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ABSTRACT OF THE DISSERTATION 

 

Methods and models for the analysis of genetic variation across species  

using large-scale genomic data 

 

by 

 

Tanya Ngoc Phung 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2018 

Professor Kirk Edward Lohmueller, Chair 

 

Understanding how different evolutionary processes shape genetic variation within and 

between species is an important question in population genetics. The advent of next generation 

sequencing has allowed for many theories and hypotheses to be tested explicitly with data. 

However, questions such as what evolutionary processes affect neutral divergence (DNA 

differences between species) or genetic variation in different regions of the genome (such as on 

autosomes versus sex chromosomes) or how many genetic variants contribute to complex traits 

are still outstanding. In this dissertation, I utilized different large-scale genomic datasets and 

developed statistical methods to determine the role of natural selection on genetic variation 

between species, sex-biased evolutionary processes on shaping patterns of genetic variation on 

the X chromosome and autosomes, and how population history, mutation, and natural selection 
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interact to control complex traits. First, I used genome-wide divergence data between multiple 

pairs of species ranging in divergence time to show that natural selection has reduced divergence 

at neutral sites that are linked to those under direct selection. To determine explicitly whether 

and to what extent linked selection and/or mutagenic recombination could account for the pattern 

of neutral divergence across the genome, I developed a statistical method and applied it to 

human-chimp neutral divergence dataset. I showed that a model including both linked selection 

and mutagenic recombination resulted in the best fit to the empirical data. However, the signal of 

mutagenic recombination could be coming from biased gene conversion. 

Comparing genetic diversity between the X chromosome and the autosomes could 

provide insights into whether and how sex-biased processes have affected genetic variation 

between different genomic regions. For example, X/A diversity ratio greater than neutral 

expectation could be due to more X chromosomes than expected and could be a result of mating 

practices such as polygamy where there are more reproducing females than males. I next utilized 

whole-genome sequences from dogs and wolves and found that X/A diversity is lower than 

neutral expectation in both dogs and wolves in ancient time-scales, arguing for evolutionary 

processes resulting in more males reproducing compared to females. However, within breed 

dogs, patterns of population differentiation suggest that there have been more reproducing 

females, highlighting effects from breeding practices such as popular sire effect where one male 

can father many offspring with multiple females. 

In medical genetics, a complete understanding of the genetic architecture is essential to 

unravel the genetic basis of complex traits. While genome wide association studies (GWAS) 

have discovered thousands of trait-associated variants and thus have furthered our understanding 

of the genetic architecture, key parameters such as the number of causal variants and the 
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mutational target size are still under-studied. Further, the role of natural selection in shaping the 

genetic architecture is still not entirely understood. In the last chapter, I developed a 

computational method called InGeAr to infer the mutational target size and explore the role of 

natural selection on affecting the variant’s effect on the trait. I found that the mutational target 

size differs from trait to trait and can be large, up to tens of megabases. In addition, purifying 

selection is coupled with the variant’s effect on the trait. I discussed how these results support 

the omnigenic model of complex traits.  

In summary, in this dissertation, I utilized different types of large genomic dataset, from 

genome-wide divergence data to whole genome sequence data to GWAS data to develop models 

and statistical methods to study how different evolutionary processes have shaped patterns of 

genetic variation across the genome.  
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CHAPTER 1 

Introduction 

 DNA is the genetic blueprint that determines an individual’s trait such as eye color or 

height or susceptibility to certain diseases. DNA differs in different regions of the genome, 

between individuals of the same species, and between individuals from different species. 

Differences in DNA among individuals are termed genetic variation. Understanding what 

evolutionary processes shape genetic variation across the genome within and between species 

has been one of the main research goals in population genetics. This understanding is crucial to 

understand the evolutionary history of different species. In addition, understanding how and why 

DNA varies across the genome is key to unravel the genetic basis of human traits and diseases.  

It has been observed that at sites that are expected to evolve under a neutral evolutionary 

model (neutral sites), genetic diversity is lower in regions of low recombination as compared to 

at regions of high recombination (Begun and Aquadro, 1992). Studies have attributed this pattern 

to the role of natural selection in reducing genetic diversity at regions of low recombination in 

multiple species (Cutter and Payseur, 2013; Lohmueller et al., 2011). Population geneticists have 

postulated two mechanisms to describe how natural selection could affect linked neutral sites: 

genetic hitchhiking and background selection (Cutter and Payseur, 2013). Though there is a 

consensus that linked selection has reduced genetic diversity within a population, whether linked 

selection has also shaped neutral divergence across the genome was still a topic of debate.  

To address this long-debated question in population genetics, in Chapter 2 of my 

dissertation, I analyzed genome-wide divergence data from pairs of species with different split 

times (i.e. recent split time as in human and chimp and distant split time as in human and 

mouse).  I also developed a coalescent framework to test whether a neutral model or a model 
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with linked selection can recapitulate empirical patterns. This work highlights how widespread 

natural selection is across the genome. 

 An empirical observation that supports the role of natural selection in reducing linked 

neutral divergence explored in Chapter 2 is the positive correlation between neutral divergence 

and recombination. While Chapter 2 concluded that linked selection has reduced linked neutral 

divergence at regions of low recombination, previous research has proposed that mutagenic 

recombination could also generate a positive correlation between neutral divergence and 

recombination (Hellmann et al., 2003). To determine to whether and to what extent mutagenic 

recombination contributes to shaping patterns of divergence, in Chapter 3 of this dissertation, I 

developed a statistical method that models linked selection by reducing the ancestral population 

using estimates of linked selection (i.e. the 𝐵 values as in McVicker et al. and models mutagenic 

recombination by a linear relationship between mutation rate and recombination rate. I also 

accounted for the potential effect of biased gene conversion by filtering the data to remove weak 

to strong mutations. I applied this method to human-chimp neutral divergence data to show 

whether and to what extent linked selection, mutagenic recombination, and biased gene 

conversion can explain the positive correlation between neutral divergence and recombination. 

This chapter confirms the role of natural selection and also illustrates the importance of 

correcting for biased gene conversion.  

In Chapter 2 and Chapter 3 of this dissertation, I explored what evolutionary processes 

affect DNA differences between species. In addition to varying within and across species, DNA 

also varies across different regions of the genome, particularly between the autosomes and the 

sex chromosome. Understanding genetic variation between the X chromosome and the 

autosomes have yielded insights into how sex-biased processes such as sex-biased migration 
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patterns or sex-biased mating practices have shaped the evolutionary history of humans 

(Hammer et al., 2008; Keinan et al., 2009). In recent years, due to the advent of next generation 

sequencing, many whole genomes have been sequenced in dogs to study their evolutionary 

history because of intense interest in dog domestication from both scientists and the public alike. 

Sex-biased mating practices are prevalent in both the wild and domesticated populations of 

canids. For example, male-biased migration and multiple paternity have been observed in wolves 

(Vonholdt et al., 2008). In dogs, the desire for popular sire has led to female-biased mating 

where one male fathers many offspring with multiple females (Ostrander and Kruglyak, 2000). 

However, existing population genomic studies of canid demographic history has not tested 

whether any evolutionary processes have been sex-biased. Given how comparing and contrasting 

genetic variation between the X chromosome and the autosomes has been fruitful in humans in 

understanding the role of evolutionary forces, in Chapter 4 of this dissertation, I utilized whole 

genome sequences of dogs and wolves to study whether their evolutionary history has been sex-

biased. This work highlights how genetic data are used to validate mating patterns observed in 

field studies.   

 The work presented in Chapter 2, 3, and 4 of this dissertation has focused mainly on 

understanding how different evolutionary processes have impacted genetic variation across the 

genome. An equally important goal of studying genetic variation is to understand its role in 

contributing to a phenotypic trait. In fact, determining the number of trait-associate variants for a 

trait has been a key focus of medical genetics. As a result, many genome-wide association 

studies (GWAS) have been performed to understand what causal variants are contributing to a 

trait’s phenotype. Even though GWAS have identified thousands of trait-associated variants, 

these GWAS hits are only a subset of the total number of causal variants. Further, these causal 
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variants are a subset of the total number of sites in the genome that, when mutated, would give 

rise to a trait-associated variant. We call this the mutational target size. The mutational target 

size has not been well studied. Understanding the mutational target size is important because we 

can make inferences about the number of causal variants giving rise to a trait. Further, 

understanding the role of natural selection is also important to fully understand the genetic 

architecture of complex traits. Natural selection has been hypothesized to affect the effect a 

variant has on a trait is the trait is affecting reproductive fitness (Eyre-Walker, 2010; Schoech et 

al., 2017). To contribute to better understand the genetic architecture of complex traits, I 

developed a statistical method called InGeAr to infer the mutational target size and infer the 

relationship between selection acting on a variant and a variant’s effect on the trait. I applied 

InGeAr using summary statistics from UKBiobank GWAS for multiple complex traits. This 

chapter illustrates how summary statistics from GWAS can be used to infer the genetic 

architecture of complex traits and how our results provide support for the omnigenic model of 

complex traits.  
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CHAPTER 2 

Determining the effect of natural selection on linked neutral divergence across species 

2.1 Abstract  

A major goal in evolutionary biology is to understand how natural selection has shaped 

patterns of genetic variation across genomes. Studies in a variety of species have shown that 

neutral genetic diversity (intra-species differences) has been reduced at sites linked to those 

under direct selection. However, the effect of linked selection on neutral sequence divergence 

(inter-species differences) remains ambiguous. While empirical studies have reported 

correlations between divergence and recombination, which is interpreted as evidence for natural 

selection reducing linked neutral divergence, theory argues otherwise, especially for species that 

have diverged long ago. Here we address these outstanding issues by examining whether natural 

selection can affect divergence between both closely and distantly related species. We show that 

neutral divergence between closely related species (e.g. human-primate) is negatively correlated 

with functional content and positively correlated with human recombination rate. We also find 

that neutral divergence between distantly related species (e.g. human-rodent) is negatively 

correlated with functional content and positively correlated with estimates of background 

selection from primates. These patterns persist after accounting for the confounding factors of 

hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate 

that even when the contribution of ancestral polymorphism to divergence is small, background 

selection in the ancestral population can still explain a large proportion of the variance in 

divergence across the genome, generating the observed correlations. Our findings reveal that, 

contrary to previous intuition, natural selection can indirectly affect linked neutral divergence 

between both closely and distantly related species. Though we cannot formally exclude the 
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possibility that the direct effects of purifying selection drive some of these patterns, such a 

scenario would be possible only if more of the genome is under purifying selection than 

currently believed. Our work has implications for understanding the evolution of genomes and 

interpreting patterns of genetic variation. 

2.2 Introduction 

Determining the evolutionary forces affecting genetic variation has been a central goal in 

population genetics over the past several decades. A large body of empirical and theoretical work 

has suggested that neutral genetic variation within a species (diversity) can be influenced by 

nearby genetic variants that are affected by natural selection (Cutter and Payseur, 2013). This can 

occur via two mechanisms. In a selective sweep, a neutral allele linked to a beneficial mutation 

will reach high frequency (Kaplan et al., 1989; Maynard Smith and Haigh, 1974). Selective 

sweeps reduce neutral genetic variation near regions of the genome that are directly affected by 

natural selection. The second process, background selection, also reduces neutral genetic 

variation (Charlesworth, 2012; Charlesworth et al., 1993; Hudson and Kaplan, 1995; Nordborg et 

al., 1996). Here, purifying selection that eliminates deleterious mutations also removes nearby 

neutral genetic variation. Many empirical studies have found strong evidence for the effects of 

background selection and selective sweeps affecting patterns of neutral genetic diversity (intra-

species DNA differences) across the human genome. For example, several studies have reported 

a correlation between genetic diversity and recombination rate (Cai et al., 2009; Hellmann et al., 

2003, 2005, 2008; Lohmueller et al., 2011; Nachman, 2001). This correlation can be driven by 

selective sweeps and background selection because these processes affect a larger number of 

base pairs in areas of the genome with a low recombination rate than with a high recombination 

rate. Additionally, other studies found reduced neutral genetic diversity surrounding genes (Cai 
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et al., 2009; Enard et al., 2014; Hernandez et al., 2011; Lohmueller et al., 2011; McVicker et al., 

2009; Payseur and Nachman, 2002), which is consistent with the idea that there is more selection 

occurring near functional elements of the genome. 

While the evidence for natural selection reducing genetic diversity at linked neutral sites 

is unequivocal, the effect of natural selection on linked neutral divergence between species 

(inter-species DNA differences) is less clear. Elegant theoretical arguments have suggested 

selection does not affect the substitution rate at linked neutral sites (Birky and Walsh, 1988; 

Cutler, 1998). However, these theoretical arguments do not include mutations that arose in the 

common ancestral population, the population that existed prior to the split and formation of two 

descendant lineages. Such ancestral polymorphism has been shown to be a significant 

confounder in estimating population divergence times (Edwards and Beerli, 2000). When also 

including ancestral polymorphism, it becomes less clear whether selection affects divergence at 

linked neutral sites.  

Based on coalescent arguments, neutral polymorphism in the ancestral population will be 

affected by linkage to selected sites the same way as genetic diversity within a population 

(Figure 2.1). Presumably, neutral divergence between closely related species, with lots of 

ancestral polymorphism, could be affected by selection. Indeed, McVicker et al. demonstrated 

that background selection could explain the variation in human-chimp neutral divergence across 

the genome (McVicker et al., 2009). Additionally, Cruickshank and Hahn (Cruickshank and 

Hahn, 2014) found that divergence between recently separated species pairs was reduced in 

regions of low recombination and in “islands of speciation”. They attributed at least some of 

these patterns to selection affecting linked neutral sites.  
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However, the reduction in neutral diversity in the ancestral population is thought to have 

a negligible effect and/or be undetectable when considering neutral divergence from species with 

a very long divergence time because there would be many opportunities for mutations to occur 

after the two lineages split (Figure 2.1) (Birky and Walsh, 1988; Hellmann et al., 2003). These 

neutral mutations that occur after the split would not be influenced by selection at linked neutral 

sites (Birky and Walsh, 1988) and would dilute the signal from the ancestral polymorphism. 

Thus, it is generally believed that selection at linked neutral sites should not affect divergence 

between distantly related species. An example of this argument was presented by Hellmann et al. 

(Hellmann et al., 2003). They argued that the positive correlation between human-baboon 

divergence and human recombination was due to mutagenic recombination, rather than selection 

affecting linked neutral sites, because of the long split time between humans and baboons (>20 

million years). Reed et al. suggested that though it is unlikely background selection by itself 

could explain the entire correlation observed by Hellmann et al., background selection may still 

contribute to divergence (Hellmann et al., 2003; Reed et al., 2005). However, there has been 

little quantitative investigation of the effect that selection has on divergence at linked neutral 

sites among distantly divergent species when including ancestral polymorphism. 

In addition to conflicting conceptual predictions about the expected effect of selection on 

divergence at linked neutral sites, empirical studies also have been ambiguous. While some 

studies found no evidence for a correlation between divergence and recombination such as in 

Drosophila (Begun and Aquadro, 1992; McGaugh et al., 2012) or in yeast (Noor, 2008), other 

studies have reported correlations between divergence and recombination in Drosophila (Begun 

et al., 2007; Kulathinal et al., 2008). Further, positive correlations between human-chimpanzee 

divergence and human recombination rate (Cai et al., 2009; Hellmann et al., 2005; Lohmueller et 
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al., 2011), human-macaque divergence and human female recombination rate (Tyekucheva et al., 

2008), or human-baboon divergence and human recombination rate (Hellmann et al., 2003) have 

been reported. Finally, even though there was evidence for a strong reduction in human-

chimpanzee divergence and human-macaque divergence surrounding genes, McVicker et al. 

attributed the reductions seen for human-dog divergence to variation in mutation rates 

(McVicker et al., 2009; Tyekucheva et al., 2008). Thus, the degree to which divergence is 

affected by selection across species with different split times remains elusive. 

 Determining whether and how selection affects linked neutral divergence is critical to 

understanding the evolutionary forces influencing genetic variation and mutational processes. If 

selection in the ancestral population only has a limited effect on divergence, it would suggest 

correlations between recombination and divergence to be evidence of mutagenic recombination. 

This may further suggest the need to consider recombination rates when modeling variation in 

mutation rates across the genome (Arbeithuber et al., 2015; Francioli et al., 2015; Hellmann et 

al., 2003; Lercher and Hurst, 2002; Pratto et al., 2014). Because mutations rates have been 

difficult to estimate reliably in humans (Scally and Durbin, 2012; Ségurel et al., 2014), 

understanding the biological factors influencing them will be of paramount importance for 

obtaining improved estimates. If, on the other hand, selection can affect linked neutral 

divergence, reductions of linked neutral divergence surrounding genes would suggest an 

abundance of selection affecting linked neutral sites (Sella et al., 2009). Selection affecting 

linked neutral diversity and divergence is at odds with the neutral and nearly neutral theories 

(Akashi et al., 2012; Kimura, 1983; Ohta, 1973), which have been the prevailing views in 

molecular population genetics for the last several decades. It would also suggest the need to 

consider the effects of selection when estimating mutation rates from neutral divergence. 
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Here we aim to examine the effects of selection on linked neutral divergence for pairs of 

species with a range of split times. We first present evidence that neutral divergence is reduced at 

putatively neutral sites close to selected sites across a wide range of taxa, including those with 

split times as long as 75 million years ago. Factors such as hypermutable CpG sites, GC content, 

or biased gene conversion by themselves cannot explain these results. We then use coalescent 

simulations to explore whether models incorporating background selection in the ancestral 

population could generate the empirical patterns. We also present a theoretical argument as to 

how background selection can affect variation in neutral divergence across the genome, even for 

species with a long split time such as human and mouse. Finally, we show that purifying 

selection directly reducing divergence at putatively neutral sites cannot explain these findings 

unless a large fraction of the genome is directly under selection, or there is a substantial number 

of sites under selection in the human or mouse lineage that are not conserved across species. 

Even though we cannot formally reject the direct effects of purifying selection from driving 

some of these correlations, our empirical and simulation-based findings indicate that natural 

selection can indirectly affect neutral genetic divergence. In sum, the view that selection does not 

affect divergence at linked neutral sites between distantly diverged species should be re-

considered.  

2.3 Results 

Obtaining putatively neutral divergence 

We wished to test whether the genetic divergence at a linked neutral site is influenced by 

the indirect effects of natural selection. As such, we set out to obtain putatively neutral sites by 

removing sites that were potentially functional and under the direct effects of purifying selection. 

In particular, a site was considered putatively neutral if it was (1) located at least 5kb from the 
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starting or ending position of an exon, (2) not located within a phastCons element that was 

calculated over different phylogenic scopes, (3) not alignable between human and zebrafish, and 

(4) not found within the top 10% of most conserved Genomic Evolutionary Rate Profiling 

(GERP) scores (Davydov et al., 2010). Criteria 2 and 3 remove sites that are likely to be 

conserved across species and therefore not neutral. We chose these filtering criteria following 

previous studies (Cai et al., 2009; Lohmueller et al., 2011; Moorjani et al., 2016). Additionally, 

we chose to remove the top 10% of sites having the most extreme GERP scores because previous 

work suggests <10% of the genome was under the direct effect of selection (Cooper et al., 2004; 

Davydov et al., 2010; Gulko et al., 2015; Meader et al., 2010; Mouse Genome Sequencing 

Consortium et al., 2002; Pollard et al., 2010; Rands et al., 2014; Schrider and Kern, 2015; Siepel 

et al., 2005; Ward and Kellis, 2012). The putatively neutral sites close to genes show comparable 

levels of divergence to four-fold degenerate sites (Figure 2.2, Table 2.1). As four-fold degenerate 

sites are often used as a neutral standard in molecular evolution, the fact that they show similar 

levels of divergence as our putatively neutral noncoding sites argues that our putatively neutral 

sites are unlikely to be under additional direct effects of selection.  

Effects on putatively neutral divergence between humans and primates 

To understand the evolutionary factors affecting linked neutral divergence between 

closely related species, we examined human-primate divergence, particularly human-chimp 

divergence and human-orangutan divergence. First, we explored the relationship between neutral 

human-primate divergence and functional content, defined as the proportion of sites within a 

100kb-window that overlapped with an exon or a phastCons region. We hypothesized that if 

natural selection contributes to the reduction of divergence at linked neutral sites, its effect 

would be more pronounced at regions with greater functional content (Payseur and Nachman, 
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2002). This hypothesis predicts a negative correlation between functional content and neutral 

divergence. To test this, we divided the human genome into non-overlapping windows of 100kb 

and obtained putatively neutral divergence for each window as described above. We found a 

negative correlation between functional content and neutral divergence between pairs of closely 

related species (Spearman’s ρhuman-chimp = -0.235, P < 10-16, Spearman’s ρhuman-orang = -0.204, P < 

10-16, Figure 2.3A, Figure 2.3B, Table 2.2). 

We next examined the relationship between human-primate neutral divergence and 

broad-scale human recombination rate which we obtained from the deCODE genetic map (Kong 

et al., 2002). While recombination has not been conserved throughout evolutionary history, the 

recombination rate at the broad-scale level (i.e. 100kb) was shown to be correlated between 

human and chimp (Auton et al., 2012; Stevison et al., 2015). We found a positive correlation 

between neutral human-primate divergence and human recombination rate (Spearman’s ρhuman-

chimp = 0.234, P < 10-16, Spearman’s ρhuman-orang = 0.249, P < 10-16, Figure 2.3C, Figure 2.3D, 

Table 2.3), which indicates that neutral human-primate divergence is reduced in regions of low 

recombination rate. Additionally, when we stratified windows into those that were near genes 

and those that were far from genes based on the proportion of sites in each window that 

overlapped with a RefSeq transcript, we found that the correlation between divergence and 

recombination is stronger for windows with a higher overlap with RefSeq transcripts (Figure 

2.4).  These observations indicate that neutral divergence is reduced at sites that are more tightly 

linked to those under the direct effect of selection, consistent with the hypothesis that natural 

selection indirectly reduces linked neutral divergence. 

These two correlations are robust to the presence of multiple confounding factors. First, 

the correlations are robust to the choice of window size used for analysis as they persisted when 
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using 50 kb windows (Table 2.2, Table 2.3).  Second, some features of the genome such as 

hypermutable CpG sites or GC content are known to correlate with genic content (Bernardi, 

2000; Polak et al., 2015; Supek and Lehner, 2015). To test whether these features confounded 

the correlations found in our data, we repeated our analyses removing potential CpG sites by 

omitting sites preceding a G or following a C (McVicker et al., 2009). The correlations persisted 

after filtering out CpG sites (Table 2.2, Table 2.3). We next computed partial correlations 

controlling for GC content. Similarly, we found that the correlations persisted (Table 2.2, Table 

2.3).  

Biased gene conversion is an additional evolutionary force that has been shown to 

influence patterns of divergence (Duret and Arndt, 2008; Galtier and Duret, 2007). In this 

process, double-strand breaks in the DNA in individuals heterozygous for AT/GC variants will 

be preferentially repaired with the GC allele, resulting in AT  GC substitutions occurring at a 

higher rate than GC  AT substitutions (Berglund et al., 2009; Duret and Arndt, 2008; Duret 

and Galtier, 2009). To control for the effects of biased gene conversion on this analysis, we 

filtered out sites that could be affected by removing any AT  GC substitutions genome-wide. 

The negative correlation between human-primate divergence and functional content did not 

change after controlling for biased gene conversion (Table 2.2). Though the positive correlation 

between human-primate divergence and human recombination decreased after this filter (from 

0.234 to 0.108), it still remained significant (Table 2.3). Thus, the observed correlations are 

unlikely to be driven solely by choice of window size or mutational properties based on sequence 

composition. Because biased gene conversion appears to contribute to some of the correlation 

between divergence and recombination rate, subsequent analyses of this correlation use the 

divergence dataset filtered for biased gene conversion. 
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Effects on putatively neutral divergence between humans and rodents 

We next explored the evolutionary forces affecting divergence between more distantly 

related pairs of species, specifically human-mouse and human-rat. These species were predicted 

to have diverged approximately 75 million years ago (Mouse Genome Sequencing Consortium et 

al., 2002) and, as such, current thinking would predict that natural selection would not affect 

linked neutral sites. Similar to what was seen for the closely related species, functional content is 

negatively correlated with neutral human-rodent divergence (Spearman’s ρhuman-mouse = -0.184, P 

< 10-16, Spearman’s ρhuman-rat = -0.149, P < 10-16, Figure 2.5A, 2.5B, Table 2.4). This negative 

correlation persisted when using 50kb windows and also after accounting for the confounding 

factors of hypermutable CpG sites, GC content, and GC-biased gene conversion (Table 2.4).  

Since the broad-scale recombination rate at 100kb appears to have changed over the 

course of evolution of the species (Jensen-Seaman et al., 2004), we looked for other potential 

signatures of whether natural selection has affected linked neutral divergence. In particular, we 

examined the relationship between human-rodent divergence and the strength of background 

selection across the genome inferred from divergence within primates (McVicker et al., 2009). 

This strength of background selection is captured by the B-value, which represents the degree to 

which neutral variation at a given position is reduced by selection relative to neutral 

expectations. While McVicker et al. concluded that divergence between primates was indeed 

reduced due to background selection, they did not consider human-mouse divergence in their 

analyses and did not model background selection within the human-dog ancestor (McVicker et 

al., 2009). As such, there is no a priori reason why the B-values of McVicker et al. should be 

related to human-mouse divergence (McVicker et al., 2009). 

Nevertheless, we found a positive correlation between human-rodent divergence and the 
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B-values from McVicker et al. (Spearman’s ρhuman-mouse = 0.445, P < 10-16, Figure 2.5C, Table 

2.5, Spearman’s ρhuman-rat = 0.402, P < 10-16, Figure 2.5D, Table 2.5) (McVicker et al., 2009). 

