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Abstract

Purpose of Review Artificial intelligence (AI) technology holds both great promise to transform mental healthcare and potential
pitfalls. This article provides an overview of Al and current applications in healthcare, a review of recent original research on Al
specific to mental health, and a discussion of how Al can supplement clinical practice while considering its current limitations,
areas needing additional research, and ethical implications regarding Al technology.

Recent Findings We reviewed 28 studies of Al and mental health that used electronic health records (EHRs), mood rating scales,
brain imaging data, novel monitoring systems (e.g., smartphone, video), and social media platforms to predict, classify, or
subgroup mental health illnesses including depression, schizophrenia or other psychiatric illnesses, and suicide ideation and
attempts. Collectively, these studies revealed high accuracies and provided excellent examples of AI’s potential in mental
healthcare, but most should be considered early proof-of-concept works demonstrating the potential of using machine learning
(ML) algorithms to address mental health questions, and which types of algorithms yield the best performance.

Summary As Al techniques continue to be refined and improved, it will be possible to help mental health practitioners re-define
mental illnesses more objectively than currently done in the DSM-5, identify these illnesses at an earlier or prodromal stage when
interventions may be more effective, and personalize treatments based on an individual’s unique characteristics. However,
caution is necessary in order to avoid over-interpreting preliminary results, and more work is required to bridge the gap between
Al in mental health research and clinical care.

Keywords Technology - Machine learning - Natural language processing - Deep learning - Schizophrenia - Depression - Suicide -
Bioethics - Research ethics
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revolution” characterized by a fusion of technology types [1, 2].
A leading example is a form of technology originally recog-
nized in 1956—artificial intelligence (Al) [3]. While several
prominent sectors of society are ready to embrace the potential
of Al, caution remains prevalent in medicine, including psychi-
atry, evidenced by recent headlines in the news media like “A.L
Can Be a Boon to Medicine That Could Easily Go Rogue” [4].
Regardless of apparent concerns, Al applications in medicine
are steadily increasing. As mental health practitioners, we need
to familiarize ourselves with Al, understand its current and
future uses, and be prepared to knowledgeably work with Al
as it enters the clinical mainstream [5]. This article provides an
overview of Al in healthcare (introduction), a review of
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original, recent literature on Al and mental healthcare (methods/
results), and a discussion of how Al can supplement mental
health clinical practice while considering its current limitations,
identification of areas in need of additional research, and ethical
implications (discussion/future directions).

Al in Our Daily Lives

The term Al was originally coined by a computer scientist,
John McCarthy, who defined it as “the science and engineer-
ing of making intelligent machines” [6]. Alan Turing, consid-
ered to be another “father of Al” authored a 1950 article,
“Computing Machinery and Intelligence” that discussed con-
ditions for considering a machine to be intelligent [7]. As
intelligence is traditionally thought of as a human trait, the
modifier “artificial” conveys that this form of intelligence de-
scribes a computer. Al is already omnipresent in modern west-
em life (e.g., to access information, facilitate social interac-
tions (social media), and operate security systems). While Al
is beginning to be leveraged in clinical settings (e.g., medical
imaging, genetic testing) [8], we are still far from routine
adoption of Al in healthcare, as the stakes (and potential risks)
are much greater than those of the Al that facilitates our
modern-day conveniences [9].

Al in Healthcare

Al is currently being used to facilitate early disease detection,
enable better understanding of disease progression, optimize
medication/treatment dosages, and uncover novel treatments
[8, 10-13, 14, 15]. A major strength of Al is rapid pattern
analysis of large datasets. Areas of medicine most successful
in leveraging pattern recognition include ophthalmology, can-
cer detection, and radiology, where Al algorithms can perform
as well or better than experienced clinicians in evaluating
images for abnormalities or subtleties undetectable to the hu-
man eye (e.g., gender from the retina) [16-19]. While it is
unlikely that intelligent machines would ever completely re-
place clinicians, intelligent systems are increasingly being
used to support clinical decision-making [8, 14, 20]. While
human learning is limited by capacity to learn, access to
knowledge sources, and lived experience, Al-powered ma-
chines can rapidly synthesize information from an unlimited
amount of medical information sources. To optimize the po-
tential of Al, very large datasets are ideal (e.g., electronic
health records; EHRs) that can be analyzed computationally,
revealing trends and associations regarding human behaviors
and patterns [21] that are often hard for humans to extract.

