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Abstract 

 

Generating day-of-operation probabilistic capacity scenarios from weather forecasts 

by 

 

Gurkaran Singh Buxi 

 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

 

University of California, Berkeley 

 

Professor Mark Hansen, Chair 

 

 

Airport arrival capacity, referred to here as the airport acceptance rate (AAR), is strongly 

influenced by the weather in the vicinity of the airport and thus AAR prediction necessitates an 

airport-specific weather forecast. Weather forecasts, however, are seldom accurate in predicting 

the actual weather conditions. Strategic decisions, for example arrival rates in a ground delay 

program (GDP), must be made ahead of time, usually more than two hours, when there is an 

uncertainty about the future capacity. This research uses probabilistic capacity scenarios to 

represent the uncertainty in the future arrival capacity. A probabilistic capacity scenario is 

defined as a time series of AAR values with which a certain probability of realization is 

associated. A set of probabilistic capacity scenarios may be used to represent the uncertainty in 

arrival capacity at an airport over the course of the day.  

 

There has been considerable research in developing GDP models that determine efficient ground 

delay decisions and require probabilistic capacity scenarios as inputs. It is assumed that the 

capacity scenarios can be developed from weather forecasts or can be obtained from the 

expertise of the air traffic managers. There is, however, considerably less literature on the 

development of specific day-of-operation probabilistic capacity scenarios from weather 

forecasts. This limits the use of these GDP models in real- world application. This thesis fills that 

gap and presents methodologies to generate probabilistic capacity scenarios from weather 

forecasts.  

 

In this thesis we develop methodologies for generating probabilistic capacity scenarios using a 

widely available airport-specific weather forecast called the Terminal Aerodrome Forecast 

(TAF). These methodologies require the issued TAF forecast and the realized capacity for days 

in the past. We apply and assess the performance of these methodologies on four US airports: 

San Francisco International Airport, Boston Logan International Airport, Chicago O’Hare 

International Airport and Los Angeles International Airports.  Though we have focused on these 

airports as case studies, the TAF-based scenario generation techniques can be applied to any 

airport. 

 

In the first methodology, TAF Clustering, the scenarios are representative capacity profiles for 

days having similar TAFs. Groups of similar TAFs are found using K-means clustering and the 
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number is verified using Silhouette value. In the second methodology, Dynamic Time Warping 

(DTW) Scenarios, the scenarios are the actual realized capacity profiles for days that have 

similar TAFs. The similarity between TAFs is determined using a statistical technique for 

comparing multidimensional time series called DTW.  

 

DTW Scenarios uses three airport specific input parameters. These parameters control the 

numbers and the probabilities of the scenarios. We determine the values of the parameters 

through optimization to maximize the performance of the scenarios through minimizing average 

delay costs. The optimal values are determined through a specialized algorithm designed for 

situations where evaluating the objective function is computationally expensive. 

 

For San Francisco International Airport we also use another forecast: the San Francisco Marine 

Initiative forecast (STRATUS) to develop the scenarios. In this methodology called, Fog burn-

off clustering, the scenarios are representative capacity profiles for days that have the fog burn-

off time in the same quarter hour.  

 

We measure the efficacy of the various scenario generation methodologies in a real world setting 

based on 45 historic days for each of the four case-study airports. For each day, the generated 

scenarios are provided as inputs to a static stochastic ground delay model (SSGDM) that 

determines the series of planned arrival rates that minimize the sum of ground delay costs and 

expected air delay costs, assuming that the plan is not adjusted to evolving information. The 

ground delay is determined directly from the SSGDM whereas the realized air delay is 

determined from a queuing diagram based on the planned arrival rate and the realized arrival 

capacity. The realized delay costs are averaged over 45 days for each airport, and is the metric 

used to compare the different scenario generation methodologies. Employing this approach, we 

compare the different methods for capacity scenario generation against each other and against 

two other reference cases. Under the first reference case, Naïve Clustering, the scenarios are 

developed from historical capacity data without the use of the weather forecast. Groups of 

similar arrival profiles are determined though K-means clustering. In the second reference case, 

Perfect Information, we assume that the GDP is planned based on perfect information about the 

future arrival capacity.  

 

Our results show that, on average, scenarios generated using the TAF-based DTW method 

results in the lowest delay cost amongst all scenario based methodologies. It is shown that 

capacity scenarios generated using day-of-operation weather forecasts can reduce the cost of 

delays by 5%-30% compared to scenarios that do not make use of weather forecast. The benefit 

of the TAF based approach is more pronounced on days that have a greater capacity-demand 

imbalance when compared to Naïve Clustering.  
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Chapter 1 Impact of terminal weather on airport capacity 

 

1.1 Introduction 

 

Airline travel demand in the United States has significantly increased over the last 15 years. In 

2010 the travel demand was roughly 30 percent higher than it was in 1996. Also, the past 15 

years have witnessed two major shocks, the 9/11 attacks in 2001 and the financial recession in 

2008, that temporarily abated the increase in demand. Fig 1.1 shows that the trend and the total 

passenger travel demand indicated by revenue passenger enplanements. The data shows that the 

demand recovered from the two shocks and is increasing again. The years 1996-2000, 2002-

2007, and more recently 2009-2010 show an increase in the revenue passenger enplanements.  

The airlines adjust their operations based on the travel demand and therefore, the number of 

operations in 2010 was 20% higher from 1996. Figure 1.2 shows the trend and the total number 

of aircraft revenue departures from 1996-2010. The total number of departures trend mimics the 

passenger demand trend for the same period. This indicates that the airline operations will 

probably increase in the future. 

Though the passenger demand and airline operations have increased, the National Aviation 

System’s (NAS) capacity has not kept pace. In 2007, the delays in the NAS reached their peak 

leading to substantial delays and cancellations but since then delays have temporary abated. The 

monetary impact of these delays on the economy, the airlines and to the passengers is estimated 

to be $32 billion in 2007 [1]. In 2007, delays due to weather constituted about 65% of the total 

delays and therefore are significant contributors to the total delay cost (Figure 1.3). 
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Figure 1.1 Revenue passenger enplanements versus Years 

 

Figure 1.2 Revenue departures versus Years 
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Figure 1.3 Causes of National Aviation System Delays (Jan 2007-Dec 2007) Source: BTS 

The delays in the NAS can be alleviated by several potential methods while still serving existing 

and future demand. Firstly, new infrastructure that provides good weather capacity even in 

adverse weather can be introduced (for example by adding a runway to an existing terminal or 

increasing separation between parallel runways). This may be difficult or impossible to 

implement in space-constrained infrastructure like LaGuardia Airport (LGA). Moreover, 

modifications to the infrastructure may require high capital costs. Further the realized benefits of 

the capacity increase maybe different than the planned benefit, as the airlines and passengers 

would adjust their operations and travel behavior respectively. This is also referred as the 

feedback effects of induced demand. The benefit of expanding the aviation infrastructure has 

been investigated in greater detail in other research [2]. 

Secondly, the service provider (FAA) can mandate or encourage the operators (airlines) to 

upgrade the existing navigation systems and equipment to allow more precise and closely spaced 

aircraft operations.  Precise GPS-based navigation, known as Required Navigation Performance 

(RNP), will enable aircraft to fly their preferred routes with high precision. Such an upgrade, 

combined with necessary procedures, would enable aircraft to fly with reduced separation 

standards thereby increasing the flow at metered fixes in the NAS (a fix could be merge point of 

several air lanes, a runway, etc.). 

Finally, better weather forecasting can enable air traffic managers to more accurately predict 

airport and airspace capacities and make better decisions about when, where, and how to meter 

traffic in order to make best use of available capacity. One aspect of this is to explicitly 

recognize and characterize weather-related uncertainty in future capacity and employ 

probabilistic decision methods that optimize the expected performance of the system.  

This research focuses on the last potential solution, to improve the strategic decision making of 

the service provider’s by including the uncertainty in future weather conditions.  
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Weather conditions influence the capacity of NAS resources, such as airports and sectors. 

Strategic decisions rely on weather forecasts to predict the future weather conditions, and 

therefore the capacity of NAS resources, for aligning the traffic with predicted capacity to reduce 

the cost of delays in the NAS. Uncertainty about future weather and its capacity impacts results 

in uncertainty about the future capacity of the NAS resources. In the present system, this 

uncertainty is managed through air traffic manager judgment as well as input, provided in regular 

teleconferences, from flight operators. Air traffic managers make decisions based on their 

experience, weather forecasts, current weather, and projections of  future demand. The current 

strategic decisions tend to be conservative and therefore increase costs in the NAS. There is no 

formal mechanism which converts the weather forecast and its associated uncertainty into 

metered rates.  

In this research we will focus on managing capacity uncertainty in the airport terminal 

environment.  In particular, we will develop methods for using weather forecasts to determine an 

optimal arrival rate in a manner that takes into account a terminal weather forecast for the day-

of-operation. We characterize the evolution of capacity over the day and its uncertainty based on 

the forecast. We propose several methodologies for doing this. All of them capture uncertainty in 

the arrival capacity, referred here as the airport acceptance rate (AAR), through probabilistic 

capacity scenarios. A probabilistic capacity scenario is defined as a time series of AAR values 

with which a certain probability of realization is associated. A set of probabilistic capacity 

scenarios may be used to represent the uncertainty in arrival capacity at an airport over the 

course of the day.  The scenarios are generated for four US airports using the weather forecast 

and the realized capacity profiles from May-September for the years 2004-2006. We develop a 

platform to assess the performance of the scenarios in a real world setting based on several days 

in the past. For each of these days, we will determine the realized cost of delays that is the sum 

of ground delay cost and realized air delay cost. For each airport, our metric to compare the 

different scenario generation methodologies the average of the realized delay costs over several 

days.  

 

The rest of the thesis proceeds as follows. In Chapter 2 we provide the literature review. We 

discuss the influence of weather on capacity and the different Air Traffic Flow Management 

(ATFM) models. These models determine optimal strategic decisions to minimize the expected 

cost of delay. In Chapter 3, we discuss the terminal weather forecasts used in this research: San 

Francisco Marine Stratus forecast (STRATUS) and the Terminal Aerodrome Forecast (TAF). 

STRATUS is available only for SFO while the TAF is a forecast issued for all major airports. 

We present our methodology, called fog burn-off time clustering, to determine scenarios for SFO 

using the STRATUS. We then present our first methodology using the TAF called TAF 

Clustering for generating scenarios. We also present two reference cases: Naïve Clustering and 

Perfect Information to quantify the benefit of using weather forecasts. We also present our 

platform for comparing different scenario generation techniques. In Chapter 4, we introduce 

another methodology requiring the TAF called Dynamic Time Warping (DTW) Scenarios. Three 

parameters are introduced which enhance the performance of DTW Scenarios. We determine the 

optimal values of these parameters though an optimization framework. In Chapter 5 we present 

the results, offer conclusions and directions for future research.  
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Chapter 2 Literature review  
 

2.1 Introduction 

 

This chapter presents a literature review pertinent to this thesis. The literature review is divided 

into two parts. The first part outlines the effect of weather on capacity and the second part 

discusses the Air Traffic Flow Management (ATFM) models, the uncertainty in capacity inputs 

and the Static Stochastic Ground Delay Model (SSGDM).  

In the first part we show qualitatively the impact of weather on the NAS. We begin the second 

part by broadly classifying ATFM models if they account for uncertainty in the future state of the 

NAS resources and also on the number of airports included in the model. This is followed by a 

literature review on the modeling and prediction of arrival capacity, a required input in a number 

of the ATFM models. This research extensively utilizes the Static Stochastic Ground Delay 

Model and a section is devoted to discussing that model in greater detail. This chapter concludes 

with a discussion on the contribution of this research to the literature.   

 

2.2 Effect of weather on aviation 

 

Adverse weather affects the capacity, safety and efficiency of the National Aviation System 

(NAS). This section qualitatively explains the impact of weather on the NAS.  

2.2.1 Thunderstorms and convective weather 

 

Thunderstorms and convective weather (T&CW) cause almost half of the delays in the summer 

months in the United States [3], [4]. The high T&CW intensity regions pose several safety 

hazards to the aircraft in the vicinity and also decrease the efficiency in the NAS.  

The hazards include high turbulence, intense up and downdrafts, lightening, hail and wind shear 

[3]. Damage to the aircraft from lightening and hail may render the aircraft unfit for operations 

and may increase the maintenance cost.  Since the intensity and the location of the T&CW 

change with time, they make regions of the airspace, called sectors, having high storm intensity 

unflyable. This decreases the available flyable airspace. Aircraft scheduled to fly through these 

high intensity T&CW activity sectors have to deviate from their nominal routes which increases 

their travel time. The aircraft also have to carry additional fuel to account for the increase in the 

route.  The increase in cost, increased passenger time and additional travel time decrease the 

efficiency of the NAS.  

In times of severe T&CW, when the flyable airspace decreases it results in a capacity-demand 

imbalance. Aircraft originally scheduled to fly through the sectors having T&CW activity are 

diverted to fly through the unaffected, weather free sectors. These diversions increase the 
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demand of traffic through the weather free sectors as aircraft compete for the limited flyable 

airspace.  

The capacity of a weather free sector is predominantly determined by the work load of the 

controller. The controller is responsible for managing and ensuring safe passage of aircraft 

though the sector. When more aircraft are diverted to fly through a sector it increases the work 

load of the controller. The diversion of aircraft and the increased work load of the controller 

constitute a capacity-demand imbalance. To mitigate the effects of this capacity-demand 

imbalance, the FAA initiates the Airspace Flow Program (AFP). The AFP is a type of an Air 

Traffic Flow Management (ATFM) program and it aligns the projected demand with the 

available capacity through the sector. Through the AFP, the FAA assigns ―slots‖ or times when a 

particular aircraft should enter the capacitated sector. The rate at which the aircraft enter the 

capacitated sector is metered to ensure a smooth transition though the sector airspace. A 

particular aircraft might be delayed either at its origin airport or at some upstream holding 

pattern to ensure that it arrives at the sector at it assigned slot time.  

2.2.2 Low visibility and low ceilings 

 

Ceiling and visibility (C&V) are a major concern for air traffic decision makers since C&V 

play an essential role in controlling takeoffs, approaches, and landings. Low C&V conditions 

produce negative impacts on aviation and contribute to over 20% of all weather-related accidents 

in the U.S. civil aviation sector as shown in Figure 2.1 [5]. Ceiling and visibility directly affect 

the safety and efficiency of terminal operations. C&V conditions in the terminal area influence 

decisions on the opening and closing of individual runways [6]. The same value of ceiling or 

visibility may affect different airports differently for example,  a particular value of ceiling and 

visibility at St. Louis Lambert Field may reduce the arrival rates, while the same value at Dallas-

Fort Worth or Boston's Logan Airport may have no impact at all [7]. The effect of C&V 

conditions on an airport’s runway is primarily determined by the runway geometry and on the 

landing instruments at the runway. 
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Figure 2.1 National Transportation Safety Board (NTSB) related accidents by weather conditions (1994-2003) 

Though the most critical impact of low C&V conditions is on the general aviation (GA) they also 

affect the commercial air traffic. Poor C&V conditions accounted for 24% of all GA accidents 

between 1989 and 1997. It is reported that in poor C&V conditions, GA pilots often lost control 

of the aircraft or collide with the terrain (controlled flight into terrain) as they lacked the proper 

certification or the aircraft did not have the necessary equipment required in such conditions [8].  

C&V conditions, the topography of the airport and instrumentation of the runway affect the 

runway configuration and therefore influence the runway capacity. Poor C&V conditions reduce 

the arrival and departure rates for major US airports causing an increase in delays which affects 

the commercial air traffic. 

The C&V conditions at the airport influence the weather category the airport operates in for the 

corresponding time period. The operating weather categories for any airport can broadly be 

classified as Instrument Flight Rules (IFR) and Visual Flight Rules (VFR). The IFR category 

typically corresponds to a low C&V values while the VFR category corresponds to good weather 

conditions implying a higher C&V values. When an airport operates in IFR category, the arriving 

aircraft to that airport are required to operate in instrument metrological conditions (IMC). The 

pilots navigate the aircraft using the instruments aboard the aircraft while maintaining separation 

as instructed from the air traffic controllers.  In the VFR category, pilots can either opt for visual 

approaches (Visual metrological condition, VMC) i.e. navigate the aircraft by maintaining visual 

separation from the aircraft proceeding them or request to operate in IMC. When a trailing 

aircrafts pilot opts for visual approaches, the trailing aircraft’s pilot takes responsibility to 

maintain adequate separation to mitigate the effects of the wake vortex from the proceeding 

aircraft. When pilots opt for visual approaches, it translates into higher throughput at the runway 

[9]. 

Furthermore when pilots opt for VMC approaches, FAA allows for parallel landings on pairs of 

parallel runways where the runway centerlines are separated by 700 feet. This is best illustrated 

in the case of San Francisco International Airport (SFO) which has two pairs of parallel runways 
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(28R-28L and 19R-19L)  separated by 750feet.  Under VMC approaches, the arrival rate is 15 

arrivals per quarter hour and both the runways (28R-28L) are available. On the contrary, in poor 

C&V conditions, implying IMC conditions, only one runway (28R) is available for landing and 

the rate is reduced to 8 arrivals per quarter hour.   

The phenomenon of the horizontal visibility reducing below 0.54 Nautical mile (≈1 KM) is 

referred as fog, in the terminal area. Thus, fog is defined as very low visibility in the terminal 

area. A ten year study of aviation accidents by the US National Transportation Safety Board 

(NTSB) indicated that 29% of all accidents in poor C&V conditions were caused by fog 

conditions [5]. Airports that have parallel runways, the occurrence of fog can reduce the arrival 

capacity by closing one of the parallel runways. Considerable research has been done to predict 

the time the fog would dissipate from the airport and therefore predicting the time the arrival 

capacity would increase.  

When the arrival capacity an airport reduces due to poor C&V conditions, the FAA tries to align 

the arrival demand with the available capacity using some air traffic management initiatives. 

These initiatives could either be increasing miles in trail restriction between pairs of arriving 

aircraft or initializing a Ground Delay Program (GDP) at the affected airport. By increasing 

miles in trail restriction, the controllers increase the separation between the arriving aircraft and 

thereby reduce the arrival rate an airport. In a GDP, the flights bound for the affected airport are 

delayed on the ground at the origin airport. If it is known that an aircraft would incur air delay 

over the destination airport, then it is preferable to have that aircraft wait on ground at its origin 

to absorb the air delay. This translates air delays to the less expensive ground delays.  