The positive correlation between human-rodent divergence and B-values remained significant 

even after accounting for the confounding factors of CpG sites, GC content, and GC-biased gene 

conversion. Similarly, these correlations remained when using 50kb windows (Table 2.5). Taken 

together, the empirical correlations are consistent with the hypothesis that natural selection has 

contributed to reducing neutral divergence at linked sites even between species with a long split 

time such as human and mouse.   

Models incorporating background selection in the ancestral population can generate the 

empirical correlations  

To test whether a model including background selection in the ancestral population can 

explain the empirical observations regarding neutral human-primate divergence and neutral 

human-rodent divergence, we used a coalescent simulation approach. To a first approximation, 

the effect of background selection in a sample size of two chromosomes can be accounted for by 

scaling the ancestral population size with the strength of background selection (Charlesworth, 

2012; Charlesworth et al., 1993, 1995; Comeron, 2014; Coop and Ralph, 2012; Corbett-Detig et 

al., 2015; Hudson and Kaplan, 1995; McVicker et al., 2009). Thus, we modeled the effect of 

background selection as a reduction in the ancestral population size using the B-values estimated 

in McVicker et al. (McVicker et al., 2009). Briefly, we first used ms (Hudson, 2002) to generate 

genetic variation in the ancestral population where the ancestral population has size NaB. Then 

we simulated mutations that accumulated since the split between two species using a Poisson 

process. The total divergence was the sum of the mutations in the ancestral population and 

mutations accumulated since the split (see Methods). We modeled mutation rate variation by 
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drawing a mutation rate for each window from a gamma distribution. We chose values for the 

parameters of the gamma distribution as well as the ancestral population size (Na) such that the 

mean and standard deviation of the simulated divergence across the genome and the correlation 

coefficients between divergence and other functional properties were similar to those seen 

empirically (Figure 2.6, Table 2.6, Table 2.7, Methods).  

We first examined which models could generate the observed correlation between 

recombination and human-chimp divergence. Here we use the value of Spearman’s ρ estimated 

from the data after filtering out sites that could be affected by biased gene conversion (ρ=0.108). 

When considering a model without background selection (i.e. B=1 for all windows), the average 

value of Spearman’s ρ between human-chimp divergence and recombination rate was 0.042, and 

none of the 500 simulation replicates approached the value of Spearman’s ρ seen empirically 

(Figure 2.7A, white histogram). On the other hand, when modeling background selection using 

the McVicker B-values, the average Spearman’s ρ was 0.107 which was comparable to the 

Spearman’s ρ computed from empirical human-chimp divergence with human recombination 

after accounting for biased gene conversion (Figure 2.7A, gray histogram).   

We then tested whether a model incorporating background selection could generate a 

positive correlation between neutral human-rodent divergence and B-values as observed 

empirically. We modified our simulation approach to account for the difference in generation 

time between human and mouse (see Methods). When considering models without background 

selection (i.e. B=1 for all windows), the average value of Spearman’s ρ was 0.012, and none of 

the 500 simulation replicates approached the value of Spearman’s ρ seen empirically (Figure 

2.7B, white histogram). However, when modeling background selection using the McVicker B-

values, the average Spearman’s ρ was 0.446 which was comparable to the Spearman’s ρ 
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computed from empirical human-mouse divergence and McVicker’s B-values (Figure 2.7B, gray 

histogram).   

In sum, our results suggest that for a given set of parameters, a model with background 

selection in the ancestral population can generate the correlations observed in the empirical data 

(i.e. a positive correlation between neutral human-primate divergence and human recombination 

and a positive correlation between neutral human-rodent divergence and B-values) whereas 

neutral coalescent models cannot.  

Intuition for why background selection is a plausible explanation for the empirical 

correlations 

Current thinking argues that natural selection affecting linked neutral sites is not a 

plausible explanation for the reduction in neutral divergence between pairs of species with a long 

split time such as human-mouse or human-rat. Here, we outline a theoretical analysis of a simple 

two-locus model to gain intuition about how the mutation rate (𝜇), strength of background 

selection (𝐵), and ancestral population size (𝑁𝑎) affect the degree to which background selection 

can affect divergence (Figure 2.8A).  

If background selection has any effect on the variation in neutral divergence across the 

genome, this can only be due to its effect on divergence in the ancestral population, since 

deleterious mutations do not affect the fixation rate at linked neutral sites (Birky and Walsh, 

1988). Recombination in the ancestral population results in a distribution of coalescent times 

within each locus, with an average coalescent time of 𝑡̅. We assumed that the recombination rate 

within each locus is large enough, such that there is no variation in 𝑡̅ for a fixed value of B, i.e. 

Var[𝑡|̅B] ≈ 0. This is a reasonable assumption as long as the window size and recombination 

rate are not too small. Recombination events cause the sequence to be broken into independent 
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segments, such that for a total ρ > 10 (where ρ denotes the population-scaled recombination rate, 

4Ner) the variance in 𝑡̅ approaches zero (Wakely, 2008). For an average 100kb window in the 

human genome (r=10-8/bp, Ne=10,000), ρ is 40 and thus this assumption holds true. Any 

difference in 𝑡̅ between loci is then only attributable to differences in background selection: 

E[𝑡|̅𝐵] = 2𝑁𝑎𝐵. Further, variation in ancestral (𝑑𝑎) and total (𝑑𝑡) divergence results from a 

Poisson distributed number of mutations added to the genealogy, such that 𝑉𝑎𝑟[𝑑𝑎|𝐵] =

𝐸[𝑑𝑎|𝐵] = 4𝑁𝑎𝐵𝜇𝐿 and 𝑉𝑎𝑟[𝑑𝑡|𝐵] = 𝐸[𝑑𝑡|𝐵] = 𝐸[𝑑𝑎|𝐵] + 2𝑡𝑠𝑝𝑙𝑖𝑡𝜇𝐿 where 𝐿 is the sequence 

length of a locus. The law of total variance can be used to compute the variance in total 

divergence across loci with varying levels of background selection:  

𝑉𝑎𝑟[𝑑𝑡] = 𝑉𝑎𝑟𝐵[𝐸[𝑑𝑡|𝐵]] + 𝐸𝐵[𝑉𝑎𝑟[𝑑𝑡|𝐵]] 

Thus, variance in total divergence can be decomposed into variance due to background selection 

and variance due to the mutational process. For simplicity, the first locus experiences no 

background selection (𝐵1 = 1), and the second locus experiences some fixed amount of 

background selection (0 ≤ 𝐵2 ≤ 1). Under this model, we computed the variance due to 

background selection as: 

𝑉𝑎𝑟𝐵[𝐸[𝑑𝑡|𝐵]] = ((𝐸[𝑑𝑡|𝐵 = 1] –  𝐸[𝑑𝑡|𝐵 = 𝐵2])/2)2 . 

We then computed the variance due to the mutational process as: 

𝐸𝐵[𝑉𝑎𝑟[𝑑𝑡|𝐵]] = (𝑉𝑎𝑟[𝑑𝑡|𝐵 = 1] + 𝑉𝑎𝑟[𝑑𝑡|𝐵 = 𝐵2])/2. 

We assumed an old split time, such that the divergence that accumulated from present time to 

population split is similar to the human-mouse divergence (40%). Both loci have a sequence 

length (𝐿) of 100kb. Our theoretical analysis of variance approach shows that with this old split 

time and assuming a low mutation rate of 1 x 10-9/bp, more than 20% of the variation in the 

divergence can be explained by background selection in the ancestral population with the 
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following conditions: ancestral population size > 600,000 and B < 0.2 (Figure 2.8A, panel 1, 

blue, purple, and pink lines). Note that under these conditions, the proportion of divergence that 

accumulated in the ancestral population can be as low as 0.3% (Figure 2.8B, panel 1). However, 

the proportion of the variance in divergence that is attributable to the ancestral population is 

larger than 20% (Figure 2.8C, panel 1), mainly due to background selection leading to 

differences in 𝑡̅ between loci. With a larger mutation rate (2 x 10-8/bp), background selection 

results in a stronger effect on variation in divergence even when ancestral population size is 

relatively small (>50,000; Figure 2.8A, yellow line). When assuming a moderately large 

population size of 200,000, and a moderate strength of background selection (𝐵 = 0.75), then as 

much as 50% of variance in divergence can be explained by background selection (Figure 2.8C, 

light green line). Nonetheless, the proportion of divergence that accumulated in the ancestral 

population in this case is still only 3.4%. Collectively, even for old split times, where the vast 

majority of divergence accumulated after the population split, with certain assumptions about the 

ancestral population size, mutation rate, and strength of background selection, the variance in the 

divergence could be explained by background selection. 

Coalescent simulations predict background selection can reduce neutral divergence 

between species with long split times  

Because the theoretical model described above ignores regions of low recombination and 

only considers one pair of loci at a time, we used coalescent simulations (similar to what we 

outlined above) to examine whether background selection could generate the positive correlation 

between estimates of background selection in primates and divergence between distantly related 

species using more realistic models. Since we were not particularly concerned with any specific 

species, we simplified these simulations by setting the mutation rate to 2.5 x 10-8/bp.  
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We found that across all population sizes and split times examined, background selection 

generated a positive correlation between recombination and divergence as well as a positive 

correlation between divergence and B-values, even for pairs of species that split up to 100N 

generations ago (Figure 2.9, black lines and dashed lines). This correlation remained strong even 

when the proportion of the divergence due to ancestral polymorphism was small. For example, 

for a pair of populations with tsplit=100N generations and an ancestral population of size 50,000, 

only 1.53% of the divergent sites are due to ancestral polymorphism (Figure 2.9, red lines). 

However, this model predicts a correlation of 0.211 between recombination and divergence and a 

correlation of 0.377 between recombination and B-values. Although ancestral polymorphism 

only contributes in a small way to the total divergence, the variance in the amount of ancestral 

polymorphism across the windows accounts for nearly 60% of the variance in divergence across 

different windows (Figure 2.10, black lines). In general, the correlations decreased as both the 

split time increased and the size of the ancestral population decreased (Figure 2.10). This 

behavior is expected as the contribution of the variance in levels of ancestral polymorphism to 

the variance in divergence decreases with increasing split time and decreasing ancestral 

population size (Figure 2.10).  

Examining the direct effects of natural selection on observed correlations 

 While we have shown under a variety of models that natural selection can affect 

putatively neutral divergence and generate the correlations that we observe empirically, other 

selective scenarios could explain these patterns. An alternative explanation for the empirical 

correlations reported in Figure 2.3 and Figure 2.5 is that the filtering criteria we used to obtain 

neutral sites did not effectively remove all non-neutral sites. Therefore, the observed correlations 

could be due to the direct effects of purifying selection reducing genetic divergence. As sites 



21 
 

under purifying selection may be located close to conserved functional elements and could 

conceivably result in low B-values, this is a potentially plausible explanation for our findings. As 

our current filters removed the 10% of the genome that was most likely under the direct effect of 

selection based upon the top 10% of GERP scores, we reasoned that additional sites under 

purifying selection would have elevated GERP scores relative to neutrality.  

 To test this hypothesis, we repeated our correlation analyses by first obtaining the neutral 

human-primate divergence and neutral human-rodent divergence using different GERP score 

cutoffs (i.e. 5% to 25%). When examining human and primate pairs, the correlation between 

neutral human-primate divergence and functional content decreased as a function of increasing 

GERP cutoff score (Figure 2.11A). Nevertheless, the negative correlation between neutral 

human-primate divergence and functional content remained significant even after removing any 

site whose GERP score fell within the top 25% of the distribution (Spearman’s ρhuman-chimp = -

0.189, P < 10-16, Spearman’s ρhuman-orang = -0.122, P < 10-16, Figure 2.12A, Figure 2.12B). On the 

other hand, the relationship between neutral human-primate divergence and human 

recombination rate were not affected by varying GERP score cutoffs (Figure 2.11B, Figure 

2.12C, Figure 2.12D).  

 When examining human and rodent pairs, we found that the negative correlation between 

human-rodent divergence and functional content decreased as a function of increasing GERP 

score cutoff. Further, the relationship became nonsignificant when filtering any site whose GERP 

score fell within the top 15th percentile (Figure 2.11C, Figure 2.13A, Figure 2.13B). The positive 

correlation between neutral human-rodent divergence and McVicker’s B values decreased as a 

function of increasing GERP score cutoff, but remained significantly positive even after 

removing any sites whose GERP score fell within the top 25th percentile (Figure 2.11, Figure 
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2.13C, Figure 2.13D). Still, this latter pattern indicates that the direct effects of natural selection 

are unlikely to explain our findings, unless the selected sites are not in the upper 25% of the 

GERP score distribution.  

To test whether background selection could explain these correlations when removing the 

25% of the genome with the most conserved GERP scores, we used our coalescent simulation 

framework. These simulations match the empirical distribution of divergence across the genome 

(Figure 2.14, Table 2.7) and use the parameters given in Table 2.6. For human-chimp divergence, 

none of the 500 coalescent simulations resulted in a Spearman’s ρ between divergence and 

human recombination rate as large as observed empirically after filtering sites affected by biased 

gene conversion (Figure 2.15A, white histogram). On the other hand, simulations including 

background selection in the ancestral population generated a Spearman’s ρ between divergence 

and human recombination rate similar to what was observed empirically after filtering sites 

affected by biased gene conversion (Figure 2.15A, gray histogram). Similarly, for human-mouse 

divergence, while none of the 500 coalescent simulations using the neutral model could generate 

a Spearman’s ρ between divergence and McVicker’s B-values as large as the empirical 

correlation, models including background selection in the ancestral population could generate 

this correlation (Figure 2.15B).  

2.4 Discussion 

Here we have examined patterns of divergence between pairs of species with various 

degrees of divergence. We document several signatures that are consistent with the action of 

natural selection reducing divergence at linked neutral sites. First, for all pairs of species 

considered, we find that neutral divergence is lowest in regions of the genome with the greatest 

functional content (Figure 2.3 and Figure 2.5). This pattern may be expected if more selection 
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occurs in regions of the genome with greater functional content. Second, human-primate neutral 

divergence strongly correlates with human recombination rate and the correlation persists after 

accounting for hypermutable CpG sites, GC content, and biased gene conversion. Regions of low 

recombination show lower levels of divergence, which is consistent with selection having a 

greater effect on linked neutral sites in regions of low recombination. The correlation between 

human-primate divergence and human recombination is higher in regions with greater overlap 

with RefSeq transcripts, indicative of a greater reduction in neutral divergence in regions near 

genes as opposed to far from genes (Figure 2.4). Third, human-rodent neutral divergence 

strongly correlates with the strength of background selection estimated for primates. These 

correlations persist after accounting for CpG sites, GC content, and biased gene conversion. 

Importantly, coalescent simulations including background selection can generate several of these 

correlations. However, neutral coalescent models without background selection do not.  

One interesting observation made was that while most of our correlation analyses were 

robust to the confounding effect of biased gene conversion, the correlation between human-

primate neutral divergence and recombination rate was affected significantly by biased gene 

conversion. This suggests that while some of the correlation between recombination and 

divergence can be driven by biased gene conversion, it cannot explain the entire correlation. This 

result also argues that when testing for a correlation between divergence and recombination, the 

effect of biased gene conversion should be taken into account.  

While we found that models incorporating background selection predict correlations 

comparable to the empirical data, in principle, several other evolutionary processes may be able 

to generate these patterns. First, selective sweeps in the ancestral population could reduce 

divergence just like background selection. Given that we are unlikely to be able to survey 
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patterns of polymorphism in the human-mouse ancestor in more than two lineages, it will be 

difficult or nearly impossible to distinguish between these two types of selection at linked neutral 

sites. Thus, one should interpret our use of B-values as reflecting a reduction in divergence due 

to the combined effects of both background selection and selective sweeps, as suggested in 

McVicker et al. (McVicker et al., 2009).  

A second possibility is that the negative correlation between divergence and functional 

content as well as the positive correlation between divergence and B-values could be driven by 

variation in mutation rate across the genome. Indeed, McVicker et al. attributed a positive 

correlation between B-values and human-dog divergence to the effects of variable mutation rates 

(McVicker et al., 2009). However, for this mechanism to explain our results, it would require 

that mutation rates would have to be lower closer to genes and in regions of the genome thought 

to experience more background selection (i.e. in regions with lower B-values). There is some 

limited evidence of this effect in Arabidopsis where mutation rates are higher in regions of the 

genome with greater heterozygosity (Yang et al., 2015). However, the extent to which these 

results apply to mammalian genomes remains unclear. Further, other studies in humans do not 

support the view that mutation rates are systematically lower in regions of the genome more 

subjected to selection. Recent estimates of the de novo mutation rate have not found any 

evidence of a reduction close to genes (Francioli et al., 2015). Further, Palamara et al. found that 

their estimates of the mutation rate do not differ as a function of B-values (Palamara et al., 2015). 

Variation in mutation rate across the genome, while inflating the variance in divergence across 

the genome, would not be predicted to generate correlations between B-values and divergence as 

well as the correlation between functional content and divergence. Thus, we can rule it out as the 

sole explanation for the empirical patterns seen in our study.  
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Further, mutagenic recombination is unlikely to explain the empirical patterns in our 

study because the correlation between divergence and functional content does not depend on 

recombination rate. The negative correlation between divergence and functional content 

remained strong when controlling for variation in recombination rates (Table 2.2) suggesting our 

results are unlikely to be driven by mutagenic recombination. Nevertheless, our results do not 

rule out the possibility of mutagenic recombination and this topic certainly warrants further 

investigation.  

Another possibility is that the reduction in neutral divergence near genes and in regions 

with lower B-values could be due to the direct effects of purifying selection removing variation 

from the population. Current evidence from a variety of comparative genomic studies suggests 

<10% of the genome is under purifying selection (Cooper et al., 2004; Davydov et al., 2010; 

Gulko et al., 2015; Meader et al., 2010; Mouse Genome Sequencing Consortium et al., 2002; 

Pollard et al., 2010; Rands et al., 2014; Schrider and Kern, 2015; Siepel et al., 2005; Ward and 

Kellis, 2012). We attempted to mitigate the direct effects of purifying selection by employing a 

conservative set of filters in order to obtain putatively neutral sites. When removing the 10% of 

the genome that is most conserved, using a variety of conservation metrics, the correlations 

persisted, suggesting they were not driven by the direct effects of selection. However, when we 

removed the top 15% of sites with the most conserved GERP score, the correlation between 

human-rodent divergence and functional content disappeared. This finding suggests that either 

the GERP scores themselves are affected by background selection, or, instead, that this 

correlation is driven, in part, by the direct effects of purifying selection. However, in order for 

direct purifying selection to explain the correlation, either more of the genome (at least 15%) 

would have to be under selection than suggested by current estimates (Cooper et al., 2004; 
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Davydov et al., 2010; Gulko et al., 2015; Meader et al., 2010; Mouse Genome Sequencing 

Consortium et al., 2002; Pollard et al., 2010; Rands et al., 2014; Schrider and Kern, 2015; Siepel 

et al., 2005; Ward and Kellis, 2012) or many of the sites in the top 15% most conserved GERP 

scores would have to be neutrally evolving. Additionally, the negative correlation between 

human-chimp divergence and functional content, the positive correlation between human-chimp 

divergence and recombination rate, and the positive correlation between human-mouse 

divergence and B-values, remained even after removing the 25% of the genome that is most 

conserved (Figure 2.11). This implies that even such a large amount of functional sites under 

selection cannot explain all of our results. Finally, an additional line of evidence suggesting that 

the putatively neutral sites close to genes are not subjected to the direct effects of purifying 

selection stems from the fact that they show similar levels of neutral divergence to four-fold 

degenerate sties (Figure 2.2, Table 2.1). Thus, our putatively neutral noncoding sites have levels 

of divergence comparable to those seen for sites solely subjected to background selection.  

Additionally, our filters rely on functional annotations and conservation to remove 

functionally important sites directly under the effects of selection. It is formally possible that the 

direct effects of selection could generate the correlations seen in our study if there are sites under 

selection that were invisible to the conservation-based filters used in our study. This could occur 

if there are recently derived, lineage-specific functional elements under selection that cannot be 

picked up by conservation metrics, or if there are sequences subject to purifying selection in the 

ancestral population but subsequently became neutral and therefore were not conserved. While 

we cannot exclude such a scenario, current population genetic evidence provides, at most, 

limited support for such an explanation (Gulko et al., 2015; Palazzo and Gregory, 2014; Rands et 

al., 2014; Ward and Kellis, 2012). 
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One limitation in this study is that we made many assumptions regarding the parameters 

used in the simulations such as the ancestral population size, generation times, and mutation rates 

over the last 5-7 million years between human and chimp and 75 million years between human 

and mouse. There is much uncertainty surrounding all of these parameters (Geraldes et al., 2011; 

Hardison et al., 2003; Hodgkinson and Eyre-Walker, 2011; Kumar and Subramanian, 2002; 

Mouse Genome Sequencing Consortium et al., 2002; Smith et al., 2002). Overall, we used a set 

of parameters in which the simulated divergence dataset from the coalescent simulations 

matched closely with the mean and standard deviation of the empirical divergence dataset. This 

allowed us to assess whether a simple neutral model could result in the correlations as large as 

observed empirically or whether a model with background selection needed to be invoked. We 

utilized the coalescent simulations as a proof of concept and therefore, the parameters we used in 

these sets of simulations should not be taken as estimates of the true values. Estimation of these 

parameters (ancestral population size, mutation rate, split time, etc.) is beyond the scope of this 

study and certainly warrants further in-depth investigation.  

Other studies have argued that background selection will not affect divergence between 

distantly related species because the genealogy in the ancestral population only comprises a 

small proportion of the total genealogy between one chromosome from each of the two species 

(Begun et al., 2007; Birky and Walsh, 1988; Hellmann et al., 2003). This means that ancestral 

polymorphism will only account for a small proportion of the total divergence between distantly 

related species. It was thought that the signature of selection reducing the genealogy in the 

ancestral population would be diluted by the mutations that occurred since the split. As such, 

there would be no detectable signature of background selection. Our theoretical results and 

simulations show the proportion of ancestral polymorphism actually is a poor predictor of the 
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correlation between divergence and recombination as well as between divergence and B-values. 

For example, consider a pair of species that split N generations ago with an ancestral population 

size of 25,000. In this model, 40% of the divergence is attributable to ancestral polymorphism 

(Figure 2.9A). Now consider a second pair of species that split 100N generations ago where 

Na=200,000. Here <5% of the divergence is due to ancestral polymorphism (Figure 2.9D). 

Previous intuition suggests the effect of background selection would be stronger in the first pair 

of species because they split more recently and ancestral polymorphism makes a greater 

contribution to divergence. However, our simulations show the exact opposite pattern (Figure 

2.9A, 2.9D). The correlation between B-values and divergence is higher in the model with the 

more ancient split (Spearman’s ρ = 0.610) than the one with the more recent split (Spearman’s ρ 

= 0.452). Similar results are seen for the correlation between recombination rate and divergence. 

The reason for this discrepancy is that the main driver of these correlations is not the average 

amount of ancestral polymorphism, but rather the contribution to the variance in divergence due 

to the variance in ancestral polymorphism. Even when ancestral polymorphism makes only a 

small contribution to the overall average divergence, a substantial amount of the variance in total 

divergence across the genome can still be explained by variance in ancestral polymorphism, 

particularly if the ancestral population size is large. Our theoretical results suggest that the 

variance in the amount of background selection in different regions of the genome can account 

for a lot of the variance in total divergence, even for species that split long ago. In sum, our 

theoretical results and simulations suggest that previous intuition has understated the importance 

of even small amounts of ancestral polymorphism on the variability of genome-wide patterns of 

divergence between species. 
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 Our results have important implications for understanding patterns of genetic variation 

and divergence across genomes. First, our findings add to the growing literature suggesting the 

importance of background selection at shaping genome-wide patterns of variability across 

species (Campos et al., 2014; Charlesworth, 2012; Comeron, 2014; Cutter and Choi, 2010; 

Cutter and Payseur, 2013; Flowers et al., 2012; Halligan et al., 2013; Hernandez et al., 2011; 

Lohmueller et al., 2011; McVicker et al., 2009; Slotte, 2014; Wilson Sayres et al., 2014; Wright 

and Andolfatto, 2008). Our new contribution to this literature is demonstrating that natural 

selection can affect neutral divergence, even between distantly related species. Second, our work 

suggests that estimators of mutational properties that rely on contrasting patterns of divergence 

across different parts of the genome that may be differentially affected by background selection 

may yield biased results. This effect has been studied within primates in greater detail in recent 

work (Narang and Wilson Sayres, 2015). Third, the fact that we detect evidence of background 

selection between distantly related species suggests that there is still some information about the 

distribution of coalescent genealogies across the genome. This distribution of coalescent 

genealogies can be exploited to obtain more reliable estimates regarding the human-mouse 

ancestral population size. While several methods exist to estimate ancestral demographic 

parameters from divergence (Gronau et al., 2011; Rannala and Yang, 2003; Siepel, 2009; 

Takahata, 1986; Wall, 2003), we suggest that these methods may be applicable for very distantly 

related species. Our finding that background selection can increase the variance in coalescent 

times across the genome suggests these methods as well as other statistical methods which seek 

to infer demographic history from the distribution of coalescent times across the genome, such as 

the PSMC approach (Li and Durbin, 2011), should account for the increased variance in 

coalescent times across the genome due to background selection. Not accounting for background 
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selection could result in inferring spurious demographic events to account for the additional 

variance in coalescent times across the genome as has recently been suggested for positive 

selection (Schrider et al., 2016). Lastly, our results suggest a need for caution when using 

patterns of divergence to calibrate neutral mutation rates. Some of the variation in divergence 

across the genome may be due to varying coalescent times, further accentuated by selection, 

rather than differing mutation rates (Edwards and Beerli, 2000; Gillespie and Langley, 1979). 

Future work could explore the extent to which selection at linked neutral sites can explain the 

discrepancies between different types of estimates of mutation rates (Scally and Durbin, 2012; 

Ségurel et al., 2014). 