Al in Mental Healthcare

While Al technology is becoming more prevalent in medicine
for physical health applications, the discipline of mental health

@ Springer

has been slower to adopt Al [8, 22]. Mental health practi-
tioners are more hands-on and patient-centered in their clinical
practice than most non-psychiatric practitioners, relying more
on “softer” skills, including forming relationships with pa-
tients and directly observing patient behaviors and emotions
[23]. Mental health clinical data is often in the form of sub-
jective and qualitative patient statements and written notes.
However, mental health practice still has much to benefit from
Al technology [24-28]. Al has great potential to re-define our
diagnosis and understanding of mental illnesses [29¢]. An in-
dividual’s unique bio-psycho-social profile is best suited to
fully explain his/her holistic mental health [30]; however, we
have a relatively narrow understanding of the interactions
across these biological, psychological, and social systems.
There is considerable heterogeneity in the pathophysiology
of mental illness and identification of biomarkers may allow
for more objective, improved definitions of these illnesses.
Leveraging Al techniques offers the ability to develop better
prediagnosis screening tools and formulate risk models to de-
termine an individual’s predisposition for, or risk of develop-
ing, mental illness [27]. To implement personalized mental
healthcare as a long-term goal, we need to harness computa-
tional approaches best suited to big data.

Machine Learning for Big Data Analysis

Machine learning (ML) is an Al approach that involves vari-
ous methods of enabling an algorithm to learn [27, 29e,
31-35]. The most common styles of “learning” used for
healthcare purposes include supervised, unsupervised, and
deep learning [13, 36-38]. There are other ML methods like
semi-supervised learning (blend of supervised and unsuper-
vised) [39, 40] and reinforcement learning where the algo-
rithm acts as an agent in an interactive environment that learns
by trial and error using rewards from its own actions and
experiences [41].

Supervised Machine Learning (SML) Here data are pre-labeled
(e.g., diagnosis of major depressive disorder (MDD) vs. no
depression) and the algorithm learns to associate input fea-
tures derived from a variety of data streams (e.g.,
sociodemographic, biological and clinical measures) to best
predict the labels [36, 42]. Labels can be either categorical
(MDD or not) or continuous (along a spectrum of severity).
The machine experiences SML because the labels act as a
“teacher” (i.e., telling the algorithm how to label the data)
for the algorithm the “learner” (i.e., learns to associate features
with a specific label). After learning from a large amount of
labeled training data, the algorithm is tested on unlabeled test
data to determine if it can correctly classify the target vari-
able—e.g., MDD. If the model performance (accuracy or oth-
er metric) drops with the test data, the model is considered
overfit (recognizing spurious patterns) and cannot be
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generalized to external, independent samples. There are algo-
rithms that lend themselves well to SML; some are borrowed
directly from traditional statistics like logistic and linear re-
gression, while others are unique to SML like support vector
machines (SVM) [43].

Unsupervised Machine Learning (UML) Here algorithms are
not provided with labels; thus, the algorithm recognizes sim-
ilarities between input features and discovers the underlying
structure of the data, but is not able to associate features with a
known label [37]. UML uses clustering techniques (e.g., k-
means, hierarchical, principal component analysis) to sort and
separate data into groups or patterns or identify the most sa-
lient features of a dataset [44]. The data output must be
interpreted by subject-matter experts to determine its useful-
ness. The lack of labels makes UML more challenging, but
able to reveal the underlying structure in a dataset with less a
priori bias. For example, neuroimaging biomarkers provide
large feature datasets that may hold information regarding
unknown subtypes of psychiatric illnesses like schizophrenia.
UML may help to identify clusters of biomarkers that charac-
terize these subtypes, thus informing prognosis and best treat-
ment practices.