Figure 2.2 shows the C&V conditions and the corresponding weather operating category for SFO 

for November 2010, December 2010 and January 2011 [10]. It can be noted that SFO operates in 

the VFR category when the ceiling and visibility is greater than 2500 feet and 8 nautical miles 

respectively. While, anything less than the above values is classified as IFR. It should also be 

mentioned, for these dates SFO was operating in IFR category for 24 percent of time and in VFR 

category for 76 percent of time. Figure 2.3 shows the distribution of the arrival capacity or 

Airport Arrival Rate (AAR) for the two categories.  When the airport operates in IFR category 

the arrival capacity is low whereas when the airport operates in the VFR category, the capacity is 

predominantly higher. 
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Figure 2.2 Ceiling and Visibility conditions for IMC and VMC at SFO 

 

Figure 2.3 Capacity distribution under IFR and VFR for SFO 

 

2.2.3 Wind speed and direction 

 

Figure 2.1 show that winds caused a majority of accidents in 1994-2003. The prevailing winds in 

a particular period are an important factor as they determine the runway configuration and also 

determine the aircraft type that can use a particular runway.  FAA has specified the maximum 

cross wind and tail wind velocities for different classes of aircraft using a runway. For example 

at San Francisco International Airport, under the most common weather conditions the arrivals 
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are preferred to land on the Runway 28 pair and departures are preferred on Runways 1 pair. If 

the wind direction is from the west and has a high velocity, it hinders departures on the Runway 

1 pair and then the departures and arrivals both occur on Runway 28 pair (to adhere to the 

maximum crosswind limitation). When winds are from the south or east, as they often are during 

winter storms, the arrivals land on the Runway 19 pair and departures occur on the Runway 10 

pair. If the winds from the east are too strong to allow arrivals on the Runway 19 pair, due to 

aircraft crosswind limitations, then both arrivals and departures have to use the Runway 10 pair.  

When winds from the north are too strong the aircraft have to land on the Runway 1 pair, and 

depart on either Runway 28 or 10 pair or at times the departures are mixed with the arrivals on 

the Runway 1 pair [11]. The wind speed and direction for the different runway configuration for 

November 2010, December 2010 and January 2011 for SFO are shown in Figure 2.4, 2.5 and 

2.6. Each point on the chart shows the wind speed in East and North co-ordinates. The ray 

originating from any point to the center (0,0) shows the direction in which the wind was blowing. 

 

Figure 2.4 Wind speed and direction for 28L, 28R|1L, 1R for SFO 
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Figure 2.5 Wind speed and direction for 28L, 28R|28L, 28R for SFO 

 

Figure 2.6 Wind speed and direction for 19L, 19R|10L, 10R for SFO 

Figure 2.7 shows the airport arrival rate (AAR) per quarter hour for the different runway 

configurations. It can be seen that only the preferred configuration 28L, 28R|1L, 1R is able to 

accommodate a high arrival rate of 15 aircraft arrivals per quarter hour. While configurations 

19L, 19R|10L, 10R and 28L, 28R| 28L, 28R accommodate the low and medium arrival rates 

respectively corresponding to 8 arrivals per quarter hour and 11 arrivals per quarter hour 

respectively.  
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Figure 2.7 Frequency of arrival capacity for different runway configurations 

2.2.4 Precipitation and icing 

 

As shown by Figure 2.1 precipitation and icing caused over 11% of all accidents from 1994-

2003. Precipitation and icing effect aviation in three ways: Firstly, they reduce the runway 

capacity as they are often accompanied with poor C&V. Secondly, they can damage the aircraft 

engine and air frame. Thirdly, they decrease the friction between the tires and ground for takeoff 

and landing.  

Light precipitation generally has little or no affect on aviation operations but high precipitation is 

often associated with wind shear and turbulence. This may put stress on the airframe and the 

turbulence may cause discomfort to passengers.  

Icing can be categorized as in-flight icing or ground icing. In-flight icing is dangerous to the 

aircraft and also reduces the efficiency of the NAS. Ice on the aircraft surface increases the 

weight of the aircraft and provides erroneous instrument reading. Ice on the engine though may 

cause engine failure and a loss of power. The 1994 crash of an American Eagle ATR-72, 

occurred because the aircraft encountered sudden icing conditions causing the pilot to lose 

control. Even a very small amount of ice on the wings increases the drag causing the aircraft to 

consume more fuel. Aircraft pilots avoid flying through regions which have icing conditions this 

increases their route length thereby increasing the onboard fuel requirement. This also delays the 

arrival of the aircraft at its destination and may cause a delay ripple effect decreasing the 

efficiency of the NAS.  

Ground icing on the other hand, reduces the runway operations and the runway staff constantly 

has to work to prevent ice and snow buildup. In excessive snow and ice conditions the airport 

does not accept any arrivals and the aircraft attempting to land have to be diverted to other 

airports. This also causes delays and increases costs for the NAS users. Excessive snow and ice 

conditions may also render some gates and taxiways unusable. In December 2010, London 
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Heathrow Airport closed for almost two days due to excessive snow and ice conditions causing 

excessive flight delays, schedule disruptions and passenger discomfort.  

The above discussion qualitatively shows that thunderstorm and convective weather, low ceiling 

and visibility, wind, precipitation and icing affect capacity. Thunderstorms and convective 

weather affect the en-route airspace by decreasing the sector capacity whereas the other weather 

conditions influence the terminal capacity. In this research we focus on the terminal and ignore 

the en-route, and therefore focus on the weather factors influencing terminal capacity. 

2.3 Air Traffic Flow Management (ATFM) models 

 

As mentioned in Section 2.2 adverse weather can have major impacts on aviation operations.  

When present in the vicinity of an airport, it decreases the operational capacity at that airport. 

Under such situations, if the scheduled demand exceeds the reduced capacity, air traffic flow 

specialists manage the air traffic demand by metering traffic into the affected airport. This 

metering of air traffic is achieved by air traffic flow management (ATFM) initiatives. ATFM 

initiatives align the air traffic demand with capacity, ensuring the available capacity is used 

efficiently and delays are absorbed in a safe, cost-effective manner. ATFM initiatives include 

ground holding, ground delays, rerouting aircraft to avoid areas of adverse weather, and 

increasing the miles-in-trail between pairs of aircraft. 

ATFM initiatives can be divided into two categories: tactical and strategic. The tactical and 

strategic ATFM initiatives vary in the time between issuance and implementation. Tactical 

ATFM initiatives are implemented with a smaller lead time and therefore are issued when the 

future state of NAS resources (that includes the en-route sector capacity, travel times between 

sectors, airport capacity) can be predicted. These are implemented in order of seconds to minutes 

after they are issued. Examples of tactical ATFM initiatives include ground stops and miles-in-

trail restrictions. During a ground stop, all the departing aircraft from an airport are ground-held 

for the duration of the stop and thus their departure is temporarily delayed. The miles-in-trail 

restrictions meter the arrival of aircraft at a specific en-route point, such as an entrance to a 

sector or en-route waypoints.  

Conversely, strategic ATFM initiatives are issued several hours in advance when the future state 

of the NAS resources is difficult to predict. Strategic ATFM initiatives are required to ensure that 

the air traffic demand matches the future capacity, and to mitigate potential congestion and 

delays. When foreseen delays are unavoidable, strategic initiatives transfer the delays from one 

NAS resource to another, for example from the air to the airport surface, to reduce the associated 

delay costs. These initiatives work at a more aggregate level. The initiatives are usually issued 

between two to twelve hours before their implementation [12]. Examples of strategic ATFM 

initiatives include Ground Delay Programs (GDPs) and air space flow programs (AFPs).In a 

GDP, the aircraft bound for a particular destination airport that is experiencing a capacity-

demand imbalance are delayed at the origin airports and given new, delayed departure times. 

Whereas, an AFP is issued when adverse weather constrains a region of the en-route airspace. 

Flights scheduled to fly through this airspace are given expected departure clearance times 

(EDCT) thereby metering the traffic through this airspace. Strategic initiatives are particularly 
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important for the airlines as they allow them to plan their operations further in advance (for 

example increase fuel intake in case of planned longer reroutes). 

ATFM models found in the literature are optimization models seek to minimize total user cost 

while adhering to capacity constraints of NAS resources. Decision variables may include a 

combination of ground delays, link travel times, routings, and air holding. Depending on the 

ATFM model, it may require deterministic or probabilistic information about the future 

capacities of NAS resources as inputs. Deterministic ATFM models assume deterministic values 

for future capacities. These models thus assume that the future state of the NAS resources can be 

known with certainty. Deterministic ATFM models minimize the sum of ground delay and air 

delay costs. ATFM models that capture uncertainty in future capacities of NAS resources are 

known as stochastic ATFM models (SATFM). These models represent future capacities 

probabilistically.  These models minimize the sum of expected ground delay costs and air delay 

costs.  

ATFM models can also be divided based whether they consider individual airports or multi-

airport networks. The single airport, ATFM models determine efficient ground delay decisions in 

a GDP for a single airport. The multi-airport ATFM models optimize ground delays for a 

network of airports, taking into account the propagation of network delay in downstream 

segments for connected flights. The single airport and multi-airport ATFM models may also 

consider the en-route portion of the flight. In this case, the models also require the capacity of 

en-route sectors and travel time between sectors. Decision variables in such models include 

airborne as well as ground delay, as well as routings. Table 2.1 classifies ATFM models based 

on whether they are deterministic or stochastic and whether they consider single airports or 

multiple airport networks. Single airport and multi-airport ATFM models that include the en-

route information are denoted in bold italics. 

Table 2.1 Classifications of ATFM models 

 Single airport Multi airport 

Deterministic ATFM 

models 
[12] 

[13]; [14]; [15]; [16]; 

[17] 

Stochastic ATFM 

models (SATFM) 

[18]; [19]; [20]; [21]; 

[22]; [23]; [24]; [25]; 

[26] 

[27]; [28] 

 

SATFM models assume that the arrival capacity of the destination airport can be modeled as a 

random variable. These models can be static or dynamic, aggregate or disaggregate, and 

scenario-based or Markovian models. We explain the distinctions below. Table 2.2 classifies the 

more notable single airport SATFM models based on them. 

Static SATFM models assume decisions are made at a single point in time and cannot be revised. 

Conversely, in dynamic models allow for decision making over time as more information 

becomes available, and in some cases for decisions to be revised. Dynamic models are more 
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compatible with real-world ATFM decision making in the face of unfolding information, but also 

more complex. Static models can be adapted to dynamic environments by re-running the models 

at regular intervals. 

Disaggregate SATFM models find optimal delays for individual aircraft. These models implicitly 

assume that a centralized authority determines and controls the delays of individual aircraft. 

They are frequently based on 0-1 binary integer program making them intractable for a large 

number of aircraft. Though the disaggregate models that determine efficient decisions for a 

single airport are typically tractable.  

Recent approaches have shifted aggregate flow control. The flow-based models have several 

advantages over disaggregate ones. First, the flow-based modeling approach is consistent with 

the Collaborative Decision-Making (CDM) environment. Under CDM, arrival slots are 

aggregated and allocated to airlines rather than individual aircraft. This allows the airlines to 

exercise more control and make decisions based on their internal business objectives. These 

decisions may include flight cancelation or substituting more important flights for less important 

ones. Second, the flow-based models are compatible with the current in place ration-by-schedule 

(RBS) principle. In RBS, the arrival slots created by the available arrival capacity at the 

destination airport are distributed to flights in order of their original, scheduled arrival times at 

the destination airport. Lastly, from a computation standpoint, the flow-based models involve 

fewer variables leading to a faster computation time.  

Table 2.2 Dimensions of single destination airport, SATFM models 

Revision in decision making Level of aggregation 
Method of modeling the 

uncertainty in capacity 

Static Dynamic Individual Flow 

Scenario-

based models 

Markov 

process 

[21]; [23] 

[19]; [20]; 

[22]; [24]; 

[25]; [26] 

[19]; [20]; 

[21]; [22]; 

[24]; [25] 

[23]; [26] 

[19]; [20]; 

[21]; [22]; 

[23]; [24]; 

[26] 

[25] 

 

Finally, we differentiate SATFM models based on their representation of capacity uncertainty. 

The preponderance of models employs a scenario-based approach. In this case, capacity 

uncertainty is represented in the form of capacity scenarios and their associated probabilities. Far 

less common are models that represent the evolution of capacity as a Markov process. 

Since it is often difficult to accurately predict the AAR for any significant time into the future, 

most researchers have formulated GDP models that require a set of probabilistic capacity 

scenarios to represent capacity uncertainty. A capacity scenario is an arrival capacity profile, 

which is a time series of airport capacities, typically represented as airport acceptance rates, or 

AARs. The set of probabilistic capacity scenarios capture the uncertainty in the arrival capacity 

profile. Each is assigned a particular probability of occurrence. In practice, a scenario will rarely 
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match the realized capacity profile precisely, but a close resemblance between the realized 

capacity profile and one or more of the scenarios can be expected. When several scenarios are 

similar though a certain time period, and then diverge, it is possible to combine them to form a 

scenario tree, whose branches correspond to the time points when the scenarios become distinct. 

The branches correspond to distinct individual scenarios or sets of scenarios.  The points in time 

at which decisions need to be made are called nodes. Scenario trees are can capture the unfolding 

of information about future capacity information over time, and thus support dynamic decision 

making. 

Scenario-based models have been studied in many domains. The literature on scenario 

generation has developed primarily to support application of stochastic programs in financial 

portfolio optimization. In portfolio optimization the set of scenarios capture the uncertainty in the 

random variables that are the returns from various assets including cash, bonds and stocks.  

One technique to generate scenarios used in this domain is ―moment matching‖ [29]. This 

technique is useful when the true distribution of the underlying random variable is unknown. The 

decision maker using his experience or even empirical data provides values of the statistical 

properties for the distribution of the random variables (like moments, percentiles or covariance 

matrix). A set of scenarios is constructed that have similar statistical properties as provided by 

the user. The set of scenarios try to mimic the underlying distribution of the random variable. A 

commonly used metric of similarity is the sum of the square distance between the values of 

statistical properties provided by the decision maker and for the set of scenarios. An increase in 

similarity corresponds to a decrease in the sum of square distances. The number of the scenarios 

along with the relevant statistical properties needs to be predefined to develop the scenarios.  

 An important issue is how to evaluate scenario generation methods. It has been persuasively 

argued ( [30] and [31]) that modeling the unknown underlying distribution of the random 

variable is not important as compared to getting ―good‖ decisions from a stochastic optimization 

model. A ―good‖ decision is one that generates and value for the objective function close to what 

would be obtained using the true distribution of the random variable. Therefore, scenarios the 

yield such decisions are desired.  

When the distribution of the underlying random variable is known then sampling based methods 

can be used to generate the scenarios [30] and [32]. The basic idea is to sample from the 

underlying distribution at every time epoch given the value of the random variable in the 

previous time epoch. References propose sampling based methods to generate the scenario trees. 

Given the conditional probability density function (PDF),  xt+1 xt) where xt  is the value of the 

random variable at t, the value and the associated probability at t + 1 can be determined by 

sampling from this conditional probability density function (PDF). Since sampling is performed 

at every time epoch, the scenarios grow exponentially with the increase in the length of planning 

horizon and with the increase in the number of scenarios. This type of scenario generation 

methodology requires predefining the number of scenarios.  

A method of generating the scenario tree is to generate individual scenario paths and then bind 

the common scenario paths to form a tree [33]. 
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The above literature on scenario generation is primarily focused on portfolio optimization and 

offers a limited scope in developing probabilistic capacity scenarios for arrival capacity profile. 

This can be attributed to several reasons. Firstly, predefining the structure of the scenarios is 

suitable towards financial applications, as the nodes may represent distinct decision points like 

an expiration of an option. Secondly in finance, the returns over time do not show any 

exploitable historical trends whereas, the arrival capacity exhibits seasonal and daily trends. 

Therefore probabilistic capacity scenarios can be determined from historical arrival capacity data 

that exploit the historical trends. In finance, the returns can theoretically take any value and 

therefore simulation based scenario generation approaches are suitable. Whereas, the arrival 

capacities are predetermined by the FAA, that are based on the weather conditions and runway 

configurations. Therefore the arrival capacity scenarios have a smaller set of discrete, integer 

values. The scenarios can be generated without warranting a simulation. Lastly, having a fixed 

number of scenarios in finance might allude to a fixed number of movements in the returns of an 

asset. In aviation, the number of scenarios may vary on a daily basis. Therefore a fixed number 

of scenarios might add redundancy or under represent the uncertainty in capacity depending on 

the day. Reference [25] confirms the some of the above shortcomings and stresses that recourse 

actions in an SATFM model depend on the structure of the scenarios. Therefore, the structure of 

the scenario tree is of paramount importance in SATFM. 

A potential pitfall for scenario based methods is it is rare that a realized capacity profile is 

matched precisely with a scenario. An illustrative example is shown in Figure 2.8. It shows the 

six probabilistic capacity scenarios developed for SFO in reference [34] with a realized arrival 

capacity profile.  

 

Figure 2.8 Scenarios and realized capacity 

The second method of capturing the uncertainty in the arrival capacity is by modeling the 

evolution of capacity as a Markov process. This assumes that the capacity at time T + 1 depends 

on the realized capacity between times  T − δ, T (δ ≥ 0) and independent of earlier times. In a 

GDP the decisions are made sequentially for every time period are based on evolving capacity 
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information which can be captured by a Markov process. The efficient strategic decisions for 

every period can then be determined using a dynamic program. This method of modeling the 

uncertainty in capacity using a Markov process and a dynamic program is also referred as a 

―scenario free‖ approach. The scenario free approach is investigated in a greater detail by 

reference [25]. A potential pitfall of the ―scenario free‖ approach is the curse of dimensionality 

associated with the dynamic program.  

This research aims to support the scenario-based approach. This is because scenario-based 

models are more common in the air traffic management literature, more tractable, and more 

directly applicable to current air traffic management practices.  

 

2.3.1 Determining the arrival capacity from historical data 

 

Methods for developing probabilistic capacity scenarios have been reported in the ATFM 

literature. One approach [34] is based historical arrival capacity profiles. Scenarios are the 

averages of clusters of similar profiles that are identified through K-means clustering on the 

historical profiles. This approach does not take into account any weather forecast or other day-

of-operation information. Reference [35] presents a GDP model based on the SFO Marine 

Stratus Initiative (STRATUS) forecast. The time of fog burn-off—and consequent capacity 

increase—is modeled as a discrete random variable with the probability distribution obtained 

from historical burn-off time combined with a point estimate for the time for a given day derived 

STRATUS. The capacity profile for a  given burn-off time is based on the assumption that at fog 

burn-off the landing capacity of SFO increases abruptly from its normal instrument metrological 

condition (IMC) to its normal visual metrological condition (VMC) level. Other sources of 

capacity variability, while evident in the data as shown in Chapter 3, are not in [35]. 

Furthermore, the research uses the STRATUS forecast and is thus applicable only to SFO. There 

are no known methods that develop probabilistic capacity scenarios from generic weather 

forecasts available at all airports. A method for determining a single scenario from a forecast has, 

however, been developed [27]. This involves matching the realized historical weather in a period 

with the capacity of the airport in that period, and then using this relationship to predict the AAR 

from the Terminal Aerodrome Forecast (TAF), and also from the Meteorological Aviation 

Report (METAR), for every period. This approach does not take into account the uncertainty 

concerning the TAF itself or in the relationship between realized weather and airport capacity. 