2.5 Methods 

Data sets 

We obtained the pairwise (.axt) alignments between human/chimpanzee (hg18/panTro2), 

human/orang (hg18/ponAbe2), human/mouse (hg18/mm9), human/rat (hg18/rn4), and 

human/zebrafish (hg18/danRer15) from the UCSC genome browser (Kent et al., 2002). These 

alignments are the net of the best human chained alignments for each region of the genome (Kent 

et al., 2003). For quality control, we excluded sites that (1) were missing in either of the species 

in the alignment, (2) located at least 10Mbp from the starting or ending position of a centromere, 

(3) located at least 10Mbp from the ending position of a telomere, (4) not located in repetitive 

elements. 

We obtained the coordinate positions for the exons, RefSeq transcripts, and different 

phastCons measures calculated from different phylogenetic scopes from the UCSC table browser 

(Karolchik et al., 2003) with the following specifications: 
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1. Exons: clade: Mammal, genome: Human, assembly: Mar. 2006 (NCBI36/hg18), group: Genes 

and Gene predictions, track: UCSC Genes, table: knownGene. 

2. RefSeq transcripts: clade: Mammal, genome: Human, assembly: Mar. 2006 (NCBI36/hg18), 

group: Genes and Gene predictions, track: RefSeq Genes, table: refGene. 

3. phastCons Vertebrates: clade: Mammal, genome: Human, assembly: Mar. 2006 

(NCBI36/hg18), group: Comparative Genomics, track: Conservation, table: Vertebrate El 

(phastConsElements44way). 

4. phastCons Primates: clade: Mammal, genome: Human, assembly: Mar. 2006 (NCBI36/hg18), 

group: Comparative Genomics, track: Conservation, table: Primate El 

(phastConsElements44wayPrimates). 

5. phastCons Mammals: clade: Mammal, genome: Human, assembly: Mar. 2006 

(NCBI36/hg18), group: Comparative Genomics, track: Conservation, table: Mammal El 

(phastConsElements44wayPlacental). 

GERP scores were downloaded for hg18 from 

http://mendel.stanford.edu/SidowLab/downloads/gerp/. We used RS scores (range from -11.6 to 

5.82) to obtain the conserved sites to remove. Table 2.8 summarizes the cutoffs we used.  

 For each window, we computed the recombination rate using the high resolution 

pedigree-based genetic map assembled by deCODE (Kong et al., 2010). The B-value for each 

window was obtained from McVicker et al. (McVicker et al., 2009). Four-fold divergence was 

calculated by counting the number of between species differences that overlapped four-fold sites, 

divided by the total number of four-fold sites within each window. Functional annotation was 

done following Lohmueller et al. (Lohmueller et al., 2011). Briefly, we translated the Consensus 

Coding Sequence (CCDS) genes from the UCSC Genome Browser into proteins and determined 
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which nucleotide changes did not alter the encoded amino acid. If transcripts overlapped, we 

retained the longest one. 

Correlation analyses 

To calculate the divergence between each pair of species, we divided the human genome 

into 100kb non-overlapping windows. For each window, we computed the total number of sites 

that passed the filtering criteria which resulted in the total number of neutral sites in each 100kb 

window. To reduce variation, we only considered windows in which the total number of eligible 

sites was greater than 10,000 (for analyses using 50kb as window size, we only considered 

windows in which the total number of eligible sites was greater than 5,000). Then we computed 

the divergence by tabulating the number of sites that are different between the two species being 

compared. To account for multiple mutational hits for the distantly related species pairs (human-

mouse and human-rat), we applied the Kimura two-parameter model (Kimura, 1980).  

To compute Spearman's ρ, we used the cor function in R. We used the pcor function to 

calculate partial correlation (Kim, 2015).  

Controlling for confounding factors 

To filter out possible hypermuteable CpG sites, we excluded sites that were preceded by 

a C or were followed by a G in hg18 (McVicker et al., 2009). To control for the effects of biased 

gene conversion, we removed all ATGC substitutions across the genome.  

Coalescent simulations  

We modeled background selection as a simple reduction in effective population size in 

the ancestral population (Charlesworth, 2012; Charlesworth et al., 1993, 1995; Comeron, 2014; 

Coop and Ralph, 2012; Corbett-Detig et al., 2015; Hudson and Kaplan, 1995; McVicker et al., 

2009). This was done by scaling the ancestral population size Na, by the B-values. We used the 
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B-values from McVicker et al. (McVicker et al., 2009). Each simulation replicate consisted of 

two parts. The first part modeled genetic variation in the ancestral population, and included the 

effects of background selection. For each window i, we simulated an ancestral recombination 

graph (ARG) with a population-scaled recombination rate 4NaBiri, where Na is the ancestral 

population size, Bi is the strength of background selection affecting window i, and ri is the 

recombination rate for window i. Mutations were added to the genealogy assuming a population-

scaled mutation rate θ=4NaBiμa,iLi, where μa,i is the ancestral per-base pair mutation rate for 

window i and Li is the number of successfully aligned neutral bases in window i. Simulations 

were done using the program ms (Hudson, 2002). Note, we included recombination in the 

ancestral population because it affects the variance in coalescent times across windows and this 

variance in coalescent times will in turn affect the variance in levels of divergence, which will 

ultimately affect the strength of the correlation between divergence and recombination. Thus, we 

aimed to capture this variance as accurately as possible. This part of the simulation generated the 

amount of divergence due to ancestral polymorphism, which we call da. 

We then added the mutations that arose since (i.e. more recently than) the split. The 

divergence from the present time to the split time follows a Poisson distribution, where the rate 

parameter equals the expected divergence between two populations. For each window of the 

genome, 𝑑𝑠 was simulated using the rpois function in R. Finally, the total divergence within a 

window is the sum of divergence generated in the ancestral population (da) and the divergence 

generated since the two species split (ds).  

For human chimp divergence (Figure 2.7A, Figure 2.15A), 𝑑𝑠 = 2𝑡𝑠𝑝𝑙𝑖𝑡𝜇𝐿 where ds is the 

expected divergence from the present time to the split time in the divergence model, tsplit is the 

split time, μ is the mutation rate, and L is the length of each sequence. When computing both da 



34 
 

and ds for human-chimp divergence in Figure 2.7A, we drew µ from a gamma distribution with 

shape = 16.82 and scale 1.7 X 10-10 (Table 2.6). In Figure 2.15A, we drew µ from a gamma 

distribution with shape = 15.68 and scale 1.8 X 10-10 (Table 2.6). These parameters were chosen 

to match the observed mean and standard deviation of the distribution of human-chimp 

divergence (after removing all AT to GC differences as such changes could be due to biased 

gene conversion) as well as the observed correlation coefficient between divergence and 

recombination rate (Figure 2.6A, 2.6B and Figure 2.14A, 2.14B). The split times and ancestral 

population sizes are roughly comparable to previous estimates from genetic data (Langergraber 

et al., 2012; Prado-Martinez et al., 2013; Siepel, 2009; Wall, 2003). 

Due to the differences in generation times and mutation rates between the human and 

mouse lineages, we modified our approach for these simulations (Figure 2.7B, Figure 2.15B, 

Figure 2.16). First, here ds =(tmouse μmouse+ thumanμhuman)L, where tmouse is the number of 

generations on the lineage leading to the mouse from tsplit till the present day, thuman is the number 

of generations on the lineage leading to human experienced from tsplit till the present day, μmouse is 

the mutation rate along the mouse lineage, and μhuman is the mutation rate along the human 

lineage. There is much uncertainty surrounding these parameters. However, the following values 

are broadly consistent with what has been reported previously and match the observed mean and 

standard deviation of human-mouse divergence (Figure 2.6C, 2.6D, Figure 2.14C, 2.14D, and 

Table 2.7). First, we assumed tsplit = 75 million years ago. We then assumed mice have 1 

generation per year, giving tmouse = 75 x 106 generations. We assumed humans have 25 years per 

generation, making thuman = 3 x 106. We then set μmouse = 3.8 x 10-9 per generation and μhuman 

=3.75 x 10-8 per generation (Figure 2.16). These estimates are broadly consistent with previous 
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reports and allow for approximately twice as much divergence on the mouse lineage as compared 

to the human lineage (Mouse Genome Sequencing Consortium et al., 2002).  

For the simulations in Figure 2.7B, we assumed that μa was equal to 2 x 10-8 per 

generation, which is the average of μhuman and μmouse. We accounted for variation in mutation 

rates across different regions of the genome by drawing μa from a gamma distribution (Voight et 

al., 2005). We kept the ratio of μa to μmouse constant across all windows of the genome. For 

example, μa / μmouse = 5.26. Then if μa,i is the rate for the ith region drawn from the gamma 

distribution, we set μmouse,i equal to μa,i / 5.26. A similar procedure was used to find μhuman,i. Note 

that for the simulations in Figure 2.15B, we used the average mutation rate of 2.7 X 10-8, but we 

kept the ratio of μa to μmouse and the ratio of μa to μmouse to be the same as the simulations in 

Figure 2.7B. Increasing the variance in the mutation rate across regions increased the variance in 

divergence across windows of the genome and decreased the correlation between divergence and 

the B-values. We then examined different values of Na and parameters of the gamma distribution 

that matched the observed mean and standard deviation of the distribution of human-mouse 

divergence as well as the observed correlation coefficient between divergence and B-values. The 

ancestral population size, shape, and scale parameters of the gamma distribution used for the 

simulations in Figure 2.7B and Figure 2.15B are reported in Table 2.6. The simulated human-

mouse divergence using these parameters matched closely with the empirical human-mouse 

divergence (Figure 2.6C, 2.6D, Figure 2.14C, 2.14D, and Table 2.7). 
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2.6 Figures 

 

Figure 2.1. Models of how genealogies are affected by selection at linked neutral sites. The 

genealogies on the left represent species with a short split time such as human and chimpanzee. 

The genealogies on the right represent species with a long split time such as human and mouse. 

Red lines represent two lineages and their coalescent time. Blue lines represent two lineages and 

their coalescent time when there is selection at linked neutral sites in the ancestral population 

(abbreviated BGS). Yellow stars denote mutations accumulating on each of the two lineages 

after they split. Note that with the longer split time, the proportion of the genealogy attributed to 

the ancestral population decreases. 
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Figure 2.2. Four-fold degenerate sites show similar levels of divergence as our putatively 

neutral noncoding sites. Each point represents the divergence within a 100kb window. (A) 

Human-chimpanzee, (B) Human-orangutan, (C) Human-mouse, and (D) Human-rat. 



38 
 

 

Figure 2.3. Human-primate divergence is reduced at putatively neutral sites near selected 

sites. (A) Neutral human-chimp divergence is negatively correlated with functional content. (B) 

Neutral human-orang divergence is negatively correlation with functional content. (C) Neutral 

human-chimp divergence is positively correlated with human recombination rate. (D) Neutral 

human-orang divergence is positively correlated with human recombination rate. Each point 

represents the mean divergence and functional content (A and B) or recombination rate (C and 

D) in 1% of the 100kb windows binned by functional content or recombination rate. Red lines 

indicate the loess curves fit to divergence and functional content (A and B) and divergence and 

recombination rate (C and D). The high variance of divergence at regions of low recombination 

rate is expected since the variance of divergence is inversely proportional to the recombination 

rate. Note that the last bin containing less than 1% of the windows was omitted from the plot. 

While the graph presents binned data, the correlations reported in the text are from the unbinned 

data. 
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Figure 2.4. The correlation between human recombination rate and neutral divergence is 

stronger near genes. Correlation (Spearman’s ρ) between neutral divergence and human 

recombination as a function of the amount of overlap with a RefSeq transcript. Black line 

denotes the correlations between human-chimpanzee neutral divergence and human 

recombination rate. Yellow line denotes the correlations between human-orangutan neutral 

divergence and human recombination rate.  
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Figure 2.5. Human-rodent divergence is reduced at putatively neutral sites near selected 

sites. (A) Neutral human-mouse divergence is negatively correlated with functional content. (B) 

Neutral human-rat divergence is negatively correlated with functional content. (C) Neutral 

human-mouse divergence is positively correlated with McVicker’s B-values. (D) Neutral human-

rat divergence is positively correlated with McVicker’s B-values. Each point represents the mean 

divergence and functional content (A and B) or B-values (C and D) in 1% of the 100kb windows 

binned by functional content or B-values. Red lines indicate the loess curves fit to divergence 

and functional content (A and B) and divergence and B-values (C and D). Note that the last bin 

containing less than 1% of the windows was omitted from the plot. While the graph presents 

binned data, the correlations reported in the text are from the unbinned data. 
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Figure 2.6. Observed and modeled genome-wide distributions of human-chimp divergence 

and human-mouse divergence in 100 kb windows. Gray lines denote 500 simulated genome-

wide distributions of divergence. Red line denotes the observed distribution of neutral 

divergence. Note, the distribution of simulated divergence is comparable to that from empirical 

data. (A) Simulated human-chimp divergence without the effects of background selection (BGS). 

(B) Simulated human-chimp divergence with the effects of background selection. (C) Simulated 

human-mouse divergence without the effects of background selection. (D) Simulated human-

mouse divergence with the effects of background selection. We filtered all ATGC changes 

between the human and chimp sequences as they could be affected by biased gene conversion. 

Thus, the distribution of human-chimp divergence shown here is lower than the overall 

divergence. 
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Figure 2.7. Models incorporating background selection can generate patterns of neutral 

divergence that recapitulate the empirical correlations. (A) Models of background selection 

predict a positive correlation between neutral human-chimp divergence and human 

recombination. Because our model does not include biased gene conversion, the empirical 

correlation was calculated omitting AT to GC sequence differences. (B) Models of background 

selection predict a positive correlation between neutral human-mouse divergence and 

McVicker’s B-values. White histogram denotes 500 simulations not including background 

selection. Gray histogram denotes 500 simulations incorporating background selection (see text). 

Red line represents the correlation computed from empirical data. Thus, plausible levels of 

background selection can match the observed correlations while neutral simulations cannot. 
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Figure 2.8. A two-locus model for the effect of background selection on divergence. (A) The 

variance in divergence between two loci explained by background selection (BGS) as a function 

of the strength of background selection at the second locus (B2). (B) The expected proportion of 
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divergence due to polymorphism in the ancestral population as a function of B2. (C) The variance 

in divergence between the two loci explained by polymorphism in the ancestral population as a 

function of B2. Different columns denote different mutation rates. Colored lines denote different 

ancestral population sizes (Na). Note that the variance in divergence attributable to background 

selection is greater than the expected proportion of divergence contributed by ancestral 

polymorphism. 
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Figure 2.9. Background selection is predicted to affect neutral divergence across a range of 

split times and ancestral population sizes. Solid line shows the expected correlation 

coefficients (Spearman’s ρ) between neutral divergence and recombination rate as a function of 

split time. Dashed line shows the expected Spearman’s ρ between neutral divergence and 

McVicker’s B-values as a function of split time. Red lines denote the proportion of the 

divergence due to polymorphism that arose in the ancestral population. Error bars denote ± one 

standard error of the mean. Panels A-D denote different ancestral population sizes (Na). Note that 

the correlations are greater than 0 for a range of split times and ancestral population sizes, even 

when the proportion of divergence due to ancestral polymorphism is low. 
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Figure 2.10. Variance of the total divergence attributable to the variance in levels of 

ancestral polymorphism. Black lines show the ratio of the variance of divergence in the 

ancestral population to the variance of the total divergence as a function of split time. Red lines 

denote the proportion of the divergence due to polymorphism that arose in the ancestral 

population. Panels A-D denote different ancestral population sizes (Na). 
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Figure 2.11.  Relationship between divergence and functional content, human 

recombination, and McVicker’s B-values as a function of GERP score cutoff. (A) Human-

primate divergence versus functional content. (B) Human-primate divergence versus human 

recombination rate. (C) Human-rodent divergence versus functional content. (D) Human-rodent 

divergence versus McVicker’s B-values. 
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Figure 2.12. Correlations between human-primate divergence and genomic features persist 

when filtering the 25% of the genome with the highest GERP scores. (A) Neutral human-

chimp divergence shows a negative correlation with functional content. (B) Neutral human-orang 

divergence shows a negative correlation with functional content. (C) Neutral human-chimp 

divergence shows a positive correlation with human recombination rate. (D) Neutral human-

orang divergence shows a positive correlation with human recombination rate. Each point 

represents the mean divergence and functional content (A and B) or recombination rate (C and 

D) in 1% of the 100kb windows binned by functional content or recombination rate. Red lines 

indicate the loess curves fit to divergence and functional content (A and B) and divergence and 

recombination rate (C and D). Note that the last bin containing less than 1% of the windows was 

omitted from the plot. While the graph presents binned data, the correlations reported in the text 

are from the unbinned data.  
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Figure 2.13. Correlations between human-rodent divergence and genomic features change 

when filtering the 25% of the genome with the highest GERP scores. (A) Neutral human-

mouse divergence no longer correlates with functional content. (B) Neutral human-rat 

divergence does not correlate with functional content. (C) Neutral human-mouse divergence 

shows a positive correlation with McVicker’s B-values. (D) Neutral human-rat divergence shows 

a positive correlation with McVicker’s B-values. Each point represents the mean divergence and 

functional content (A and B) or B-values (C and D) in 1% of the 100kb windows binned by 

functional content or B-values. Red lines indicate the loess curves fit to divergence and 

functional content (A and B) and divergence and B-values (C and D). Note that the last bin 

containing less than 1% of the windows was omitted from the plot. While the graph presents 

binned data, the correlations reported in the text are from the unbinned data. 
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Figure 2.14. Observed and modeled genome-wide distributions of human-chimp divergence 

and human-mouse divergence in 100kb windows when filtering sites whose GERP scores 

fall into the top 25% of the genome-wide distribution. Gray lines denote 500 simulated 

genome-wide distributions of divergence. Red line denotes the observed distribution of neutral 

divergence. Note, the distribution of simulated divergence is comparable to that from empirical 

data. (A) Simulated human-chimp divergence without the effects of background selection (BGS). 

(B) Simulated human-chimp divergence with the effects of background selection. (C) Simulated 

human-mouse divergence without the effects of background selection. (D) Simulated human-

mouse divergence with the effects of background selection. We filtered all ATGC changes 

between the human and chimp sequences as they could be affected by biased gene conversion. 

Thus, the distribution of human-chimp divergence shown here is lower than the overall 

divergence. 
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Figure 2.15. Models incorporating background selection can recapitulate the empirical 

correlations after removing sites with GERP scores falling in the top 25% of the genome-

wide distribution. (A) Models of background selection predict a positive correlation between 

neutral human-chimp divergence and human recombination rate. Because our model does not 

include biased gene conversion, the empirical correlation was calculated omitting AT to GC 

sequence differences. (B) Models of background selection predict a positive correlation between 

neutral human-mouse divergence and McVicker’s B-values. The white histogram denotes 500 

simulations without including background selection. The gray histogram denotes 500 simulations 

incorporating background selection. Red lines represent the correlations computed from the 

empirical data. Thus, plausible levels of background selection can match the observed 

correlations when using the most stringent filtering criteria while neutral simulations cannot. 
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Figure 2.16. Human-mouse mutational parameters used for the simulations. 
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2.7 Tables 

Table 2.1. Summary statistics of divergence at four-fold sites and at putatively neutral 

regions. Mean of divergence and standard deviation of divergence were computed over 100kb 

windows at four-fold sites degenerate sites and at putatively neutral sites. Windows where the 

total number of eligible sites is equal to 0 were excluded from both sets. Further, for human-

mouse and human-rat, we corrected for multiple mutations with Kimura 2-parameter models. 

Note that for human-mouse and human-rat, we also excluded windows with unrealistic 

divergence after the Kimura 2-parameter correction (i.e. windows where the divergence was 

greater than 1 were removed).   

Species pair  Mean of divergence Standard deviation of 

divergence 

Human-chimp Four-fold sites 0.013 0.016 

Putatively neutral 

sites 

0.012 0.005 

Human-orang Four-fold sites 0.037 0.037 

Putatively neutral 

sites 

0.033 0.012 

Human-mouse Four-fold sites 0.444 0.152 

Putatively neutral 

sites 

0.447 0.038 

Human-rat Four-fold sites 0.456 0.156 

Putatively neutral 

sites 

0.452 0.039 
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Table 2.2. Correlation coefficients of human-primate divergence and functional content. 

Species 

pair 

Spearman’s 

ρ overall 

Spearman’s 

ρ post CpG 

filtering 

Partial 

correlation 

controlling 

for GC 

content 

Spearman’s 

ρ post 

gBGC 

filtering 

Partial 

correlation 

controlling 

for 

recombination 

Spearman’s 

ρ when 

using 

50kb-

windows 

Human-

chimp 

-0.235** -0.252** -0.291** -0.243** -0.269** -0.186** 

Human-

orang 

-0.204** -0.232** -0.289** -0.255** -0.241** -0.184** 

**p-value < 2.2e-16 
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Table 2.3. Correlation coefficients of human-primate divergence and recombination rate. 

Species pair Spearman’s ρ 

overall 

Spearman’s ρ 

post CpG 

filtering 

Partial 

correlation 

controlling 

for GC 

content 

Spearman’s ρ 

post gBGC 

filtering 

Spearman’s 

ρ when 

using 

50kb-

windows 

Human-

chimp 

0.234** 0.207** 0.242** 0.108** 0.182** 

Human-

orang 

0.249** 0.221** 0.240** 0.088** 0.209** 

**p-value < 2.2e-16 
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Table 2.4. Correlation coefficients of human-rodent divergence and functional content. 

Species 

pair 

Spearman’s 

ρ overall 

Spearman’s 

ρ post CpG 

filtering 

Partial 

correlation 

controlling 

for GC 

content 

Partial 

correlation 

controlling 

for 

recombination 

Spearman’s 

ρ post 

gBGC 

filtering 

Spearman’s 

ρ when 

using 

50kb-

windows 

Human-

mouse 

-0.184** -0.202** -0.243** -0.194** -0.339** -0.135** 

Human-

rat 

-0.149** -0.169** -0.206** -0.156** -0.337** -0.103** 

**p-value < 2.2e-16 
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Table 2.5. Correlation coefficients of human-rodent divergence and McVicker’s B-values. 

Species 

pair 

Spearman’s ρ 

overall 

Spearman’s ρ 

post CpG 

filtering 

Partial 

correlation 

controlling 

for GC 

content 

Spearman’s ρ 

post gBGC 

filtering 

Spearman’s 

ρ when 

using 

50kb-

windows 

Human-

mouse 

0.445** 0.450** 0.456** 0.419** 0.403** 

Human-rat 0.402** 0.405** 0.413** 0.404** 0.366** 

**p-value < 2.2e-16 
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Table 2.6. Summary of parameters used for the coalescent simulations. Note that shape and 

scale here refer to the shape and scale parameters used for the gamma distribution.  

Species pair Shape Scale Na 

Human-chimp GERP 

10 

1.1X108 9.3X10-17 240000 

Human-chimp GERP 

25 

1.5X109 8.2X10-18 235000 

Human-mouse GERP 

10 

4.0X103 5.0X10-12 940000 

Human-mouse GERP 

25 

1.6X103 1.7X10-11 375000 

 

  



59 
 

Table 2.7. Comparison of the mean and standard deviation of the empirical and simulated 

divergence. Note that empirical mean and empirical standard deviation refer to the average 

neutral divergence calculated over 100kb windows. 

Species 

pair 

Empirical mean Average of the mean 

of simulated 

divergence from 500 

simulations 

Empirical 

standard 

deviation 

Average of the 

standard deviation of 

simulated divergence 

from 500 simulations 

Without 

BGS 

With 

BGS 

Without 

BGS 

With 

BGS 

Human-

chimp 

GERP 10 

0.013 0.014 0.012 0.003 0.004 0.004 

Human-

chimp 

GERP 25 

0.014 0.016 0.014 0.003 0.005 0.004 

Human-

mouse 

GERP 10 

0.461 0.473 0.461 0.020 0.027 0.024 

Human-

mouse 

GERP 25 

0.572 0.577 0.571 0.021 0.022 0.021 
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Table 2.8. GERP RS score cutoff. Note that we also removed sites whose RS score is equal to 

0. 

Proportion of the genome to be removed Remove sites whose RS score is 

5% > 4.949 

10% > 4.078 

15% > 3.207 

20% > 2.336 

25% > 1.465 
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CHAPTER 3 

Detecting mutagenic recombination using genome-wide divergence data 

3.1 Abstract 

Mutation is the ultimate source of genetic variation that is acted on by evolutionary 

processes and gives rise to disease. Currently, the reasons why mutation rate varies across the 

genome are not well understood. One possibility is that recombination could be mutagenic and as 

such, variation in the recombination rate contributes to variation in the mutation rate. In humans, 

a positive correlation between human-chimp neutral divergence and recombination rate has lent 

support to this hypothesis. However, this correlation could also be driven by the effects of 

natural selection, specifically background selection. To date, the degree to which recombination 

is mutagenic in the human genome remains unknown. To address this question, we developed a 

likelihood-based framework to test the extent to which background selection and/or the coupling 

between recombination and mutation contributes to the variation in human-chimp neutral 

divergence. Our method is built upon the idea that background selection primarily affects 

divergence in regions of low recombination while mutagenic recombination affects regions of 

high recombination. We model background selection by scaling the effective population size by 

the B-values from McVicker et al. (2009). We also estimate the degree of coupling between 

mutation and recombination. Application of this method to human-chimp divergence reveals that 

a model including background selection and mutation-recombination coupling fits the data 

substantially better than a model only including background selection. However, we observed 

that biased gene conversion can account for the effects seen from mutagenic recombination. 

When biased gene conversion is controlled for, a model including just background selection can 
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model the empirical data. Our work contributes to the growing literature on the importance of 

biased gene conversion and how it can confound many findings if not accounted for. 

