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Abstract

It has been suggested that humans mentally simulate the out-
comes of their actions when making decisions. However,
this process can be challenging in real-world decision-making,
which typically involves temporally extended decision trees
with numerous potential outcomes. Here, we demonstrate with
a computational model that temporally extended decisions can
be achieved with just a few forward simulations, formalized
as rollouts. We also show that, under resource constraints,
performing many partial (shallow) rollouts can yield more fa-
vorable outcomes than performing fewer full (deep) rollouts.
Additionally, our model captures behaviors traditionally at-
tributed to pruning or satisficing strategies without the need
for explicit heuristics, providing an alternative explanation for
these phenomena. Finally, we show that the dynamics of value
estimation over successive rollouts closely resemble evidence
accumulation models. Our framework offers a plausible mech-
anism for temporally extended decision-making and provides
insights into the neural underpinnings underlying this process.

Keywords: decision-making; mental simulation; reinforce-
ment learning; planning

Introduction

Previous research has suggested that humans use mental sim-
ulation for evaluating the outcomes of their actions when
making decisions (Battaglia, Hamrick, & Tenenbaum, 2013).
In simple decision problems, in particular, studies suggest
that humans rely on very few samples of simulated outcomes
to inform their decisions (Erev & Roth, 2014; Hertwig, Bar-
ron, Weber, & Erev, 2004; Hertwig & Erev, 2009). While
this may appear implausible at first, an influential theory sug-
gests that decisions based on very few samples are not only
possible, but the optimal strategy under the assumption that
samples are costly (Vul, Goodman, Griffiths, & Tenenbaum,
2014). Yet, despite theoretical and empirical evidence that
few samples are needed in simple decision problems, it is not
clear whether the same conclusion holds in more general sce-
narios, such as in temporally extended decision-making.

In temporally extended decision-making scenarios, men-
tal simulation involves navigating through complex decision
trees that have numerous potential outcomes. Consider a tem-
porally extended decision problem with a branching factor of
b at every time step. Simulating n steps ahead involves eval-
uating b" possible paths, which quickly becomes intractable
as b or n grows. Given the constraints of time and compu-
tational power in human cognition, such extensive forward
simulation seems at odds with our ability to make rapid and
accurate decisions in these extended scenarios. Although it is
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believed that humans can leverage a wide variety of strategies
to reduce the computational load (Callaway et al., 2022; Huys
et al., 2015), the complexity of the problem could still mean
that effective forward simulation would demand an impracti-
cal level of resources.

In this work, we extend the ideas of Vul et al. (2014) to tem-
porally extended decision trees and investigate whether good
decisions can still be achieved with very few forward simu-
lations. We formalize a forward simulation as a rollout — an
iterative sampling procedure, where each sampled state is al-
ways a successor (child) of the previously sampled state, and
which terminates when the most distant state is sampled. We
consider the setting in which the agent selects a single action
that results in a series of stochastic transitions that the agent
has no control over. In this setting, we show that the optimal
approach in temporally correlated environments is to decide
on the basis of a fairly small number of rollouts. We also find
that shallower rollouts are favored when computational re-
sources are limited, and that deeper rollouts are favored when
resources are abundant. Additionally, our model predicts a
tendency to prefer paths with low variance in rewards, offer-
ing an alternative explanation for behaviors traditionally at-
tributed to pruning or satisficing strategies. The model also
has dynamics that closely resemble evidence accumulation
models, giving clear predictions of reaction time patterns in
temporally extended decision trees. Finally, we show that our
conclusions hold in a wide range of environments, and inves-
tigate when more rollouts are needed. In particular, we show
that reducing the correlations in cumulative rewards between
different paths leads to the need for more rollouts.