2.4 Static Stochastic Ground Delay Model  

 

This research proposes to use a static, flow based aggregate model that requires probabilistic 

capacity scenarios to model the uncertainty in the arrival capacity to make flow management 

decisions. To this end this research chooses the Static Stochastic Ground Delay Model (SSGDM) 

[23]. The SSGDM is employed to evaluate the performance of the various scenario generation 

methodologies in a real world setting. The SSGDM determines an optimal ground delay strategy 

corresponding to different scenario generation techniques thereby enabling comparisons between 

them.  
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As the name suggests this model is a static model: ground delay decisions are made at a single 

point in time and are not revised as new information about the capacity is obtained. An input to 

this model is the set of probabilistic capacity scenarios and therefore different methodologies of 

scenario generation can be compared.  

SSGDM determines optimal ground delay decisions for flights bound for a single destination 

airport. While the model ignores the capacity uncertainty in the en-route airspace, it employs 

probabilistic scenarios representing the uncertainty in the arrival capacity at the destination 

airport as inputs. The model requires the original scheduled demand profile for flights bound for 

the destination airport along with the relative costs of delays taken in the air or on the ground. It 

minimizes the sum of ground delay costs and expected airborne delay costs. The output from the 

model is the arrival rate of flights at the destination airport, called the Planned Airport Arrival 

Rate (PAAR), the number of the flights subjected to ground delays in each period, and the 

number of flights subjected to air delay in each period under a particular capacity scenario. 

The SSGDM is given by equation (2.1) to equation (2.4). 

 𝑀𝑖𝑛   𝑐𝑔 × 𝐺 𝑡 +   𝑐𝑎 × 𝑊 𝑆𝑘 , 𝑡 𝑃(𝑆𝑘)

𝑇

𝑡=1

𝑛

𝑘=1

𝑇

𝑡=1

  2.1  

The constraints to the above objective function are given below 

 
𝑅 𝑡 − 𝐺 𝑡 − 1 + 𝐺 𝑡 = 𝐷 𝑡  

(𝑡 ∈ 1,2, . . , 𝑇 + 1; 𝐺 0 = 𝐺 𝑇 + 1 = 0) 
2.2  

 

−𝑊 𝑆𝑘 , 𝑡 − 1 + 𝑊 𝑆𝑘 , 𝑡 − 𝑅 𝑡 ≥ −𝑀 𝑆𝑘 , 𝑡  

(𝑡 ∈ 1,2, . . , 𝑇 + 1; −𝑊 𝑆𝑘 , 0 = −𝑊 𝑆𝑘 , 𝑇 + 1 = 0,
𝑘 ∈ 1,2, . . , 𝑛) 

 
2.3  

 𝑅 𝑡 , 𝑊 𝑆𝑘 , 𝑡 , 𝐺 𝑡 ∈ 𝑍+  𝑡 ∈ 1,2, . . , 𝑇 + 1, 𝑘 ∈ 1,2, . . , 𝑛  2.4  

 

Where: 

t is time period; 

Tis the total number time periods 

Sk  is the kthcapacity scenario; 

P Sk  is the probability of the kth scenario ; 

n is the number of scenarios; 

G(t) is number of flights that are ground delayed in period t; 
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W(Sk , t) is number of flights that are air delayed in period t under capacity scenario  Sk; 

R(t) is the arrival rate of flights referred to as the planned airport acceptance rate (PAAR) at time 

t ; 

M(Sk , t) is the arrival capacity under scenario Sk  at time t; 

D(t) is arrival demand in period t;  

ca  is unit cost of airborne delay (= 3); 

cg  is unit cost of ground delay (=1) 

 

The objective function to be minimized, equation (2.1), is the sum of the deterministic ground 

delay costs and the expected air delay costs. Equation (2.2) is a flow conservation constraint for 

flights bound for the destination from all the origin airports. The demand at period t, D(t), plus 

the backlogged flights ground held in period t − 1, G(t − 1), must either land, and thus count 

toward R(t), or be put in a queue, contributing to G(t). Equation (2.3) is a queuing constraint at 

the destination airport. Under capacity scenario Sk  at time period t, the flights accruing air delay 

in t − 1, W(Sk , t − 1), plus the flights assigned arrival times in time period t, R(t), either land or 

are air delayed for another period, contributing to  W(Sk , t). The inequality is required as the 

total demand might be less than the available capacity. Equation (2.4) ensures that R(t), W(Sk , t) 

and G(t) are real positive integers. 

The decision variables are the arrival rates of flights at the destination airport, R(t), the number 

of flights that are subjected to ground holding, G(t), and the number of flights subjected to air 

delay under the kth scenario , W(Sk , t) in a period t.  

2.5 Contributions to the literature 

 

The goal of this research is to improve the service provider’s (Federal Aviation Administration, 

FAA) strategic decision making while effectively utilizing the weather forecasts. In particular, 

this research will focus on using weather forecasts to better plan a GDP thereby reducing the 

delay and the associated delay costs.   

We showed earlier that the airport arrival capacity or the AAR is strongly influenced by the 

weather in the vicinity of the airport. Therefore to predict the AAR we require an airport specific 

weather forecast. There are two types of uncertainty associated with capacity prediction from 

weather forecast that need to be addressed. First, it is known that weather forecasts are seldom 

accurate in predicting the actual weather conditions. Therefore there is an uncertainty associated 

with the weather forecasts. Second, the weather forecast is not a direct predictor of arrival 

capacity. Even if the forecast is of high fidelity, there is still an inherent uncertainty in 

determining capacity values from the forecast conditions. This research contributes by 

developing methodologies that capture the uncertainty in capacity from the forecast.  
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Our research would assist the service providers in planning a GDP better. Currently, air traffic 

managers familiar with a NAS resource use the current weather, weather forecast and the future 

demand projections to make strategic decisions while balancing the preferences of the operators. 

There exists no formal mechanism with which the air traffic managers translate the weather 

forecast into capacity values. The resulting decisions tend to be conservative, resulting in excess 

delays and associated delays costs. To illustrate with an example, the ground delay program at 

San Francisco International airport typically lasts two hours longer than required [35]. This 

happens because air traffic managers are unsure about the improving weather conditions and are 

thus hesitant to call a higher rate as it may compromise safety. With our methodology the air 

traffic manager would be able to translate the weather forecast into probabilistic capacity 

scenarios. These scenarios would assist them in planning ground delay operations. Furthermore, 

as the day-of-operation progresses, the scenarios can be updated with the change in the weather 

forecast allowing revisions in the ground delay programs. 

Using our probabilistic capacity scenarios as inputs, the existing GDP models can be 

implemented for real operation planning. Strategic decisions, like arrival rates in a ground delay 

program (GDP), rely on the weather forecast and are made more than two hours before their  

implementation, when there is an uncertainty in the future arrival capacity. The GDP models 

developed in the literature require the uncertainty in the future arrival capacity as inputs to 

determine optimal arrival rates. This uncertainty in the future arrival capacity is captured either 

by a set of scenarios or modeled as a Markov process. It is assumed that the scenarios or the 

transition probabilities can be determined from weather forecasts or by the expertise of air traffic 

managers. The optimal arrival rates determined from these models are based on notational 

probabilistic capacity scenarios or assumed transition probabilities. This hinders the real world 

application of the GDP models. By focusing on the more prevalent input, probabilistic capacity 

scenarios, this research develops methodologies to generate the day-of-operation probabilistic 

capacity scenarios from the weather forecast. Two of the methodologies utilize the day-of-

operation Terminal Aerodrome Forecast (TAF) along with the past TAF and realized capacity to 

develop unique day-of-operation probabilistic capacity scenarios. Such scenarios, when used in 

conjunction with appropriate GDP planning models, could lead to better GDPs, with lower costs 

by avoiding excessive ground delays or airborne delay. 

One of the TAF based methodologies requires three airport specific input parameters. These 

three input parameters determine the number and the probability of probabilistic capacity 

scenarios. It is important to tune these parameters, such that the resulting scenarios give the 

lowest possible average realized costs, thereby maximizing the performance of the scenarios. 

The combination of values for the three input parameters which result in the lowest average 

realize cost is referred as the ―optimal design‖ for an airport (by ―optimal design‖ we don’t mean 

the physical design of the airport but rather the parameter values which minimize the realized 

costs). This research uses state-of-the-art optimizing techniques to determine the ―optimal 

design‖. This research finds the ―optimal design‖ to vary among airports, in some cases greatly. 

It is shown that scenarios developed from weather forecasts control the cost of delays on days 

that have a greater capacity-demand imbalance as compared to scenarios developed without 

weather forecasts. 

We provide a platform to measure the efficacy of the scenarios in a real world setting based on 

several days in the past. Researchers have traditionally compared the performance of their 
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models by comparing the expected delay costs (the objective function) from the stochastic GDP 

models to the cost under the perfect information. Here we present a platform that measures the 

realized cost based on the planned arrival rate output from the SSGDM and the realized capacity 

profile for each of the historical day. The realized cost of delay  TCD  is the sum of ground delay 

costs and the realized air delay costs. The average of the realized cost of delay over all the days 

in the past is called the average realized cost of delay TCD       .  TCD        is our metric that measures 

the efficacy of the scenarios. We also quantify the benefit of using weather forecasts in decision 

making using our platform. We use our platform to compare TCD       determined from the scenarios 

generated by the weather forecasts with TCD       determined from scenarios generated without 

forecast information. This research also compares the costs determined from the scenarios with 

the costs under planning operations based on perfect information. We will apply and assess the 

performance of the scenarios for US airports: Boston Logan International Airport (BOS), 

Chicago O’Hare Airport (ORD), San Francisco International Airport (SFO) and Los Angeles 

International Airport (LAX). We also present a methodology to determine scenarios from 

STRATUS, the specialized forecast product predicting the time of fog burn-off exclusively for 

SFO. We use the STRATUS forecast to develop an exclusive methodology for SFO to generate 

probabilistic capacity scenarios. We will show that scenarios generated from weather forecasts 

on average reduce the realized costs of delays for every airport.   

Below we present a table that introduces the methodology names, a brief description, the data 

required by the methodology, the key statistical techniques for generating the scenarios, and the 

sections where they appear in this thesis.  

Table 2.3 Overview of the scenario generation methodologies 

Methodology 

name 
Description Data 

Statistical 

techniques 
Section 

TAF Clustering 

Determining 

representative 

profiles for days 

having similar 

weather forecast 

Terminal 

Aerodrome 

Forecast, realized 

capacity profiles 

Principal 

component 

analysis, K-means 

clustering, 

Silhouette value 

3.3.2 

Fog burn-off time 

clustering 

(exclusively for 

SFO) 

Determining 

representative 

profiles for days 

having similar fog 

burn-off time 

STRATUS 

forecast, realized 

capacity profiles 

Cumulative 

density function, 

binning of data 

3.3.3 

DTW Scenarios 

Scenarios are 

capacity profiles of 

days having similar 

weather forecast. 

Terminal 

Aerodrome 

Forecast, realized 

capacity profiles 

Dynamic time 

warping, 

Stochastic 

response surface 

methodology, 

design-of-

experiments 

4.2 

Naïve Clustering 

(reference case) 

Determining 

representative 

profiles for days 

Realized capacity 

profiles 

K-means 

clustering, 

Silhouette value 

3.4.1 
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having similar arrival 

capacity profile. No 

weather forecast. 

Perfect 

information 

(reference case) 

Precise knowledge 

about the capacity 

profile 

Realized capacity 

profile 
- 3.4.2 
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Chapter 3 Scenario generation from weather forecasts 
 

3.1 Introduction 

 

This chapter discusses methodologies to generate probabilistic capacity scenarios. Arrival 

capacity is strongly influenced by the weather in the vicinity of the airport and thus AAR 

prediction necessitates a terminal weather forecast. This results in uncertainty about the arrival 

capacity. However, as argued above, it may be possible to characterize and manage this 

uncertainty by developing capacity scenarios from weather forecasts.  

This chapter first discusses the data that will be used to generate the probabilistic capacity 

scenarios. These data include historical arrival capacity data, as well as data from the Terminal 

Aerodrome Forecast (TAF) and the San Francisco Marine Status Initiative (STRATUS) forecast. 

The TAF is issued for all major airports where as the STRATUS forecast is exclusive to SFO. 

We then introduce the notation for scenario development used in the subsequent sections. This 

chapter then proceeds to presents two methodologies for generating the probabilistic capacity 

scenarios from a weather forecast. The first methodology uses the TAF and second methodology 

requires the STRATUS forecast. Since, the first methodology uses the TAF it can therefore be 

applied to all major airports. The second methodology requires the STRATUS forecast and 

therefore its application is limited to SFO. Next, we define scenarios  for two reference cases, 

one featuring perfect information and the other not having access to a day-of-operation weather 

forecast, that enable us to assess the forecast-based methodologies. The chapter concludes by 

presenting a procedure, based on determining the realized costs of delays using the scenarios in 

decision making on historical days. This procedure will be used to assess the various scenario 

generation methods described in the earlier sections.   

All the methodologies except the one requiring the STRATUS forecast can be applied to any 

major airport. The scenarios that are obtained for different airports as the outputs of these 

methodologies are presented in Chapter 5.  

3.2 Data for generating probabilistic capacity scenarios 

 

This research develops probabilistic capacity scenarios that represent the uncertainty in the 

arrival capacity profile from 7:00 am to 10:00 pm, as the bulk of the traffic is in this time period. 

The scenarios are developed using the historical capacity profiles and issued weather forecasts 

for the months of May to September from 2004 to 2006.  

3.2.1 Airport arrival capacity data 

 

The maximum number of arriving aircraft that the airport can accommodate in a given period is 

called the Airport Acceptance Rate (AAR). The AAR is determined from the guidelines issued 

by the FAA that include the metrological conditions, the separation and the runway configuration 

at the airport. The airport control tower determines the AAR for a period based on the prevailing 
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metrological conditions. The terminal radar approach control (TRACON) meters the air traffic 

into the terminal airspace based on the AAR.  

The Aviation System Performance Metrics (ASPM) website [10] maintains records of the AAR 

for the major airports for historical days starting from 2000. The AAR reported on the Aviation 

System Performance Metrics (ASPM) website is available in hourly or quarter- hourly formats. 

In either case, only integer values are allowed, leading to periodic oscillations in some cases. For 

example, the quarter-hour decomposition when the AAR is 60 arrivals per hour is 15, 15, 15 and 

15 arrivals in each quarter-hour, while an AAR for 45 arrivals per hour is decomposed as 

12,11,11 and 11 arrivals in each quarter-hour,  and an AAR of 30 arrivals per hour is reported as 

8, 7, 8 and 7 arrivals per quarter-hour. This decomposition causes oscillations in the AAR 

reported for quarter-hour period. Figure 3.1 depicts the AAR capacities for July 3, 2007 at SFO. 

The oscillation can be seen in the quarter-hour profile when the arrival capacity is 30 arrivals per 

hour. In this research, we use the quarter-hourly format. 

 

Figure 3.1 Arrival capacity profile hourly and quarter-hourly for SFO on 07/03/2007 

An arrival capacity profile represents the arrival capacity as measured by the airport acceptance 

rate (AAR) by quarter-hour from 7:00am to 10:00 pm, which is equivalent to 60 quarter-hour 

periods. We define 𝐴𝑑 ∈ 𝐼60  as the quarter-hour capacity profile for the 𝑑𝑡𝑕  day. 

3.2.2 Terminal Aerodrome Forecast  

 

The Terminal Aerodrome Forecast (TAF) is a weather forecast issued for every major airport 

forecasting meteorological conditions for the subsequent 24 hours. The TAF is issued four times 

a day at six hour intervals by the National Oceanic and Atmospheric Administration (NOAA). It 

predicts meteorological conditions for five statute miles (SM) around an airport [36]. It contains 

the four letter International Civil Aviation Organization (ICAO) airport identifier, the date and 

time when the forecast was issued along with the duration within which the forecast is valid. The 

TAF predicts the wind speed, wind direction (reference true north), visibility, and ceiling of four 
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different cloud types: broken, scattered, overcast, and few.  We decompose the wind speed into 

two perpendicular constituents representing wind blowing from the north and from the east using 

the angle of wind reported in the TAF. The direction of the wind blowing from north to south 

and from east to west is considered positive. When the TAF forecasts clear skies, we assumed 

the cloud ceiling to be present at 250,000 feet for all the four clouds types. Further, when certain 

cloud ceiling heights are absent in the forecast for a quarter-hour period in the TAF, they are also 

assumed to be present at 250,000 feet. The TAF may also predict qualitative descriptors like rain, 

fog and mist for the airport. If the TAF forecasts a thunderstorms occurring close to the airport, it 

may also contain the probability of its occurrence. The TAF for historical days for different 

airports is available for download from the National Oceanic and Atmospheric Administration 

(NOAA) website [37]. This research uses the wind speed from north, wind speed from east, 

visibility and the ceiling of the four cloud types, a total of seven forecast attributes for generating 

scenarios. Qualitative variables like rain and hail are ignored because they are infrequently 

represented in the historical TAF data. 

The TAF issued between 4am and 6am, local time for the different airports, is used for 

developing the probabilistic capacity scenarios. In practice, earlier TAF forecasts must also be 

used to make traffic flow management decisions before flights have departed for that airport.  

The predictions for the TAF forecast are decomposed into a quarter-hour format. This 

decomposition is required to match the forecasts with the quarter-hour arrival capacity. 

Therefore, each quarter-hour period is associated with seven metrological attributes. A sample 

TAF issued for SFO on 6-17-2004 along with its explanation is shown below. 

KSFO 171120Z 171212 19008KT P6SM SCT015 

      TEMPO 1418 BKN015 

     FM2000 23015KT P6SM SKC 

     FM0400 24010KT P6SM SCT015 

     FM0600 25008KT P6SM BKN012 

 

This TAF was issued for SFO on the 17
th

 of the month at 1120Z time (Z means Zulu time, GMT 

that is PDT+7 hours). This forecast is valid from 1200Z on the 17
th

 to 1200Z on the 18
th

.  For the 

periods between 1200Z and 2000Z, the wind speed and direction is predicted to be 8kt and 190 

degrees respectively. The visibility is greater than 6 SM, with scattered clouds at 1500 feet and 

the other cloud ceiling heights are absent. Between 1400Z and 1800Z broken clouds at 1500 feet 

are forecast. For the periods between 2000Z on the 17
th

 and 0400Z on the 18
th

 the wind is 

forecast at 15Knots blowing from 230 degrees and visibility is greater than 6SM with clear sky 

conditions. From 0400Z to 0600Z, the wind is predicted to be 10kt from 240 degrees with 

visibility greater than 6SM and scattered clouds at 1500 feet, while the other cloud ceiling 

heights are absent. From 0600Z to 1200Z on the 18
th

, the wind speed and direction is 8Kt and 

250 degrees respectively. The visibility is in excess of 6SM with broken clouds at 1200 feet 

during this period.  