3.2 Introduction 

Mutation is the ultimate source of genetic variation that is acted on by evolutionary 

processes and gives rise to disease. The rate at which mutation arises (i.e. mutation rate) is not 

constant but varies across the genome (Hodgkinson and Eyre-Walker, 2011). While many 

genomic features such as replication time, female recombination rate, or GC content correlate 

with mutation rate, there have been very few investigations into what causes mutation rate to 

vary across the genome (Eyre-Walker and Eyre-Walker, 2014; Hodgkinson and Eyre-Walker, 

2011). In humans, there is some evidence that mutagenic recombination can explain why 

mutation rate varies across the genome (Hellmann et al., 2003). For example, since differences in 

DNA between human and chimpanzee (i.e. divergence) at noncoding regions are often used as a 

proxy for mutation rate, a positive correlation between human-chimp neutral divergence and 

recombination has been used as evidence for mutagenic recombination (Hellmann et al., 2003). 

However, this positive correlation could also be due to the effects of natural selection at linked 

neutral sites, specifically background selection (McVicker et al., 2009; Phung et al., 2016). It is 

unclear to what extent background selection and mutagenic recombination contributes to the 

positive correlation between neutral divergence and recombination.  

In recent years, with the advance of next generation sequencing, trios (father, mother, and 

child) are sequenced and the rate of de novo mutations are estimated. Francioli et al. sequenced 

250 Dutch trios and observed a positive correlation between the rate of de novo mutations and 

recombination rate, supporting mutagenic recombination (Francioli et al., 2015). However, 

Palamara et al. used the same data and found no correlation after correcting for biased gene 
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conversion (Palamara et al., 2015). Therefore, it is still a topic of debate as to whether 

recombination is mutagenic.  

Here, we wanted to investigate the correlation between human-chimp neutral divergence 

and recombination to assess whether recombination is mutagenic. We accounted for factors such 

as background selection and biased gene conversion. As such, we developed a likelihood-based 

approach based on a population genetic model. We applied our method on neutral human-chimp 

divergence data and found that a model including both background selection and mutagenic 

recombination best fits the empirical data. However, most of the effect of mutagenic 

recombination could be explained by biased gene conversion. Our results add to the growing 

literature about the important role of biased gene conversion and that biased gene conversion 

could lead to misinterpretation if it is not accounted for. Further, our method could be modified 

to be applied to study whether recombination is mutagenic in other species of interest.  

3.3 Methods 

Description of the data 

The neutral human-chimp divergence dataset used in this studied was obtained from 

Phung et al. (Phung et al., 2016). To investigate the effect of biased gene conversion, we 

removed all AT  GC substitutions across the genome as in Phung et al. (Phung et al., 2016).  

Overview of Methods 

We aimed to model human-chimp neutral divergence across the genome by incorporating 

the effect of natural selection affecting linked neutral sites, specifically background selection, 

and the potential effect of mutagenic recombination. The intuition of our model is that 

background selection primarily affects neutral divergence at regions of low recombination 

whereas mutagenic recombination primarily affects neutral divergence at regions of high 
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recombination. We divided the genome into non-overlapping 100kb windows and assumed 

independence between windows. For each window 𝑖, we computed the probability of observing 

the number of divergent sites in the 𝑖𝑡ℎ window given a set of parameters. We aimed to find the 

maximum likelihood estimates of the parameters that maximize the probability. We used 

population genetic theory to model the number of divergent sites in the 𝑖𝑡ℎ window, which is 

modelled as a Poisson process with the rate equal to the product of mutation rate 𝜇 and the 

genealogy underlying time to the most common ancestor (TMRCA) of two lineages (Wakely, 

2008). The TMRCA is divided into two parts: before (i.e. more ancient) and after the split. We 

estimated the TMRCA before the split by simulating under a coalescent framework using ms 

(Hudson, 2002). To reduce Monte Carlo variance, we generated and averaged across 1,000 

genealogies. The genealogy is affected by background selection. We modelled background 

selection in each window 𝑖 as a reduction in the ancestral effective population size, 𝑁𝑎𝑖  =  𝑁𝑎𝐵𝑖, 

where 𝑁𝑎 is the ancestral effective population size and 𝐵𝑖 is the effect of background selection.  

We captured the effect of background selection using the B-values from McVicker et al. as in 

Phung et al. (McVicker et al., 2009; Phung et al., 2016). To obtain the total TMRCA, 𝑇𝑡𝑜𝑡𝑎𝑙, we 

added the TMRCA before the split after converted it into units of generations to the 𝑡𝑠𝑝𝑙𝑖𝑡 (see 

Methods). We modeled the effect of mutagenic recombination by a linear relationship between 

mutation rate and recombination rate, 𝜇𝑖  =  𝜇 +  𝜑𝑟𝑖, where µi is the mutation rate of window i, 

µ is the neutral mutation rate, ri is the recombination rate, and φ is the coupling parameter 

between mutation rate and recombination rate.  

For each set of parameters, we computed the log-likelihood of the observed divergence 𝑑𝑖 

given 𝑇𝑡𝑜𝑡𝑎𝑙𝑖,𝑗,, 𝜇, and 𝜑 (see Methods). We averaged the log-likelihood over 1000 replicates to 

reduce Monte-Carlo variance: 𝐿𝑖 =
1

1000
∑ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 ((𝜇 + 𝜑𝑟𝑖)𝑇𝑡𝑜𝑡𝑎𝑙𝑖,𝑗|𝑇𝑡𝑜𝑡𝑎𝑙𝑖,𝑗) Pr (𝑇𝑡𝑜𝑡𝑎𝑙𝑖,𝑗)1000

𝑗=1 . 
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Since we assumed independence between windows, we summed up the average log-likelihood 

for each window 𝑖 for all 𝑛 windows: 𝐿 =  ∑ 𝐿𝑖
𝑛
𝑖=1 . This is the genome-wide log-likelihood for 

each set of parameter values. We then picked the set of parameter values with the highest log-

likelihood, which is the maximum likelihood estimates. 

Simulating genealogies 

We used the coalescent simulator ms to simulate the genealogy in each window 𝑖 for a 

sample size of two chromosomes with population-scale recombination rate 𝜌𝑖 = 4𝑁𝑎𝐵𝑖𝑟𝑖, where 

𝑁𝑎 is the ancestral effective population size, 𝐵𝑖 is the effect of background selection and 𝑟𝑖 is the 

recombination rate for each window 𝑖 (Hudson, 2002). For computational efficiency, we 

generated a look-up table where for each value of 𝜌, we generated and stored 1000 genealogies. 

Since Phung et al. (2016) used 𝑁𝑎 = 70000 in the human-chimp coalescent for this divergence 

dataset, we computed 𝜌 by using the same value for 𝑁𝑎 to obtain an estimate of 𝜌 (Figure 3.1). 

Since the highest value of 𝜌 is around 1500, we generated the genealogies for a set of 𝜌 ranging 

uniformly from 0 to 2000. For example, the command in ms used to simulate the genealogies for 

a 𝜌 value of 10 is:  

msdir/ms 2 100000 -r 10 100000 -L -seeds 1 2 3 > rho_10_genealogies.txt 

Then, for each set of parameters, we calculated 𝜌 and looked up the values for the 1000 

genealogies. This strategy is computational efficient because we avoided having to re-simulate 

the genealogies for the same value of 𝜌.  

Inference procedure 

Since the number of parameters tested is vast, we narrowed down the parameter space by 

only considering the sets of parameters that when used to simulate a divergence dataset, would 

result in the mean divergence as comparable to the empirical divergence. Specifically, for each 
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set of parameters, we computed the expected mean divergence, which is equal to 

1

𝑛
∑ (𝜇 + 𝜑𝑟𝑖)2(2𝑁𝑎𝐵𝑖 + 𝑡𝑠𝑝𝑙𝑖𝑡)𝐿𝑛

𝑖=1  where 𝜇 is the mutation rate, 𝜑 is the coupling parameter 

between mutation rate and recombination rate, 𝑟𝑖 is the recombination rate in window 𝑖, 𝑁𝑎 is the 

ancestral population size, 𝐵𝑖 is the strength of background selection in window 𝑖, 𝑡𝑠𝑝𝑙𝑖𝑡 is the 

split time between two species, and 𝐿 is the length of the window. We kept the sets of parameters 

where the expected mean divergence is within 1% of the empirical divergence. The script used 

for this step can be found at 

https://github.com/tnphung/MutRec/blob/master/generate_constrain_grid.R.  

Then, for each set of parameters that are kept after the initial filtering based on mean 

divergence, we computed population-scaled recombination rate, 𝜌, for each window, which is 

equal to 4𝑁𝑎𝐵𝑖𝑟𝐿. The genealogies are obtained from the look-up table for each value of 𝜌 as 

described above. Each genealogy, 𝑇𝑗 from ms simulation is the genealogy in the ancestral 

population, before the split between two species and is in units of 2N. We then converted 𝑇𝑗 to be 

in units of generation: 2𝑇𝑗𝑁𝑎𝐵𝑖. Then, 2𝑇𝑗𝑁𝑎𝐵𝑖 + 𝑡𝑠𝑝𝑙𝑖𝑡 is the genealogy that include both 

before and after the split between two species for one branch. Therefore,  2(2𝑇𝑗𝑁𝑎𝐵𝑖 + 𝑡𝑠𝑝𝑙𝑖𝑡) is 

the total genealogy underlying a sample size of two chromosomes.  

We then computed the Poisson probability of observing the number of divergent sites in 

that window given the set of parameters which is equal to 𝑒−𝜆 𝜆𝑘

𝑘!
, where the rate, 𝜆 is the product 

of the mutation rate 𝜇 and the genealogy underlying two samples. We accounted for mutagenic 

recombination by a linear relationship between 𝜇 and 𝑟𝑖: 𝜇𝑖 = 𝜇 + 𝜑𝑟𝑖. Then, the Poisson rate is: 

𝜆𝑖𝑗 = (𝜇 + 𝜑𝑟𝑖)2(2𝑇𝑗𝑁𝐵𝑖 + 𝑡𝑠𝑝𝑙𝑖𝑡)𝐿 
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In sum, for each window 𝑖, we computed the Poisson probability of observing the number 

of divergent sites in window 𝑖 given a set of parameters for one simulation replicate 𝑗. We 

accounted for Monte Carlo variance in the simulation by taking the average probability from 

1000 replicates. We then calculated the log-likelihood by taking the logarithm of the probability. 

Since we assumed independence between windows, we summed up the likelihood from each 

window, which is then the likelihood of observing the number of divergent sites across the 

genome given a set of parameters. The scripts for the inference procedure can be found at: 

https://github.com/tnphung/MutRec/tree/master/infer_mut_rec. 

Models tested 

We applied our likelihood framework to test whether a model including only background 

selection, a model including only mutagenic recombination, or a model including both effects 

can best recapitulate the genome-wide human-chimp neutral divergence. To test the model with 

just background selection, we set 𝜑 to be 0 and inferred for the mutation rate 𝜇 and the ancestral 

population size 𝑁𝑎. We used the McVicker’s B-values to capture the effect of background 

selection (McVicker et al., 2009). To test the model with just mutagenic recombination, we set 𝐵 

to be 1 to indicate that there is no background selection effect. We then inferred for 𝜇, 𝑁𝑎, and 

the coupling parameter between recombination rate and mutation rate 𝜑. Finally, to test whether 

the model including both background selection and mutagenic recombination can recapitulate the 

data, we inferred for 𝜇, 𝑁𝑎, and 𝜑, and used the McVicker’s B-values to capture background 

selection. In all models tested, we set the split time between human and chimpanzee to be 

200000 generations. Table 3.1 summarized the parameters being inferred in each model.  

Simulations to evaluate performance 
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We utilized coalescent simulation to simulate divergence datasets under different models 

as implemented in Phung et al. (2016). We first simulated divergence in the ancestral population 

using ms in each window using the population-scaled recombination rate 4𝑁𝑎𝐵𝑖𝑟𝑖 and the 

population-scaled mutation rate 4𝑁𝑎𝐵𝑖𝜇. We then added the divergent sites that arose since the 

split and accumulated following a Poisson distribution where the rate is equal to 

2𝑡𝑠𝑝𝑙𝑖𝑡(𝜇 + 𝜑𝑟𝑖)𝐿. We simulated three divergence datasets. To simulate a divergence dataset 

that was affected by background selection by itself, we set 𝜑 to be equal to 0. To simulate a 

divergence dataset that was affected by mutagenic recombination by itself, we set background 

selection in each window 𝐵𝑖 to be 1. Table 3.1 listed the values we used to simulate each 

divergence dataset. The scripts used to simulate divergence data can be found at: 

https://github.com/tnphung/MutRec/tree/master/simulate_divergence_dataset. 

3.4 Results 

Simulations to validate inference method 

To test whether our inference method can distinguish between different models, we 

simulated three test datasets. In the first dataset, only background selection is included. In the 

second dataset, only mutagenic recombination is included. Similarly, in the third dataset, both 

background selection and mutagenic recombination are included (see Methods). For each test 

dataset, we applied the inference procedure to test which model (i.e. background selection, 

mutagenic recombination, or both) would yield the maximum likelihood and visually fit best to 

the test data.  

When the test dataset was generated with only background selection, we observed that 

both the model with just background selection and the model with both background selection and 

mutagenic recombination have similar likelihood (Table 3.2). Both models visually fit the test 

https://github.com/tnphung/MutRec/tree/master/simulate_divergence_dataset
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data (Figure 3.2A, 3.2C). It is expected that the model with both background selection and 

mutagenic recombination would fit the data as well as the model with just background selection. 

This is because the model with just background selection is nested within the model 

incorporating both effects. Given two models with similar likelihood, we would select the 

simpler model with fewer parameters, which is the model with just background selection. On the 

other hand, while a model with just mutagenic recombination fits the pattern of neutral 

divergence at regions of high recombination (>2cM/Mb) reasonably well, the fit at regions of 

low recombination (<2cM/Mb) is poor (Figure 3.2B). This observation validates our intuition 

that background selection primarily affects patterns of divergence at regions of low 

recombination while mutagenic recombination primarily affects patterns of divergence at regions 

of high recombination.  

When the test dataset was simulated using a model with just mutagenic recombination, 

the model with mutagenic recombination resulted in the highest likelihood and visually fit well 

to the test data (Table 3.3 and Figure 3.3). The inferred parameters are also close to the true 

values (Table 3.3). On the other hand, both the model with background selection and the model 

incorporating both effects resulted in a poor fit to the test data (Figure 3.3A and 3.3C).  

When the test dataset was simulated with both background selection and mutagenic 

recombination, we observed that the model including both effects yielded the highest likelihood 

and fitted well to the test data (Table 3.4 and Figure 3.4C). The inferred parameters are also close 

to the true values (Table 3.4). However, both the model with just background selection or the 

model with just mutagenic recombination yielded poor fits to the test data (Figure 3.4A and 

3.4B). Interestingly, a model with just background selection fitted the test data reasonably well at 

regions of low recombination (<2cM/Mb) but failed to recapitulate the pattern of divergence at 
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regions of high recombination (>2cM/Mb) (Figure 3.4A). On the contrary, a model with just 

mutagenic recombination fitted the test data well at regions of high recombination (>2cM/Mb), 

but the divergence at regions of low recombination is higher than the test data (Figure 3.4B). 

These results suggest that our method can distinguish between these different models and can 

infer parameters close to the true values.  

Estimating the degree of coupling between mutation and recombination in human 

To understand the extent of background selection and recombination-mutation coupling 

(if any) can generate the observed correlation pattern between human-chimp neutral divergence 

and human recombination rate, we applied our inference procedure to human-chimp neutral 

divergence data and tested three models: a model with background selection, a model with 

mutagenic recombination, and a model with both background selection and mutagenic 

recombination (see Methods). We observed that a model with just background selection can 

recapitulate the pattern of neutral divergence well at regions of low recombination (<2cM/Mb), 

but could not predict the higher divergence at regions of high recombination (>2cM/Mb) (Figure 

3.5A). On the contrary, the model with just mutagenic recombination fail to recapitulate the 

reduction in neutral divergence, presumably due to linked selection, at regions of low 

recombination (Figure 3.5B). However, the model including both effects yielded the highest 

likelihood and the best visual fit to the data (Table 3.5 and Figure 3.5C), suggesting that both 

background selection and mutagenic recombination contribute to the pattern of human-chimp 

neutral divergence. We found that the coupling parameter between mutation rate and 

recombination rate is around 0.03 (Table 3.5), indicating that a one unit increase in 

recombination rate (in units of morgan per base pair) results in a 3 percent increase in the 

mutation rate (in units of base pair per generation).  
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Biased gene conversion is an evolutionary force that has been shown to contribute to 

some of the correlation pattern between neutral divergence and recombination. We accounted for 

this confounding factor by removing divergent sites that could have been affected by biased gene 

conversion as in Phung et al. (2016). Specifically, we removed any AT  GC substitutions. We 

repeated the inference procedure using this dataset where sites that could be affected by biased 

gene conversion are removed. We found that a model including just background selection 

resulted in the highest likelihood and is sufficient to recapitulate the empirical divergence (Table 

3.6, Figure 3.6). When removing the potential effect of biased gene conversion, we did not 

observe the increase in neutral divergence at regions of high recombination. Therefore, a model 

of just background selection can fit the data reasonably well (Figure 3.6A).  

3.5 Discussion 

We developed a likelihood-based method to model neutral divergence across the genome 

by incorporating the effect of natural selection on linked neutral sites and the effect of mutagenic 

recombination. To the best of our knowledge, this is the first method that explicitly tests whether 

background selection or mutagenic recombination or both effects can best recapitulate the 

empirical correlation observed between neutral divergence and recombination. Previous studies 

have attributed the positive correlation between human-chimp neutral divergence and 

recombination to the effect of linked selection or to mutagenic recombination (Hellmann et al., 

2003; McVicker et al., 2009; Phung et al., 2016). Even though previous work has shown that a 

model including background selection can generate a correlation comparable to the empirical 

data, these studies have not explicitly rule out the effect of mutagenic recombination. Here we 

applied our method to show that a model including both effects best recapitulates the empirical 

human-chimp neutral divergence across the genome. However, we presented evidence that the 
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signal of mutagenic recombination could be explained by biased gene conversion. Our finding 

supports previous research that used sequencing data of trios to study whether recombination is 

mutagenic in humans (Palamara et al., 2015). Our study used genome-wide divergence data; 

however, we came to a similar conclusion to Francioli et al. (2015) and Palamara et al (2015). 

Specifically, the evidence supporting mutagenic recombination is seemingly due to biased gene 

conversion. Our research contributes to the growing literature on the importance of biased gene 

conversion in affecting divergence. For example, Smith et al. investigated variation in mutation 

rate using de novo mutations and observed that the correlation between divergence and mutation 

rate could be due to biased gene conversion (Smith et al., 2018) 

One limitation of the method developed in this study is that we assume that the 

relationship between neutral divergence and mutation is linear. Other relationship such as 

quadratic could be possible, especially if this method is to be applied to other species where the 

relationship between divergence and recombination could be more complex. Further, we applied 

this method to human-chimp neutral divergence to detect whether recombination is mutagenic in 

humans. The advantage of applying to human dataset is that some parameters needed in the 

coalescent simulation are known such as the split time between human and chimpanzee and the 

amount of background selection. Even though we anticipate that this method could be applied to 

other species, some of these parameters may not be readily available for species besides humans 

and additional steps are required to optimize those values first.  
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3.6 Figures 

 

Figure 3.1. Distribution of empirical population-scale recombination rate, 𝝆 across 100kb-

windows. Here, the population-scale recombination rate for each 100kb window is: 𝜌𝑖 =

4𝑁𝑎𝐵𝑖𝑟𝑖, where 𝑁𝑎 is the ancestral effective population size, 𝐵𝑖 is the effect of background 

selection and 𝑟𝑖 is the recombination rate for each window 𝑖. Following Phung et al., we set 𝑁𝑎 =

70000 (Phung et al., 2016). We used the B-values from McVicker et al. (McVicker et al., 2009) 

and recombination rate from the high resolution pedigree-based genetic map assembled by 

deCODE (Kong et al., 2010).  
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Figure 3.2. Test dataset was generated with background selection. Each point represents the 

mean divergence and recombination rate in 1% of the 100kb windows binned by recombination 

rate. Each line represents the loess curve fit to the neutral divergence and recombination rate. 

Gray points and gray line represent the test dataset. (A) Blue points and blue line were generated 

using the MLEs from a model with just background selection. (B) Green points and green line 

were generated using the MLEs from a model with just mutagenic recombination. (C) Orange 

points and orange line were generated using the MLEs from a model with both background 

selection and mutagenic recombination. Both (A) and (C) showed an excellent fit to the test data.  
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Figure 3.3. Test dataset was generated with mutagenic recombination. Each point represents 

the mean divergence and recombination rate in 1% of the 100kb windows binned by 

recombination rate. Each line represents the loess curve fit to the neutral divergence and 

recombination rate. Gray points and gray line represent the test dataset. (A) Blue points and blue 

line were generated using the MLEs from a model with just background selection. (B) Green 

points and green line were generated using the MLEs from a model with just mutagenic 

recombination. (C) Orange points and orange line were generated using the MLEs from a model 

with both background selection and mutagenic recombination. (B) showed an excellent fit to the 

test data. 
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Figure 3.4. Test dataset was generated with both background selection and mutagenic 

recombination. Each point represents the mean divergence and recombination rate in 1% of the 

100kb windows binned by recombination rate. Each line represents the loess curve fit to the 

neutral divergence and recombination rate. Gray points and gray line represent the test dataset. 

(A) Blue points and blue line were generated using the MLEs from a model with just background 

selection. (B) Green points and green line were generated using the MLEs from a model with 

just mutagenic recombination. (C) Orange points and orange line were generated using the MLEs 

from a model with both background selection and mutagenic recombination. (C) showed an 

excellent fit to the test data. 
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Figure 3.5. Model with both background selection and mutagenic recombination can 

recapitulate the empirical human-chimp neutral divergence. Each point represents the mean 

divergence and recombination rate in 1% of the 100kb windows binned by recombination rate. 

Each line represents the loess curve fit to the neutral divergence and recombination rate. Gray 

points and gray line represent the test dataset. (A) Blue points and blue line were generated using 

the MLEs from a model with just background selection. (B) Green points and green line were 

generated using the MLEs from a model with just mutagenic recombination. (C) Orange points 

and orange line were generated using the MLEs from a model with both background selection 

and mutagenic recombination. (C) showed an excellent fit to the empirical data. 
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Figure 3.6. Biased gene conversion confounds signal for mutagenic recombination. Each 

point represents the mean divergence and recombination rate in 1% of the 100kb windows 

binned by recombination rate. Each line represents the loess curve fit to the neutral divergence 

and recombination rate. Gray points and gray line represent the test dataset. (A) Blue points and 

blue line were generated using the MLEs from a model with just background selection. (B) 

Green points and green line were generated using the MLEs from a model with just mutagenic 

recombination. (C) Orange points and orange line were generated using the MLEs from a model 

with both background selection and mutagenic recombination. (A) showed a good fit to the 

empirical data, indicating that when biased gene conversion is accounted for, a model with just 

background selection can recapitulate the empirical human-chimp neutral divergence. 
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3.7 Tables 

Table 3.1. Parameters to infer for each model  

Models Parameters to infer B-values used 

Background selection 

𝜇 

McVicker’s B-values 

𝑁 

Mutagenic recombination 

𝜇 

B = 1 𝑁 

𝜑 

Background selection and 

mutagenic recombination 

𝜇 

McVicker’s B-values 𝑁 

𝜑 
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Table 3.2. Maximum likelihood estimates and best likelihoods when test data was 

generated with just background selection 

Models B-values 

Parameters 

to infer 

True 

value 

Maximum 

likelihood 

estimates 

Best log-

likelihood 

Background 

selection 

McVicker’s 

B 

𝜇 2e-8 2e-8 

-39725.129 

𝑁𝑎 50000 50000 

Mutagenic 

recombination 

B = 1 

𝜑 

N/A 

0.018 

-40246.541 𝜇 1.96e-8 

𝑁𝑎 44000 

Background 

selection and 

mutagenic 

recombination 

McVicker’s 

B 

𝜑 

N/A 

0.001 

-39725.333 𝜇 2e-8 

𝑁𝑎 50000 

 

  



81 
 

Table 3.3. Maximum likelihood estimates and best likelihoods when test data was 

generated with just mutagenic recombination 

Models B-values 

Parameters 

to infer 

True 

value 

Maximum 

likelihood 

estimates 

Best log-

likelihood 

Background 

selection 

McVicker’s 

B 

𝜇 

N/A 

2.06e-8 

-42750.425 

𝑁𝑎 62000 

Mutagenic 

recombination 

B = 1 

𝜑 0.05 0.052 

-41097.746 𝜇 2e-8 1.98e-8 

𝑁𝑎 50000 51000 

Background 

selection and 

mutagenic 

recombination 

McVicker’s 

B 

𝜑 

N/A 

0.02 

-42693.294 𝜇 2.07e-8 

𝑁𝑎 58000 
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Table 3.4. Maximum likelihood estimates and best likelihoods when test data was 

generated with both background selection and mutagenic recombination 

Models B-values 

Parameters 

to infer 

True 

values 

Maximum 

likelihood 

estimates 

Best log-

likelihood 

Background 

selection 

McVicker’s 

B 

𝜇 

N/A 

1.96e-8 

-40149.845 

𝑁𝑎 59000 

Mutagenic 

recombination 

B = 1 

𝜑 

N/A 

0.071 

-40307.766 𝜇 1.97e-8 

𝑁𝑎 42000 

Background 

selection and 

mutagenic 

recombination 

McVicker’s 

B 

𝜑 0.05 0.048 

-39753.398 𝜇 2e-8 2e-8 

𝑁𝑎 50000 50000 
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Table 3.5. Maximum likelihood estimates and best likelihoods for each model for empirical 

human-chimp neutral divergence before accounting for biased gene conversion 

Models B-values 

Parameters to 

infer 

Maximum 

likelihood 

estimates 

Best log-

likelihood 

Background 

selection 

McVicker’s B-

values 

𝜇 1.6e-8 

-50184 

𝑁𝑎 120000 

Mutagenic 

recombination 

B-values = 1 

𝜑 0.071 

-51565 𝜇 1.6e-8 

𝑁𝑎 90000 

Background 

selection and 

mutagenic 

recombination 

McVicker’s B-

values 

𝜑 0.034 

-49902 𝜇 1.8e-8 

𝑁𝑎 90000 
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Table 3.6. Maximum likelihood estimates and best likelihoods for each model for empirical 

human-chimp neutral divergence after accounting for biased gene conversion 

Models B-values 

Parameters to 

infer 

Maximum 

likelihood 

estimates 

Best log-

likelihood 

Background 

selection 

McVicker’s B-

values 

𝜇 2.9e-9 

-33909 

𝑁𝑎 90000 

Mutagenic 

recombination 

B-values = 1 

𝜑 0.01 

-34885 𝜇 2.7e-9 

𝑁𝑎 80000 

Background 

selection and 

mutagenic 

recombination 

McVicker’s B-

values 

𝜑 0.003 

-34817 𝜇 3.3e-9 

𝑁𝑎 60000 
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CHAPTER 4 

Complex patterns of sex-biased demography in canines 

4.1 Abstract 

Studies of genetic variation have shown that the demographic history of dogs has been 

complex, involving multiple bottleneck and admixture events. However, existing studies have 

not explored the variance in the number of reproducing males and females, and whether it has 

changed across evolutionary time. While male-biased mating practices, such as male-biased 

migration and multiple paternity, have been observed in wolves, recent breeding practices could 

have led to female-biased mating patterns in breed dogs. In addition, breed dogs are thought to 

have experienced the popular sire effect, where a small number of males father many offspring 

with a large number of females. Here we use genetic variation data to test how widespread sex-

biased mating practices in canines are during different time points. Using whole genome 

sequence data from 33 dogs and wolves, we show that patterns of diversity on the X 

chromosome and autosomes are consistent with a higher number of reproducing males than 

females over ancient evolutionary history in both dogs and wolves, suggesting that mating 

practices did not change during early dog domestication. In contrast, since breed formation, we 

found evidence for a larger number of reproducing females than males in breed dogs, consistent 

with the popular sire effect. Our results confirm that the canines demography has been complex, 

with unique and opposite sex-biased processes occurring at different times. The signatures 

observed in the genetic data are consistent with documented sex-biased mating practices in both 

the wild and domesticated populations, suggesting that these mating practices are pervasive. 
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4.2 Introduction 

Dogs were the first animals known to be domesticated and have lived alongside humans 

and shared our environment ever since (Hemmer 1990). There is tremendous interest in 

understanding their genetics and evolutionary history (Freedman et al. 2014; Freedman et al. 