Deep Learning (DL) DL algorithms learn directly from raw
data without human guidance, providing the benefit of discov-
ering latent relationships [45]. DL handles complex, raw data
by employing artificial neural networks (ANNs; computer
programs that resemble the way a human brain thinks) that
process data through multiple “hidden” layers [13, 38, 46].
Given this resemblance to human thinking, DL has been de-
scribed as less robotic than traditional ML. To be considered
“deep,” a ANN must have more than one hidden layer [38].
These layers are made up of nodes that combine data input
with a set of coefficients (weights) that amplify or dampen that
input in terms of its effect on the output. DL is ideal for dis-
covering intricate structures in high-dimensional data like
those contained in clinician notes in EHRs [45], or clinical
and non-clinical data provided by patients [47, 48]. An impor-
tant caution in DL is that the hidden layers within ANNs can
render the output harder to interpret (black box phenomenon
where it is unclear how an algorithm arrived at an output) [49].

Natural Language Processing (NLP) NLP is a subficld of Al
that involves using the aforementioned algorithmic methods;
however, it specifically refers to how computers process and
analyze human language in the form of unstructured text and
involves language translation, semantic understanding, and
information extraction [50]. Mental health practice will rely
heavily on NLP, prior to being able to perform other Al tech-
niques, due to considerable raw input data in the form of text
(e.g., clinical notes; other written language) and conversation
(e.g., counseling sessions) [48, 51]. The ability of a computer

algorithm to automatically understand meanings of underly-
ing words, despite the generativity of human language, is a
huge advancement in technology and essential for mental
healthcare applications [52].

Analytic Approaches of Traditional Statistical
Programming Versus ML

ML methods identify patterns of information in data that are
useful to predict outcomes at the individual patient level and
do not distinguish samples and populations. The descriptive
aspect of statistics is similar to ML, but the inferential aspect,
which is the core of statistics, is different, as it uses only
samples to make inference about the population from which
the sample is drawn [27, 29, 31-35]. Modern ML approaches
offer benefits over traditional statistical approaches because
they can detect complex (non-linear), high-dimensional inter-
actions that may inform predictions [53—56]. However, the
lines between traditional statistics and ML can be blurry due
to the overlapping use of analytic approaches [57]. Table 1
summarizes key comparisons between the primary goals of
the two approaches. These are only generalizations, as there
can be overlap, and should be interpreted as such.

Methods: Study Selection and Performance
Measures

Study Selection

To focus this review on recently published literature, we in-
cluded only studies published 2015-2019, corresponding to
the upsurge in Al publications pertaining to mental health
(Fig. 1). This is not a systematic review and does not include
an exhaustive list of all published studies meeting these broad
criteria. We used PubMed and Google Scholar to locate stud-
ies that conducted original clinical research in an area relevant
to Al and mental health. We did not include studies that de-
scribed a potential application of Al or development of an
algorithm or system that had not yet been tested in a real-
world application. We also did not include studies of
neurocognitive disorders (e.g., dementia, mild cognitive im-
pairment), despite their relationship to mental health, because
there are a considerable number of Al and neurocognition
studies that warrant their own review. This review includes a
total of 28 original research studies of Al and mental health.

Description of Studies and Performance Metrics Used
We organized Table 2 (details of the 28 studies) based on the
nature of the predictive variables used as input for the Al

algorithms. The columns summarize the primary study goal,
location and population, sample size, mean age, predictors
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Table 1

statistics in healthcare research

Key comparisons between machine learning and traditional

Machine learning

Traditional statistics

Year 1959 Seventeenth century
conceptualized
Primary goal Make the best prediction Describe data (samples
and/or recognize only) and estimate
patterns within data parameters of an
(either samples of or analytic model
an entire study specified for a
population of population of interest
interest) (aka statistical
inference)
Knowledge of Not required Not required for
potential description of data, but
relationships required for statistical
between inference
variables
Hypotheses More often More often
hypothesis-- hypothesis-driven
generating
Analysis approach  Often learns from data  Explicitly specified
and models can be analytic models for
difficult to interpret statistical inference
due to extensive use and easy to interpret
of latent variables
(DL and UML black
box phenomenon)
Data size Very large and can be ~ Small to moderate and