We employ two representations of the TAF, in order to support scenario generation methods 

presented in the subsequent sections. The first is a column vector format while the second 

represents the TAF as a multidimensional time series. A multidimensional time series describes 

the TAF by its seven attributes called dimensions at multiple, discrete time periods.   
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𝑇𝑑  is the TAF for the 𝑑𝑡𝑕  day, in a column vector format, length 60 (quarter-hour periods) × 

7(attributes per time period)=420 units.  

𝑇  𝑑  is the TAF for the dth  day in a multidimensional time series format, dimension 60× 7 units. 

𝑇  𝑑,𝑟  is the TAF forecast for the 𝑑𝑡𝑕  day for the quarter-hour period 𝑟, representing the wind 

speed from north, wind speed from east, visibility, ceiling of few, broken, overcast and scattered 

clouds, dimension 1× 7 units. 

3.2.3 San Francisco Marine Stratus Initiative (STRATUS) 

 

The San Francisco Bay and the Pacific Ocean are in close proximity to SFO and during the 

summer months marine stratus clouds (fog) are prevalent over the terminal area. During these 

months, the fog sets in by early morning and burns off by late morning or early afternoon. The 

marine stratus clouds play a critical role in determining the airport capacity. When the stratus 

clouds are below 3500ft in the vicinity of SFO, the airport operates in Instrumental 

Meteorological Conditions (IMC). The fog prohibits the use of simultaneous landings on parallel 

runways 28L and 28R, reducing the arrival capacity from 60 arrivals to 30 arrivals per hour. If 

the fog persists into the hours when heavy traffic is scheduled, it creates a demand-capacity 

imbalance. On such days a Ground Delay Program is initiated at SFO. The primary purpose of 

the STRATUS forecast system is to predict the fog burn-off time. 

The San Francisco Marine Stratus Initiative (STRATUS) forecast system is weather forecast 

product for San Francisco International Airport (SFO) developed by Massachusetts Institute of 

Technology-Lincoln Labs (MIT-LL). It predicts the time when the fog dissipates from the SFO 

terminal area, also called the burn-off time. STRATUS also predicts the probability of burn-off 

before 10:00am, 11:00am, 12:00pm and 1:00pm PDT (the STRATUS reports the probabilities at 

17Z, 18Z, 19Z and 20Z). The predictions for the burn-off time are updated hourly from 2am to 

11am based on evolving information and weather conditions. The burn-off time is determined 

using a weighted average of the burn-off time predicted by the four individual models: local 

statistical model (LSM), regional statistical model (RSM), satellite statistical model (SSM) and 

an atmospheric boundary layer physics model (in French, Couche Brouillard Eau Liquide, 

COBEL). The inputs to the models vary significantly. The individual weights are determined 

from the historical accuracy of individual models. The probabilities of burn-off by various times 

are based on correlating the actual burn-off time of the historical days with the forecast burn-off 

time [38].  

The STRATUS forecast for the historical days was made available from NASA Ames Research 

Center. This data contains the days when the STRATUS forecast was issued for SFO i.e. the 

days when fog was forecast for SFO. The data includes the predicted burn-off time, as well as 

the probability of burn-off before 10 am, 11 am and 12 pm. NASA Ames Research Center also 

maintains a repository where the actual fog burn-off time is recorded, which we denote as τ. In 

total there were 183 days between 2004 and 2006 when the fog was observed at SFO. Because 

STRATUS is available only on days when low lying clouds are forecast for the airport, the 

number of days when the STRATUS forecast is available is smaller than number of days when 

TAF is available.  
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We use the forecast issued at 8am as it’s the first forecast of the day using predictions from the 

SSM. In practice, earlier forecasts must also be used to make traffic flow management decisions 

before flights have departed for SFO. Here we’ll assume for simplicity that all the decisions can 

be based on the more reliable 8:00am forecast. 

Figure 3.2 shows a scatter plot of the actual and predicted fog burn-off time along with a trend 

line.  

 

Figure 3.2 Predicted versus actual burn-off time from STRATUS for SFO 

Figure 3.3 shows the cumulative distribution function (CDF) of actual burn-off time at SFO. It 

can be noticed that for 75% of the days, the fog burn-off time is between 9:30 am and 11:30 am.  

 

Figure 3.3 Distribution of days according to actual burn-off time 
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Table 3.1 shows an example the STRATUS forecast, generated at 8 am for 6-17-2004. For this 

day, STRATUS predicted the burn-off time as 11:31am. STRATUS also predicted a 5% 

probability of the fog burn-off time before 10am, a 30% probability of the fog burn-off time 

before 11am and a 65% probability of fog burn-off before noon. The actual fog burn-off time, 𝜏, 

recorded by NASA Ames was 10:51am, therefore STRATUS over predicted the burn-off time by 

40 minutes. 

Table 3.1 Sample STRATUS forecast 

Date 

Predicted 

burn-off 

time 

P(10) P(11) P(12) 

Actual 

burn-

off  𝝉    

6/17/2004 11:31 0.05 0.3 0.65 10:51 

 

3.3 Scenario generation using weather forecasts 

 

This section presents the scenario generation methodologies. First, the notations used throughout 

the chapter are introduced. This is followed by the scenario generation methodology using the 

TAF and then the specific scenario generation methodology for SFO using the STRATUS 

forecast. 

3.3.1 Notation 

𝜏  is the actual fog burn-off time 

𝐹𝜏 𝑡   is the probability of burn-off before time 𝑡   

𝐷  is the total number of historical days for an airport  

𝐶𝑘   is the 𝑘𝑡𝑕  cluster   

|𝐶𝑘 |  is the number of days in the 𝑘𝑡𝑕  cluster, 𝐶𝑘    

𝐴𝑖   is the Arrival capacity profile for the 𝑖𝑡𝑕  day, length 60 units  

𝐴𝑘
𝑖   is the AAR capacity profile of the 𝑖𝑡𝑕  day within the 𝑘𝑡𝑕  cluster, 𝐶𝑘   

𝑇𝑖   is the TAF vector for the 𝑖𝑡𝑕  day, length 420 units  

𝑇𝑘
𝑖   is the TAF vectors of the 𝑖𝑡𝑕  day within the 𝑘𝑡𝑕  cluster, 𝐶𝑘  

 T  = [𝑇1𝑇2. . 𝑇𝐷] , a TAF matrix comprising of individual TAF vectors, dimension 420 ×
446  

𝑇  𝑑   is a multidimensional time series of TAF for the 𝑑𝑡𝑕  day, dimension 60 × 7   

𝑇  𝑑,𝑟   is the TAF attributes for a quarter-hour period 𝑟 for the 𝑑𝑡𝑕  day, dimension 1 × 7  

𝑆𝑘   is the Probabilistic capacity scenario for the 𝑘𝑡𝑕  cluster, 𝐶𝑘   

𝑃 𝑆𝑘   is the probability of the probabilistic capacity scenario 𝑆𝑘   
  .    is the nearest integer  

 

3.3.2 TAF Clustering 
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This scenario generation methodology can be applied to all major airports that are issued a TAF. 

This methodology generates probabilistic capacity scenarios for days having similar TAFs. 

Having decomposed the TAF for a given day into quarter-hour periods, the TAF for any 

historical day, 𝑑, can be represented by a column vector, 𝑇𝑑  of 420 attributes (60 quarter-hour 

periods × 7 attributes per quarter-hour = 420 attributes). We seek to identify groups of days that 

have similar TAF vectors. Toward this end, we apply clustering. Such a high number of 

attributes, many of which are highly correlated (for example, attributes in consecutive time 

periods) makes the direct application of clustering techniques inappropriate [39]. Therefore, we 

first reduce the number of attributes required to represent 𝑇𝑑  to a smaller, uncorrelated set of 

variables. We then find groups of days having similar TAFs (now represented by a smaller 

number of attributes) through K-means clustering. The magnitude of variation between the 

original attributes should also be captured by the new, reduced number of attributes. This can be 

accomplished using a statistical technique called Principal Component Analysis (PCA). We 

perform PCA prior to clustering for two reasons: Firstly, PCA reduces the number of attributes 

required in expressing the data thereby making clustering more tractable. Secondly, it has been 

proved in that performing PCA prior to K-means clustering increases the accuracy of 

determining optimal clusters [40].  

Define  T =  𝑇1 𝑇2 . . 𝑇𝐷  to be 420 × D matrix comprising of individual TAF vectors. We 

performed PCA on this matrix. PCA reduces the dimensionality of the data by representing 

correlated attributes with a smaller number of uncorrelated attributes called principal 

components. The first principal component represents the direction of maximum variation in the 

data and each succeeding component represents the direction of the maximum remaining 

variation in the data. PCA removes correlation between the forecast attributes [41]. As a standard 

preprocessing technique, we first standardize the [T] matrix i.e. the mean and the standard 

deviation is 0 and 1 respectively for each attribute. Equation (3.1) through equation (3.5) 

describes the PCA on the data set.  

 [M] =
 T [T]t

D − 1
  3.1 

 

Where [M] is defined as the empirical correlation matrix and  T t  is the transpose of matrix [T]. 
The eigenvalues, λ, of the empirical correlation matrix, [M], determine the magnitude of 

variation in the data and the eigenvectors, X, the direction of variation. 

  M 𝑋 = 𝜆𝑋 3.2 

If we assume the matrix is full rank then there are 420 eigenvalues  𝜆1, 𝜆2, . . , 𝜆420  and 

corresponding eigenvectors  𝑋1, 𝑋2, . . , 𝑋420) . A greater value of 𝜆𝑖  implies a greater variation in 

the direction of 𝑋𝑖 .   

In equation (3.3), the eigenvalues are sorted in a descending manner such that 𝜆<𝑖> is the 𝑖𝑡𝑕  

greatest eigenvector and 𝑋<𝑖> is the corresponding eigenvector.  
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 𝜆<1> > 𝜆<2> > 𝜆<3> > .  . >  𝜆<420> 3.3 

A standard technique is to capture at least 90% variability in the data, in which case the number, 

𝑛, of eigenvalues and eigenvectors required is given by equation (3.4).  

 𝑛 = min 𝑠 ; 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 𝜆<𝑡>

𝑠
𝑡=1

 𝜆<𝑝>
420
𝑝=1

≥ 0.9 
3.4 

 

 

We then define a matrix  W =  𝑋<1>𝑋<2>. . 𝑋<𝑛>  comprising of the n eigenvectors 

corresponding to the 𝑛 greatest eigenvalues. The matrix  W  represents the directions that 

capture at least 90% of the variation in the original TAF attributes. Finally we reduce the 

attributes of the TAF vectors according to equation (3.5).  

 

 T  =  W t ×  T  

 T  
𝑛×𝐷

= [𝑇 1 𝑇 2 . . 𝑇 𝐷] 
3.5 

 

Where 𝑇 𝑑  is the reduced n-dimensional TAF vector for the 𝑑𝑡𝑕  day.  

We next found groups of days that have similar weather forecasts based on the reduced TAF 

vectors. This is achieved by performing a K-means clustering on the reduced TAF vectors 

𝑇 1, 𝑇 2, . . , 𝑇 𝐷. The measure of similarity between two days is gauged by the Euclidean norm of 

the difference between the two reduced TAF vectors. A smaller Euclidean norm indicates a 

greater similarity between the two days. Therefore, a K-means clustering operation with 𝐿 

predefined clusters partitions 𝑇 1,  𝑇 2, . . , 𝑇 𝐷 into 𝐿 distinct clusters. Each cluster, 𝐶𝑙 , contains  𝐶𝑙  
days  𝑙 ∈ 1,2, . . 𝐿 . 

Determining the optimal number of clusters, 𝐿∗, is an open problem for which several ad-hoc 

procedures have been developed. A previous research effort provides an algorithm involving the 

pseudo-F statistic, combined with a required minimum number of observations within each 

cluster, to determine the number of clusters [34]. The pseudo- F statistic measures the 

compactness of a cluster with respect to other clusters and reports an average value over all 

clusters. It calculates a ratio of the mean sum of squares between different clusters to the mean 

sum of squares within a cluster. Higher pseudo F-values indicate tight clustering and imply that 

the observations are well separated or better clustered. It has been reported that the pseudo- F 

statistic works better with data that follows approximately a multivariate normal distribution.  

Another technique for determining the number of clusters employs ―silhouette value.‖ For each 

observation this technique determines a ―silhouette value‖, which is a function of two similarity 

metrics: First, the average similarity between the observation and cluster in which the 

observation is classified and second, the minimum average similarity between the observation 

and other clusters. Figure 3.4 shows three clusters, 𝐴, 𝐵 and 𝐶 with 3,3 and 4 observations within 
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the clusters respectively. The silhouette value for observation 𝑖 in cluster 𝐴 is given by equation 

(3.6). 

 𝑠 𝑖, 𝐴 =
𝑏 𝑖, 𝐴 − 𝑎 𝑖, 𝐴 

max(𝑎 𝑖 , 𝑏 𝑖 )
 3.6 

Where, 

s(i, A) is the silhouette value for observation i in cluster A 

T(k) is the attributes of observation k 

|Y| is number of observations in cluster Y 

a(i, A) is the average similarity (based on the difference of the Euclidean norm) of observation i 
to all other observations in cluster A. 

𝑎 𝑖, 𝐴 =
   𝑇 𝑖 − 𝑇 𝑘   

2
𝑘∈𝐴\𝑖

 𝐴 − 1
 

 
𝑑(𝑖, 𝑌) is the average similarity (based on the difference of the Euclidean norm) of observation 𝑖 
to all observations in cluster 𝑌 (𝑌 ≠ 𝐴).  

 

𝑑 𝑖, 𝑌 =  
   𝑇 𝑖 − 𝑇 𝑘   

2
𝑘∈𝑌

 𝑌 − 1
 ; ∀𝑌 ∈ {𝐵, 𝐶} 

 

𝑏 𝑖, 𝐴  = min𝑌 𝑑 𝑖, 𝑌 ; 𝑌 ∈  𝐵, 𝐶  
 

 

Figure 3.4 An illustration of silhouette value calculation 
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The silhouette value varies between -1 and 1 with a value close to 1 indicating of well-separated 

cluster [42]. For a silhouette value to be close to 1, 𝑏(𝑖) has to be large indicating that 

observation 𝑖 is distinct from observations in other clusters or 𝑎(𝑖) has to be small indicating that 

the observation is similar to observations within the same cluster.  

As an illustration, the silhouette value plots along with the average silhouette values for two and 

three clusters for SFO are shown in Figure 3.5. The observations are better separated when there 

are two clusters because of the higher average silhouette value.  When the number of clusters is 

three it results in a lower average silhouette value.  

 

Figure 3.5  Silhouette value plots for 2 clusters and 3 clusters 

 

This research determines the number of clusters using silhouette value plots and average 

silhouette values, as this procedure is free from any assumptions about the distribution of the 

data. The number of clusters is varied from 2 to 10 and the corresponding average silhouette 

value is calculated. The number of clusters corresponding to the highest average silhouette value 

is the chosen as the optimal number of clusters.  

Denote the number of TAF clusters chosen using the above procedure as 𝐿∗. The clusters are 

represented as 𝐶1, 𝐶2, . . , 𝐶𝐿∗ and contain  𝐶1 ,  𝐶2 , . . ,  𝐶𝐿∗  days respectively.  

Next, we determine a set of representative capacity scenarios from the arrival capacity profile for 

the days that have similar TAFs. We performed K-means clustering on the arrival capacity 

profiles for the days belonging to 𝐶1, 𝐶2, . . , 𝐶𝐿∗. This operation identifies sets of days belonging 

to the same TAF cluster having similar arrival capacity profiles. Using the same procedure based 

on average silhouette value and the silhouette value plots used to determine the number of TAF 

clusters, we choose the number of arrival capacity profile clusters within 𝐶1, 𝐶2, . . , 𝐶𝐿∗. 
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Denote the number of clusters having similar arrival capacity profiles within 𝐶𝑘  as 𝑗𝑘    𝑘 ∈
 1,2, . . , 𝐿∗  . Therefore, the 𝑘𝑡𝑕  cluster 𝐶𝑘  contains 𝐶𝑘,1, 𝐶𝑘,2, . . , 𝐶𝑘,𝑗𝑘 

arrival capacity profile 

clusters, each having  𝐶𝑘,1 ,  𝐶𝑘,2 , . . ,  𝐶𝑘,𝑗𝑘   days   𝐶𝑘,1 +  𝐶𝑘,2 +. . +  𝐶𝑘,𝑗𝑘  =  𝐶𝑘   . Denote 

𝐴𝑘,𝑚
𝑖  as the arrival capacity profile of the 𝑖𝑡𝑕  day within cluster 𝐶𝑘,𝑚   𝑘 ∈  1,2, . . 𝐿∗  ; 𝑚 ∈

 1,2, . . 𝑗𝑘   

The set of capacity scenarios associated with 𝐶𝑘  are the averages of the arrival capacity profiles 

of the days within clusters 𝐶𝑘,1, 𝐶𝑘,2, . . , 𝐶𝑘,𝑗𝑘 . Therefore 𝐶𝑘  is associated with 𝑗𝑘  number of 

probabilistic capacity scenarios. The probability of the scenarios is proportional to the number of 

days within 𝐶𝑘,1, 𝐶𝑘,2, . . , 𝐶𝑘,𝑗𝑘  respectively.  

The scenarios and their probability within cluster 𝐶𝑘  are determined by the equation (3.7). In 

equation (3.7) the square brackets indicate the nearest integer operation and 𝕀𝐶𝑘
 is an event 

implying that the day-of-operation in classified in cluster 𝐶𝑘  

 
𝑆𝑘,𝑚 =  

 𝐴𝑘,𝑚
𝑖

𝑖∈𝐶𝑘,𝑚

 𝐶𝑘,𝑚  
          𝑃(𝑆𝑘,𝑚 |𝕀𝐶𝑘

) =
 𝐶𝑘,𝑚  

 𝐶𝑘  
   

𝑘 ∈  1,2, . . , 𝐿∗ ; 𝑚 ∈  1,2, . . 𝑗𝑘  

3.7 

 

We employ these clustering results to generate day-of-operation capacity scenarios from a TAF 

as follows. First, the TAF is decomposed into a quarter-hour series and standardized with the 

historical mean and standard deviation. The day is then assigned to one of the TAF clusters 

𝐶𝑘   𝑘 ∈  1,2, . . , 𝐿∗   based on the similarity of its TAF to the cluster centroids. Based on the 

classification, the capacity scenarios for the day-of-operation would have capacity scenarios 

determined by equation (3.7).  

 

3.3.3 Fog Burn-off Time Clustering 

 

This method of scenario generation requires the STRATUS forecast that is issued exclusively for 

SFO, and is therefore applicable only for SFO. 

We construct the scenarios based on the analysis of the STRATUS forecast generated at 8:00am 

PDT for 183 days in the summer months of 2004 to 2006. We choose the 8:00am forecast 

because it is the first of the day for which predictions from the satellite statistical model become 

available, and is more reliable that the earlier ones.  