2016; Freedman and Wayne 2017; Ostrander et al. 2017). Many studies have shown that dogs 

have a complex evolutionary history; they experienced a population size reduction (i.e. 

bottleneck) associated with domestication and additional breed-specific bottlenecks associated 

with breed formation during the Victorian era (Boyko 2011). In addition to bottleneck events, 

dogs experienced admixture with wolves during the domestication process (vonHoldt et al. 

2011). Studies have disagreed about the process of domestication, including when, where, and 

how many times dogs were domesticated (Larson et al. 2012; Thalmann et al. 2013; Freedman et 

al. 2014; Drake et al. 2015; Frantz et al. 2016; Botigué et al. 2017). However, despite the 

extensive work on understanding dog demographic history, existing studies have not explored 

the population history of males and females across dog domestication. Departures from an equal 

number of reproducing males and females are called sex-biased demographic processes, and 

leave signatures in the genome (reviewed in Wilson Sayres 2018 (Wilson Sayres 2018)). 

Previous ecological and field studies suggested that mating practices have been sex-biased in 

canines. In the wild populations, vonHoldt et al. (2008) observed that in some cases, 

Yellowstone male wolves would migrate to an existing wolf pack to mate with the alpha female 

when the alpha male dies (vonHoldt et al. 2008). The migration into an existing wolf pack is 

therefore male-biased. An additional source of male biased migration may come from male 

wolves called “Casanova wolves”. These wolves leave their natal packs and visit a nearby wolf 

pack around mating season to mate with the subordinate females (Westfall 2010). Lastly, there 
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has also been evidence of multiple paternity in Ethiopian wolves and foxes (Sillero-Zubiri et al. 

1996; Baker et al. 2004). In the domesticated populations, it is thought that more females 

contributed to breed formation than males, indicating female-biased processes (Sundqvist et al. 

2006). In addition, recent reproductive practices, such as the popular sire effect, which involves a 

small number of males reproducing with a large number of females can lead to female-biased 

demography (Ostrander and Kruglyak 2000). Despite these observations of mating practices 

suggesting the numbers of reproducing males and females has been unequal during canid 

evolution, it is unclear how pervasive these processes are, and which have had the dominant 

effect on shaping patterns of diversity. 

To test how widespread sex biased demography has been throughout canid evolution, we 

calculated and compared measures of genetic diversity on the X chromosome to those on the 

autosomes. This ratio has been termed 𝑄 in Emery et al. (2010) and we will use this notation 

throughout (Emery et al. 2010). In male-heterogametic sex-determining systems (XX/XY) with 

equal numbers of reproducing males and females, there are three copies of the X chromosome 

for every four copies of the autosomal genome. Therefore, in a constant size population without 

any natural selection or sex-biased processes,  𝑄 is expected to be 0.75 (reviewed in Webster and 

Wilson Sayres 2016 (Webster and Wilson Sayres 2016)). Specifically, 𝑄 = 𝑁𝑋 𝑁𝐴⁄ ≅ 0.75. 

Deviations from this expected ratio could be indicative of sex-biased processes. If 𝑄 < 0.75, 

there are fewer copies of the X chromosome than expected, suggesting a larger number of 

reproducing males than reproducing females, indicative of male-biased processes. If 𝑄 > 0.75, 

there are more copies of the X chromosome than expected, suggesting a larger number of 

reproducing females than reproducing males, indicative of female-biased processes.  
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Studies comparing measures of genetic diversity between the X chromosome and 

autosomes have resulted in many insights into the evolutionary history of humans. Hammer et al. 

(2008) computed 𝑄 by fitting a model of demographic history to the ratio in the mean of genetic 

diversity within the X chromosome and autosomes: 𝑄𝜋 = 𝜋𝑋 𝜋𝐴⁄  (Hammer et al. 2008). They 

found that 𝑄𝜋 is greater than 0.75 in all human populations examined, suggesting female-biased 

processes that have led to more reproducing females than males during human evolutionary 

history (Hammer et al. 2008). Later, Keinan et al. (2009) (Keinan et al. 2009) computed 𝑄 by 

calculating the ratio in fixation index, 𝐹𝑆𝑇 , between the X chromosome and the autosomes: 

𝑄𝐹𝑆𝑇 =
ln (1−2𝐹𝑆𝑇

𝐴 )

ln (1−2𝐹𝑆𝑇
𝑋 )

. They found that 𝑄𝐹𝑆𝑇 is less than 0.75 only when comparing a non-African 

population to an African population (Keinan et al. 2009). This result suggests that there was a 

male-biased migration out of Africa, where there were more reproducing males than females. 

Even though these two studies came to different conclusions regarding the sex ratio in human 

history, a later study reconciled these seemingly disparate findings by demonstrating that 𝑄 can 

detect bias in sex ratios at different timescales, depending on whether it is calculated from 

genetic diversity (𝑄𝜋) or the fixation index (𝑄𝐹𝑆𝑇) (Emery et al. 2010). Specifically, 𝑄𝜋 can 

detect sex bias in ancient timescales, which is before or immediately after the split between 

populations, whereas 𝑄𝐹𝑆𝑇 detects sex-biased demography on recent timescales, after the 

populations split from each other (Emery et al. 2010). Emery et al. (2010) reconciled results from 

Hammer et al. (2008) and Keinan et al. (2009) by showing that evolutionary processes within 

human history are consistent with an earlier female bias followed by a male bias during the 

migration of some humans out of Africa (Emery et al. 2010). Additionally, direct comparisons of 

the two studies were complicated by linked selection on the X chromosome (Hammer et al. 

2010; Arbiza et al. 2014). In addition to humans, comparing the genetic diversity between the X 
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chromosome and autosomes has also been used to study sex-biased processes in many other 

species (Wilson Sayres 2018).  

Given how examining patterns of genetic diversity on the X chromosome and the 

autosomes has facilitated our understanding of sex-biased demography in other species and what 

has been observed regarding sex-biased mating practices in canines, we wanted to test how 

widespread these mating practices are throughout different time points during canine 

evolutionary history. We utilized whole-genome sequences of 21 dogs and 12 wolves. Using the 

estimator of the effective sex ratio based on nucleotide diversity, we found that 𝑄𝜋 is less than 

0.75 in both dogs and wolves, indicative of an ancient male bias either in the shared ancestral 

population, or immediately after their split. We then inferred the effective sex ratio in a 

population genetic model, demonstrating that a population size reduction by itself cannot 

generate the empirical patterns. Rather, a male-biased sex ratio was needed in conjunction with a 

population size reduction to recapitulate empirical patterns. Finally, using the estimator of the 

effective sex ratio based on the fixation index, we showed that while the demographic history in 

wolves has remained male-biased in recent history, the demographic history in dogs has changed 

from male-biased in the ancient timescale to female-biased in recent times. These results add to 

our current understanding about the canine demographic history and suggest the need to 

incorporate sex-biased demography in future studies.  

4.3 Results 

Description of the data 

We collected a dataset of 33 female canid whole genomes that include 4 German 

Shepherds, 5 Tibetan Mastiffs, 12 dog individuals from a variety of breeds, 6 Arctic Wolves, and 

6 Grey Wolves (Table 4.1). The German Shepherd and Tibetan Mastiff data were sequenced by 



90 
 

Gou et al. (2014) (Gou et al., 2014) and the fastq files were downloaded from NCBI SRA. We 

combined 12 high coverage (>15X) whole genome sequences of female dogs from multiple 

breeds that were included in Marsden et al. (2016) (Marsden et al. 2016) because we were 

interested in how results differ between using a group of one breed versus using a group 

consisting of multiple breeds. We named this pooled group the “Pooled Breed Dogs”. The Arctic 

Wolf data were sequenced by Robinson et al. (Submitted). These Arctic Wolves were located in 

Northern Canada (north of the Arctic circle). The longitudinal and latitudinal locations for these 

Arctic Wolves are included in Table 4.1. We also used high coverage (>15X) whole genome 

sequences of female Grey Wolves from Marsden et al. (2016) (Marsden et al. 2016). Since these 

Grey Wolves originated from Europe, Asia, and Yellowstone, we named this population the 

“Pooled Grey Wolves”. Details about coverage and accession numbers for the individuals in this 

study are summarized in Table 4.1. 

Estimating the effective sex ratio based on genetic diversity  

Previous work has shown that dogs experience male mutation bias, where the mutation 

rate is higher in males compared to females due to more germline cell divisions in males at 

reproduction (Li et al. 2002; Lindblad-Toh et al. 2005; Wilson Sayres and Makova 2011). Male 

mutation bias has a significant impact on measurements of genetic diversity because it can inflate 

raw metrics of genetic diversity on the autosomes compared to on the X chromosome (reviewed 

in Webster and Wilson Sayres 2016 (Webster and Wilson Sayres 2016)). To confirm that male 

mutation bias exists in our data, we computed male mutation bias for each population using dog-

cat divergence (see Methods). We observed that the level of male mutation bias is around 2, 

which is consistent with previous reports (Lindblad-Toh et al. 2005; Wilson Sayres and Makova 

2011) (Table 4.2). Therefore, we controlled for male mutation bias in all estimates of genetic 
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variation by normalizing autosomal and X chromosome diversity by dog-cat divergence in the 

corresponding regions.  

Natural selection is thought to be more efficient at reducing genetic diversity on the X 

chromosome than on the autosomes because males have only one X chromosome which is 

exposed directly to selection (reviewed in Webster and Wilson Sayres 2016 (Webster and 

Wilson Sayres 2016)). To control for natural selection affecting the X chromosome more than 

the autosomes, we used regions of the genome in which mutations would be putatively neutral by 

removing sites that are functional. Specifically, we removed genic and conserved sites (see 

Methods). 

To understand whether any evolutionary process has been sex-biased over ancient 

timescales, we computed 𝑄𝜋 .  We found that in both dog and wolf populations, 𝑄𝜋 is 

significantly less than 0.75 (Figure 4.1, No cM cutoff), suggesting a male-biased sex ratio, with 

more males reproducing relative to females.  

𝑄𝜋 of less than 0.75 could occur due to the effect of natural selection on linked neutral 

sites. Specifically, natural selection could have reduced diversity in linked neutral regions on the 

X chromosome more than on the autosomes, as seen in humans (Keinan et al. 2009; Hammer et 

al. 2010; Arbiza et al. 2014). Further, it is possible that there is more constraint on noncoding 

regions near genes on the X chromosome than on the autosomes (Narang et al. 2016). To 

measure how neutral diversity is affected by linked selection, we compared diversity on the X 

chromosome and autosomes in regions near genes versus putatively unconstrained regions 0.4 

cM away from the nearest gene. Diversity increased more with increasing distance from genes 

on the X chromosome than on the autosomes, consistent with natural selection reducing diversity 

more on the X chromosome than on the autosomes near genes (Table 4.3). 
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To test whether stronger linked selection acting on the X chromosome relative to the 

autosomes could cause 𝑄𝜋 to be less than 0.75, we expanded our filtering criteria to remove sites 

that are near genes, defined by genetic distance (see Methods). Since we did not know a priori 

what the minimum genetic distance would be required to obtain sites that are not affected by 

selection, we included several thresholds. We removed sites whose genetic distance to the 

nearest genes is less than 0.2 cM, 0.4 cM, 0.6 cM, 0.8 cM, and 1 cM. We observed that even 

after removing sites whose genetic distance to the nearest genes are less than 1 cM, 𝑄𝜋 is still 

less than the expected 0.75 in both dog and wolf populations, except for the German Shepherd 

(Figure 4.1). In the German Shepherd, when using the thresholds of 0.8 cM and 1 cM, 𝑄𝜋 

approaches 0.75. However, since there are significantly fewer sites and variants left after 

removing sites whose genetic distance to the nearest genes is less than 0.8 cM or 1 cM, we could 

not exclude the possibility that we are underpowered to detect any signal in the data (Table 4.4). 

Nonetheless, these results suggest that while linked selection may partially account for 𝑄𝜋 of less 

than 0.75, especially in the German Shepherd, linked selection by itself cannot explain why 𝑄𝜋 is 

less than 0.75 across all dog and wolf populations. In sum, our results suggest that there has been 

male-biased sex ratios in both dogs and wolves over ancient evolutionary timescales.  

Inference of sex-biased demographic processes under population genetic models 

Pool and Nielsen (2007) demonstrated that a 𝑄𝜋 of less than 0.75 could be explained by a 

reduction in population size even with an equal number of breeding males and females (Pool and 

Nielsen 2007). To test whether population bottlenecks can explain the reduction in diversity on 

the X chromosome, we fitted a demographic model that includes a bottleneck using the 

autosomal site frequency spectrum (SFS) (Figure 4.2) and asked whether the best fitting 
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demographic model on the autosomes could also account for the level of diversity on the X 

chromosome when using an 𝑁𝑋 𝑁𝐴⁄  ratio of 0.75. If a demographic model including a bottleneck 

by itself can generate a 𝑄𝜋 of less than 0.75, we would expect that scaling the population size of 

the X chromosome to be three-quarters that of the autosomes should result in a 𝑄𝜋 comparable to 

the empirical data. Additionally, we then employed a composite likelihood framework to directly 

infer the 𝑁𝑋 𝑁𝐴⁄  ratio from the SFS while accounting for the complex non-equilibrium 

demography. 

First, we fitted a demographic model that includes a bottleneck using the SFS on the 

autosomes using fastsimcoal2 (Excoffier et al. 2013) for each population considering regions of 

greater than 0.4 cM, 0.6 cM, 0.8 cM, and 1 cM from genes. We reasoned that we would not be 

able to exclude the role of selection when not removing sites near genes or using too small of a 

threshold (i.e. 0.2 cM). We also corrected for male mutation bias using mutation rates that we 

inferred from dog-cat divergence in the same windows (see Methods; Table 4.2). The inferred 

demographic parameters that resulted in the best likelihood of the data are presented in Table 

4.5. To test whether the inferred demographic parameters can recapitulate the autosomal data, we 

used fastsincoal2 to generate the expected SFSs. In all populations except the German 

Shepherds, across all thresholds examined, we observed that the SFSs generated using the 

inferred demographic parameters visually match with the empirical autosomal SFSs (Figure 4.3). 

The differences in log-likelihood between the simulated SFSs and the empirical SFSs are also 

small (Table 4.6), confirming our visual inspection of the fit of the demographic models. In 

addition, autosomal genetic diversity (𝜋) computed from the demographic model is comparable 

to the empirical estimates of 𝜋 (Figure 4.4). Thus, these lines of evidence demonstrate that the 
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inferred demographic parameters can recapitulate the empirical data on the autosomes, except for 

the more stringent filtering on the German Shepherd.  

To understand whether the demographic model including a bottleneck that was fitted to 

the autosomal data could account for the level of diversity on the X chromosome, we used the 

inferred demographic parameters to simulate the SFSs for the X chromosome. To account for the 

differences in population size between the X chromosome and the autosomes, we adjusted the 

population size on the X chromosome by a constant value which we called 𝐶, where 𝑁𝑋 = 𝐶𝑁𝐴. 

If a bottleneck by itself without any sex biased demography can generate a 𝑄𝜋 of less than 0.75, 

we expected that using a 𝐶 value of 0.75 would recapitulate the empirical data. If a bottleneck 

model by itself is not sufficient to generate a 𝑄𝜋 of less than 0.75, and sex-biased processes need 

to be invoked, we expected that rescaling the population size on the X chromosome to be three-

quarters of the population size on the autosomes would not fit well. Rather, a different value of 𝐶 

would yield a better fit. 

To assess whether a null 𝐶 value of 0.75 or a different 𝐶 value yielded a better fit to the 

empirical SFSs on the X chromosome, we searched over a grid of 𝐶 values. We found the 

maximum likelihood value of 𝐶 for each population and filtering threshold. To do this, for each 

𝐶 on a grid of 𝐶 values, we first calculated the population size on the X chromosome, which is 

𝑁𝑋 = 𝐶𝑁𝐴. We then used fastsimcoal2 to simulate an SFS and assess the fit by comparing the 

Poisson log-likelihood to the SFS on the X chromosome (see Methods). For each population and 

for each threshold, we found a set of 𝐶 values that maximizes the likelihood of the data (Figure 

4.5, Table 4.7).  
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With the exception of the German Shepherd at the most stringent filtering thresholds 

(>0.8 cM and >1 cM), we inferred that 𝐶 is less than 0.75 for all population and filtering 

thresholds. When using a filtering threshold of 0.4 cM from genes, we found that 𝐶 ranges from 

0.61 to 0.68. The full model, where we inferred 𝐶 for each comparison, fits the observed X 

chromosome SFS significantly better than a model where 𝐶 is constrained to be 0.75 (Likelihood 

Ratio Tests > 30, p-value < 10-8; Table 4.7). Further, the null 𝐶 value of 0.75 does not visually fit 

the SFSs on the X chromosome (Figure 4.6, blue bars), suggesting that we can reject an equal 

number of reproducing males and females. Third, we observed that diversity on the X 

chromosome from simulating with a null 𝐶 value of 0.75 overestimated the empirical X 

chromosome diversity (Figure 4.7, blue bars). These results suggest that a model including both 

a bottleneck and a male-bias sex ratio can generate 𝑄𝜋 of less than 0.75 and recapitulate the 

observed SFSs and genetic diversity. Only in the German Shepherd population when using the 

most stringent threshold (>0.8 cM and >1 cM), can a demographic history including a bottleneck 

by itself generate a 𝑄𝜋 of less than 0.75. 

Female-biased sex ratio within dogs in recent history 

Since estimates of sex ratios from levels of genetic diversity are sensitive to ancient sex-

biased processes (prior to or immediately after the split between two species), we wanted to 

determine whether the pattern of male-biased contributions remained constant throughout the 

evolutionary history of canines (Emery et al. 2010). To study sex-biased demography on recent 

timescales, we computed 𝑄𝐹𝑆𝑇 for each pair of populations (see Methods). In the dog to dog 

comparison, we computed 𝑄𝐹𝑆𝑇 between German Shepherds and Tibetan Mastiffs, between 

German Shepherds and Pooled Breed Dogs, and between Tibetan Mastiffs and Pooled Breed 

Dogs. We observed that 𝑄𝐹𝑆𝑇 is greater than 0.75 for all three pairs and across all thresholds, 
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suggesting a female-biased sex ratio within the dog populations in recent history (Figure 4.8). 

This is consistent with fewer reproducing males than females in the population since the 

formation of different dog breeds. In the wolf to wolf comparison, we computed 𝑄𝐹𝑆𝑇 between 

Arctic Wolves and Pooled Grey Wolves. In contrast to the breed dogs, we found that 𝑄𝐹𝑆𝑇 is less 

than 0.75 when using the thresholds of >0.4 cM and >0.6 cM, suggesting that a male-biased sex 

ratio has been maintained within the wolf populations in recent history (Figure 4.8). However, 

we noted that when using a more stringent threshold (>0.8 cM or >1 cM), 𝑄𝐹𝑆𝑇 within wolves 

approaches 0.75 or greater than 0.75 (Figure 4.8). We could not exclude the possibility that we 

are unable to detect a true signal in the data due to significantly fewer sites and variants left after 

the more stringent filtering (Table 4.4). Overall, these results indicate that while the process 

within wolves has probably maintained a male-bias from ancient to recent history, the process 

within dogs has changed to female-bias, potentially because of breeding practices that have led 

to female-biased processes such as the popular sire effect. 

4.4 Discussion 

In this study, we used two different statistics to estimate the ratio of reproducing males to 

females in canines and found that the demographic history of dogs and wolves has been sex-

biased, but not always in the same direction. Estimating the sex ratio based on the levels of 

genetic diversity (𝑄𝜋) from the X chromosome and autosomes showed a male-biased sex ratio in 

both dogs and wolves on an ancient timescale, which cannot be explained by linked selection or 

a population size reduction on its own (Figure 4.1 and Figure 4.5). Instead, in both dogs and 

wolves, there has been a larger number of reproducing males than females. In wolf packs, the 

alpha male and female are the dominant reproducers, but subdominant reproduction is common 

and may involve multiple fathers for a single litter (vonHoldt et al. 2008). Multiple paternity is a 
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unique aspect of canid reproduction and may help drive a male bias in reproduction, as offspring 

of a single litter can only have a one mother, but may have multiple fathers and litter size may be 

as large as 16 individuals (Stahler et al. 2013). In addition, wolves migrating to existing wolf 

packs are predominantly male-biased (vonHoldt et al. 2008). Further, “Casanova wolves” who 

stay near a wolf pack during mating season to mate with the non-alpha females could also cause 

male-biased mating patterns (Westfall 2010). Multiple paternity and male-biased migration 

likely occurred in early dogs, but under more recent controlled breeding, valuable sires would be 

the only father of a litter. Hence the controlled nature of breeding in modern dog breeds, and the 

focus on a subset of “popular” sires could drive the female bias in reproduction. The population 

sire effect also reduces the effective size of breeds and effects such as inbreeding further skew 

evolution in modern breeds.  

In addition, we observed that determining the amount of bias based on the absolute value 

of 𝑄𝜋 by itself can lead to overestimation, because the reduction of diversity on the X 

chromosome due to a population size reduction is not accounted for. For example, in Tibetan 

Mastiff, when using a threshold of 0.6 cM to remove linked neutral sites, a 𝑄𝜋 of 0.52 suggests 

an 𝑁𝑋 𝑁𝐴⁄  ratio of 0.52. However, we inferred a C value of 0.57 (confidence interval: 0.56-0.6) 

using our modelling framework, indicating that the sex ratio is higher than when just examining 

the absolute value of 𝑄𝜋. This difference exists because the estimate of 𝑄𝜋 could be affected by a 

population size reduction differentially influencing diversity on the X and autosomes (Pool and 

Nielsen 2007), but our inference framework accounts for this effect. Our findings suggest that 

inferring the sex ratio in a model-based framework should yield a more accurate estimate than 

the absolute 𝑄𝜋 (Hammer et al. 2008). 
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Our results add to the growing literature on the complex demographic history of dogs 

(reviewed in Freedman et al. 2016 (Freedman et al. 2016) and Ostrander et al. 2017 (Ostrander et 

al. 2017)). In addition to multiple episodes of bottleneck and admixture events, we now present 

evidence for sex-biased demographic processes. Furthermore, we provide evidence that sex-

biased processes within dogs have changed throughout evolution, switching from a male-bias in 

ancient timescales to a female-bias in recent timescales, reflecting how modern breeding 

practices influence the sex ratio. To the best of our knowledge, this is the first genomic study of 

sex-biased demography in dogs. Some limitations in this study provide avenues for future work. 

First, our study was limited by the availability of high coverage (>15X coverage) whole-genome 

sequences of female individuals at the time of analysis. Future studies could utilize more female 

individuals and a variety of populations to understand whether there are differences in sex-biased 

processes between breeds. Second, future work could extend our modelling framework by 

including more complex demographic scenarios such as migration events to better capture the 

autosomal data, especially the German Shepherds. Finally, future studies could examine whether 

processes such as admixture with wolves or introgression has been sex-biased.  

4.5 Methods 

Whole-genome sequence processing 

We followed Genome Analysis Toolkit’s (GATK) documentation for variant discovery 

best practices (McKenna et al. 2010; DePristo et al. 2011; Van der Auwera et al. 2013). Scripts 

used for processing whole-genome sequencing for each of the following steps can be found at 

https://github.com/tnphung/NGS_pipeline. 

Data pre-processing for variant calling 

https://github.com/tnphung/NGS_pipeline
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First, we converted all fastq files to raw unmapped reads using Picard FastqToSam. 