Model
Task environment

We assume an environment described by a decision tree with
a branching factor of » and a depth of d. The agent must
choose an action at the root node. Each node i is associated
with a Gaussian-distributed reward R;:

Ri ~ N(u;,0%), (1)

where the mean of the Gaussian distribution is randomly ini-
tialized:

wi ~ N(0,0,). )

In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).
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Figure 1: Optimal decisions based on very few rollouts. (A) Task illustration with a branching factor of » = 2. The agent
chooses an action at the root node to deterministically transition to the corresponding first-layer node and then goes through
random transitions in subsequent nodes. (B) Fraction of maximal reward achieved as a function of the number of rollouts
performed before taking an action. (C) Fraction of maximal reward achieved divided by the time needed to execute all the
rollouts and one action, as a function of the number of rollouts performed before taking the action. (D) Optimal number of
simulations that yield the highest reward fraction per time as a function of action/simulation time-cost ratio. (E) The same as
(C) but under different branching factors. Here we illustrate the results with a tree depth of d = 2.

The cumulative reward G; = Y.y cancestors(i) Ry obtained from
selecting a root-node action and traversing the tree to a leaf
node i is therefore distributed according to:

Gi ~ N(mi,05), 3)
where
mi= Y o, )
i eancestors (i)
and

o% = doy. &)

This leads to a reward correlation structure in the environ-
ment, where leaf nodes closer to each other in the decision
tree tend to have similar cumulative rewards.

Agent

We assume that an agent needs to select an action at the root
node that maximizes the expected cumulative reward (Fig-
ure 1A). While the root-node policy is thus controlled by the
agent, we assume that all subsequent transition probabilities
are fixed. The agent is equipped with a world model con-
sisting of ground truth reward and transition probabilities and
can draw samples from the model. Each sample is a forward
rollout from the root node to one of the leaf nodes, which
provides a noisy estimate of the cumulative reward for an ac-
tion. Specifically, the agent chooses a root-node action a for
arollout and gets a sample s from the cumulative reward dis-
tribution p(Gla), where

p(Gla) =} p(Gl)p(ila). (6)

Here, p(Gla) is the cumulative reward distribution condi-
tioned on choosing the root-node action a for a rollout,
marginalized across all leaf nodes that the rollout could visit.

Before selecting an action, the agent draws a finite number
of samples S from the world model. We assume that the agent
draws samples with a rollout policy that sequentially samples
each action. This sequential rollout policy assumes no sys-
tematic selection of root-node actions and samples all actions
as evenly as possible. In the simplest case, we also assume
that the transition distribution is uniform at all nodes beyond
the root node. This uniform transition distribution implies
that all leaf nodes are equally likely to be visited by a rollout
for a given root-node action.

After sampling the rollouts, the agent takes the action with
the highest estimated cumulative reward based on the sam-
pled rollouts:

1
[Sal

Y el )

a* = argmax
a SES,

where S, is the subset of rollouts from the root-node action a

and g; is the cumulative reward of the sampled rollout s.

Results
Optimal decisions based on very few rollouts

We first investigated how many samples an agent should draw
to optimize its decisions in a temporally extended setting by
simulating our model with a branching factor of b = 2. We
computed the expected reward fraction under the resulting
policy, defined as the fraction of the maximal available re-
ward that was achieved by the agent in a given environment.
When repeating this analysis across tree depths, the expected
reward increased with the number of simulations, reflecting
the fact that each sample reduces uncertainty about the opti-
mal policy (Figure 1B). Thus, as long as sampling is “free”,
an agent should sample infinitely many rollouts before mak-
ing a decision.

3645



We next considered a scenario where rollouts take time,
resulting in an opportunity cost. Suppose the agent is given
a fixed amount of time to freely conduct sampling and take
actions. The more samples the agent draws before making
a choice, the fewer actions it can take in a fixed amount of
time. In this case, if rollouts are as slow as physical actions,
no samples should be drawn, since the information gained by
sampling and acting is identical, yet only the latter results in
real rewards. However, if a sample can be obtained in less
time, the increased rewards expected from sampling can off-
set the time spent not acting. To capture this idea, we defined
‘expected reward fraction per time’ as the expected reward
fraction divided by the time to execute all the rollouts and one
action. For a relatively modest simulation cost of 0.05 (i.e.,
one action takes as long as 20 simulations), we found that the
expected reward fraction per time peaked at a relatively small
number of simulations (Figure 1C). Indeed, across a range of
tree depths and simulation costs, the optimal number of sim-
ulations was typically very small, surpassing 10 only when
simulations were cheap and trees were deep (Figure 1D). The
same pattern of results was also found under different branch-
ing factors. (Figure 1E). These results are similar to those re-
ported previously for bandit problems (Vul et al., 2014) and
suggest that the optimal approach in the temporally extended
decision-making setting is similarly to take action on the ba-
sis of a fairly small number of rollouts.