Number of features

the size of an entire
population of interest

Large and unspecified

samples of a
population of interest
only for statistical
inference

Small and explicitly
specified for statistical
inference

Rigor Minimal model Strict model assumptions
assumptions for statistical inference
Interpretability Limited to data at hand Inference of relationships
(either example or for the entire
population) and population of interest
results
Methods for Often empirically using Statistical and practical
assessing cross-validation, significance (e.g.,
performance ROC AUC, % p values, effect sizes)
accuracy, sensitivity,
and specificity

AUC area under the curve, DL deep learning, ROC receiver operating
characteristic, UML unsupervised machine learning

that served as input data, type of Al algorithm and validation,
best performing results, and a brief conclusion for each study.
Across studies, the most commonly reported performance
metrics were as follows:

1. Receiver operating characteristic (ROC) curve. The area

under the ROC curve (called AUC), plotted as the true-
positive rate (TPR) on the y-axis and false-positive rate

@ Springer
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Fig. 1 Frequency of publications by year in PubMed using search terms
“artificial intelligence and mental health”

(FPR) on the x-axis [86—89]. The higher the AUC, the
better the algorithm is at classifying (e.g., disease vs. no
disease); thus, an AUC = 1 indicates perfect ability to
distinguish between classes, an AUC = 0.5 means no abil-
ity to distinguish between classes (complete overlap), and
an AUC = 0 indicates the worst result—all incorrect
assignments.

2. Percent (%) accuracy. Percent accuracy is the proportion
of correct predictions, determined by dividing the number
of correct predictions (true positives + true negatives; TPs
+ TNs) by all observations (TPs + TNs + false positives
and false negatives (FPs + FNs)) [88]. This metric is in-
adequate, however, when there is uneven class distribu-
tion (i.e., significant disparity between the sample sizes
for each label).

3. Sensitivity and specificity. Sensitivity is synonymous
with the TPR and “recall” (R) and measures the propor-
tion of TPs that are correctly identified (TPs/(TPs + FNs))
[90]. Specificity is synonymous with TNR and measures
the proportion of TNs that are correctly identified (TNs/
(TNs + FPs)). Sensitivity and specificity are often inverse-
ly proportional; as sensitivity increases, specificity de-
creases and vice versa.

4. Precision (also called positive predictive value; PPV) and

F1 scores. Precision is the proportion of positive identifi-
cations (e.g., presence of MDD) that are correctly classi-
fied by the algorithm (TPs/(TPs + FPs)) [86, 91]. For
example, precision = 0.5 means that the algorithm correct-
ly predicted MDD 50% of the time. An F1 score is a
measure of an algorithm’s accuracy that conveys the bal-
ance between precision and recall, calculated as 2 * ((pre-
cision * recall)/(precision + recall)) [92]. The best value of
an F1 score is 1 and the worst is 0. F1 scores can be more
useful than accuracy in studies with uneven class
distributions.
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community-generated content)
can distinguish people with

user-generated and
depression

Instagram posts (both

Elastic-net RLR model:
community-generated

Testing:

SML

(Instagram posts and comment),

Unstructured text data
demographics,

Ricard et al.,
2018 [84]

Table 2 (continued)

@ Springer

AUC=0.71, p

other survey data

<0.03
Combination AUC

0.72,

p<0.02
User-generated AUC

0.63,

0.11
EDDTW highest recall = 0.67 and NLP of web posts can identify

p=

NLP

Unstructured text data (posts)

Tung and Lu

depressive tendencies

0.62

F measure

2016 [85]

0.666

DSM precision

ADTree alternating decision tree, ANN artificial neural network, BAO Beck Anxiety Inventory, BDI Beck Depression Inventory, cTAKES clinical text analysis knowledge extract system, CompV computer
vision, DL deep learning, EDDTW event-driven depression tendency warning, GAD-7 generalized anxiety disorder, GHQ-12 General Health Questionnaire, GMM Gaussian mixture models, H,

D

Hamilton Rating Scale for Depression, HC healthy control, HHS health and human services, JSON JavaScript Object Notation, LES life event scale, LDA linear discriminant analysis, MDD major

depressive disorder, MMSE Mini-Mental State Examination, NLP natural language processing, PANSS Positive and Negative Syndrome Scale, PHQO-9 Patient Health Questionnaire, PPV positive predictive

value, PSQI Pittsburgh Sleep Quality Index, QIDS-SR Quick Inventory of Depressive Symptomatology, SL supervised learning, SMI severe mental illness, SN sensitivity, SP specificity, SCID-I Structured