We concentrated on the days when the actual fog burn-off time, 𝜏, was between 9:30am and 

11:30am PDT as the number of days outside this time interval were few. We divided this 

interval, into eight-quarter-hour intervals, where each interval, 𝑘  𝑘 ∈ 1,2, . .8 , is defined by a 

lower time boundary, 𝑡𝑘,𝑚𝑖𝑛 , and an upper time boundary, 𝑡𝑘,𝑚𝑎𝑥 . The historical days that have 
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the actual fog burn-off in the same interval are grouped together. Thus we have eight clusters of 

days. A cluster 𝐶𝑘  contains the groups of days that experienced burn-off in time interval k . In 

other words a cluster, 𝐶𝑘  -contains the days when the actual fog burn-off time was between 

𝑡𝑘,𝑚𝑖𝑛  and 𝑡𝑘,𝑚𝑎𝑥  i.e. 𝑡𝑘,𝑚𝑖𝑛 < 𝜏 ≤ 𝑡𝑘,𝑚𝑎𝑥 . 

The clusters, the numbers of days in each,  𝐶𝑘  , and the associated fog burn-off time intervals, 

𝑡𝑘,𝑚𝑖𝑛  and 𝑡𝑘,𝑚𝑎𝑥 , are given in table 3.2.  

Table 3.2 Clusters, number of days and time boundaries according to fog burn-off time interval 

Interval 

(𝒌) 

Cluster 

(𝑪𝒌) 

Lower time 

boundary (𝒕𝒌,𝒎𝒊𝒏) 

Upper time boundary 

(𝒕𝒌,𝒎𝒂𝒙) 

Number of days 

(|𝑪𝒌|) 

1 𝐶1 9:30am 9:45am 15 

2 𝐶2 9:45am 10:00am 16 

3 𝐶3 10:00am 10:15am 16 

4 𝐶4 10:15am 10:30am 11 

5 𝐶5 10:30am 10:45am 24 

6 𝐶6 10:45am 11:00am 22 

7 𝐶7 11:00am 11:15am 18 

8 𝐶8 11:15am 11:30am 15 

 

Let 𝐴𝑘
𝑖   𝑘 ∈  1,2, . . ,8   be the arrival capacity profile of the 𝑖𝑡𝑕  day in 𝐶𝑘  . We determine the 

capacity scenario, 𝑆𝑘 , for 𝐶𝑘  as the average of the arrival capacity profiles of the days within that 

cluster 𝐶𝑘  , rounded to the nearest integer. In equation (3.8), the square brackets indicate the 

nearest integer operation.     

 𝑆𝑘 =  
 𝐴𝑘

𝑖
𝑖∈𝐶𝑘

|𝐶𝑘 |
 ;  𝑘 ∈ {1,2, . .8} 3.8 

 

Figure 3.6 shows the scenarios obtained from this averaging. 
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Figure 3.6 Capacity scenarios from Fog Burn-off time Clustering for SFO 

 

Figure 3.7 focuses on the capacity scenarios in periods around burn-off. It shows that the AAR 

does not increase abruptly after burn-off, but rather increases gradually over a transition period 

lasting approximately 45 minutes. Discussion with air traffic managers reveals that, at the onset 

of improving conditions, they are unsure of the exact stratus burn-off time and therefore are 

reluctant to immediately call the full VMC arrival rate. If they did so, and the stratus temporarily 

returned, this would result in an excess of aircraft unable to land, compromising safety. The 

gradual increase in the called arrival rates around the burn-off time thus reflects the risk 

mitigation behavior of the air traffic managers. 
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Figure 3.7 Capacity scenarios from Fog Burn-off time clustering for SFO for period around fog burn-off 

As mentioned in Section 3.2.3 the output from STRATUS also includes the probability of the fog 

burning off before 10am, 11am, 12pm and 1pm. This probabilistic forecast is essentially the 

value of the cumulative distribution function (CDF) for the fog burn-off time at 10am, 11am, 

12pm and 1pm, conditioned on the forecast burn-off time, as estimated from historical data. We 

use this probabilistic forecast to determine a-priori probability that a given day belongs to each 

cluster. 

We linearly interpolate the STRATUS CDF between 0:00am, 10am, 11am and 12pm to obtain 

the CDF values for burn-off for any quarter-hour period between 9:30am and 11:30am PDT. We 

assume that at 0:00am the value of the CDF is 0. We then estimate the CDF, 𝐹𝜏 𝑡 , for the 𝑡 

values at 9:30am, 9:45am,.., 11:30am by linearly interpolating the probabilities provided in the 

STRATUS forecast. The ―raw‖ probability of the fog burn-off time for given day is in the time 

interval associated with cluster 𝐶𝑘  , 𝑃𝑘
∗, is determined by equation (3.9). As an illustration, figure 

3.8 shows the linearly interpolated CDF for 6-17-2004 constructed using probabilities mentioned 

in table 3.1. 

From the CDF, the probability of burn-off in a quarter-hour cluster,𝐶𝑘  , is determined  by 

equation (3.9):   

 𝑃𝑘
∗ = 𝑃 𝑡𝑘,𝑚𝑖𝑛 < 𝜏 ≤ 𝑡𝑘,𝑚𝑎𝑥  = 𝐹𝜏 𝑡𝑘,𝑚𝑎𝑥  − 𝐹𝜏 𝑡𝑘,𝑚𝑖𝑛   ;  𝑘

∈ {1,2, . .8} 
3.9 
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Figure 3.8 Linearly interpolated CDF for 6-17-2004 

 

The probabilities of burn-off in a quarter-hour cluster for 6-17-2004 is given in table 3.3. 

Table 3.3 Probability for burn-off in a quarter-hour period for 6-17-2004 

Time 

period (𝒌) 

“Raw” probability   

(𝑷𝒌
∗ ) 

1 0.00122 

2 0.00122 

3 0.0625 

4 0.0625 

5 0.0625 

6 0.0625 

7 0.0875 

8 0.0875 

 

We now renormalize these probabilities so that they sum to 1, in effect ignoring the rare cases 

when the burn-off time is before 9:30am or after 11:30am. We assign the resulting probabilities 

to the capacity scenarios calculated from the historical days. 

 𝑃 𝑆𝑘 =
𝑃𝑘

∗

 𝑃𝑖
∗  8

𝑖=1

 ;  𝑘 ∈  1,2, . .8  3.10 

                             

Table 3.4 shows the renormalized probability of scenarios for 6-17-2004 that are obtained after 

equation (3.10) 
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Table 3.4  Probability for scenarios for 6/17/2004 

Time period 

(𝒌) 

Probability  

𝑷(𝑺𝒌) 

1 0.0028 

2 0.0028 

3 0.146 

4 0.146 

5 0.146 

6 0.146 

7 0.204 

8 0.204 

 

In summary, we have generated eight probabilistic capacity scenarios corresponding to the eight 

quarter-hour clusters as shown in Figure 3.6. The scenarios are determined from the realized 

arrival capacity profiles of the days that have fog burn-off times in a given quarter-hour interval. 

The probabilities of the scenarios are obtained by linearly interpolating the fog burn-off 

probabilities from the STRATUS forecast of the day-of-operation. Thus, we can determine the 

probabilities of the scenarios by linearly interpolating the burn-off probabilities included in the 

day-of-operation STRATUS forecast. 

 

3.4 Reference cases 

 

This section describes the methodology for generating the probabilistic capacity scenarios for the 

two reference cases. In the first case, the scenarios are generated without any weather forecast 

information while in the second case we assume that air traffic managers have perfect foresight 

about the arrival capacity profile. 

3.4.1 Naïve Clustering 

This method of scenario generation can be applied to any airport and it does not require any 

weather forecast information. Accordingly, this reference case is used as a base case to quantify 

the benefits of using forecasts in decision making and is similar to that described in reference 

[34]. The methodology generates probabilistic capacity scenarios from realized historical capacity 

without any weather forecast information. A scenario is the average of a group of similar arrival 

capacity profiles. 

Groups of days having similar capacity profiles are determined using K-means clustering. The 

days within the same cluster have similar arrival capacity profiles. The similarity between two 

profiles is gauged by the Euclidean norm of the difference between the arrival capacity profiles. A 

smaller Euclidean norm indicates a greater similarity.  
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K-means clustering splits the set of day based on the arrival capacity profile in a predefined 

number of clusters, 𝐿, where each cluster 𝐶𝑘  contains  𝐶𝑘   days  𝑘 ∈ 1,2, . . 𝐿 . 𝐴𝑘
𝑖  is the capacity 

profile of the 𝑖𝑡𝑕  day in the 𝑘𝑡𝑕  cluster. The average of the arrival capacity profiles of the days in 

a cluster represents the capacity scenario for that cluster and is given by equation (3.11). In this 

equation the square brackets indicate the nearest integer operator.  

 

 𝑆𝑘 =  
 𝐴𝑘

𝑖
𝑖∈𝐶𝑘

|𝐶𝑘 |
   ;  𝑘 ∈  1,2, . . 𝐿  3.11 

The probability of each scenario is given by the fraction of the days in each cluster.  

 
𝑃 𝑆𝑘 =

|𝐶𝑘 |

𝐷
 ;  𝑘 ∈  1,2, . . 𝐿  3.12 

We observed that K-means clustering on the arrival capacity profiles is susceptible to local 

minima resulting in clusters with poor silhouette values. To avoid the local minima, we 

proceeded as follows. First, we specified a number of clusters. Next we chose 100 sets of random 

starting points in ℝ60 , where each coordinate of each point is drawn from the uniform 

distribution between the quarter-hour IMC capacity and the quarter-hour VMC capacity for an 

airport, corresponding to the minimum and maximum AAR values. The number of points in the 

set corresponds to the number of clusters. We then performed K-means for each set of starting 

points. We repeated this procedure for each number of clusters between two and 10. From the 

900 sets of clusters generated, we chose the set with the highest average silhouette value. 

We call this procedure Naïve Clustering as it clusters the scenario profiles without any weather 

information.  

3.4.2 Perfect Information (PI) 

This reference case provides a lower bound on the delay cost resulting from a given demand 

profile and capacity profile. We assume that the precise evolution of capacity for the entire day-

of-operation is known beforehand. A potential capacity-demand imbalance can be predicted 

accurately and if a GDP is warranted the planned arrival rate will equal the capacity for a period. 

With the appropriate planned rate, all the delays can be transferred to the ground and associated 

delay costs will be held to the minimum. The precise capacity forecast enables the best possible 

planning and avoids unnecessary delays. Thus, in this reference case, the set of scenarios is a 

single profile that is in fact the realized arrival capacity profile for any historical day. 

3.5 Realized costs of delays 
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This section provides a methodology to determine the realized cost of delay by implementing the 

optimal strategies in a GDP. The cost of the optimal strategies is measured by realized total cost 

of delay that is the sum of the ground delay costs and the realized air delay costs.  

For each airport, we generated the probabilistic capacity scenarios for 45 randomly chosen days 

in the summer months (May to September) of 2004-2006 using their forecasts. We pretended 

each of the 45 historical days to be a new day for which we generated the scenarios and then 

determined the realized costs of delays retrospectively based on the realized capacity. 

For all the methods mentioned in this chapter we used the all the days to generate the scenarios 

and then calculate realized cost of delay for a subset of these days. Thus, in contrast to a real-

world application, a day may be used for purposes of both scenario generation and to assess the 

different scenario generation methods. We performed several experiments in which we removed 

a given day and recalculated the scenarios, and found, as expected, that this had very little effect 

on the scenarios or their probabilities. Thus we consider this assessment to be very similar to 

what would be obtained if assessment days were kept separate from scenario generation days. 

For each historical day we determine two sets of PAARs profiles from the SSGDM 

corresponding to the two sets of scenarios generated by the two scenario generation 

methodologies: 𝑅𝑇𝐶  and 𝑅𝑁𝐶 , where the subscripts denote for scenarios based on the TAF 

Clustering and Naïve Clustering. For SFO, we also generated a third set of PAAR profile, 𝑅𝐹𝐵 , 

corresponding to the scenarios generated from Fog Burn-off time Clustering using the 

STRATUS forecast. The generated PAAR can be used to calculate the realized total costs of 

delay  TCD . The realized total cost of delay is a sum of the total ground delay costs and the total 

realized air delay costs. The total ground delay can be obtained directly from the SSGDM 

whereas the total air delay is determined from a deterministic queuing model between the PAAR 

and the realized capacity. 

Figure 3.9 shows a notational queuing diagram between artificially generated scheduled 

demands, the PAAR determined from SSGDM and the realized capacity. The PAAR matches the 

realized capacity until time τ. After τ the PAAR increases but the realized capacity remains low. 

The area between the scheduled arrivals and the PAAR is the total ground delay and the area 

between the PAAR and the realized capacity is the total realized air delay. For the Perfect 

Information case, all the delays would be ground delays and the total delays would be the area 

between the scheduled arrival and the realized capacity. 

The average of the realized total costs of delay (TCD      ) over the 45 days provides us with a tool to 

empirically quantify realized costs from using scenarios generated from the various scenario 

generation methods described above. The metric to gauge the benefit of using weather forecasts 

is TCD      .  Thus  TCD       provides a basis for evaluating the different scenario generation methods. 
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Figure 3.9 Realized capacity, PAAR and scheduled arrivals 
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Chapter 4 A design-of-experiment approach for scenario generation 

 

This chapter introduces a new methodology to generate the scenarios from the Terminal 

Aerodrome Forecast (TAF). It begins by highlighting the limitations of TAF clustering, the 

scenario generation methodology using the TAFs developed in Chapter 3. It then introduces a 

new methodology which also uses the TAFs to generate the scenarios. This methodology 

requires three input tuning parameters which influence the number of scenarios and their 

probabilities. The optimal values for the parameters are determined using a state-of-the-art 

optimization algorithm. An outline of this algorithm is also provided in this chapter. 

4.1 Introduction 

 

The previous chapter develops, TAF Clustering, a methodology using the TAF to generate 

probabilistic capacity scenarios. The methodology suffers from three limitations: 

Firstly, the similarity between the TAFs is determined by comparing the Euclidean norm 

between the new attributes determined after the PCA operation on the TAF vectors. These new 

attributes are the linear combination of metrological variables in the TAF vector, prohibiting the 

direct comparison of metrological attributes in different time periods. This flexibility in 

comparing the forecasts in proximate periods, called warping, is explained in a later section.  

Secondly, the day-of-operation is assigned to the TAF cluster that has the minimum Euclidean 

distance between its centoid and the TAF for the day-of-operation. This may result in an 

ambiguous classification if the TAF is equidistant from two or more cluster centroids. The 

ambiguity in the classification of the day-of-operation might to lead to scenarios that do not 

adequately represent the uncertainty in the capacity profile. TAF Clustering ignores the 

individual comparisons between the TAF of the day-of-operation and TAF of historical days. 

Thirdly, since the scenarios are generic to a TAF cluster, all days-of-operation classified in the 

same TAF cluster have the same set of scenarios representing in the uncertainty in the arrival 

capacity profile. TAF Clustering does not exploit the uniqueness of the TAFs in developing a 

unique set of scenarios for different day-of-operation.   

The above shortcomings associated with TAF Clustering motivate this research in developing a 

new methodology for scenario generation using the TAF.  

4.2 Dynamic Time Warping scenarios  

 

This section introduces Dynamic Time Warping (DTW), provides an illustration of DTW, and 

then discusses the methodology for applying DTW in scenario generation. The section also 

introduces the three input parameters (Warping Factor, Dimension Factor and Minimum 

probability threshold) required by this methodology for scenario generation.   
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As mentioned earlier, it is advantageous to compare the TAF of the day-of-operation with the 

individual TAFs rather than cluster centroids. There are several techniques that can be used for 

this comparison including Hidden Markov Models, or measuring the Euclidean distance between 

TAFs, but this research chooses to perform individual comparisons using Dynamic Time 

Warping (DTW) due to its ease in implementation.  

DTW is an established methodology to study the similarity between two electrical signals, 

handwriting patterns, or speech patterns. It is particularly useful to match sequences which are 

translated in time. Recent research has demonstrated that DTW is useful in matching 

multidimensional time series [43]. A multidimensional time series provides data for several 

attributes, called dimensions, at multiple, discrete time periods. The primary advantage of DTW 

is it allows features in different, but proximate, time periods to be matched, a procedure referred 

to as ―warping‖. A TAF can be represented as a multidimensional time series as it contains 

forecast for seven metrological forecasts attributes for each quarter hour period from 7am to 

10pm.  

Two multidimensional time series are matched by first constructing a distance matrix. The rows 

and columns correspond to the number of time periods in the two multidimensional time series. 

The coordinates (r, s), of any grid cell correspond to the time periods r and s of the first and 

second multidimensional time series respectively. Each grid cell of the distance matrix contains a 

cost proportional to the Euclidean norm of the difference between the attributes of the 

corresponding time periods. The similarity between the two time series is determined by a 

minimum cost path through the distance matrix from the bottom left corner to the top right 

corner. The bottom left corner and the top right corner of the grid correspond to the beginning 

and the end of the multidimensional time series. We constrain the search of the minimum cost 

path around the diagonal of the distance matrix to match proximate time periods. The summation 

of the costs in the grid cells on the minimum cost path determines the total cost of the minimum 

cost path. The total cost is inversely related to the similarity between the two time series. Table 

4.1 illustrates the concept for a one-dimensional time series. In table 4.1 below, the numbers in 

bold are the attributes at consecutive time periods. The italicized numbers in the cells are the 

costs, i.e. the square of the difference of the attributes between the corresponding time periods. 

The minimum cost path is highlighted from the bottom left to the top right.  

The deviation of the minimum cost path from the diagonal of the matrix occurs when attributes 

of proximate time periods enough more similar than attributes of the same period. This 

comparison of attributes in different time periods is referred to as ―warping‖.  

Table 4.1 Dynamic time warping for two artificially generated data, WF=1 

 

Time series 

2 → 
t=1 t=2 t=3 t=4 t=5 

Time 

series 1 ↓ 

Feature 

Vector 
0.69629 0.0605 0.4851 0.72 0.4149 

t=5 0.9709289 0.07543 0.8289 0.236 0.063 0.3092 
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t=4 0.1927528 0.25355 0.0175 0.0855 0.278 0.0493 

t=3 0.0691176 0.39334 7E-05 0.1731 0.4236 0.1196 

t=2 0.3164769 0.14426 0.0655 0.0284 0.1628 0.0097 

t=1 0.6997229 1.2E-05 0.4086 0.046 0.0004 0.0811 

 

Although some warping is desired, excess warping is considered undesirable. Excess warping 

matches attributes of several consecutive time periods of one series with a single time period of 

the other series. For example, in table 4.1, the attribute of the second and third time period of 

time series 1, is matched with a single time period of time series 2. Excess warping may lead to 

counter intuitive alignments [44]. We limit warping by multiplying the off diagonal cells by an 

input parameter referred to as Warping Factor (𝑊𝐹, ≥ 1). The Warping Factor increases the total 

cost of the minimum cost path if it deviates from the diagonal. A high value of 𝑊𝐹 ensures that 

the minimum cost path has limited deviation from the diagonal resulting in comparisons of 

attributes closely proximate periods.  