Optimal simulation depth

In the preceding analyses, each sample was a rollout termi-
nating at a leaf node. Yet, due to the stochasticity of the tran-
sitions, shallower nodes can be more informative than deeper
nodes. This is because a specific node is less likely to be
visited the more distant it is from the action. Thus, if we as-
sume that the agent is capable of evaluating the cumulative
reward to an intermediate node and has finite computational
resources, it may be beneficial to perform partial rollouts in
temporally extended decision-making settings.

To investigate this, we assumed a finite computational bud-
get specifying the number of node expansions an agent could
simulate before taking an action and considered rollouts of
different depths. We found that the agent achieved higher av-
erage rewards as the computational budget increased, because
more individual rollouts were sampled (Figure 2A). Impor-
tantly, however, the optimal rollout depth depended on the
computational budget, consistent with our hypothesis. For
small budgets, shallow rollouts were typically superior, since
they enabled more samples from the earlier, more relevant
nodes. However, as the computational budget increased, the
additional shallow rollouts provided increasingly less infor-
mation about earlier nodes while providing no information
about deeper nodes. For large computational budgets, there-
fore, deeper rollouts were superior, providing sufficient in-
formation about all nodes of the tree (Figure 2A). This re-
sult holds across trees with different branching factors (Fig-
ure 2B). In trees with higher branching factors, simulating all
early nodes required a larger computational budget, leading
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Figure 2: Optimal simulation depth. (A) Fraction of maxi-
mal reward achieved as a function of computational budget
(the number of node expansions before taking an action) un-
der different simulation depths. Here we illustrate the results
with a branching factor of » = 3. (B) Optimal simulation
depth that yields the highest reward fraction as a function of
computational budget for different branching factors.

to smaller optimal rollout depths (Figure 2B). In summary,
the optimal strategy for a capacity-limited agent is to perform
shallow rollouts for small computational budgets and deeper
rollouts when it has enough resources to “think”.

Pruning and satisficing

We then considered the case where some actions lead to high-
variance paths while others lead to low-variance paths. Previ-
ous studies suggest two heuristics in human planning in such
settings: pruning and satisficing. Specifically, humans stop
considering sub-trees when they encounter a large loss (prun-
ing; Huys et al., 2012, 2015), and they commit to a path when
they encounter a large reward (satisficing; Simon, 1955). We
asked whether our model can provide alternative explanations
for previous results on pruning and satisficing without build-
ing in assumptions of the corresponding heuristics.

We first considered the case of pruning, where there is an
early punishment for one action followed by an even larger
reward some time in the distant future. Critically, we now
assume that the environment transitions are deterministic and
the agent can control its policy at every node. In this case, the
agent should take the high-variance action in order to maxi-
mize its cumulative reward, provided that subsequent transi-
tions are deterministic. However, if there is uncertainty in the
internal world model, the high-variance action may be disfa-
vored. This is because the uncertainty can cause the agent
to overestimate the possibility of not getting the later pay-
off after the initial large punishment. To investigate this phe-
nomenon, we let one action lead to a large punishment of —10
atadepth of n =1 and to a large positive reward of 4-15 in one
of the downstream leaf nodes for the action. Additionally, in-
stead of having uniform transition probabilities in the internal
model, we set the transition probabilities of moving towards
the large reward leaf node to 1 — € at each node, where € cor-
responds to the uncertainty in the world model. This setting
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Figure 3: Pruning and satisficing. Transition uncertainty cor-
responds to the parameter € that characterizes the probability
of failing to transition towards the terminal leaf node with a
large reward or punishment at each transition. (A-B) Envi-
ronment corresponding to the pruning strategy, where there
is an early punishment for one action followed by a larger re-
ward later in the tree. Increasing uncertainty leads to favoring
the low-variance action. (C-D) Environment corresponding
to the satisficing strategy, where there is an early reward for
one action followed by a larger punishment later in the tree.
Increasing uncertainty leads to favoring the high-variance ac-
tion. The high-variance action is optimal in A-B, and the low-
variance action is optimal in C-D.