Second, we marked Illumina adapters using Picard MarkIlluminaAdapters. Third, we mapped to 

the reference dog genome (canFam3) using bwa-mem(Li 2013). Fourth, we marked duplicates 

using Picard MarkDuplicates. We then recalibrated base quality scores using GATK where we 

performed three rounds of recalibration to obtain analysis-ready reads in BAM file format. 

Variant calling with GATK 

We used GATK Haplotype caller for variant calling (McKenna et al. 2010; DePristo et al. 

2011; Van der Auwera et al. 2013). We first generated a gVCF file for each individual. We then 

performed joint-genotyping for all 33 individuals in our study.  

Filtering to obtain high quality sites 

To obtain sites that are high confidence, we retained sites whose depth (annotated as DP 

in VCF file format) is between 50% and 150% of the mean depth across all sites. In addition, we 

only kept sites that were genotyped in all 33 individuals (i.e. the total number of alleles in called 

genotypes, AN, is equal to 66).  

Variant filtering 

We obtained variant sites from the VCF files by using GATK SelectVariant s(McKenna 

et al. 2010; DePristo et al. 2011; Van der Auwera et al. 2013). We then filtered these variants by 

applying GATK Hard Filter (QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum < -12.5, 

ReadPosRankSum < -8.0). In addition, we only selected biallelic SNPs and removed any 

clustered SNPs defined by having 3 SNPs within 10bp.  

Filtering nucleotide sites 

Filtering out the pseudoautosomal regions (PARs) of the X chromosome 
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Previous work showed that the PARs in canines span the first 6.59Mb of the X 

chromosome (Young et al. 2008). Therefore, we filtered out the PARs by removing any site that 

overlaps with the first 6.59Mb of the X chromosome. In humans, it was shown that genetic 

diversity does not drop abruptly at the PAR boundary (Cotter et al. 2016). Rather, genetic 

diversity decreases gradually over the PAR boundary and reaches nonPAR diversity past the 

PAR boundary (Cotter et al. 2016). One concern is that filtering out the PARs is not sufficient to 

avoid any inflation of X-linked variation. However, if this is the case, we would expect 𝑄𝜋 we 

calculated to be higher than the actual 𝑄𝜋. Therefore, 𝑄𝜋 less than 0.75 is not caused by not 

sufficiently filtering sites on the nonPARs. 

Filtering sites that could be under the direct effect of selection 

To control for the effects of direct selection, we removed sites that are potentially 

functional and therefore are more likely to be affected by purifying or positive selection. 

Specifically, we removed sites that overlap with a gene transcript as defined by Ensembl (gene 

transcripts include both exons and introns). We also removed sites that are conserved across 

species. To obtain conserved sites, we downloaded phastConsElements100way for hg19 from 

the UCSC Genome Browser and used liftOver command line tool to convert hg19 coordinates to 

canFam3 coordinates.  

Filtering out sites that could be affected by linked selection 

To control for the effect of natural selection on linked neutral sites, we employed a 

filtering criterion to remove sites near genes as defined by genetic distance to the nearest genes. 

We used the genetic distance map based on patterns of linkage disequilibrium from Auton et al. 

(2013) because this genetic map includes information for the X chromosome whereas the 

pedigree map from Campbell et al. (2016) does not have information on the X chromosome 
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(Auton et al. 2013; Campbell et al. 2016). For each site that is outside of genes and conserved 

regions, we found its nearest gene in terms of physical distance. We then converted physical 

distance to genetic distance using the genetic map from Auton et al. (2013) (Auton et al. 2013). 

Since we did not know a priori what the minimum genetic distance is required to remove sites 

near genes to control for linked selection, we used multiple thresholds. Specifically, we removed 

sites whose genetic distance to the nearest gene is less than 0.2 cM, less than 0.4 cM, less than 

0.6 cM, less than 0.8 cM, and less than 1 cM. 

Identifying sites that are alignable between dog and cat  

Since we controlled for mutation rate variation by normalizing the uncorrected genetic 

diversity by dog-cat divergence, we identified regions of the genome that are alignable between 

dog and cat. We downloaded the pairwise alignment between dog and cat from the UCSC 

Genome browser (Kent et al., 2002). We then generated BED files whose coordinates represent 

regions of the genome that are alignable between dog and cat. 

In summary, for our empirical analyses, we used regions of the genome that are (1) not 

affected directly by selection, (2) not affected by linked selection using multiple thresholds, (3) 

high in quality (see the section on filtering to obtain high quality sites above), and (4) alignable 

between dog and cat.  

Computing 𝑸𝝅 

Computing uncorrected average pairwise differences between sequences (π) 

We computed genetic diversity, π, defined as the average number of differences between 

pairs of sequences (Tajima 1983): 

𝜋 =
𝑛

𝑛−1
∑ 𝑝𝑖(1 − 𝑝𝑖)

all sites
𝑖  where 𝑝𝑖 is the allele frequency and n is the number of alleles. For 

each region of the genome that satisfies the filtering criteria above, we computed π for the X 
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chromosome and autosomes. To obtain the mean in diversity, π/site, we calculated: 𝜋/site =

∑ 𝜋
regions
𝑖

∑ total sites
regions
𝑖

.  

Computing dog-cat divergence 

For each region of the genome that satisfies the filtering criteria above, we tabulated the 

number of DNA differences between dog and cat. To obtain the mean in divergence, we 

calculated 
divergence

site
=

∑ number of divergent sites
regions
𝑖

∑ total sites
regions
𝑖

.  

Computing male mutation bias 

We computed male mutation bias (𝛼) using divergence on the X chromosome and on the 

autosomes as follows(Link et al. 2017): 𝛼 =
4−3

𝑋

𝐴

3
𝑋

𝐴
−2

. 

Computing corrected diversity 

To control for variation in mutation rates across chromosomes, we normalized diversity 

by dog-cat divergence by dividing π/site by divergence/site.  

Constructing 95% confidence interval by bootstrapping 

We generated bootstrap replicates of the BED file that we used to compute genetic 

diversity and divergence by randomly selecting a fragment from the BED file with replacement. 

For each bootstrap replicate, the number of fragments chosen was equal to the number of 

fragments in the original BED file. We generated 1000 bootstrap replicates. For each of the 1000 

bootstraps on the X chromosome, we computed uncorrected π, dog-cat divergence, and corrected 

π. We did the same calculations for each of the 1000 bootstraps on the autosomes. We then 

divided corrected π on the X chromosome by corrected π on the autosomes to obtain 𝑄𝜋. We 

calculated 95% confidence interval using 1000 bootstrapped values of corrected 𝜋𝑋, 1000 
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bootstrapped values of corrected 𝜋𝐴, and 1000 bootstrapped values of corrected 𝑄𝜋 by selecting 

the values at the 2.5 and 97.5 percentiles. 

Computing 𝑸𝑭𝑺𝑻 

Computing 𝐹𝑆𝑇 

We computed Weir and Cockerham’s 𝐹𝑆𝑇 for each pair of populations using the 

SNPRelate package implemented in R (Zheng et al. 2012). For dog-to-dog comparison, we 

computed 𝐹𝑆𝑇 for German Shepherds and Tibetan Mastiffs, German Shepherds and Pooled Breed 

Dogs, and Tibetan Mastiff and Pooled Breed Dogs. For wolf-to-wolf comparison, we computed 

𝐹𝑆𝑇 for Arctic Wolves and Grey Wolves. Since the number of individuals differs between 

populations, we subsampled such that there were four individuals in each population (Table 4.8). 

We computed 𝐹𝑆𝑇 for the X chromosome and for the autosomes.  

Computing 𝑄𝐹𝑆𝑇 

We computed 𝑄𝐹𝑆𝑇 using: 𝑄𝐹𝑆𝑇 =
ln (1−2𝐹𝑆𝑇

𝐴 )

ln (1−2𝐹𝑆𝑇
𝑋 )

 (Keinan et al. 2009; Emery et al. 2010).  

Constructing 95% confidence interval by bootstrapping 

Since the input to SNPRelate to calculate 𝐹𝑆𝑇 is a VCF file format, we generated 1000 

bootstrapped VCF files by randomly selecting variants from the VCF file with replacement. The 

number of variants selected for each bootstrapped VCF is equal to the number of variants in the 

empirical VCF file. For each bootstrapped VCF, we computed 𝐹𝑆𝑇 and 𝑄𝐹𝑆𝑇 as explained above. 

From the 1000 values of bootstrapped 𝑄𝐹𝑆𝑇, we then calculated 95% confidence interval by 

selecting the values at the 2.5 and 97.5 percentiles. 

Modeling framework to estimate the 𝑵𝑿 𝑵𝑨⁄  ratio (𝑪) 

Obtaining the site frequency spectrum (SFS) 
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We computed the folded SFSs using Equation 1.2 of Wakely’s An Introduction to 

Coalescent Theory (Wakely, 2008), reproduced as follows: 

𝜂𝑖 =
𝜉𝑖 + 𝜉𝑛−𝑖

1 + 𝛿𝑖,𝑛−𝑖
     1 ≤ 𝑖 ≤ [𝑛/2] 

where 𝜉𝑖 is the number of sites where the alternate allele is present at i copies, 𝛿𝑖,𝑛−𝑖 is equal to 0 

when 𝑖 ≠ 𝑛 − 𝑖 and is equal to 1 when 𝑖 = 𝑛 − 𝑖. For each population and for each threshold to 

remove linked neutral sites (>0.4 cM, >0.6 cM, >0.8 cM, and >1 cM), we computed the folded 

SFSs for the X chromosome and autosomes. 

Computing mutation rates 

We utilized dog-cat divergence to infer the mutation rates for the X chromosome and 

autosomes. Specifically, 𝜇 =
𝐷

2𝑡𝑠𝑝𝑙𝑖𝑡
, where 𝐷 is the divergence/site between dog and cat (see 

Computing dog-cat divergence section above) and 𝑡𝑠𝑝𝑙𝑖𝑡 is the split time between dog and cat in 

unit of generation. We used 54 million years as the split time between dog and cat and a 

generation time of 3 years per generation(Hedges et al. 2006; Hedges et al. 2015). The estimates 

of mutation rates are in the same order of magnitude as estimate from ancient DNA (Table 4.4) 

(Botigué et al. 2017). 

Inferring demographic parameters 

We inferred demographic parameters from the autosomal data (SFSs on the autosomes) 

using a maximum likelihood framework as implemented in fastsimcoal2 (Excoffier et al. 2013). 

We specified a bottleneck demographic model and inferred four parameters: NANC which is the 

population size in the ancestral population, NBOT which is the population size during the 

bottleneck, NCUR which is the population size in the current day, and TBOT which is the duration 

between the end of the bottleneck and current day (Figure 4.2). Further, we repeated the 
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inference of the previous four parameters for values BOTDUR (the duration of the bottleneck) 

ranging from 75 to 100 generations (Figure 4.2) and chose the value that yielded the highest 

likelihood. We implemented this procedure for each population and for thresholds of >0.4 cM, 

>0.6 cM, >0.8 cM, and >1 cM to remove linked sites. The demographic parameters that 

maximized the likelihood are summarized in Table 4.5. 

Inferring 𝑁𝑋 𝑁𝐴⁄  ratio (𝐶) 

To account for differences in population size between the X chromosome and autosomes, 

we scaled the population size on the X chromosome to that on the autosomes by a constant factor 

we called 𝐶, where 𝑁𝑋 = 𝐶𝑁𝐴. To find the maximum likelihood estimate of 𝐶, we searched over 

a grid for values of 𝐶, including 0.75, to find a value that resulted in the highest likelihood. 

Because the number of SNPs at particular frequencies contains substantial information about 

demography, we used a Poisson likelihood for the number of SNPs in each entry of the SFS to 

compute the Poisson log-likelihood as in Beichman et al. (2017) (Beichman et al. 2017). 

Accessing fit of MLEs of C to π 

We computed diversity from the simulated SFSs under the demographic models fit to the 

autosomes using the MLEs of C (Table 4.7) and compared that to the empirical uncorrected 

diversity.  

Data, codes, and materials 

All scripts can be found at https://github.com/tnphung/SexBiased. SRA numbers for fastq files 

for published genomes are listed in Table 4.1. SRA numbers for fastq files for Arctic Wolf 

individuals will be deposited to SRA before publication. Post base quality score calibration 

(BQSR) BAM files and VCF files will be deposited on Dryad before publication.  
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4.6 Figures 
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Figure 4.1. X-linked and autosomal genetic diversity across canids. Genetic diversity 

measured as the average pairwise differences between sequences (π) corrected for mutation rate 

variation using divergence (see Methods) on the X chromosome and autosomes in multiple canid 

populations. 𝑄 denotes the ratio of π on the X chromosome to that of the autosomes. The 

horizontal red line denotes the null expectation of 0.75. Bins along the x-axis denote different 

filtering based on genetic distances from genes. Error bars denote 95% confidence intervals 

obtained through bootstrapping (see Methods).  
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Figure 4.2. Model of demographic history including a bottleneck, redrawn from the 

fastsimcoal2 manual. Four parameters were inferred from the site frequency spectrum: NANC is 

the ancestral population size, NBOT is the population size at during the bottleneck, NCUR is the 

population size in current day, and TBOT is the duration between the end of the bottleneck and 

present day which is in units of generations. In fastsimcoal2, the population size is in unit of 

haploid individuals. In addition, BOTDUR represents the duration of the bottleneck, also in units 

of generations. We tried multiple values of BOTDUR and chose the value that yielded the highest 

likelihood. The values of NANC, NBOT, NCUR, TBOT, and BOTDUR that resulted in the best 

likelihood are summarized in Table 4.5.  
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Figure 4.3. SFSs simulated under our best-fitting demographic models (blue bars) 

compared to the empirical SFSs on the autosomes (grey bars) in multiple canid 

populations. Here, multiple thresholds were used to remove sites potentially linked to selected 

sites (>0.4 cM, >0.6 cM, >0.8 cM, and >1 cM). For each canid population and for each 

threshold, the simulated SFSs were generated using the demographic parameters that resulted in 

the highest likelihood for the autosomal SFS.  
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Figure 4.4. Genetic diversity (𝝅) computed from the SFSs generated by using inferred 

demographic parameters (blue bars) compared with uncorrected empirical genetic 

diversity on the autosomes (grey bars) in multiple canid populations. Here, multiple 

thresholds were used to remove sites potentially linked to selected sites (>0.4 cM, >0.6 cM, >0.8 

cM, and >1 cM). Note the excellent fit of the demographic models to the empirical data. 

 



111 
 

 

Figure 4.5. Effective population size estimates for multiple canid populations. Maximum 

likelihood estimates (MLEs) of the effective population size on the X chromosome relative to 

that of the autosomes (𝐶 = 𝑁𝑋 𝑁𝐴⁄ ) are shown for German Shepherds, Tibetan Mastiffs, Pooled 

Breed Dogs, Arctic Wolves and Pooled Grey Wolves with increasing distance from genes. Error 

bars denote approximate asymptotic 95% confidence intervals obtained as the parameter values 

within 2 log-likelihood unites of the MLE.  
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Figure 4.6. Empirical SFSs (grey bars) compared to the SFSs simulated with a null C value 

of 0.75 (blue bars) and a C value that yielded the highest likelihood (yellow bars) for 

multiple canid populations. Here, multiple thresholds were used to remove sites potentially 

linked to selected sites (>0.4 cM, >0.6 cM, >0.8 cM, and >1 cM). Note the superior fit of the 

maximum likelihood value of C (yellow) compared to C=0.75 (blue). 
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A. >0.4 cM 

 

B. >0.6 cM 

 

C. >0.8 cM 

 

D. >1 cM 
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Figure 4.7. Empirical genetic diversity (𝝅, grey bars) compared to diversity computed from 

SFSs simulated with a null C value of 0.75 (blue bars) and a C value that yielded the highest 

likelihood (yellow bars) for multiple canid populations. Here, multiple thresholds were used 

to remove sites potentially linked to selected sites (>0.4 cM, >0.6 cM, >0.8 cM, and >1 cM). 
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A. >0.4 cM 

 

B. >0.6 cM 

 

C. >0.8 cM 

 

D. >1 cM 

 

 

Figure 4.8. Sex biased demography on recent time scales. Estimates of the sex ratio for a pair 

of populations computed using FST  (see Methods) using a threshold of >0.4 cM (A), >0.6 cM 

(B), >0.8 cM (C) and >1 cM (D) to remove sites putatively linked to selected sites. The 

horizontal red line denotes the null expectation of 0.75. Error bars denote 95% confidence 

intervals obtained through bootstrapping (see Methods). Abbreviations: GS (German Shepherds), 

TM (Tibetan Mastiffs), BD (Pooled Breed Dogs), AW (Arctic Wolves), GW (Pooled Grey 

Wolves). 
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4.7 Tables 

Table 4.1. Data used in this study. Coverage for the German Shepherds, Tibetan Mastiffs, and 

Arctic Wolves was obtained from the software qualimap rounded to the nearest integer. 

Coverage for the Pooled Breed Dogs and Pooled Grey Wolves was obtained from Marsden et al. 

(2016).  

Species 

Populatio

n 

In 

House 

ID 

Coverag

e Source ID SRA 

Breed or 

Location 

Dogs 

German 

Shepherds 

GS1 

16 

DKD301 

SRR112235

9 

 

GS3 

16 

DKS303 

SRR112430

4 

 

GS4 

16 

DKS304 

SRR113024

7 

 

GS5 

15 

DKS305 

SRR113035

0 

 

Tibetan 

Mastiffs 

TM1 

17 

DQZA81 

SRR113836

9 

 

TM2 

17 

DQZA80 

SRR113836

8 

 

TM3 

17 

DQZA33 

SRR113836

5 

 



117 
 

TM4 

15 

DQZA12 

SRR113836

1 

 

TM5 

14 

DQZA06 

SRR113836

0 

 

Pooled 

Breed 

Dogs 

BD1 

21 ddair_RS7441

1 

SRS932161 

Airedale 

BD2 

16 ddbas_RS8070

4 

SRS932158 

Basenji 

BD3 

16 ddbdt_RS8640

7 

SRS932144 

Border Terrier 

BD4 

15 ddbrt_RS8639

9 

SRS833812 

Black Russian 

Terrier 

BD5 

29 

ddjrt_RS86400 SRS932151 

Jack Russell 

Terrier 

BD6 

21 

ddjrt_RS86404 SRS932147 

Jack Russell 

Terrier 

BD7 

18 ddkbt_RS7440

8 

SRS932164 

Kerry Blue 

Terrier 

BD8 

15 ddlab_RS8639

8 

SRS932152 

Labrador 

Retriever 

BD9 

16 ddpwc_RS733

23 

SRS732550 

Pembroke Welsh 

Corgi 
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BD10 

17 ddpwc_RS864

09 

SRS732551 

Pembroke Welsh 

Corgi 

BD11 

18 ddsct_RS8639

3 

SRS932157 

Scottish Terrier 

BD12 

17 ddwhw_RS863

97 

SRS932153 

West Highland 

White Terrier 

Wolves 

Arctic 

Wolves 

AW12 

37 

  

Lat: 61.49534 

Long: -

105.433287 

AW13 

43 

  

Lat: 77.22 

Long: -85.42 

AW16 

38 

  

Lat: 72.538139 

Long: -

110.534228 

AW18 

43 

  

Lat: 73.44 

Long: -121.925 

AW19 

39 

  

Lat: 71.191287 

Long: -85.508735 

AW20 

41 

  

Lat: 69.62 

Long: -93.9 

GW1 

15 gwcwx_XinXJ

24 

 

Xinjiang 
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Pooled 

Grey 

Wolves 

GW2 

22 gwcwz_RKW3

916 

 

China 

GW3 

18 gwibe_XXWI

B98 

SRS661495 

Iberia 

GW4 

20 gwirw_RKW3

073 

SRS661488 

Iran 

GW5 

18 gwprt_LOBO4

23 

SRS661492 

Portugal 

GW6 

21 gwynp_RKW1

547 

SRS661496 

Yellowstone 

National Park 
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Table 4.2. Dog-cat divergence, mutation rate, and estimates of male mutation bias 

 X chromosome Autosomes α (male 

mutation 

bias) 

Threshold Divergence Mutation rate Divergence Mutation rate 

No cM cutoff 0.162 4.49 X 10-9 0.169 4.69 X 10-9 1.293 

>0.2 cM 0.159 4.42 X 10-9 0.172 4.79 X 10-9 1.600 

>0.4 cM 0.157 4.35 X 10-9 0.179 4.96 X 10-9 2.169 

>0.6 cM 0.159 4.42 X 10-9 0.185 5.14 X 10-9 2.445 

>0.8 cM 0.166 4.61 X 10-9 0.191 5.31 X 10-9 2.335 

>1 cM 0.174 4.82 X 10-9 0.194 5.38 X 10-9 1.900 
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Table 4.3. Linked selection is stronger on the X chromosome than on the autosomes 

Population X0.4 cM/Xno cM cutoff A0.4 cM/Ano cM cutoff 

German Shepherds 2.155 1.499 

Tibetan Mastiffs 2.132 1.428 

Pooled Breed Dogs 1.921 1.414 

Arctic Wolves 2.321 1.405 

Pooled Grey Wolves 1.820 1.381 
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Table 4.4. Number of sites and number of variants in each threshold that remained after 

removing neutral sites potentially linked to selected sites. We tabulated the number of sites 

from the BED files used to compute the statistics in our analyses. We intersected regions of the 

genome that are putatively neutral (i.e. excluding genic and conserved sites, and removing sites 

whose genetic distance is less than a threshold), high quality, and alignable between dog and cat. 

Similarly, for the number of variants, these variants are found in regions of the genome that are 

putatively neutral.  

 

Threshold Number of sites Number of variants 

 X chromosome Autosomes X chromosome Autosomes 

No cM cutoff 35,643,675 822,468,024 323,495 9,728,949 

>0.2 cM 3,275,430 67,760,411 50,734 967,762 

>0.4 cM 1,126,087 17,844,986 22,055 284,222 

>0.6 cM 554,218 6,680,919 11,522 117,436 

>0.8 cM 219,129 2,767,274 5,532 53,149 

>1 cM 68,831 1,353,692 2,461 27,742 
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Table 4.5. Demographic parameters that best fit the autosomal site frequency spectrum 

Population Threshold NANC NBOT TBOT NCUR BOTDUR 

German 

Shepherds 

>0.4 cM 196,509 413 5,370 16,235 95 

>0.6 cM 225,733 10,321 10,919 16,467 80 

>0.8 cM 183,196 24,905 14,513 29,907 95 

>1 cM 129,203 429 12,750 128,490 80 

Tibetan 

Mastiffs 

>0.4 cM 232,750 973 990 38,581 95 

>0.6 cM 25,3450 855 3,441 69,086 90 

>0.8 cM 265,327 1,089 6,341 70,543 95 

>1 cM 269,344 804 5,092 113,518 95 

Pooled 

Breed Dogs 

>0.4 cM 211,231 24,472 9,325 71,007 100 

>0.6 cM 22,0051 1,948 807 76,739 100 

>0.8 cM 223,743 1,851 49 50,760 90 

>1 cM 232,926 2,785 308 26,283 110 

Arctic 

Wolves 

>0.4 cM 274,829 1,591 7,073 100,099 105 

>0.6 cM 28,9198 1,098 4,811 139,307 95 

>0.8 cM 308,722 1,202 4,938 78,489 95 

>1 cM 347,330 712 17,798 154,684 100 

Pooled 

Grey 

Wolves 

>0.4 cM 280,098 77,382 10,090 370,540 100 

>0.6 cM 296,003 78,930 10,921 376,718 105 

>0.8 cM 304,071 79,003 13,571 453,092 95 

>1 cM 322,149 65,689 7,988 368,592 95 
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Table 4.6. SNP count Poisson log-likelihoods comparing the fit between the best fit 

demographic model to the observed SFS on the autosomes 

German Shepherds 

Threshold Model Poisson LL Δ LL (Model – 

Data) 

>0.4 cM Data to Data 417,038.4 0 

Best fit demographic model 416,954.7 -83.7 

>0.6 cM Data to Data 150,103.2 0 

Best fit demographic model 149,819.8 -283.4 

>0.8 cM Data to Data 56,509.68 0 

Best fit demographic model 56,198.87 -310.81 

>1 cM Data to Data 25,269.04 0 

Best fit demographic model 25,104.24 -164.8 

 

Tibetan Mastiffs 

Threshold Model Poisson LL Δ LL (Model – 

Data) 

>0.4 cM Data to Data 868,148.7 0 

Best fit demographic model 868,144.7 -4 

>0.6 cM Data to Data 322,729.2 0 

Best fit demographic model 322,723.6 -5.6 

>0.8 cM Data to Data 127,926.2 0 
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Best fit demographic model 127,923.8 -2.4 

>1 cM Data to Data 59,175.79 0 

Best fit demographic model 59,175.38 -0.41 

 

Pooled Breed Dogs 

Threshold Model Poisson LL Δ LL (Model – 

Data) 

>0.4 cM Data to Data 956,019.4 0 

Best fit demographic model 955,906.6 -112.8 

>0.6 cM Data to Data 361,320.8 0 

Best fit demographic model 361,228.5 -92.3 

>0.8 cM Data to Data 141,427.9 0 

Best fit demographic model 141,395.2 -32.7 

>1 cM Data to Data 65,644.59 0 

Best fit demographic model 65,603.31 -41.28 

 

Arctic Wolves 

Threshold Model Poisson LL Δ LL (Model – 

Data) 

>0.4 cM Data to Data 1,110,073 0 

Best fit demographic model 1,110,054 -19 

>0.6 cM Data to Data 411,281.3 0 
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Best fit demographic model 411,265.3 -16 

>0.8 cM Data to Data 163,246.9 0 

Best fit demographic model 163,243.6 -3.3 

>1 cM Data to Data 76,600.19 0 

Best fit demographic model 76,591.97 -8.22 

 

Pooled Grey Wolves 

Threshold Model Poisson LL Δ LL (Model – 

Data) 

>0.4 cM Data to Data 1,404,387 0 

Best fit demographic model 1,404,239 -148 

>0.6 cM Data to Data 520,155 0 

Best fit demographic model 520,085 -70 

>0.8 cM Data to Data 210,418.7 0 

Best fit demographic model 210,399.2 -19.5 

>1 cM Data to Data 98,597.3 0 

Best fit demographic model 98,578.51 -18.79 
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Table 4.7. Likelihood ratio tests comparing models of sex-biased demography in multiple 

canid populations. Likelihood ratio tests of the amount of sex-biased demography are shown 

when removing any sites whose genetic distance to the nearest genes is less than 0.4 cM, 0.6 cM, 

0.8 cM, and 1 cM.  