The influence on deviation from the shortest path (shown in yellow), when 𝑊𝐹 =  10, for the 

two artificially generated time series presented earlier in Table 4.1 is demonstrated in Table 4.2. 

When 𝑊𝐹 = 10 the minimum cost path is aligned on the diagonal.   

 

Table 4.2 Dynamic time warping for two artificially generated data, WF=10 

 

Time series 

𝟐 → 
t=1 t=2 t=3 t=4 t=5 

Time 

series 1 ↓ 

Feature 

Vector 
0.69629 0.0605 0.4851 0.72 0.4149 

t=5 0.9709289 0.7543 8.289 2.36 0.63 0.3092 

t=4 0.1927528 2.5355 0.175 0.855 0.278 0.493 

t=3 0.0691176 3.9334 0.0007 0.1731 4.236 1.196 

t=2 0.3164769 1.4426 0.0655 0.284 1.628 0.097 

t=1 0.6997229 1.20E-05 4.086 0.46 0.004 0.811 
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For this research, the multidimensional time series being compared are the TAF for the day-of-

operation and the TAFs for historical days. The realized capacity profiles of the historic days that 

have similar TAFs are used as capacity scenarios as determined by the DTW methodology. This 

research assumes that the probability of a scenario is inversely related to the total cost of the 

minimum cost path between the historically similar TAF with the TAF of the day-of-operation. 

Therefore, the greater the total cost, the smaller the probability of the profile and vice versa. The 

number of capacity profiles is determined by limiting the probability of the least similar profile.  

Let 𝑇  𝑂 be a multidimensional TAF time series for the day-of-operation of length 60 time 

periods, where each period is described by the seven attributes. Similarly, let 𝑇  𝑖  be the TAF for 

the 𝑖𝑡𝑕  historical day, also of length 60 time periods with seven attributes for each time period. 

Let 𝑇  𝑂,𝑟  be the seven-attribute TAF forecast for the quarter-hour period 𝑟 for the day-of-

operation. Similarly let 𝑇  𝑖,𝑠 be the historical TAF for the quarter hour period s for the 𝑖𝑡𝑕  

historical day. Any element (𝑟, 𝑠) of the distance matrix is  

 

𝐷𝑂,𝑖(𝑟, 𝑠) =  
 𝑇  𝑂,𝑟 − 𝑇  𝑖,𝑠 

2
 , 𝑟 = 𝑠

 𝑇  𝑂,𝑟 − 𝑇  𝑖,𝑠 
2

× 𝑊𝐹 , 𝑟 ≠ 𝑠

  

;  𝑟, 𝑠 ∈  1,2, . . ,60  

4.1 

 

In equation (4.1), the diagonal grid cells contain the Euclidean distance between the TAF feature 

vectors and the off diagonal cells contain the Euclidean distance multiplied by the Warping 

Factor.  

The cost of the minimum cost path between 𝑇  𝑂 and 𝑇  𝑖  is given by 𝐷𝑇𝑊 𝑇  𝑂,60 , 𝑇  𝑖,60  where,  

 𝐷𝑇𝑊 𝑇  𝑂,1, 𝑇  𝑖,1 = 𝐷𝑂,𝑖 1,1  

 

𝐷𝑇𝑊 𝑇  𝑂,𝑟 , 𝑇  𝑖,𝑠 

= 𝐷𝑂,𝑖 𝑟, 𝑠 

+ 𝑚𝑖𝑛 𝐷𝑇𝑊 𝑇  𝑂,𝑟−1, 𝑇  𝑖,𝑠  , 𝐷𝑇𝑊 𝑇  𝑂,𝑟 , 𝑇  𝑖,𝑠−1 , 𝐷𝑇𝑊 𝑇  𝑂,𝑟−1, 𝑇  𝑖,𝑠−1   ; 2

≤ 𝑟, 𝑠 ≤ 60 

𝐷𝑇𝑊 𝑇  𝑂,𝑟 , 𝑇  𝑖,𝑠 = ∞, otherwise 

 

4.2 

  

Equation (4.2) is a recursive formula that can be solved with a dynamic program. For the 

purposes of brevity henceforth, we will write 𝐷𝑇𝑊 𝑇  𝑂,60 , 𝑇  𝑖,60  as 𝐷𝑇𝑊 𝑇  𝑂 , 𝑇  𝑖  
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This research then ranks the historical days based on the similarity of their TAFs to the TAF for 

the day-of-operation. 𝑇  <𝑘> is the 𝑘𝑡𝑕  most similar historical TAF to the day-of-operation TAF, 

so that:  

 𝐷𝑇𝑊 𝑇  𝑂 , 𝑇  <1>  ≤ 𝐷𝑇𝑊 𝑇  𝑂 , 𝑇  <2>  ≤ . . ≤ 𝐷𝑇𝑊 𝑇  𝑂 , 𝑇  <𝐷>  4.3 

The set of probabilistic capacity scenarios is thus the actual realized capacity profiles of the n 

most similar days. Denoting 𝐴<𝑘> as the arrival capacity profile associated with the kth  similar 

day, we define 

 𝑆𝑘 = 𝐴<𝑘>; 𝑘 ∈ {1,2, . . 𝐷} 4.4 

As mentioned, the probability of the profile is inversely proportional to the degree of similarity, 

determined by the total cost of the minimum cost path. We introduce a second input parameter 

referred to as Dimension Factor (𝐷𝐹, 𝐷𝐹 ≥ 0) that determines the importance of the similarity.  

 𝑃 𝑆𝑘 ∝
1

𝐷𝑇𝑊 𝑇  𝑂 , 𝑇  <𝑘> 
𝐷𝐹    4.5 

 

Equation 4.5 states that the probability of the 𝑘𝑡𝑕  similar profiles is inversely proportional to the 

total cost raised to 𝐷𝐹. In our experiments we noticed that 𝐷𝑇𝑊 𝑇  𝑂 , 𝑇  <𝑘> > 1 ∀𝑘, therefore 

𝐷𝐹 ≥ 1 increases the total cost thereby reducing the similarity between the TAF. A 𝐷𝐹 ≥ 1 

increases the importance of similarity. Conversely, 𝐷𝐹 < 1, would reduce the total cost 

increasing similarity. A 𝐷𝐹 = 0 implies that all forecasts are equally similar and therefore, 

weather forecasts are not useful in controlling delays. Therefore 𝐷𝐹 < 1 decreases the 

importance of the similarity of the TAF. 𝐷𝐹 controls the sensitivity of scenario probability to 

forecast similarity. 

We wish to restrict the number of scenarios to 𝑛∗, by eliminating from consideration those days 

for which 1

𝐷𝑇𝑊 𝑇  𝑂 , 𝑇  𝑖 
𝐷𝐹  is too small. In other words, we do not consider arrival capacity 

profiles for the days that have a small degree of similarity. We achieve this through the rule 

defined by equation (4.6). It determines the number of scenarios by requiring the expression, 

which will be used below as the basis for calculating the scenario probability, to exceed a 

threshold, denoted 𝑃𝑚𝑖𝑛 .  𝑃𝑚𝑖𝑛  is the third input parameter. Thus we set: 

 𝑛∗ = max  𝑘 ;  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

1

𝐷𝑇𝑊 𝑇  𝑂 , 𝑇  <𝑘> 
𝐷𝐹

 
1

𝐷𝑇𝑊 𝑇  𝑂 , 𝑇  <𝑖> 
𝐷𝐹  𝑘

𝑖=1

≥ 𝑃𝑚𝑖𝑛  4.6 
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The scenario probabilities are obtained after normalizing the total cost of the minimum cost path 

for the 𝑛∗ days as given by equation (4.7).  

 𝑃 𝑆𝑘 =

1

𝐷𝑇𝑊 𝑇  𝑂 , 𝑇  <𝑘> 
𝐷𝐹

 
1

𝐷𝑇𝑊 𝑇  𝑂 , 𝑇  <𝑖> 
𝐷𝐹  𝑘

𝑖=1

  ; 𝑘 ∈  1,2, . . 𝑛∗  4.7 

 

Equation (4.6) determines 𝑛∗ such that 𝑃 𝑆𝑛∗ ≥ 𝑃𝑚𝑖𝑛  and 𝑃 𝑆𝑛∗+1 ≤ 𝑃𝑚𝑖𝑛   

In summary, the scenarios are the realized capacity profiles for the days that have similar 

TAFs. This methodology requires three input parameters which affect the number and the 

probability of the scenarios. The effect of the three variables on scenario generation is 

summarized in the Table 4.3. We call this methodology Dynamic Time Warping scenarios.  

 

Table 4.3 Summary of the three parameters for scenario generation 

Parameter Values Effect 

Warping Factor (WF) 

Low values 
Selects days which have similar forecasts for 

different periods 

High values 
Selects days which have similar forecasts for 

similar periods 

Dimension Factor 

(DF) 

Low values 
Decreases sensitivity of scenario probability to 

forecast similarity 

High values 
Increases sensitivity of scenario probability to 

forecast similarity 

Minimum Probability 

Threshold (𝑃𝑚𝑖𝑛 ) 

Low values Selects more scenarios 

High values Selects fewer scenarios 

4.3 A design-of-experiment approach to determine parameter values 

 

The three input parameters namely, Warping Factor (𝑊𝐹), Dimension Factor (𝐷𝐹) and 

Minimum Probability Threshold (𝑃𝑚𝑖𝑛 ) are required for scenario generation using DTW 

Scenarios. The objective of this section is to provide a methodology to determine optimal values 

for the three parameters that minimize the average realized total costs of delays. A vector of the 

three parameter values is called a design point and the vector of optimal values is called the 

optimal design point. We expect the optimal design point to vary across airports. This section 

discusses why traditional derivative-based optimization methods and heuristic based 

optimization methods are not employed to determine the optimal design point.  It then provides 

an outline of an algorithm that determines the optimal design point based on Response Surface 

Methodology (RSM). 



49 
 

In this research we determine the optimal design for each airport based on the sample of the 45 

historic days as mentioned in Section 3.5. Ideally, the TAF of a day should be compared with 

TAFs of more closely preceding days but due to the scarcity of the data we allow comparisons 

with all the days.  

A design point generates a unique set of scenarios for each of the 45 days therefore it influences 

the average total realized cost of delay. A design point that minimizes the average realized total 

costs of delays is desired (other objectives  may include, minimizing the worst case realized total 

costs of delays or the median realized total costs of delays). This can be formulated as an 

optimization problem as shown in equation (4.8). The objective function is to minimize the 

average total realized costs of delays with the (optional) constraints that the design parameters 

are between the upper bounds (𝑈𝐵) and lower bounds (𝐿𝐵).  

  

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 TCD       

Subject to, 

𝐿𝐵𝑊𝐹 ≤ 𝑊𝐹 ≤ 𝑈𝐵𝑊𝐹  

𝐿𝐵𝐷𝐹 ≤ 𝐷𝐹 ≤ 𝑈𝐵𝐷𝐹  

𝐿𝐵𝑃𝑚𝑖𝑛
≤ 𝑃𝑚𝑖𝑛 ≤ 𝑈𝐵𝑃𝑚𝑖𝑛

 

4.8 

 

There are two challenges associated solving this optimization problem. Firstly, there is no direct 

formulaic relationship between the design point and the average total realized costs of delay. The 

average realized total cost of delays is determined after calculating the realized total costs of 

delays for individual days. The realized total cost of delay for a day depends on its PAAR profile 

that is obtained by solving the SSGDM with a set of probabilistic capacity scenarios. The set of 

scenarios are the output from DTW Scenarios. Since, the TAF is unique to a day the scenarios 

developed from DTW Scenarios are also unique to that day. The capacity profiles that serve as 

scenarios, the number of scenarios and the probabilities of the scenarios vary across the different 

days. It is difficult to predict the probability and the number of scenarios directly from the design 

point prior to implementing the methodology of DTW Scenarios. Therefore, it is difficult to 

predict the realized total cost of delay and the average for a particular day from the design point.  

For this reason, we can imagine the average realized total cost of delay as an output from a black 

box. The input to the black box is a design point that influences the output. Since, the internal 

working of the black box uniquely depends on the TAF for a day and is difficult to predict we 

can pretend that the inside working is unknown to us. The Global Optimization literature refers 

to the minimization of such objective function in presence of constraints as black box 

optimizations. For this research, the black box optimization problem is to determine the design 

point that minimizes the average realize total cost of delays.  

Researchers have had limited success in employing traditional derivative based optimization 

method, that include finite differencing and automatic differentiation, to solve black box 

optimization problems. The limited success arises as the objective function or the constraints 
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might be non-smooth leading to unreliable or inaccurate derivatives. In this research it is hard to 

predict the smoothness of the objective function over the hypercube defined by the constraints.  

Derivative-free heuristics based algorithms (genetic algorithms and simulated annealing) are 

often employed to solve black-box optimizations. These algorithms evaluate the objective 

function at a large number of design points to determine an optimal design. In our case, however, 

there is a second challenge: evaluating the objective function at a particular design point is 

computationally expensive. The average realized total delay costs are determined after three 

sequential processes: 1) Scenario generation using DTW scenarios. 2) Determining the PAAR 

profile from the SSGDM using the scenarios as inputs. 3) A deterministic queuing model to 

determine the realized total delay costs. The scenario generation using DTW scenarios take 

approximately 60 seconds to generate the scenarios for a day whereas SSGDM and the 

deterministic queuing models each take less than a second to complete. The relatively large 

computation time associated with the scenario generation is observed as DTW Scenarios 

compares a given TAF for a day with all the historical TAFs. This computation time increases 

with the number of TAFs used in comparisons. For example, the average realized total cost of 

delay based on 45 days evaluated at a particular design point takes approximately 60 × 45 = 

2700 seconds or 45 minutes. The repeated sampling of the objective function at different design 

points is therefore computationally prohibitive making it difficult to employ heuristic based 

algorithms.   

Response Surface Models (RSMs) are a computationally inexpensive, iterative way of 

minimizing expensive black box optimizations. RSMs approximate the behavior of the 

underlying expensive black box objective function by evaluating the objective function at a few, 

initial design points. New candidate design points are intelligently chosen on the response 

surface where the expensive black-box function is evaluated next. After evaluating the black box 

function at the new candidate design points the response surface model is updated and the 

process repeats till a best solution is found or the iterations exceed a threshold value. An 

optimization algorithm for black-box functions using RSM is given below. This research makes 

use of the algorithm provided in reference [45] to determine the parameter values. The algorithm 

described in can be decomposed in five major steps :  

Step 1: Randomly generate an initial set of 𝑚 design points  𝑥𝑖 𝑖=1
𝑚  and evaluate the objective 

function at these 𝑚 points. These design points are also called as initial space filling points. In 

this case each design 𝑥𝑖   𝑖 ∈  1,2, . . 𝑚   represents a vector of numerical parameter values i.e. 

𝑥𝑖 = [𝑊𝐹𝑖 , 𝐷𝐹𝑖 , 𝑃𝑚𝑖𝑛 𝑖
] . Denote the value of the objective function, the average realized total 

cost of delay, at these points as 𝑓 𝑥𝑖    𝑖 ∈  1,2, . . 𝑚  . Therefore corresponding to each design 

point an average realized total delay costs is calculated. 

Step 2: Fit a response surface model, 𝑠(𝑥), using  𝑥𝑖 , 𝑓 𝑥𝑖  𝑖=1
𝑚 . The response surface 

model, 𝑠 𝑥 , mimics the influence of the design points on the objective function. The response 

surface model can be determined using any curve fitting techniques for example, linear 

regression, polynomial regression, splines or radial basis functions. For the purposes of solving 

black box optimizations, interpolation basis techniques like kriging or radial basis functions are 

superior to non-interpolating techniques like linear or polynomial regression [46]. In this 

research we use a radial basis function to develop the response surface.  
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Step 3: Randomly generate several new candidate design points. Let  𝑦𝑘 𝑘=1
𝑙  represent a set of 𝑙 

randomly generated candidate design points. Reference [45] suggests two ways of generating the 

random candidate points. The first method generates design points uniformly from the hypercube 

defined by the upper and the lower bounds of the individual parameters. The second method 

involves generating random design points that follow a multivariate normal distribution around 

the current best solution with a predefined covariance structure i.e. the point which currently 

minimizes the objective function. In this research we follow the second method, generating 

random points that follow a multivariate normal distribution. 

Step 4: From the set of randomly generated points,  𝑦𝑘 𝑘=1
𝑙 , determine a single candidate point 

to evaluate the objective function for the next iteration. The candidate point is selected based on 

weighed combination of two competing criterions: Firstly, the candidate point should be far 

away from the already evaluated points to search for the global best point (distance criterion). 

Secondly, the candidate point should be selected such that it has a low objective function value 

on the response surface (response criterion), since the objective is to minimize the objective 

function. The second criterion competes with the first criterion as the points which minimize the 

objective function are closer to the current best solution thus promoting a local search.  

The values for the two criterions are determined such that they are in between 0 and 1. If the 

distance criterion value is close to 0 it implies that the candidate point is far from any previously 

evaluated points thus promoting a global search. If the response criterion is close to 0 it implies 

that candidate point, on the response surface, has a low objective function value. The weights for 

the two criterions are selected to be between 0 and 1. The weights can be chosen either in an 

iterative manner i.e. the weights change for every iteration or they can be fixed for all iterations. 

In this research we opt for the later and fix the weights for all iterations. Therefore, the weighed 

combination of a random point is between 0 and 1. The point having the lowest weighed 

combination is chosen as the candidate point where the objective function would be evaluated 

next.  

Equations (4.9) to (4.18) determine the ideal candidate point where the objective function is 

evaluated next. 

For the 𝑙 randomly generated points  𝑦𝑘 𝑘=1
𝑙  determine the objective function value on the 

response surface, 𝑠 𝑦𝑘   𝑘 ∈  1,2, . . , 𝑙  . Also compute the maximum and the minimum values 

on the response surface for the random points. 

 𝑠𝑚𝑎𝑥 = max
𝑘

 𝑠 𝑦𝑘 ;  𝑘 ∈  1,2, . . , 𝑙  4.9 

 𝑠𝑚𝑖𝑛 = min
𝑘

 𝑠 𝑦𝑘 ;  𝑘 ∈  1,2, . . , 𝑙  
4.10 

The value of the response criterion for a randomly generated point 𝑦𝑘  is denoted by 𝑉𝑘
𝑅  and 

given by equation (4.11)  
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 𝑉𝑘
𝑅 =

𝑠(𝑦𝑘) − 𝑠𝑚𝑖𝑛  

s𝑚𝑎𝑥 − s𝑚𝑖𝑛
 ; ∀𝑘 ∈  1,2, . . , 𝑙  

4.11 

If at a point, 𝑦𝑘 , the response surface has a value close to 𝑠𝑚𝑖𝑛  then 𝑉𝑘
𝑅  has a value closer to 0 

and if the response surface has a value close to 𝑠𝑚𝑎𝑥  then 𝑉𝑘
𝑅  has a value closer to 1.  