can be interpreted as the agent intending to move towards the
rewarded leaf node, but the noisy internal model predicts that
there is a probability € of each intended transition failing.

As predicted, the agent favored the high-variance action for
small uncertainties. However, as the uncertainty increased,
which decreased the estimated probability of being able to
visit the rewarded leaf node, the low-variance action became
increasingly favored (Figure 3AB). The agent also tended to
favor the low-variance action in deeper trees, since the agent
had a higher estimated cumulative probability of failing to
move towards the rewarded leaf node. These observations
hold both when considering the action taken in the limit of
infinite samples (Figure 3A) and also when we consider the
action taken on the basis of a finite number of samples (Figure
3B). The key difference between these two settings is that the
transition between the two actions changes more gradually
in the finite-sample situation. This is because, in the finite-
sample situation, the estimated probability of transitioning to-
wards the rewarded node is more noisy. These results provide
an alternative explanation for previous findings that humans
prune decision trees when they encounter large losses during
planning (Huys et al., 2012, 2015).

Similarly, we also considered the case for satisficing,
where there is an early reward of 410 for one of the actions
at a depth of n = 1, followed by a larger punishment —15 in
one of the downstream leaf nodes of the action. In this case,
we assume the punishment to be inevitable, but the uncertain
world model of the agent suggests a probability € of escap-
ing this path at each non-root node. We observed symmetric
patterns, where the agent favored the risky action for large
uncertainty, and the alternative for small uncertainty (Figure
3CD). This is consistent with previous findings that humans
commit to sub-optimal options when they encounter large re-
wards and thus miss optimal options (Simon, 1955).

Importantly, we suggest an alternative underlying mech-
anism for previous observations of pruning and satisficing.
Here, myopic decisions arise not from heuristics, but from
a rational evaluation of future outcomes under uncertainty.
Our model may not account for all aspects of the pruning
and satisficing effects. Specifically, our model is similar to
introducing a temporal discount factor, since the finite proba-
bility of transitioning towards a non-rewarding node can be
captured by such a discount factor. However, Huys et al.
(2012) showed that while the pruning effect could be par-
tially explained by a general temporal discount factor, par-
ticipants also demonstrated additional pruning in response to
large negative outcomes, which could only be explained by
introducing a second temporal discount factor. We hypoth-
esize that such an effect could potentially be captured by a
model where uncertainty increases with planning depth, in
contrast to our current framework which has a fixed transi-
tion uncertainty throughout the tree.

Relationship with evidence accumulation

We then investigated the connections between our model and
evidence accumulation models. Numerous studies in bandit
settings suggest that noisy decision-making is based on an ev-
idence accumulation process, where people accumulate sam-
ples to reach a decision boundary before making a choice
(Bakkour, Zylberberg, Shadlen, & Shohamy, 2018; Gold
& Shadlen, 2007; Ratcliff & McKoon, 2008; Zylberberg,
Bakkour, Shohamy, & Shadlen, 2024). Moreover, recent
studies propose that the same evidence accumulation process
also underlies temporally extended decision-making (Solway
& Botvinick, 2012). To draw connections between our model
and evidence accumulation models, we asked whether our
model shows the same accumulation dynamics and whether it
can generate new predictions in temporally extended decision
trees.