Threshold: >0.4 cM 

Population C Log-likelihood 

Likelihood ratio 

test 

p-value 

German Shepherds 

Null (C = 

0.75) 

7460.957 

34.779 3.69 X 10-9 

Best (C = 

0.68) 

7478.347 

Tibetan Mastiffs 

Null (C = 

0.75) 

16050.84 

208.972 2.30 X 10-47 

Best (C = 

0.61) 

16155.32 

Pooled Breed Dogs 

Null (C = 

0.75) 

16875.26 

249.627 3.13 X 10-56 

Best (C = 

0.61) 

17000.07 

Arctic Wolves 

Null (C = 

0.75) 

23035.46 133.341 7.62 X 10-31 
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Best (C = 

0.65) 

23102.13 

Pooled Grey 

Wolves 

Null (C = 

0.75) 

30767.69 

188.719 6.05 X 10-43 

Best (C = 

0.64) 

30862.05 
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Threshold: >0.6 cM 

Population C Log-likelihood 

Likelihood ratio 

test 

p-value 

German Shepherds 

Null (C = 

0.75) 

3,568.57 6.037 0.014 

Best (C = 

0.68) 

3,571.58 

Tibetan Mastiffs 

Null (C = 

0.75) 

6,892.14 164.747 1.04 X 10-37 

Best (C = 

0.61) 

6,974.51 

Pooled Breed Dogs 

Null (C = 

0.75) 

7,303.47 209.331 1.92 X 10-47 

Best (C = 

0.61) 

7,408.14 

Arctic Wolves 

Null (C = 

0.75) 

10,198.7 109.011 1.61 X 10-25 

Best (C = 

0.65) 

10,253.2 

Pooled Grey 

Wolves 

Null (C = 

0.75) 

13,898.57 136.982 1.22 X 10-31 
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Best (C = 

0.64) 

13,967.06 

 

Threshold: >0.8 cM 

Population C Log-likelihood 

Likelihood ratio 

test 

p-value 

German Shepherds 

Null (C = 

0.75) 

1541.624 

0.602 0.438 

Best (C = 

0.78) 

1541.925 

Tibetan Mastiffs 

Null (C = 

0.75) 

2710.71 

42.255 8.01 X 10-11 

Best (C = 

0.63) 

2731.837 

Pooled Breed Dogs 

Null (C = 

0.75) 

2516.035 

82.291 1.17 X 10-19 

Best (C = 

0.58) 

2557.18 

Arctic Wolves 

Null (C = 

0.75) 

3187.933 

81.815 1.49 X 10-19 

Best (C = 

0.59) 

3228.84 
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Pooled Grey 

Wolves 

Null (C = 

0.75) 

4906.004 

68.493 1.27 X 10-16 

Best (C = 

0.58) 

4940.25 

 

Threshold: >1 cM 

Population C Log-likelihood 

Likelihood ratio 

test 

p-value 

German Shepherds 

Null (C = 

0.75) 

322.378 

0.635 0.426 

Best (C = 

0.72) 

322.696 

Tibetan Mastiffs 

Null (C = 

0.75) 

673.92 

12.178 4.84 X 10-4 

Best (C = 

0.62) 

680.009 

Pooled Breed Dogs 

Null (C = 

0.75) 

527.835 

38.649 5.07 X 10-10 

Best (C = 

0.54) 

547.16 

Arctic Wolves 

Null (C = 

0.75) 

648.812 53.136 3.11 X 10-13 
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Best (C = 

0.51) 

675.38 

Pooled Grey 

Wolves 

Null (C = 

0.75) 

1110.162 

38.736 4.85 X 10-10 

Best (C = 

0.54) 

1129.53 
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Table 4.8. Individuals used in 𝑸𝑭𝑺𝑻 analyses 

Population In House ID 

German Shepherds GS1 

GS2 

GS3 

GS4 

Tibetan Mastiffs TM1 

TM2 

TM3 

TM4 

Pooled Breed Dogs BD1 

BD2 

BD3 

BD4 

Arctic Wolves AW1 

AW2 

AW3 

AW4 

Pooled Grey Wolves GW1 

GW2 

GW3 
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CHAPTER 5 

Inference of the mutational target size supports the omnigenic model for complex traits  

5.1 Abstract 

Genetic variants associated with complex traits contain a wealth of information about the 

architecture of the trait as well as the evolutionary forces impacting the particular phenotype. 

However, utilizing these data for evolutionary inferences is challenging due to the complex 

ascertainment scheme and limited power to detect rare variants inherent in genome wide 

association studies (GWAS). Here we circumvent this problem by combining explicit realistic 

population genetic models of demography and selection together with quantitative genetic 

models of GWAS data. Specifically, we develop an Approximate Bayesian Computational 

framework to estimate the number of sites in the genome, 𝑀, that, if mutated, would give rise to 

a variant affecting the phenotype. Our method also infers the effect of purifying selection by 

estimating the coupling parameter between a mutation’s effect on the trait and its effect on 

fitness, sometimes called 𝜏. Our approach models the limited power of GWAS for detecting rare 

variants, thus improving the accuracy of the method. We applied our new method to 21 

quantitative traits using publicly available GWAS summary statistics from the UKBiobank. 

Surprisingly, we found that the coupling parameter between a mutation’s effect on the trait and 

its effect on fitness is similar across 11 traits examined (around 0.25), indicating that many 

complex traits, including those not typically thought to be associated with reproductive fitness, 

are affected by selection. For 10 out of 21 traits, the mutational target size is on the order of tens 

of megabases (Mb). For example, 𝑀 is inferred to be around 25Mb for systolic blood pressure, 

around 50Mb for body mass index, and around 95Mb for height. Interestingly, 5 traits all have 

target sizes of around 25-30 Mb. Both height and forced vital capacity (FVC) have large target 
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sizes of greater than 80Mb. The finding that disparate traits show similar target sizes suggests 

that the same peripheral genes could be affecting many traits. We propose that this finding 

combined with the large mutational target sizes inferred for all traits examined supports the 

omnigenic model.  

5.2 Introduction 

 The genetic architecture of a complex trait is defined as the number, frequency, and effect 

size of the trait-associated variants combined with the interactions among these factors (Timpson 

et al., 2018). Understanding the genetic architecture is essential to unraveling the genetic basis of 

human traits and diseases. Studying genetic architecture has been made possible by data from 

genome-wide association studies (GWAS). GWAS have discovered tens of thousands of 

susceptibility variants that are associated with complex traits and helped to further our 

understanding of the genetic architecture (Altshuler et al., 2008; MacArthur et al., 2017; Stranger 

et al., 2011). For example, most trait-associated variants discovered from GWAS are common 

(i.e. have a minor allele frequency > 0.2; Figure 5.1A). However, it does not necessarily mean 

that common variants explain all of the genetic basis of the trait. Rather, GWAS has been done 

using limited sample sizes and is therefore underpowered at detecting associations with rare 

variants (Visscher et al., 2017). An additional factor is that rare variants are not assayed or 

imputed as well as common variants using standard genotyping arrays (Visscher et al., 2017). 

Data from GWAS also show that the effect size is negatively correlated with allele frequency in 

many traits (Figure 5.1B) (Park et al., 2011; The UK10K Consortium, 2015). However, in 

principle, the allele frequency of a variant should not be related to the effect size, unless there is 

a relationship between an allele’s effect on the trait and its effect on reproductive fitness. If a 

variant has a large effect on a disease and the disease either directly or indirectly affects 
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reproductive fitness, the variant is evolutionarily deleterious and is subject to purifying selection, 

keeping it at low frequency (Gibson, 2011). Eyre-Walker proposed to model the relationship 

between a variant’s effect on the trait and its effect on fitness (i.e. the selection coefficient) using 

a parameter called τ (Eyre-Walker, 2010). When 𝜏 = 0, the variant’s effect on the trait is 

independent of its selection coefficient and consequently there is no relationship between effect 

size and allele frequency (Figure 5.2, orange lines). When 𝜏 = 0.5, there is a positive 

relationship between effect size and selection, resulting in a negative correlation between effect 

size and allele frequency (Figure 5.2, green lines). Recent work has shown support for a non-

independent relationship between effect size and selection (i.e. τ ≥ 0) in many traits (Schoech et 

al., 2017). These results suggest negative selection has played an important role in shaping the 

genetic architecture of complex traits (Schoech et al., 2017; Zeng et al., 2018). 

An aspect of the genetic architecture that is understudied is how many causal variants are 

contributing to a trait. Here we define a causal variant as any variant in the genome that has a 

non-zero effect size on the trait. Because not all causal variants can be detected in a GWAS, the 

observed GWAS hits are drawn from a larger pool of causal variants. Furthermore, not every 

position in the genome that could give rise to a causal variant necessarily contains a causal 

variant, because some sites have not been mutated in the population. Thus, the causal variants are 

drawn from a pool of sites in the genome that could be mutated to give rise to variants affecting a 

trait. We call this parameter the mutational target size, 𝑀. Agarwala et al. (2013) developed a 

population genetic framework to understand the genetic architecture of type 2 diabetes 

(Agarwala et al., 2013). Using a model with a mutational target size of 1.25Mb, they found that 

the simulated disease model is consistent with the empirical data (Agarwala et al., 2013). Simons 

et al. (2018) also developed a model to explore how genetic architecture is affected by 
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evolutionary processes (Simons et al., 2018). In applying their method to height and body mass 

index, they found that the mutational target size for height and body mass index to be 5Mb and 

1Mb, respectively. Since these studies have only examined a small number of trait traits, how the 

mutational target size differs between traits remained to be explored. In addition, Simons et al. 

(2018) did not explore the relationship between effect size and selection in their analyses. 

Further, while their model is based on a multivariate stabilizing selection model, it does not 

include realistic distributions of selection coefficients, mutations, linkage disequilibrium, or 

demography (Simons et al., 2018). 

Here, we developed a population genetic model for the genetic architecture of complex 

trait and infer the mutational target size and the coupling parameter between a variant’s effect on 

the trait effect and its effect on fitness. We improved on existing methods by using summary 

statistics from GWAS as our empirical data. We call our method to infer the genetic architecture 

InGeAr. InGeAr accounts for the incomplete statistical power of GWAS by modelling the power 

to detect a variant to match the number of GWAS variants to the empirical data. We first applied 

InGeAr to height and found a large mutational target size for height, 95Mb. We also examined 

how the number of causal variants, GWAS hits, and variants remained to be detected differ in 

terms of their effect sizes, selection coefficients, and additive genetic variance. We then applied 

InGeAr to multiple complex human diseases using publicly available GWAS summary statistics 

from the UKBiobank. We found that the mutational target size varies from trait to trait but is 

consistent on the order of ten of megabases. Curiously, we found that the coupling parameter 

between effect size and selection is similar across traits. We suggest that our results provide 

support for the omnigenic model of complex traits. Understanding the mutational target size, the 

number of causal variants for each trait, and the relationship between effect size and selection 
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will lead to improved knowledge of the underlying biology and suggest future strategies for 

mapping further risk variants for these traits. 

5.3 Results 

GWAS simulation 

To simulate a genome-wide association study, we first simulate causal variants for a 

given mutational target size (Figure 5.3). We use the forward-in-time simulation software SLiM 

and specify an evolutionary model with realistic parameters for the demography, selection, 

mutation rate, and recombination rate (Haller and Messer, 2017). We use a European 

demographic history from the Gravel model and a distribution of fitness effects for non-coding 

variants from Torgerson et al. (Gravel et al., 2011; Torgerson et al., 2009). We model the effect 

size of each variant following Equation 1 of Eyre-Walker (2010), which is a function of the 

selection coefficient 𝑠 and 𝜏 (Eyre-Walker, 2010): 

𝛼𝑖 = 𝛿𝑠𝑖
𝜏(1 + 𝜀), 

where 𝛼𝑖 is the effect size of variant on the trait 𝑖, 𝑠𝑖 is the selection coefficient which is an 

output from the SLiM simulations, 𝜏 is the coupling parameter between the effect size and 

selection coefficient, 𝜀 is the error term which is drawn from a normal distribution with mean 0 

and a standard deviation of 0.5, and 𝛿 randomly takes a value of -1 and 1. To achieve the desired 

heritability for each trait and to match the effect size from the simulation to the empirical data, 

we adjust the effect size based on the heritability as was done in Lohmueller (2014): 𝛼adjusted =

𝛼𝐶 where 𝐶 is computed from the heritability, ℎ2 (see Methods) (Lohmueller, 2014). To 

recapitulate the fact that GWAS is underpowered to detect all causal variants, we employ a 

rejection sampling scheme where SNPs are retained in proportion to their power to be detected. 

Specifically, we calculate the power to detect a variant based on its effect size, heritability, allele 
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frequency, and sample size (see Methods). We use the same sample size for each trait as in the 

UKBiobank study (around 500,000 individuals). We then draw a random value between 0 and 1. 

If this randomly drawn value is less than the calculated power to detect a variant, we consider 

this variant a GWAS hit.  

The mutational target size determines the number of causal variants 

 To understand how the mutational target size affects the number of causal variants, we 

simulated data using the mutational target sizes of 100kb, 1Mb, and 10Mb (Figure 5.4). As 

expected, there are more causal variants when the mutational target size is larger (Figure 5.4A). 

We also observed that most causal variants segregate at very low frequency (<0.5%) (Figure 

5.4A), reflecting the fact that most variants in human populations are at low frequency (Gravel et 

al., 2011). For a constant heritability, as 𝑀 increases, the effects on the trait are distributed across 

more variants. Thus, the effect size of a causal variant is smaller for a larger value of 𝑀 as 

compared to a smaller value of 𝑀 (Figure 5.4B).  

Both 𝑴 and 𝝉 determine the number of GWAS hits and their effect sizes 

To understand whether and how the number of GWAS hits and the effect size are 

determined by the mutational target size (𝑀) and the coupling parameter between a variant’s  

effect on the trait and its selection coefficient (𝜏) at different allele frequencies, we examined the 

number of GWAS hits and their effect sizes stratified by allele frequencies from the simulation 

generated using different values of 𝑀 and 𝜏 (Figure 5.5). For all analyses, we used the sample 

size of 𝑁 = 50000 individuals to be comparable to that from the UKBiobank. 

When there is no relationship between effect size and selection coefficient (𝜏 = 0), the 

power to detect a variant is lowest for rare variants (<0.5%) (Figure 5.5, first row, first column, 

orange line). As 𝑀 increases, the power to detect these rare variants (<0.5%) decreases further 
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(Figure 5.5, first column, orange lines). As 𝑀 becomes very large (i.e. 10Mb), there is little 

power to detect even variants segregating at frequency <5%. Since there are more causal variants 

for larger value of 𝑀, the effects on the trait is distributed to more variants when 𝑀 increases 

(Figure 5.4B). Therefore, as 𝑀 increases, causal variants segregating at low frequency have tiny 

effect size and GWAS are underpowered to detect them.  When 𝑀 is small (i.e. 100kb), rare 

variants can be detected because the effect size of each causal variant is, on average, higher than 

those for larger values of 𝑀.  

As 𝜏 increases, power to detect rare variant in GWAS also increases. For instance, at the 

mutational target size of 1Mb, when 𝜏 = 0, there is little power to detect rare variants.  For a 

greater value of 𝜏 (𝜏 = 0.2), however, power is higher (Figure 5.5, second row, first column, 

comparing orange line and green line). Therefore, most GWAS hits are common when 𝜏 = 0 

whereas most GWAS hits are rare when 𝜏 = 0.2 (Figure 5.5, second row, comparing orange line 

and green line). For 𝜏 = 0.2 and a larger mutational target size (𝑀 = 10Mb), there is little power 

to detect rare variants, resulting in most GWAS hits to be common (Figure 5.5, third row, green 

line). At the same time, when 𝑀 = 10Mb, when 𝜏 is larger (𝜏 = 0.6), the majority of GWAS hits 

are rare (Figure 5.5, second and third rows, blue lines).  

As expected, when 𝜏 = 0, there is no relationship between effect size and allele 

frequency for all values of 𝑀 (Figure 5.5, third column, orange lines). Similarly, when 𝜏 > 0, 

there is a negative relationship between effect size and allele frequency. The negative correlation 

is stronger for larger value of 𝜏 (Figure 5.5, third column, green and blue lines). This is due to the 

coupling between a mutation’s effect on the trait and its effect on fitness (Eyre-Walker, 2010). 

These observations suggest that 𝑀 and 𝜏 can affect different summary statistics of the 

GWAS data differently. For instance, for a given value of 𝑀, such as 𝑀 = 10Mb, with a 𝜏 value 
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of 0.2, most GWAS hits are common. Whereas with a 𝜏 value of 0.6, most GWAS hits are rare 

(Figure 5.5, second column, second and third rows, comparing green and blue lines). Similarly, 

for the same value of 𝜏 such as 𝜏 of 0.2, 𝑀 of 100kb resulted in most GWAS hits being rare 

(Figure 5.5, first row, second column, green line) whereas 𝑀 of 10Mb resulted in most GWAS 

hits to be common (Figure 5.5, third row, second column, green line). 

Using summary statistics from UKBiobank GWAS, we observed that there is a positive 

relationship between the number of GWAS hits and allele frequency and a negative relationship 

between effect size and allele frequency (Figure 5.1). We observed that there are values of 𝑀 and 

𝜏 that can result in a positive relationship between the number of GWAS hits and allele 

frequency, but not the negative relationship between effect size and allele frequency (Figure 5.5). 

For example, for 𝑀 = 1Mb and 𝜏 = 0, there is a positive correlation between the number of 

GWAS hits and allele frequency (Figure 5.5, second row, second column, orange line), but there 

is no relationship between effect size and allele frequency (Figure 5.5, second row, third column, 

orange line). In addition, we found that in some scenarios, one summary statistic shows a similar 

pattern for two pairs of 𝑀 and 𝜏 but the other statistic can distinguish between these pairs. For 

example, when 𝜏 = 0 and 𝑀 = 100kb or 𝜏 = 0.1 and 𝑀 = 100kb, the expected number of 

GWAS hits is similar between these two parameter combinations (Figure 5.6A). However, the 

effect size stratified by allele frequency differs for these two pairs of 𝑀 and 𝜏 values. Similarly, 

when 𝑀 = 400kb and 𝜏 = 0.4 or 𝑀 = 1Mb and 𝜏 = 0.4, the effect size stratified by allele 

frequency is similar between these two pairs (Figure 5.6B). However, the expected number of 

hits can distinguish between these two parameter combinations. Specifically, there are more rare 

variants detected when 𝑀 = 1Mb. These observations led us to perform inference under a model 
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that includes both 𝑀 and 𝜏. In addition, we use both the number of GWAS hits and the effect 

size stratified by allele frequency as summary statistics of the observed GWAS data.   

Overview of the Inference of Genetic Architecture (InGeAr) Method  

We infer the mutational target size, 𝑀 and the coupling parameter between effect size and 

selection, 𝜏 in an Approximate Bayesian Computation framework. We call our Inference of 

Genetic Architecture method InGeAr. For each value of 𝑀 and 𝜏 that are drawn from prior 

distributions, we first simulate GWAS as described above. We then apply a rejection sampling 

algorithm to decide whether to accept or reject 𝑀 and 𝜏 (Figure 5.3). Since the simulations 

described above demonstrated that both the number of GWAS hits at different allele frequencies 

and the effect sizes at different allele frequencies are complementary statistics, we employ them 

both as summary statistics. Specifically, we divide the GWAS hits into six allele frequency bins: 

<0.5%, 0.5-1%, 1-5%, 5-10%, 10-20%, >20%. In the first rejection step, we compute the scaled 

difference in effect size between the simulated GWAS and the empirical GWAS across all 6 

allele frequency bins: 

difference =  ∑
|𝛼𝑖

empirical
− 𝛼𝑖

simulated|

𝛼𝑖
empirical

6

bin𝑖=1

 

For each allele frequency bin, the difference in effect size between the empirical and 

simulated effect sizes divided by the empirical effect size represents how far away the simulated 

effect size is from the empirical one. For example, if this value is 0.1, it means that the simulated 

effect size is within 10% of the empirical effect size. Since there are six allele frequency bins, we 

choose 0.6 as the threshold to accept or reject a pair of 𝑀 and 𝜏 values. We repeat the procedure 

until 10,000 pairs of 𝑀 and 𝜏 are accepted. We then compute the sum of squared difference 

between the observed the number of GWAS hits in each frequency bin compared to the values 
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from our simulations. We retain the 1,000 pairs of tau and M whose sum of squared difference is 

in the bottom 10% of the distribution (Figure 5.3). These 1,000 pairs of 𝑀 and 𝜏 form the 

posterior distribution. 

Application of InGeAr to infer 𝑴 and 𝝉 for height 

We applied our method to infer the mutational target size and the coupling parameter 

between effect sizes and selection coefficients to height because height has been of immense 

interest in medical genetics. We utilized GWAS summary statistics and independent GWAS hits 

to remove the effect of linkage disequilibrium from Kichaev et al. (Kichaev et al., 2017).  

We drew a value of 𝑀 and a value of 𝜏 from uniform distributions (Figure 5.7). We found 

that the median inferred value of 𝑀 is 95Mb (95% credible interval of 54Mb-131Mb) and the 

inferred value of 𝜏 is 0.27 (95% credible interval of 0.22-0.31) (Figure 5.8A, 5.8B). We also 

observed a positive correlation between 𝑀 and 𝜏 (Figure 5.8C). This positive correlation between 

𝑀 and 𝜏 suggests that previous methods that only inferred 𝜏 while ignoring 𝑀 could be 

problematic as the parameters depend on each other. To assess whether the inferred values of 𝑀 

and 𝜏 can recapitulate the empirical data, we drew 𝑀 and 𝜏 from the posterior distributions and 

simulated 10,000 replicates. We found that the simulated data from the posterior tau and M 

matched reasonably well with the empirical data (Figure 5.9).   

We next use our model to understand how the currently identified GWAS hits differ from 

the causal variants that remain to be discovered. To do this, we examined the variants from each 

of the 10,000 simulations where 𝑀 and 𝜏 are drawn from the posterior distributions as above 

(Figure 5.10). Interestingly, we observed that across all frequency bins, most of the causal 

variants have not been detected by GWAS, leaving most causal variants remaining to be 

discovered (Figure 5.10A). We hypothesized that many of these remaining undiscovered causal 
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variants likely have small effect sizes. To understand the property of the effect size of causal 

variants, GWAS hits, and remaining undiscovered causal variants, we calculated the number of 

variants in each category stratified by effect size ranging from small (𝛼 ≤ 0.001) to medium 

(0.001 < 𝛼 ≤ 0.01) to large (𝛼 > 0.01). Consistent with this expectation, most causal variants 

that remain to be discovered have small and medium effect (Figure 5.10B). GWAS has done 

well at finding variants with larger effects as we found that >95% of GWAS hits have large 

effect size (Figure 5.10B). However, about 60% of causal variants have weak effect and about 

25% of causal variants have medium effect (Figure 5.10B). In addition, we observed that GWAS 

hits are more evolutionarily deleterious compared to the entire set of causal variants (Figure 

5.10C). While about 85% of causal variants and variants remaining to be discovered are weakly 

deleterious (|𝑠| <  10−4), about 70% of GWAS hits have intermediate strength of selection 

(10−4 ≤ |𝑠| < 10−2) (Figure 5.10C).  

Much attention in complex trait genetics has been devoted determining which categories 

of variants can account for much of the heritability of traits and why previously identified 

GWAS hits do not account for all of this heritability (Manolio et al., 2009). To understand which 

category of variants in terms of selection can explain more of the additive genetic variance, we 

calculated the proportion of additive genetic variance explained stratified by strength of 

selection. We found that most of the additive genetic variance can be explained by causal 

variants with intermediate selection strength (i.e. 10−4 ≤ |𝑠| < 10−2) (Figure 5.10D) .  

 So far, we have considered all causal variants in our inference for the mutational target 

size. To explore how the inferred mutational target size would differ when only variants with 

large effect size are considered, we modified our inference procedure at the rejection step and 

only compared variants with large effect size. Since the cutoff value to determine whether a 
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variant has a large effect size is arbitrary, we examined the distribution of effect size for height 

and chose two values: 0.02 and 0.05 (Figure 5.11). In both the empirical and simulated GWAS, 

we only considered causal variants with effect size greater than 0.02 or 0.05. Since there are 

fewer GWAS hits when considering variants with large effect size, we observed that the inferred 

mutational target size is smaller (Table 5.1). This is unsurprising, as the mutational target size 

inferred here is that which would give rise to a causal variant of strong effect, which by 

definition will be smaller than the mutational target that will give rise to a variant with any non-

zero effect. The coupling parameter between trait’s effect and selection remains approximately 

the same, suggesting some robustness of this parameter to different thresholds of the effect sizes 

of GWAS variants (Table 5.1).  