For each of the 𝑘 randomly generated points determine the minimum Euclidean distance from 

each of the previously evaluated points. Defining, 𝐷𝑘 𝑖  is the distance between point 𝑦𝑘  and 𝑥𝑖  

 𝐷𝑘 𝑖 =   𝑥𝑖 − 𝑦𝑘   
2

;  𝑖 ∈  1,2, . . , 𝑛  ; ∀𝑘 ∈  1,2, . . 𝑙  
4.12 

 

 δ𝑘
𝑚𝑖𝑛 = min

𝑖
 𝐷𝑘 𝑖  ;  𝑖 ∈  1,2, . . , 𝑛  ; ∀𝑘 ∈  1,2, . . 𝑙  4.13 

Also determine the following metric given by equation (4.14) and (4.15).  

 Δ
𝑚𝑖𝑛 = min

𝑘
 𝛿𝑘

𝑚𝑖𝑛 ;   𝑘 ∈  1,2, . . , 𝑙  4.14 

And, 

 Δ
𝑚𝑖𝑛 = max

𝑘
 𝛿𝑘

𝑚𝑖𝑛  ;  𝑘 ∈  1,2, . . , 𝑙  4.15 

Equation (4.14) determines the minimum distance for all random points from all previously 

evaluated points (min-min). Equation (4.15) determines the largest, minimum distance between 

all the random points and the previously evaluated points (max-min).  

The value of the distance criterion for a randomly generated point 𝑦𝑘  denoted by 𝑉𝑘
𝐷  is given by 

equation (4.16).  

 𝑉𝑘
𝐷 =

Δ
𝑚𝑎𝑥 − 𝛿𝑘

𝑚𝑖𝑛

Δ
𝑚𝑎𝑥 − Δ

𝑚𝑖𝑛
 ; ∀ 𝑘 ∈  1,2, . . 𝑙   

4.16 

In equation (4.16), if a random point 𝑦𝑘  is close to any previously evaluated point then it would 

have a value close to 1 and similarly if the point is significantly far from any previous point then 

the value is close to 0.  
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The weighed sum of the distance criterion and the response criterion for a random point is given 

by equation (4.17), in which 𝑤𝐷  is the weight associated with the distance criterion and 𝑤𝑅  is the 

weight associated with response criterion.   

 
𝑊𝑘 = 𝑤𝐷 × 𝑉𝑘

𝐷 +  𝑤𝑅 × 𝑉𝑘
𝑅     ;    ∀𝑘 ∈  1,2, . . 𝑙  

𝑤𝐷 + 𝑤𝑅 = 1 ; 0 ≤ 𝑤𝐷 , 𝑤𝑅 ≤ 1 

4.17 

The candidate point that becomes the next point for objective function evaluation is a random 

point in the set  𝑦𝑘 𝑘=1
𝑙  that has the least weighed sum.  

 𝑥𝑛+1 = min
𝑘

 𝑊𝑘  4.18 

As mentioned earlier there are two ways of choosing the weights: An iterative manner similar to 

the methodology proposed in reference [46] and using fixed weights. The iterative approach 

contains a vector of values of 𝑤𝑅  (and therefore of 𝑤𝐷as 𝑤𝐷 = 1 − 𝑤𝑅)  that start close to 0 and 

increase progressively to 1. Thus the search starts with a low value of 𝑤𝑅  promoting a global 

search. As new candidate points are evaluated the value of 𝑤𝑅  increases and finally terminates at 

a value of 1 which promotes the local search. Once 𝑤𝑅  equals 1, the iterations restart from the 

beginning of the vector and 𝑤𝑅  is again close to 0. 

It has been argued that the length of the vector for 𝑤𝑅  impacts the optimization process and 

therefore recent efforts have moved towards fixed weights. When using the fixed weights 

approach the set of randomly generated candidate points,  𝑦𝑘 𝑘=1
𝑙 ,  are determined exclusively 

from a normal distribution around the current best point. The fixed weights are such that 𝑤𝑅  is 

close to 1 (≈ 0.95). The low value of 𝑤𝑅  promotes local searches around the current best point 

and the objective function is evaluated in the vicinity of previous best solution. If the objective 

function value does not reduce by a set threshold the algorithm assumes that a local minimum 

has been found. The algorithm then restarts and proceeds to generate a new set of random points 

and a new space of the objective function is explored. Published experimental results indicate 

that the fixed approach is better and computationally faster for finding global point.  

Step 5: Return to step 3, if the current number of iterations or function evaluations are smaller 

than maximum prescribed. Else report the objective function value and the point where it is 

achieved.  

In this research, we use a radial basis function as a response surface model to mimic the 

underlying function, average realized total delay costs. The number of initial space filling points 

is set to 6 points, i.e. 𝑛 = 6 and the number of random points was 6 points per iteration, i.e. 

𝑙 = 6. The random points were randomly generated using a normal distribution with mean as the 

current best solution and the standard deviation as 𝜎𝑘 = 0.1 ×  𝑈𝐵𝑘 − 𝐿𝐵𝑘  ;  𝑘 ∈ 𝑊𝐹, 𝐷𝐹, 𝑃𝑚𝑖𝑛  

and the correlation was assumed to be 0. The total number of objective function evaluations was 

set to 200 runs. At the end of the 200 runs the values of WF, DF and 𝑃𝑚𝑖𝑛  which have the lowest 

average realized total cost value was returned. The upper bound and lower bound values for the 

three parameters are given in Table 4.4 below. 
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Table 4.4 Upper and lower bounds for parameter values 

Parameter Lower bound Upper Bound 

Warping Factor (WF) 1 10 

Dimension Factor 

(DF) 
0.1 6 

Minimum Probability 

Threshold (𝑃𝑚𝑖𝑛 ) 
0.002 0.5 

 

Ideally, the optimal design should be determined from one set of days (referred as the training 

set) and the performance of the scenarios should be assessed from a different set of days 

(referred as the testing set). In this research, due to the lack of number of days, the optimal 

design and the reported average realized cost of delay are both determined from the same set of 

days. This may result in over fitting the response surface to average realized total cost of delay.  
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Chapter 5  Results, conclusions and future work 

5.1 Introduction 

 

This chapter provides the conclusions and compares the various scenario generation 

methodologies. It also provides future research directions. We develop the scenarios and also 

determine the benefit of using weather forecasts for four US airports: San Francisco International 

Airport (SFO), Los Angeles International Airport (LAX), Boston Logan International Airport 

(BOS) and Chicago O’hare International Airport (ORD). 

This chapter first presents the probabilistic capacity scenarios for the four airports after 

implementing the methodology of TAF Clustering and Naïve Clustering. A discussion about the 

influence of the weather on the scenario profile is also provided. The chapter then provides the 

numerical values for the three parameters  𝑊𝐹, 𝐷𝐹, 𝑃𝑚𝑖𝑛   obtained after implementing DTW 

Scenarios for the four airports. This is followed by a discussion on the parameter values. For 

each airport, the average realized total costs of delays from the different scenario generation 

methodologies are also presented. It is shown that scenarios from DTW Scenarios result in the 

lowest cost of delay amongst all scenario generation techniques. For SFO, we also present the 

average realized total cost of delay using the STRATUS forecast. We see that the cost of delays 

using the STRATUS is statistically similar to the cost of delays using TAF and DTW. Finally, 

certain limitations and future research directions are also discussed.  

5.2 Probabilistic capacity scenarios from TAF clustering 

 

The probabilistic capacity scenarios generated from TAF Clustering for the four airports are 

presented in this section. The total number of days (𝐷), the number of TAF clusters (𝐿∗), the 

number of scenarios in each TAF cluster  𝑗𝑘  ; 𝑘 ∈  1,2, . . , 𝐿∗   and the probabilities of the 

scenarios for each airport is given in tables 5.1 to 5.4. Days that had missing data, either the TAF 

or the AAR, were removed from the analysis therefore the total number of days vary amongst the 

airports.  

Table 5.1 Results of TAF Clustering for SFO 

SFO 

Number of days 

(𝐷) 
446 

Number of TAF 

clusters  𝐿∗  
2 

Number of 

scenarios  𝑗𝑘  
2 3 

Probability of 

scenarios 

0.4604; 

0.5396 

0.2213; 

0.4139; 

0.3648 
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Table 5.2 Results of TAF Clustering for LAX 

LAX 

Number of days 

(𝐷) 
450 

Number of TAF 

clusters  𝐿∗  
2 

Number of 

scenarios  𝑗𝑘  
2 2 

Probability of 

scenarios 

0.3631; 

0.6369 
 

0.2839; 

0.7161 
 

 

Table 5.3 Results of TAF Clustering for BOS 

BOS 

Number of days 

(𝐷) 
432 

Number of TAF 

clusters  𝐿∗  
2 

Number of 

scenarios  𝑗𝑘  
2 2 

Probability of 

scenarios 

0.4454; 

0.5545 
 

0.6108; 

0.3892 

 

 

Table 5.4 Results of TAF Clustering for ORD 

ORD 

Number of days 

(𝐷) 
449 

Number of TAF 

clusters  𝐿∗  
3 

Number of 

scenarios  𝑗𝑘  
3 2 3 

Probability of 

scenarios 

0.0879; 

0.6428; 

0.2692 
 

0.1461; 

0.8539 
 

0.1323; 

0.5617; 

0.3030 
 

 

The probabilistic capacity scenarios for the four airports are shown in figures 5.1 to 5.9 
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Figure 5.1 Probabilistic capacity scenarios for the days classified in 𝑪𝟏for SFO 

 

Figure 5.2 Probabilistic capacity scenarios for the days classified in 𝑪𝟐 for SFO 

In Figure 5.1, the high AAR capacity scenario in red corresponds to the days that have clear 

weather conditions and stronger, that usual, winds from the San Bruno gap in the afternoon. This 

prompts a change in runway configuration in the afternoon lowering arrival capacity [47]. The 

gradually increasing AAR capacity scenario in blue corresponds to the days when ceiling and 

visibility conditions improve as a result of stratus burn-off. Similarly, in Figure 5.2, the high 

AAR capacity scenario in green corresponds to the days that have clear weather throughout the 

day. The increasing AAR capacity scenario in red corresponds to the days where ceiling and 

visibility conditions improve over time. The low AAR capacity scenario in blue corresponds to 

the days that have poor weather conditions, persisting for the entire day at SFO.   
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Figure 5.3 Probabilistic capacity scenarios for the days classified in 𝑪𝟏 for LAX 

 

Figure 5.4 Probabilistic capacity scenarios for the days classified in 𝑪𝟐 for LAX 

In Figures 5.3 and 5.4, the high AAR capacity scenario in red corresponds to the days that have 

clear weather and LAX is accepting visual arrivals and operating in visual metrological 

conditions (VMC). The low capacity scenario in blue corresponds to poor weather days when 

LAX is operating in instrument metrological conditions (IMC). On these days, it is reported that 

either the cloud ceiling is below 3000ft or the cloud ceilings are present at 8000ft towards the 

west of the airport [48]. The slight increase in capacity for the scenarios in Figure 5.3 occurs 

later in the day as compared to the scenarios in Figure 5.4. This indicates that that Figure 5.3 

represents days where the weather conditions improve later in the day.   
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Figure 5.5 Probabilistic capacity scenarios for the days classified in 𝑪𝟏 for BOS 

 

Figure 5.6 Probabilistic capacity scenarios for the days classified in 𝑪𝟐 for BOS 

In Figure 5.5, the high capacity scenario in red corresponds to days when BOS is operating under 

VMC. The marginal increase in capacity towards the end correspond to improving ceiling 

conditions, specifically cloud ceilings become greater than 3500 feet. The increase in cloud 

ceiling allows a change in the runway configuration thereby permitting higher arrival flows ( 

[49], [50]). The lower capacity scenario is blue corresponds to the days when the cloud ceiling is 

below 3500 feet and BOS is operating under IMC. In Figure 5.6, the high capacity scenario in 

red corresponds to days that have good weather conditions at BOS and the airport is operating in 

VMC. The low capacity scenario in blue corresponds to days that have poor weather conditions. 
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Figure 5.7 Probabilistic capacity scenarios for the days classified in 𝑪𝟏 for ORD 

 

Figure 5.8 Probabilistic capacity scenarios for the days classified in 𝑪𝟐 for ORD 

5

7

9

11

13

15

17

19

21

23

25

7
:0

0

8
:0

0

9
:0

0

1
0

:0
0

1
1

:0
0

1
2

:0
0

1
3

:0
0

1
4

:0
0

1
5

:0
0

1
6

:0
0

1
7

:0
0

1
8

:0
0

1
9

:0
0

2
0

:0
0

2
1

:0
0

A
A

R

Time

Prob : 0.0879

Prob : 0.6428

Prob : 0.2692

5

7

9

11

13

15

17

19

21

23

25

7
:0

0

8
:0

0

9
:0

0

1
0
:0

0

1
1
:0

0

1
2
:0

0

1
3
:0

0

1
4
:0

0

1
5
:0

0

1
6
:0

0

1
7
:0

0

1
8
:0

0

1
9
:0

0

2
0
:0

0

2
1
:0

0

A
A

R

Time

Prob : 0.1461

Prob : 0.8539



61 
 

 

Figure 5.9 Probabilistic capacity scenarios for the days classified in 𝑪𝟑 for ORD 

In Figure 5.7, the high capacity scenario in red corresponds to day having good weather and 

ORD is operating in Plan W configuration (the arrivals are on 22R and 27L). This configuration 

is used on days that enable VMC at the airport and the wind is blowing between 230 to 310 

degrees. The green curve corresponds to days when ORD is operating in Plan B configuration. 

On these days, ORD is operating in VMC while the winds are blowing from 130 to 180 degrees. 

It is also reported that Plan B is implemented on days when the runways are wet.  Finally, the 

capacity scenario in blue corresponds to days when the weather deteriorates as the day 

progresses. On these days there are occurrences of afternoon thunderstorms or rain and ORD 

transitions from VMC to IMC in the afternoon [51].    

In Figure 5.8, the high capacity scenario in red corresponds to the days that have good weather 

resulting in the highest arrival rate at ORD. On these days, ORD is operating under Plan X, the 

preferred arrival configuration (the arrivals are on 27R, 27L and 22R) ( [49], [51]). The lower 

capacity scenario in blue corresponds to the days that intermittently have bad weather. ORD 

operates in VMC at the beginning of the day and transitions into IMC at the onset of bad weather 

and finally returning to VMC towards the end of the day. This might be attributed to a short 

duration rain storm. In Figure 5.9, the high capacity scenarios in red and green correspond to 

days that have good weather but ORD operates in different VMC runway configurations, 

possibly due to wind direction. The distrin two scenarios require The lower capacity scenario in 

blue corresponds to days that experience good weather in mid-afternoon. On such days ORD 

operates in IMC at the beginning of the day and transition into VMC as the day progresses as 

poor weather conditions improve over time.  

 

5.3 Probabilistic capacity scenarios from Naïve Clustering 
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The probabilistic capacity scenarios for the four airports generated from Naïve Clustering are 

presented in this section. The number of scenarios (𝐿∗)and the probabilities of the scenarios 
 𝑃 𝑆𝑘 ;  𝑘 ∈  1,2, . . , 𝐿∗   for the four airports are presented in tables 5.5 to 5.8. The probabilistic 

capacity scenarios for the four airports are shown in Figures 5.10 to 5.13. 

 

Table 5.5 Results of Naive Clustering for SFO 

SFO 

Number of scenarios  𝐿∗  3 

Probabilities of scenarios  𝑃 𝑆𝑘   

0.2399; 

0.3744; 

0.3857 
 

 

Table 5.6 Results of Naive Clustering for LAX 

LAX 

Number of scenarios  𝐿∗  2 

Probabilities of scenarios  𝑃 𝑆𝑘   
0.6733; 

0.3267 
 

 

Table 5.7 Results of Naive Clustering for BOS 

BOS 

Number of scenarios  𝐿∗  4 

Probabilities of scenarios  𝑃 𝑆𝑘   

0.2013; 

0.3680; 

0.1088; 

0.3217 
 

 

Table 5.8 Results of Naive Clustering for ORD 

ORD 

Number of scenarios  𝐿∗  2 

Probabilities of scenarios  𝑃 𝑆𝑘   
0.7795; 

0.2205 
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Figure 5.10 Scenarios from Naïve Clustering for SFO 

In Figure 5.10, the three scenarios correspond to the three typical types of days observed in the 

summer at SFO. The first type corresponds to clear weather days that have high AAR and is 

shown by the green curve. The second type is when the fog sets in the morning and burns off by 

late morning or early afternoon. This type of day is indicated by the red curve that shows an 

increase in the AAR in the late morning. The last day type, shown by the blue curve, is when the 

fog persists and the airport has low landing capacity. 

 

Figure 5.11 Scenarios from Naïve Clustering for LAX 

In Figure 5.11, the high capacity scenario in red corresponds to days that have clear weather and 

LAX operates in VMC. Whereas, the second, lower capacity scenario in blue corresponds to 

days when LAX is operating in IMC resulting in lower capacity. It is interesting to note that 
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LAX operates in IMC capacity for almost 67% of the days in the summer and that the capacity is 

almost consistent throughout the day.  

  

 

Figure 5.12 Scenarios from Naïve Clustering for BOS 

In Figure 5.12, the capacity scenario is purple corresponds to days when BOS is operating under 

good weather conditions. On such days, BOS operates under VMC and has a high arrival 

capacity. The capacity scenario in green corresponds to days that experience poor weather in the 

later part of the day. The operating conditions at BOS transition from VMC to IMC as the day 

progresses. The capacity scenario in blue corresponds to days that experience improving weather 

conditions. This may be attributed to improving ceiling and visibility conditions as the day 

progresses. Finally, the capacity scenario in red corresponds to days that have poor weather 

conditions throughout the day. On such days BOS operates in IMC for the entire day.  
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Figure 5.13 Scenarios from Naïve Clustering for ORD 

In Figure 5.13, the high capacity scenario in red corresponds to days what have good weather 

conditions. ORD operates in VMC throughout the day. The capacity scenario in blue 

corresponds to days that have good weather conditions in the beginning of the day but they 

worsen in the afternoon. It is hypothesized that afternoon thunderstorms or rain reduce the 

capacity at ORD. The capacity scenario corresponding to VMC capacity occurs over 75% of 

days in the summer.   

 

5.4 Optimal designs from dynamic time warping scenarios 
 

This section provides the optimal design required for implementing DTW Scenarios described in 

Section 4.3. A brief discussion on the optimal design is also provided. Once the optimal design is 

determined, it can be used to generate the probabilistic capacity scenarios for any day-of-

operation using the issued TAF and DTW.  