Consistent with previous studies (Gold & Shadlen, 2007;
Vul et al., 2014), we considered an environment with a
branching factor of b = 2 and reframed the decision problem
as a hypothesis testing problem. In this case, the agent needs
to differentiate between two alternative hypotheses, (i) action
1 is best, and (ii) action 2 is best. The agent performs rollouts
and accumulates the resulting information until the cumula-
tive evidence is strong enough to support one hypothesis over
the other. We assume that every time step the agent draws a
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Figure 4: Relationship with evidence accumulation. (A) Ev-
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curves correspond to the predictions of the constant bound-
ary model. The red curve corresponds to the predictions of
the model that maximizes reward fraction per time under a
time-cost ratio of 0.05.

sample from each action and computes the sample difference
g1 — g2 between the two actions. Then the agent computes the
log likelihood ratio of the sample difference under the two al-
ternative hypotheses:

p(g1 — g2|option 1 better)
p(g1 — g2|option 2 better) '

L =log 8)
The agent accumulates the log likelihood ratios across sam-
ples and makes a decision when the cumulative log likelihood
ratio reaches a constant boundary.

We found that the accumulation dynamics in individual
trials closely resembled the accumulation dynamics found
in previous studies (Bakkour et al., 2018; Gold & Shadlen,
2007; Ratcliff & McKoon, 2008; Zylberberg et al., 2024),
where the agent accumulated noisy samples towards one of
the two hypotheses (Figure 4A). We then looked into the ef-
fect of tree depth on the accumulation process. We found that
the accumulation speed was slower for deeper trees, due to
the fact that evidence got more ambiguous for deeper trees
(Figure 4B). We then considered different decision bound-
aries and tested how many simulations were needed to reach
the boundaries. We found that the number of simulations
needed was consistently higher for deeper trees across differ-
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Figure 5: Model performance under various conditions. (A)
Optimal number of simulations as a function of tree depth un-
der different branching factors, transition probabilities, and
correlation structures. (B) Corresponding optimal reward
fraction per time achieved by the agent under different condi-
tions.

ent decision boundaries, suggesting that reaction times should
be longer for deeper trees (Figure 4C). Moreover, we com-
pared the number of simulations predicted by both the con-
stant boundary model and the model that maximized reward
fraction per time. We found that predictions from the two
models closely matched each other (Figure 4C). Importantly,
however, the two models make decisions based on different
rules. The constant boundary model makes decisions when
the evidence reaches a fixed boundary, which corresponds to
a fixed confidence. In contrast, the model that maximizes
reward fraction per time does not explicitly assume a deci-
sion boundary but decides the number of simulations based
on maximizing the simulation efficiency.

When are more rollouts needed?

In the analyses above, we considered a simplified setting with
specific assumptions about the environment. It is not clear
whether the conclusion that an optimal decision can be based
on very few rollouts holds in more general settings, and un-
der what conditions it might fail. To answer this question, we
loosened the assumptions and tested our model across a wide
range of tree depths, branching factors, and transition distri-
butions. Critically, in the previous analyses, we only consid-
ered environments with a correlated reward structure. In these
environments with rewards at intermediate nodes, paths lead-
ing to leaf nodes closer in the decision tree tend to have more
similar cumulative rewards on average. In real-world situa-
tions, however, we might also face decision problems without
such a correlation structure. In this case, the similarity of cu-
mulative rewards is independent of how close the correspond-
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ing nodes are. To investigate the influence of reward corre-
lation structures, we constructed uncorrelated environments
where all leaf node rewards were sampled independently and
tested our model in both the correlated and uncorrelated en-
vironments.

The conclusion that temporally extended decisions can be
achieved with few rollouts can fail either when too many sam-
ples are necessary to gain a sufficient fraction of rewards,
or when rollouts contain no information about expected re-
wards irrespective of how many samples the agent draws. We
therefore looked into the optimal number of simulations and
the corresponding optimal reward fraction per time in dif-
ferent settings. We found that in correlated environments,
our conclusions held across different branching factors, tree
depths, and transition probabilities, demonstrating that the
few-rollout strategy is optimal in a wide range of situations
(Figure 5A). In uncorrelated environments, however, this pic-
ture changes drastically. We found that the agent should per-
form significantly more rollouts, and the optimal reward frac-
tion per time dramatically dropped when tree depth or branch-
ing factor increased (Figure 5B). This was because rollouts
contained less information about the expected reward in un-
correlated environments. Thus, the conclusion that an opti-
mal decision can be based on very few rollouts only holds in
correlated environments, and the reward correlation structure
is a critical factor determining the rollout efficiency.

