Page 20

Table 1.

Selected mathematical modeling papers on neurodegeneration (protein aggregation and network spread) 

highlighted in the current review. Please refer to section 2.3 for brief description of individual models listed 

below, and to the original papers for further information.

Name
(Citation)

Description Comments Validation

Protein Aggregation Models

Heterodimer model (57) 
Prusiner et al. 1990

Original landmark, template-driven 
heterodimer model of prion spread

Local protein aggregation, not 
network-based In vitro

NPM (58) Masel et al. 1999
Nucleated Polymerization Model: Monte 
Carlo discrete event simulations to model 

prion aggregation

Local protein aggregation, not 
network-based In vivo (animal)

Smoluchowski Aggregation 
(60) Bersth et al. 2016

Smoluchowski’s coagulation equation 
describes time evolution of concentration 

of polymers as they coagulate

Local protein aggregation, not 
network-based. Simultaneously 
modeled Amyloid cascade and 

prion hypotheses

X

Heterodimer model (61) 
Payne et al. 1998

Prion aggregation described utilizing 
concentration dynamics of 2 strains of 

prions undergoing competition

Local protein aggregation, not 
network-based In vivo (animal)

Matthaus (62) Matthaus et al. 
2006

Applied classic epidemic spread models of 
networks to recapitulate prion-like disease Used synthetic lattice networks In vitro

Network Spread Models

NDM (39) Raj et al. 2012 Applied graph diffusion to model AD 
progression on large scale brain networks

Real human connectomes. 
Suggested spatially distinct 

“eigen-modes” which mediate 
network vulnerability

In vivo (Human 
neuroimaging). 

Validation limited to 2–4 
year follow-up

NDM v gene expression (70) 
Acosta et al., 2018

Compared graph diffusion against innate 
regional vulnerability (given by healthy 

regional gene expression) as predictors of 
the observed crosssectional atrophy 

patterns in AD

Found that NDM is a far better 
predictor of AD topography than 
is innate regional vulnerability

Validation on cross 
sectional regional atrophy 

data obtained from in 
vivo human MRI

ESM (25) Iturria-Medina et 
al. 2014

Epidemic Spreading Model in AD 
interrelating structural connectivity and in 

vivo amyloid beta

Explicit Amyloid beta 
production/ clearance terms

In vivo (Human 
neuroimaging) validation 

on Amyloid PET

General Graph Theory Models

Graph Spread Koenigsberger 
et al., 2017 (71) Misic et al 

2015 (72)

Models of graph spread, based on 
cooperative and competitive spreading 

dynamics on human connectomes

Model uses general principles of 
spread rather than biophysical 

modeling of pathology

In vivo (Human 
neuroimaging)
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