Table 5.9 provides the optimal design for the four airports. The range of the number of scenarios 

observed for the different days at the optimal design across the four airports is also provided.  

Table 5.9 Optimal design and number of scenarios for different airports 

Airport 
Design Parameters Number of 

scenarios 
𝑾𝑭 𝑫𝑭 𝑷𝒎𝒊𝒏 

SFO 1.57 0.79 .0023 350-400 

BOS 6 2.5 .065 12-25 

LAX 1.75 2.5 .035 20-25 
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ORD 4.74 2.27 0.043 15-25 

 

The optimal design is unique for different airports as each airport has unique operating 

capacities, demand levels and terminal weather conditions. Therefore the optimal design needs to 

be determined from historical data before planning arrival operations using DTW Scenarios for 

any day in the future.   

We notice the value of 𝑊𝐹 varyies significantly across the different airports. 𝑊𝐹 is the greatest 

for BOS indicating that there is a high penalty for deviation of the shortest path around the 

diagonal of the distance matrix. Therefore forecasts of proximate quarter hour periods are 

compared for scenario generation. The value of 𝑊𝐹 is minimum for SFO, so that more deviation 

from this diagonal is tolerated. Forecasts for quarter hour periods further separated in time are 

compared for scenario generation. 

The highest value of 𝐷𝐹 is for BOS and LAX whereas the lowest value is for SFO. This implies 

that the scenario probability is more sensitive for TAF similarity for BOS and LAX. For BOS, 

LAX and ORD, 𝐷𝐹 > 1 implying that similarity of the TAF is important in scenario generation. 

For SFO, 𝐷𝐹 < 1, decreasing the importance of the similarity of the TAFs. Days that are less 

similar to the day-of-operation based on the TAF and are included in generating probabilistic 

capacity scenario. 

Finally, the value of 𝑃𝑚𝑖𝑛  is, by far, the lowest for SFO, implying that it will have highest 

number of scenarios. It is surprising to observe that the number of scenarios for the other airports 

is smaller by an order of magnitude. The precise reason for the high number of scenarios at SFO 

needs further investigation.  

5.5 Average realized total cost of delay 

 

This section provides the average realized cost of delay for the different scenario generation 

techniques for the four airports. As a reminder for each day, the realized cost of delay is 

calculated by first determining a PAAR using the SSGDM corresponding to each scenario 

generation methodology. The ground delay is obtained directly from the SSGDM. The realized 

air delay is obtained by calculating the delay between the realized arrival capacity and the PAAR 

for that day using a deterministic queuing diagram. We use statistical tests to compare the 

average realized delay costs from the methodologies. The results allow us to draw some tentative 

conclusions about the relative performance of the different methods of developing capacity 

scenarios from weather forecasts that we have developed in this research.  

Table 5.10 provides the average realized total cost of delay under the different methodologies of 

scenario generation:  perfect information case, naïve clustering, TAF clustering, DTW Scenarios 

(abbreviated as TCD      
PI , TCD      

Naive , TCD      
TC  and TCD      

TDTW ). As a reminder, TAF clustering and 

DTW Scenarios require the TAF to generate the scenarios. For SFO, we also present the average 

realized total cost of delay using the Fog burn-off methodology (abbreviated as TCD      
FB ). In 

presenting results here we convert the cost to units of ground delay minutes by multiplying the 

objective function (equation (2.1)) by 15. The last column shows the benefit of using weather 
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forecast by calculating the percentage increase in realized delay cost when using the scenarios 

developed by Naïve clustering over scenarios developed by DTW Scenarios. Column 2 of Table 

5.10 shows that the cost under the PI case varies greatly between the different airports, indicating 

the different capacity and demand imbalances at different airports.  

Table 5.10 Average realized total cost of delay (in ground delay minutes) over 45 days 

Airport PI Naïve  
TAF 

Clustering 

TAF-DTW 

Scenarios 

Fog burn- 

off 

𝐓𝐂𝐃      
𝐍𝐚𝐢𝐯𝐞 − 𝐓𝐂𝐃      

𝐓𝐃𝐓𝐖

𝐓𝐂𝐃      
𝐍𝐚𝐢𝐯𝐞

× 𝟏𝟎𝟎 

SFO 1448 3543.50 2916.75 2708.47 2733 
23.56% 

LAX 306.15 621.60 626.25 585.66 - 
5.78% 

BOS 2942 9249.62 8550.3 6557.21 - 
29.10% 

ORD 12755 34801 33413 28996.5 - 
16.67% 

 

We performed paired, two tailed t-tests to determine if the differences between the TCD      s are 

statistically significant. In these tests, the null hypothesis is that the difference between the TCD      s 

obtained from the different methodologies is zero while the alternative hypothesis is that 

difference is other than zero. The p-values for the different pairs of TCD       are given in Tables 

5.11-5.14. The values in italics indicate the cases in which the null hypothesis is rejected at a 

significance level of 10%. For SFO we also compare the Fog burn-off methodology with other 

methods of scenario generation.  

Table 5.11 p-values from the paired t-test for SFO 

SFO 

 
PI Naïve 

TAF 

Clustering 

TAF-

DTW 

Scenarios 

Fog 

burn-off 

PI - 
3.41E-

12 
6.84E-11 1.50E-11 2.69E-11 

Naïve 
3.41E-

12 
- 1.62E-05 4.40E-07 1.44E-06 

TAF 

Clustering 

6.84E-

11 

1.62E-

05 
- 6.98E-05 2.79E-04 

TAF-

DTW 

Scenarios 

1.50E-

11 

4.40E-

07 
6.98E-05 - 0.33 

Fog burn-

off 

2.69E-

11 

1.44E-

06 
2.79E-04 0.33 - 
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Table 5.12 p-values from the paired t-test for LAX 

LAX 

 
PI Naïve 

TAF 

Clustering 

TAF-

DTW 

Scenarios 

PI - 
8.61E-

04 
7.23E-04 3.18E-03 

Naïve 
8.61E-

04 
- 0.05 0.19 

TAF 

Clustering 

7.23E-

04 
0.05 - 0.15 

TAF-

DTW 

Scenarios 

3.18E-

03 
0.19 0.15 - 

 

Table 5.13 p-values from the paired t-test for BOS 

BOS 

 
PI Naïve 

TAF 

Clustering 

TAF-

DTW 

Scenarios 

PI - 7.36E-08 4.50E-05 1.02E-04 

Naïve 7.36E-08 - 0.08 8.11E-03 

TAF 

Clustering 
4.50E-05 0.08 - 0.06 

TAF-

DTW 

Scenarios 

1.02E-04 8.11E-03 0.06 - 

 

 

Table 5.14 p-values from the paired t-test for ORD 

ORD 

 
PI Naïve 

TAF 

Clustering 

TAF-

DTW 

Scenarios 

PI - 
6.51E-

04 
2.52E-04 2.26E-03 

Naïve 
6.51E-

04 
- 0.42 6.47E-03 

TAF 

Clustering 

2.52E-

04 
0.42 - 0.015 

TAF- 2.26E- 6.47E- 0.015 - 
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DTW 

Scenarios 

03 03 

 

Tables 5.10 to 5.14 indicate that probabilistic capacity scenarios derived from DTW Scenarios 

are better than scenarios devoid of forecast information as TCD      
TDTW  is statistically lower 

than TCD      
Naive  at a significance level of 10%. For all airports except from LAX the above fact is 

evident from the p-value tables. For LAX, we modify the alternate hypothesis to TCD      
TDTW ≤ 

TCD      
Naive  allowing us to perform a one-tailed paired t-test, the p-value reported in Table 5.12 is 

reduced by half allowing us to reject the null hypothesis at the significance level of 10%. 

When we compare the probabilistic capacity scenarios from TAF Clustering to Naïve Clustering 

we observe that TCD      
TC  is lower than TCD      

Naive   for all airports except LAX. For LAX, TCD      
TC  is 

0.8% higher than  TCD      
Naive  and, furthermore, this difference is statistically different than 0. 

From this we conclude that TAF Clustering, while probably somewhat better than Naïve 

clustering, does not generate much value from day-of-operation weather information. This is 

probably because of the limitations of this approach discussed in Chapter 4.   

For SFO, the average realized total cost of delays using the scenarios generated from the 

STRATUS forecast are marginally higher (0.9%) than TCD      
TDTW , but the difference is not 

statistically significant. The use of a specialized weather forecast product—STRATUS—offers 

no improvement to plan operations. We learned from the developers of the STRATUS that 

STRATUS is used as an input to generate the TAF for SFO, this may explain the statistically 

similar costs using the two forecast products.  

Our results reveal that the average realized delay costs determined from using TAF and DTW is 

lower than Naïve clustering for all four airports. This implies that, of the methods we tested, 

DTW Scenarios is the preferred means of generating probabilistic capacity scenarios 

incorporating the TAF weather forecast.  

In summary, our four case studies suggest that probabilistic capacity scenarios derived from 

weather forecasts using the DTW method work better for planning operations than scenarios 

developed without a weather forecast. 

We also compare the realized costs from the scenarios based on DTW and Naïve Clustering for 

individual days. Our hypothesis was that the level of benefit of using weather forecast should 

vary with the cost under the PI information case. The y-axis of Figures 5.14 to 5.17 represents 

the difference between the total realized cost of delays using DTW scenarios and Naïve 

Clustering   TCDTDTW − TCDNaive    for individual days. The individual days are arranged in 

ascending order of the cost under the perfect information case  TCDPI  represented on the x-axis. 

When the difference is positive, it indicates that the scenarios generated using Naïve Clustering 

perform better that scenarios generated from DTW scenarios. This implies that the scenarios 

from DTW Scenarios are not useful in controlling the delay costs on that day. Conversely, when 

the difference is negative, it indicates that scenarios generated from the DTW scenarios 

outperform the scenarios from Naïve Clustering. From Figure 5.14 for SFO, we observe that the 

difference is positive for days that have a lower cost under the PI case. The difference becomes 

negative as the cost under the PI case increases. This suggests that the DTW approach yields the 
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greatest benefits on days that have a greater capacity demand imbalance. In other words, the 

TAF reduces the downside risk. The benefit of using the using the TAF on days that have high 

TCDPI  outweighs the loss on days that have low TCDPI . Since, however, TCDPI  can’t be 

predicted at the beginning of a day, the above observation affirms that the TAF in conjunction 

with DTW should be used for planning operations on all days-of-operation. If the arrivals are 

metered using the scenarios from DTW Scenarios, the realized cost would be comparable if 

arrivals were metered using scenarios from Naïve clustering when TCDPI  is low. Other the other 

hand when TCDPI  is high, the metering performed using the scenarios obtained using the DTW 

methodology would yield a lower cost as compared to Naïve Clustering.  

A similar trend is also seen for ORD. For BOS, the trend is less pronounced, but scenarios based 

on DTW outperform the scenarios from Naïve Clustering for 80% of the days considered in the 

experiments.  There is not clear pattern in the case of LAX perhaps because our sample does not 

contain any days when conditions at LAX were very poor.   

 

Figure 5.14  𝑻𝑪𝑫𝑻𝑫𝑻𝑾 − 𝑻𝑪𝑫𝑵𝒂𝒊𝒗𝒆 versus  𝑻𝑪𝑫𝑷𝑰 for  SFO 
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Figure 5.15 𝑻𝑪𝑫𝑻𝑫𝑻𝑾 − 𝑻𝑪𝑫𝑵𝒂𝒊𝒗𝒆 versus  𝑻𝑪𝑫𝑷𝑰 for LAX 

 

 

Figure 5.16 𝑻𝑪𝑫𝑻𝑫𝑻𝑾 − 𝑻𝑪𝑫𝑵𝒂𝒊𝒗𝒆 versus  𝑻𝑪𝑫𝑷𝑰 for BOS 
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Figure 5.17 𝑻𝑪𝑫𝑻𝑫𝑻𝑾 − 𝑻𝑪𝑫𝑵𝒂𝒊𝒗𝒆 versus  𝑻𝑪𝑫𝑷𝑰 for ORD 

 

 

5.6 Conclusions, limitation and future research 

 

This thesis contributes towards the incorporation of day-of-operation weather forecast 

information to support probabilistic decision-making in the NAS. We provide several 

methodologies to generate day-of-operation probabilistic capacity scenarios from the day-of-

operation weather forecast. These methodologies require the day-of-operation forecast, historical 

weather forecasts and historical realized capacity to generate the scenarios.  

In Chapter 2, we qualitatively showed the influence of weather on arrival capacity. We discussed 

that strategic decisions, like ground delays, align the demand with future capacity. Stochastic 

GDP models determining optimal planned arrival rates by incorporating the uncertainty in future 

capacity have received attention but their application in a real world setting is limited. Previous 

research efforts have focused on development of these stochastic optimization models but the 

inputs required in the model have received little attention particularly the uncertainty in arrival 

capacity. Researchers assume that the uncertainty in arrival capacity can be obtained from 

weather forecast or from the expertise of air traffic managers. In this research we developed 

methods to model the uncertainty in arrival capacity in the context of making optimal ground 

delay decisions. Traditionally, the stochastic GDP models capture this uncertainty in arrival 

capacity through probabilistic capacity scenarios or as a Markov process. We opted to represent 

the uncertainty in the arrival capacity as probabilistic capacity scenarios over a Markov chain as 

the former are more tractable and have a direct application in current air traffic management. We 

showed that the current literature lacks methodologies on generating probabilistic capacity 

scenario generation from forecast forecasts. We stated that our contribution is to develop 

methodologies that incorporate the day-of-operation weather forecast for scenario generation. 
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In Chapter 3, we provided a discussion on the weather forecasts used in the research: Terminal 

Aerodrome Forecast and the STRATUS forecast. While STRATUS is forecast specific to SFO 

the TAF is a forecast issued for all major airports. Therefore the methodologies using the TAF 

can be applied to airport where this forecast is available. We assumed that the TAF issued 

between 4am and 6am and the STRATUS issued at 8am is used to make strategic decision for 

the entire day-of-operation. We then proceeded to develop TAF Clustering, a methodology 

involving clustering of TAF and followed by a clustering of realized arrival capacity profiles that 

have similar TAFs. Fog burn-off scenarios, a scenario generation methodology focusing on the 

SFO STRATUS forecast determines scenarios from day having similar fog burn-off time. This 

methodology is developed exclusively for SFO. We also showed that the current research lacks 

the methodology to assess the performance of the probabilistic capacity scenarios. To this end 

we developed a platform that allows us to measure the performance of the scenarios on the days 

in the past. Under this platform we used the SSGDM, a stochastic ground delay model, requiring 

probabilistic scenarios as inputs to determine the optimal planned arrival rates. The performance 

was based on average of the sum of ground delay cost and the realized air delay cost over 45 

days in the past. Each day, the ground delay was obtained directly from the SSGDM. The 

realized air delay was determined using a queuing diagram between optimal planned arrival rate 

and the realized capacity profile of the day in the past. 

Finally, to assess the benefit of weather forecast in decision making we formulated two scenario 

generation methodologies which serve as reference cases: Naïve Clustering and Perfect 

Information. Naïve clustering generates scenarios though clustering of arrival profiles without 

forecast information. Perfect Information assumes that the GDP can be formulated based on the 

precise information about future capacity. Comparing costs of scenario generation techniques 

requiring the weather forecast with Naïve Clustering quantifies the benefit of using weather 

forecasts in decision making. On the other hand, comparison with the cost under the Perfect 

Information measures the inaccuracy in weather forecasts.  

We illustrated in Chapter 4, some of the short comings of TAF Clustering and motivated the 

development of another methodology involving the TAF called Dynamic Time Warping (DTW) 

Scenarios. We borrowed a technique from machine learning called DTW developed to match 

electrical signals. We used DTW to compare the day-of-operation TAF with all the TAFs in the 

past. While developing this scenario generation methodology, we introduced three parameters 

that tune DTW to improve comparisons between the TAFs. We wanted to determine the set of 

optimal parameter values that minimize the average delay costs. This was computationally 

expensive and we used an algorithm involving stochastic response surface methodology to 

determine the optimal values thereby maximizing the performance of DTW Scenarios. 

In Chapter 5 we used the above mentioned methodologies to develop scenarios for four US 

airports: SFO, LAX, BOS and ORD. We found that incorporating TAF information to plan 

arrivals reduces the realized delay costs on average by 5%-30% when compared to 

methodologies that do not make use of a weather forecast. The average cost of delay using the 

scenarios developed from DTW Scenarios is the lowest across the four airports when compared 

to other scenario generation techniques. Moreover, the difference is cost is statistically different.  

This indicates that that DTW Scenarios can be applied to any airport where the TAF is issued. 

For SFO, our results indicate that the scenarios generated from STRATUS and TAF yield similar 

costs. One possible reason is the TAF for SFO is generated using the STRATUS forecast. Lastly, 
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the benefit of using weather forecast in decision is more pronounced on days that have a greater 

capacity-demand imbalance. This trend is clearly visible for SFO, BOS and ORD but the trend 

was not pronounced for LAX. 

There are some limitations of the current research. First, the current research determines optimal 

ground delays by ignoring the en-route airspace. It assumes that the en-route airspace has infinite 

capacity and the only bottlenecks in the NAS are at the airports. In the present system, the air 

traffic controllers manage en-route traffic by issuing tactical decision including speed and 

heading changes to resolve conflicts after strategic decisions have been initiated. Furthermore, 

human factors like the increase in work load of controllers may contribute to additional delays. 

These additional sources of delays are not incorporated in the SSGDM. This makes it difficult to 

compare the observed ground delays in the NAS with the idealized delays determined from our 

platform. In future research we plan to develop a NAS wide ATFM model that accounts for 

uncertainty in capacity at several NAS resources. We can then use our platform to determine the 

delays associated with our strategic initiatives and compare them to the actually observed delays 

in the system. 

Second, we use the TAF issued before 7am to make decisions for the entire day. The accuracy of 

the TAF might be lower for periods later in the day-of-operation. Similarly, STRATUS is a 

forecast product that is used to predict the burn-off time of the fog and the fog burns-off before 

3:00pm almost surely. Therefore, planning of operations for periods beyond 3:00pm is outside 

the scope of the forecast. In future research we plan to reduce the planning horizon and then 

compare the realized costs using the TAF and STRATUS.  

Third, the optimal parameter values and the average costs are determined using the same set of 

days in DTW Scenarios that may lead to over fitting of data. Ideally, the design should be 

determined from one set of days and the costs should be reported on another set of days. In this 

research we did not investigate whether the optimal parameter values relate to specific airport 

characteristics, particularly the arrival capacity and demand. In future research we plan to 

understand the relationship of the parameter values with arrival demand levels and capacity 

values. 

Fourth, certain qualitative weather forecasts were ignored in the TAF while generating the 

scenarios. In future research we plan to include the qualitative forecast that might offer more 

insight into the scenarios and may lower the realized cost. Specifically for SFO, we plan to 

develop a methodology to generate probabilistic capacity scenarios by integrating the TAF and 

the STRATUS forecast.  
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