Discussion

In this paper, we propose a model that can achieve optimal
temporally extended decisions with very few rollouts. Our
model extends an influential theory by Vul et al. (2014) to
the temporally extended setting, suggesting that humans can
make optimal decisions based on very few rollouts across a
range of environments. Our model provides a normative ex-
planation for when and why humans do not plan to termina-
tion. Further, we show that the model can capture previous
results that are traditionally attributed to pruning or satisfic-
ing strategies without explicitly building in these heuristics,
offering an alternative explanation for these results. Finally,
we showed that our model has dynamics that closely resem-
ble evidence accumulation models and provides predictions
about reaction time patterns in temporally extended decision
trees.

Although the number of paths in a decision tree grows ex-
ponentially with tree depth, our model predicts that the opti-
mal number of simulations only grows roughly linearly with
tree depth in correlated environments (Figure 5). Thus, the
time complexity of forward simulation would not cause a de-
mand for an impractical level of resources. We demonstrate
that factors including tree depth, branching factor, and transi-
tion distribution do not critically affect the efficiency of for-
ward simulation. Rather, the crucial factor that determines
the efficiency of forward simulation is the reward correlation
structure in the environment.

We assume a constant transition distribution at all non-

root nodes, and only the root-node policy is controlled by the
agent. Although the actions taken by the agent have tempo-
rally extended consequences, this problem is different from
the full sequential decision problem. However, this does not
mean that our setting is an oversimplification of real-life deci-
sion problems. In practice, we often face situations where we
make decisions to initiate a series of events that are beyond
our control, or where the results of our actions are so uncer-
tain that we cannot reasonably optimize all future decisions.
An example is investing in the stock market. We can choose
to invest in a particular stock, but we cannot control all future
consequences due to random factors such as market fluctua-
tions, economic conditions, company performance, and even
global politics. When we make a choice, we are in fact treat-
ing the problem as an optimization problem over a single ac-
tion (e.g., which stock to invest in) under the assumption of
an environment with uncertainty. Importantly, realistic envi-
ronments also often have correlations, e.g. a recession can
lead to many possible related futures where we lose money
on our investments.

Nevertheless, our assumption of constant transition distri-
butions could introduce disparities when compared to full se-
quential decision problems. For example, if the agent per-
forms deep rollouts, they should lead to changes in the de-
cision policy at nodes later in the tree. This will change the
expected value of actions at the root node and make early
rollouts no longer useful. Thus, we speculate that changing
the assumption of constant transition distributions would lead
to a requirement for more rollouts. Nevertheless, this does
not necessarily result in an impractical optimal number of
rollouts in correlated environments, since the time cost can
eventually overtake the benefit as the agent conducts more
rollouts. Future work could generalize our analyses to full
sequential decision settings, where the agent has control over
its policy at every node.

In addition, we only considered rollout-based forward sim-
ulations. While rollouts might be an important component
of planning (Jensen, Hennequin, & Mattar, 2023), the exact
search algorithms adopted by humans are likely task-specific
and more structured than simple rollouts (Callaway et al.,
2022). Our model is, therefore, not intended as a complete
description of human planning. Nonetheless, little is known
regarding the efficiency of these search algorithms when con-
sidering the time costs associated with the search process.
It is also unclear whether and how humans could adaptively
adjust their search algorithms according to the time costs to
achieve high efficiency. Our work thus provides insights and
establishes a framework for evaluating potential search algo-
rithms adopted by humans. Future work might examine the
efficiency of more structured search algorithms to shed light
on how mental simulation can effectively support decision-
making.
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