The role of pleiotropy on the genetic architecture of height 

The Eyre-Walker model (2010) that we used in our inference quantifies the coupling 

between a mutation’s effect on the trait and its effect on fitness, 𝜏. This coupling parameter 𝜏 is 

assumed to be the same for all of the variants, yielding the same average relationship between a 

mutation’s effect on fitness and its effect on the trait for all causal variants. In principle, this may 

not be the case. Some causal variants may affect the trait in proportion to how they affect fitness, 

but other variants may have discordant effects. This effect has been captured in a model of 

pleiotropy proposed by Uricchio et al. (Uricchio et al., 2016). In this model, pleiotropy is capture 

through 𝜌 where 𝜌 < 1 indicates that more variants have independent effects on fitness and the 

trait. Following Uricchio et al. (2016), the effect size 𝛼 of variant 𝑖 is equal to 𝑠𝜏 as before with 

probability 𝜌. Otherwise, the effect size is equal to 𝑠𝑟
𝜏 where 𝑠𝑟 is the selection coefficient from 

another variant picked at random. We modified InGeAr to also infer for 𝜌 by sampling a value of 

𝜌 from a prior distribution and performing the simulation of GWAS and rejection algorithm as 
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described above. We found that the posterior distribution of 𝜌 includes 1 (median = 0.982; 95% 

credible interval of 0.920-0.999) (Figure 5.12, Table 5.2). This suggests that many variants have 

proportional effects on fitness and the trait. Given that 𝜌 ≫ 0, it is unsurprising that the posterior 

distribution of 𝜏 is similar between the inference with and without 𝜌 (Figure 5.12, Table 5.2). 

Interestingly, we found that the inference including rho leads to a modest decrease in the 

mutational target size (from 95Mb to 77Mb) (Figure 5.12, Table 5.2). Overall, this finding 

suggests that if many of the causal variants for height are pleiotropic, their effects on height are 

still largely proportion to their effects on reproductive fitness. 

Application of inGeaR to other traits 

We applied InGeAr to 20 other quantitative Biobank traits that were also analyzed by 

Kichaev et al. (Kichaev et al., 2017). We found that applying the same acceptance criteria as 

outlined above, in 10 out of 20 traits, there are values of 𝑀 and 𝜏 that passed the acceptance 

criteria. For these traits, we found that the mutational target size differs across traits (Figure 

5.13A, Table 5.3). It ranges from 3Mb for age at menarche to 95Mb for height (Figure 5.13A, 

Table 5.3). Most traits have a relatively large mutational target size, on the orders of tens of 

megabases (Figure 5.13A, Table 5.3). Curiously, the coupling parameter between effect size and 

selection is similar (median value of 𝜏 ranges from 0.214 to 0.301) (Figure 5.13B, Table 5.3).  

As mentioned above, for 10 out of 20 traits examined here, setting the threshold to be 0.6 

in the step to accept or reject 𝑀 and 𝜏 when comparing the effect size between the empirical data 

and simulated data works well. However, we found that for the other 10 traits, the total 

difference between the empirical effect size and simulated effect size is greater than 0.6. As a 

result, no pairs of 𝑀 and 𝜏 were accepted. These results suggest that there is no value of 𝑀 and 𝜏 

where the fit to the empirical data in the effect size is close enough across all bins of allele 



147 
 

frequency. When we increased the threshold to be high enough, the simulation typically 

overestimates the effect size in intermediate and common frequency bins but underestimates the 

number of GWAS variants in intermediate bins (Figure 5.14). These observations could indicate 

that the model is not appropriate for these traits, and one may need to incorporate other forces 

such as positive selection.  

5.4 Discussion 

In this work, we developed a method called InGeAr to infer the mutational target size 

(𝑀) and the extent to which a mutation’s effect on a trait is coupled with its selection coefficient 

(𝜏) for complex traits. An advantage of our method over existing work is that InGeAr jointly 

infers for both 𝑀 and 𝜏 while existing approaches only estimate 𝜏 (Schoech et al., 2017). Since 

𝑀 and 𝜏 are highly correlated, inferring for one but not the other could be problematic (Figure 

5.8C). Another advantage of InGeAr is that it only requires summary statistics from GWAS data, 

which are easier to obtain. Existing approaches to estimate 𝜏 require individual genotype data 

which could be more difficult to obtain (Schoech et al., 2017). Therefore, we anticipate that 

InGeAr can be easily applied to study other traits in humans or other species of interest.  

We found that the mutational target sizes differ between traits (Figure 5.13A). 

Interestingly, except for age of menarche where the inferred mutational target size is around 

3Mb, the mutational target sizes for the other traits are very large, on the orders of tens of 

megabases (Figure 5.13A). Curiously, Simons et al. estimated that the mutational target sizes for 

height and BMI are 5Mb and 1Mb, respectively (Simons et al., 2018). The mutational target 

sizes inferred from Simons et al. (2018) is an order of magnitude smaller than those inferred 

here. There are several important differences between InGeAr and the method develop in Simons 

et al. (2018) that could explain the discrepancies. First, Simons et al. used a different GWAS 
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datasets for height and BMI. Specifically, Simons et al. (2018) used GWAS data for height from 

Wood et al. that consisted of 697 GWAS hits and GWAS data for BMI from Locke et al. that 

consisted of 97 GWAS hits for BMI (Locke et al., 2015; Wood et al., 2014). We used GWAS 

data from UKBiobank and further narrowed down the GWAS hits to contain only those that are 

independent to account for linkage disequilibrium (Kichaev et al., 2017). Our dataset consisted 

of 2452 and 965 GWAS hits for height and BMI, respectively. Since the sample size in the 

UKBiobank dataset is larger (𝑁 = 500𝑘) and therefore there are more GWAS hits, we expect 

the mutational target size to be larger. Second, in our model, we used the distribution of fitness 

effect for noncoding variants as in Torgerson et al., resulting in most causal variants being 

weakly deleterious (Torgerson et al., 2009). On the other hand, Simons et al. (2018) assumed 

causal variants with stronger selection than in our study. Considering only variants with strong 

selection could lead to the inferred mutational target size to be smaller, as we inferred when 

restricting to large effect variants (Table 5.1). Importantly, it is not clear whether the model 

proposed by Simons et al. where many causal variants of the trait are under strong purifying 

selection is consistent with existing studies of the distribution of fitness effects across the 

genome. Third, Simons et al. (2018) conclude that there is substantial pleiotropy of causal 

variants and that this may reduce the mutational target size. Importantly, utilizing the model of 

pleiotropy, presented by Uricchio et al 2016, we found little evidence for substantial pleiotropy 

for height (𝜌 ≈ 1, Figure 5.12, Table 5.2).  This difference is likely due to differences in how 

pleiotropy is modeled. Within the model from Uricchio et al. that is used in this study, 𝜌 ≪ 1 

only if the trait effects and selection coefficients are uncoupled for a large portion of the variants, 

while the remaining variants have effects in the same direction (i.e. variants with larger effects 

on the trait are more evolutionarily deleterious). There could be extensive pleiotropy even if 𝜌 ≪
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1, as long as variants have effects in the same direction for all traits and fitness. Our models have 

the advantage of including an explicit population genetic model of genetic variation. As such, we 

leverage the extensive existing studies on the distribution of fitness effects for new mutations, 

mutation rates, and demographic parameters that have been fit to human polymorphism data. 

Thus, our models are consistent with salient features of human genetic variation data and use 

reasonable parameter values. We believe that this increases the utility and interpretability of our 

inferences. 

 In addition to inferring the mutational target size, InGeAr also infers the extent to which 

the magnitude of the effect of a variant is affected by selection (𝜏). Our work confirmed previous 

findings that there is a coupling between a variant’s effect on a trait and its selection coefficient 

(Schoech et al., 2017). However, we observed that the median for inferred 𝜏 using InGeAr differs 

from the mean 𝜏 in previous work. Nevertheless, we found that the credible interval overlaps 

with the confidence interval (Figure 5.15). Curiously, we found that 𝜏 is similar across all traits 

examined here, perhaps suggesting a common mechanism for the relationship between a 

mutation’s effect on a trait and its effect on fitness that is shared across many traits.  

 We suggest that our findings that the mutational target sizes are large for most traits and 

that 𝜏 is similar across all traits examined is consistent with the omnigenic model. The omnigenic 

model posits that variants in a large proportion of the genome affect most traits (Boyle et al., 

2017). Our results are consistent with this prediction. For example, we found that the mutational 

target size for height is around 95Mb, which is approximately 3% of the genome. A second 

prediction of the omnigenic model is that most of the heritability for traits is explained by the 

weak effects of peripheral genes. The fact that 𝜏 is similar across traits supports this prediction. 

Suppose that for some traits that are affecting reproductive fitness causing 𝜏 to be greater than 0, 
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a number of peripheral genes are contributing to these traits’ phenotypes. These same peripheral 

genes are also contributing to other traits that may not be affecting reproductive fitness, but 

causing 𝜏 to be greater than 0. 

Our work contributes to the current literature aiming to unravel the genetic architecture of 

complex traits. We contributed by developing a method to infer under-studied but important 

parameters of the genetic architecture, specifically the mutational target size and the coupling 

between trait’s effect and selection. Our work provides support for the newly developed 

omnigenic model of complex traits. However, our method accounts for linkage disequilibrium 

(LD) by using GWAS hits that have been previously shown to be independent. We suggest that 

future work could explicitly incorporate LD into the inference framework.  

5.5 Methods 

Obtaining summary statistics from genome-wide association studies 

Downloading GWAS summary statistics for UKBiobank traits 

We downloaded GWAS summary statistics for UKBiobank traits from 

https://data.broadinstitute.org/alkesgroup/UKBB/. 

Selecting independent variants 

One summary statistic of the GWAS data used by InGeAr is the number of variants associated 

with the trait at different freuqencies. When computing this quantity, we need to account for the 

fact that there may be many GWAS hits within a region of the genome in high LD with each 

other all showing a significant association, despite there being only one causal variant. To 

ameliorate this issue, we only used variants that are putatively independent by utilizing the list of 

independent variants from Supplementary Table 6 from Kichaev et al. (Kichaev et al., 2017).  

 

https://data.broadinstitute.org/alkesgroup/UKBB/
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Obtaining allele frequency for each variant 

For each GWAS variant, we obtained its minor allele frequency using the 1000 Genome Project 

Phase 3 for the European (EUR) population.  

Simulating causal variants 

For each 100kb region, we simulated causal variants using the forward genetic simulation 

program SLiM 2 (Haller and Messer, 2017). We simulated 10,000 such 100kb region. We used a 

mutation rate (mu) of 1.5X10-8 and a recombination rate of r= 1X10-8. We specified the 

distribution of fitness effects for noncoding region using the parameters from Torgerson et al. 

(Torgerson et al., 2009). We simulated 503 individuals because there are 503 European (EUR) 

individuals in the 1000 Genome Project Phase 3 from which we used to calculate minor allele 

frequency from. We outputted the same number of EUR individuals as in the 1000 Genome 

Project because we wanted the allele frequency calculation from the simulation to be comparable 

to that from empirical data.  

InGeAr 

For each trait, we aimed to find a posterior distribution of 𝑀 and 𝜏. We drew a value for 𝑀 and a 

value for 𝜏 from uniform prior distributions. 𝜏 is drawn uniformly between 0 and 1. Since the 

number of causal variants differ for each trait, we used different prior distributions for 𝑀 for 

different traits. For each pair of 𝑀 and 𝜏, we performed the inference procedure as described 

below. 

Determining the number of causal variants for each pair of 𝑀 and 𝜏 

For each value of the mutational target size, 𝑀, we drew simulated 100kb fragments randomly 

from the 10,000 simulated fragments. The number of replicates drawn is determined by the 

mutational target size. For example, if 𝑀 is equal to 5Mb, we drew 50 simulation replicates 
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(50Mb/100kb = 50). This is computationally efficient because we could avoid performing SLiM 

simulations for every value of 𝑀. This step returns a list of causal variants, each with an allele 

frequency and selection coefficient 𝑠. 

Assigning effect size 

For each causal variant, we assigned its effect size on the trait following Equation 1 from Eyre-

Walker (2010), which is reproduced below: 

𝛼𝑖 = 𝛿𝑠𝑖
𝜏(1 + 𝜀), 

where 𝛼𝑖 is the effect size of variant 𝑖, 𝛿 randomly takes value of +1 or -1 with equal probability, 

𝑠𝑖 is the selection coefficient of variant 𝑖 which is an output of SLiM simulation, and 𝜀 is the 

error term that is drawn from a normal distribution with mean 0 and a standard deviation of 0.5 

as in Eyre-Walker (2010) and Lohmueller (2014).  

Computing scaled effect size 

For each set of causal variants, we aimed to achieve the desired heritability for a particular trait. 

As such, we scaled the effect size for each variant with a scaling constant as in Lohmueller 

(2014): 

𝛼𝑖
scaled = 𝛼𝑖𝐶, 

where 𝐶 is a normalizing constant for the effect sizes so that: 

𝑉𝐴 = ∑ 2𝑝𝑖(1 − 𝑝1)(𝛼𝑖𝐶)2 ≈ ℎ𝐶
2

𝑖 variants

 

Therefore,  

𝐶 = √
ℎ𝐶

2

∑ 2𝑝𝑖(1 − 𝑝𝑖)𝛼𝑖
2

𝑖 variants
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We first computed the normalizing constant 𝐶 and then rescaled the effect size for each variant 

with 𝐶, which is the scaled effect size for each causal variant for each trait.  

Obtaining GWAS variants from causal variants 

Since GWAS does not have statistical power to detect all causal variants, we retained a portion 

of all the simulated causal variants as GWAS variants. Whether a variant is kept or rejected is 

determined by its power of being observed in a GWAS. As such, for each variant, we computed 

the probability it would reach genome-wide significance (P<5X10-8) in the UKBioBank: 

Variant 𝑖𝑡ℎpower = Φ(𝛷−1) (
𝑎

2
) + 𝜆𝑖√𝑁 + 1 − Φ(−𝛷−1) (

𝑎

2
) + 𝜆𝑖√𝑁, 

where 𝑎 is the genome-wide significance P-value threshold (5X10-8), 𝑁 is the number of 

individuals which is equal to the number of individuals in the UKBiobank for each trait, and 𝜆𝑖 is 

equal to: 

𝜆𝑖 = |𝛼scaled|√2𝑝𝑖(1 − 𝑝𝑖), 

where 𝑝𝑖 is the minor allele frequency of variant 𝑖𝑡ℎ. 

Then, we retain a subset of the causal variants as GWAS hits . To do this, we draw a random 

value uniformly between 0 and 1. If the random drawn value is less than the calculated GWAS 

power for that variant, the variant is kept. Otherwise, it is discarded. This procedure resulted in a 

set of causal variants that should recapitulate the variants observed in a GWAS. 

Rejecting or accepting a pair of 𝜏 and 𝑀 

From a set of causal variants from the previous step, we computed the number of expected 

GWAS hits and the effect size stratified by allele frequency. Next we employed a two-step 

procedure to accept or reject values of tau and M from the prior distribution. First, we computed 

how far the average effect size from the empirical data the relative difference between the 
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average ffect size between the empirical GWAS and the simulated GWAS for each allele 

frequency bin: 

∑
|𝛼𝑖

emp
− 𝛼𝑖

sim|

𝛼𝑖
emp

6

bin𝑖=1

 

We accepted a pair of 𝜏 and 𝑀 if this score is less than 0.6. In the second step, we computed the 

sum of squared differences between the empricial GWAS and the simulated GWAS using the 

number of variants: 

sum of squared difference =  ∑(number of variants𝑖
emp

− number of variants𝑖
sim)2

bins

𝑖=1

 

We then keep any pair of 𝜏 and 𝑀 in the bottom 10% of the distribution. The retained values of 𝜏 

and 𝑀 comprise the posterior distribution. 

Assessing how well 𝑴 and 𝝉 fit the empirical data 

To assess the fit, for each trait, we simulated 10,000 replicates using a value of 𝑀 and 𝜏 drawn 

from the posterior distribution. We then obtained the number of causal variants, the number of 

GWAS variants, and the effect size following the procedure as described above for the inference.  

Codes availability 

All codes can be found on Github at: https://github.com/tnphung/Genetic_Architecture 

  

https://github.com/tnphung/Genetic_Architecture
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5.6 Figures 

 

Figure 5.1. Trait-associated variants discovered from GWAS provide insights into the 

genetic architecture of complex traits. (A) Number of GWAS hits stratified by minor allele 

frequency. (B) Effect size stratified by minor allele frequency. Minor allele frequency was 

divided into six bins: <0.5%, 0.5-1%, 1-5%, 5-10%, 10-20%, and >20%. Summary statistics for 

a representative five traits (Age at menarche, BMI, Height, Systolic blood pressure, and Waist 

hip ratio) from UKBiobank GWAS were obtained from Kichaev et al. (Kichaev et al., 2017). 
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Figure 5.2. 𝝉 could account for the negative correlation between effect size and allele 

frequency. Data were simulated with 𝜏 = 0 (orange line) or with 𝜏 = 0.5 (green line). When 𝜏 =

0, there is no relationship between effect size (𝛼) and fitness effect (𝑠) (left plot). Similarly, we 

observe no relationship between effect size (𝛼) and allele frequency when 𝜏 = 0 (right plot). 

However, then 𝜏 > 0 (i.e. 𝜏 = 0.5), a positive relationship between effect size (𝛼) and fitness 

effect (𝑠) results in a negative correlation between effect size (𝛼) and allele frequency.  
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Figure 5.3. Overview of InGeAr. 
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Figure 5.4. The mutational target size determines the number of causal variants. Data were 

simulated with three values of the mutational target size, ranging from small (𝑀 = 100kb, red 

lines) to intermediate (𝑀 = 1Mb, green lines) to large (𝑀 = 10Mb, blue lines). A 𝜏 value of 0 

was used in these simulations. (A) The number of causal variants stratified by minor allele 

frequency. (B) Effect size stratified by minor allele frequency. Minor allele frequency was 

divided into six bins: <0.5%, 0.5-1%, 1-5%, 5-10%, 10-20%, and >20%. 
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Figure 5.5. Both 𝑴 and 𝝉 affect the number of GWAS hits and effect size. Data were 

simulated with three values of the mutational target size, ranging from small (𝑀 = 100kb, first 

row) to intermediate (𝑀 = 1Mb, second row) to large (𝑀 = 10Mb, third row). Three values of 𝜏 

were used, ranging from small (𝜏 = 0, orange lines) to intermediate (𝜏 = 0.2, green lines) to 

large (𝜏 = 0.6, blue lines). The first column plots the power to detect a causal variant in a 

GWAS stratified by minor allele frequency. The second column plots the number of GWAS hits 

stratified by minor allele frequency. The third column plots the effect size of GWAS hits 

stratified by minor allele frequency. Minor allele frequency was divided into six bins: <0.5%, 

0.5-1%, 1-5%, 5-10%, 10-20%, and >20%. 
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Figure 5.6. Expected GWAS hits are similar for two different pairs of (𝝉, M) but the effect 

size can distinguish them and vice versa. (A) Data were simulated with the mutational target 

size of 100kb. Two values of 𝜏 were used: 𝜏 = 0 (magenta violin plots) and 𝜏 = 0.1 (green violin 

plots). (B) Data were simulated with two values of the mutational target size: 𝑀 = 1Mb (red 

violin plots) and 𝑀 = 400kb (blue violin plots). Plots on the left column represent the number of 

expected GWAS hits stratified by minor allele frequency. Plots on the right column represent the 

effect size of GWAS hits stratified by minor allele frequency. For each pair of (𝜏, 𝑀), 500 

simulations were performed. The number of expected GWAS hits and effect size of expected 

GWAS hits for each simulation are plotted as violin plots to show the distribution.  
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Figure 5.7. Prior distribution of 𝑴 and 𝝉. The mutational target size (𝑀) was drawn from a 

uniform distribution that ranges from 0 to 400Mb in increment of 100kb (left plot). 𝜏 was drawn 

from a uniform distribution that ranges from 0 to 1 (right plot).  
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Figure 5.8. Posterior distribution of 𝑴, 𝝉, and their joint distribution. (A) Posterior 

distribution of the mutational target size (𝑀). (B) Posterior distribution of the coupling parameter 

between effect size and selection (𝜏). Red lines represent the median value of the posterior 

distribution. Blue lines represent the 95% confidence interval. (C) The joint posterior distribution 

of 𝑀 and 𝜏.  
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Figure 5.9. Assess model fit for height. Data were simulated using a value of 𝑀 and a value of 

𝜏 that are drawn from posterior distributions. 10,000 simulations were performed and plotted as 

violin plots. Left plot: The number of GWAS hits stratified by minor allele frequency. Right 

plot: The effect size of GWAS hits stratified by minor allele frequency. Minor allele frequency 

was divided into six bins: <0.5%, 0.5-1%, 1-5%, 5-10%, 10-20%, and >20%. Red points 

represent values from the empirical data for height. Note the excellent fit between the simulated 

data and empirical data.  
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Figure 5.10. Properties of causal variants, GWAS hits, and remaining undiscovered causal 

variants. (A) Number of causal variants (orange), GWAS hits (green), and remaining 

undiscovered causal variants (blue) stratified by minor allele frequency. Minor allele frequency 

was divided into six bins: <0.5%, 0.5-1%, 1-5%, 5-10%, 10-20%, and >20%. (B) Proportion of 

causal variants (orange), GWAS hits (green), and remaining undiscovered causal variants (blue) 

stratified by effect size. Effect size was divided into three bins: small (𝛼 ≤ 0.001), medium 

(0.001 < 𝛼 ≤ 0.01), and large (𝛼 > 0.01). (C) Proportion of causal variants (orange), GWAS 

hits (green), and remaining undiscovered causal variants (blue) stratified by strength of selection. 

Selection strength was divided into three bins: weak (|𝑠| ≤ 10−4), medium (10−4 < |𝑠| ≤

10−2), and strong (|𝑠| > 10−2). (D) Proportion of additive variance explained by causal variants 

(orange), GWAS hits (green), and remaining undiscovered causal variants (blue) stratified by 

strength of selection. Selection strength was divided into three bins: weak (|𝑠| ≤ 10−4), medium 

(10−4 < |𝑠| ≤ 10−2), and strong (|𝑠| > 10−2). 
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Figure 5.11. Distribution of effect sizes for height. Effect size for GWAS of height from 

UKBiobank was obtained from Kichaev et al. (Kichaev et al., 2017). 
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Figure 5.12. Posterior distribution of 𝑴, 𝝉, and 𝝆 when including pleiotropy in the 

inference. (A) Posterior distribution of the mutational target size (𝑀). (B) Posterior distribution 

of the coupling parameter between effect size and selection (𝜏). (C) Posterior distribution of the 

parameter that captures pleiotropy (𝜌). Red lines represent the median value of the posterior 

distribution. Blue lines represent the 95% confidence interval. 
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Figure 5.13. 𝑴 and 𝝉 for other UKBiobank traits. Summary statistics from GWAS for these 

traits were obtained from Kichaev et al. (Kichaev et al., 2017).  
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Figure 5.14. Assess model fit for balding type 1. Data were simulated using a value of 𝑀 and a 

value of 𝜏 that are drawn from posterior distributions. 10,000 simulations were performed and 

plotted as violin plots. Left plot: The number of GWAS hits stratified by minor allele frequency. 

Right plot: The effect size of GWAS hits stratified by minor allele frequency. Minor allele 

frequency was divided into six bins: <0.5%, 0.5-1%, 1-5%, 5-10%, 10-20%, and >20%. Red 

points represent values from the empirical data for height. Note that here the simulated data 

underestimated the number of GWAS hits for variants segregating at intermediate allele 

frequency. In addition, the simulated data overestimated the effect size for common variants.   
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Figure 5.15. Comparison of 𝝉 between InGeAr and Schoech et al. Schoech et al.’s 𝜏 was 

obtained from Supplementary Table 6 (Schoech et al., 2017). InGeAr’s 𝜏 is from present study. 

Note that while the inferred values differ between these two studies, the confidence interval 

overlapped.  
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5.7 Tables 

Table 5.1. 𝑴 and 𝝉 when considering variants with large effect size. 

 𝑀 𝜏 

All variants 

95Mb 

(54Mb – 131Mb) 

0.268 

(0.220 – 0.312) 

Only variants with effect size 

≥ 0.02 

45Mb 

(21Mb – 72Mb) 

0.253 

(0.187 – 0.313) 

Only variants with effect size 

≥ 0.05 

15Mb 

(7Mb – 40Mb) 

0.169 

(0.111 – 0.259) 
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Table 5.2. 𝑴 and 𝝉 when incorporating pleiotropy. 

 𝑀 𝜏 𝜌 

All variants 

77Mb 

(51Mb – 102Mb) 

0.259 

(0.221 – 0.292) 

0.982 

(0.920 – 0.999) 

Only variants with 

effect size ≥ 0.02 

40Mb 

(10Mb – 94Mb) 

0.232 

(0.114 – 0.343) 

0.890 

(0.482 – 0.993) 

Only variants with 

effect size ≥ 0.05 

24Mb 

(5Mb – 118Mb) 

0.245 

(0.081 – 0.539) 

0.710 

(0.104 – 0.966) 
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Table 5.3. Summary of the posterior distribution of 𝑀 and 𝜏 for other traits. 

Traits 

𝑀 𝜏 

Median 

95% credible 

interval 

Median 

95% credible 

interval 

Height 95Mb 54Mb – 130Mb 0.269 0.220 – 0.312 

Heel T score 28Mb 16Mb – 39Mb 0.250 0.196 – 0.288 

Eosinophil count 17Mb 9Mb – 25Mb 0.263 0.196 – 0.306 

Red blood cell 

count 

25Mb 18Mb – 33Mb 0.247 0.211 – 0.280 

Body mass index 47Mb 29Mb – 64Mb 0.247 0.192 – 0.282 

Mean corpular 

hemoglobin 

12Mb 7Mb – 17Mb 0.236 0.181 – 0.288 

Age at menarche 3Mb 1Mb – 4Mb 0.214 0.112 – 0.324 

FEV/FVC ratio 28Mb 20Mb – 39Mb 0.261 0.230 – 0.296 

Systolic blood 

pressure 

24Mb 15Mb – 36Mb 0.242 0.189 – 0.280 
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Waist hip ratio 29Mb 22Mb – 41Mb 0.301 0.266 – 0.339 
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