Clinical Interview for Axis I Disorders, SVM support vector machine, UL unsupervised learning

Results: Summary of Mental Health Literature
Summary of Al Studies of Mental Health

We categorized Table 2 by the nature of the predictor variables
used as input data, including the following: A, electronic
health records (EHRs) (6/28) [58—-61, 62¢, 63]; B, mood rating
scales (3/28) [64¢, 65+, 66]; C, brain imaging data (7/28) [67¢,
68, 69+, 70-73]; D, novel monitoring systems (e.g.,
smartphone, video) (4/28) [74—77]; and E, social media plat-
forms (e.g., Twitter) (8/28) [78-81, 83—85]. Depression (or
mood) was the most common mental illness investigated
(18/28) [58, 63-67, 71-73, 75-77, 79-81, 83-85]. We also
found examples of Al applied to schizophrenia and other psy-
chiatric illnesses (6/28) [61, 6870, 73, 74], suicidal ideation/
attempts (4/28) [59, 60, 62¢, 78], and general mental health
(1/28) [82]. Participants included in these studies were either
healthy controls or were diagnosed with a specified mental
illness. Sample sizes ranged from small (n =28) [77] to large
(n=2819,951) [59]. There was no age reported for 14/28 stud-
ies likely due to the nature of the data (e.g., social media
platform or other anonymous database). For the remainder,
ages ranged from 14+ years [59] to a mean age of 79.6 (SD
4.4) years [66].

SML was the most common Al technique (23/28), and a
proportion of studies (8/28) also used NLP prior to applying
ML. Cross-validation techniques were most common (19/28),
but several studies also tested the algorithm on a held-out
subsample not used for training (4/28), or in an external val-
idation sample (6/28). There was considerable heterogeneity
in the nature of the results reported across studies. Accuracies
ranged from the low 60s (62% from smartphone data [77] and
63% from social media posts [79]) to high 90s (98% from
clinical measures of physical function, body mass index, cho-
lesterol, etc. [S8] and 97% from sociodemographic variables
and physical comorbidities [63]) for prediction of depression.
ML methods were also able to predict treatment responses to
commonly prescribed antidepressants like citalopram (65%
accuracy) [64], or identify features like education that were
related to placebo versus medication responses [66].

NLP techniques identified symptoms of severe mental ill-
ness from EHR data (precision =90%; recall = 85%) [61].
Brain MRI features identified neuroanatomical subtypes of
schizophrenia with 63—71% accuracy [69¢], and fMRI fea-
tures classified schizophrenia (vs. controls) with 87% accura-
cy [68]. An Al platform resulted in more successful medica-
tion adherence for patients with schizophrenia (90%) than
modified directly observed therapy (72%) [74]. Health insur-
ance records (AUC = 0.69) [59], survey and text message data
(sensitivity = 0.76; specificity = 0.62) [78], and EHRs (suicid-
al ideation; sensitivity = 88%; precision = 92% and suicide at-
tempts; sensitivity = 98%; precision = 83%) [60] all enabled
prediction of suicidal ideation and attempts.
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Limitations of Al and Mental Health Studies

These studies have limitations pertaining to clinical validation
and readiness for implementation in clinical decision-making
and patient care. As recognized for any Al application, the size
and quality of the data limit algorithm performance [13]. For
small sample sizes, overfitting of the ML algorithms is highly
likely [28]. Testing the ML models only within the same sam-
ple and not out-of-sample limits the generalizability of the
results. The predictive ability of these studies is restricted to
the features (e.g., clinical data, demographics, biomarkers)
used as input for the ML models. As no one study is exhaus-
tive in this manner, the clinical efficacy of the particular fea-
tures used to derive these models must be considered. It is also
possible that the outputs of these algorithms are only valid
under certain situations or for a certain group of people.
These studies were not always explicitly clear regarding the
significance or practical meaning of resulting performance
metrics. For example, performance accuracy should be com-
pared to clinical diagnostic accuracy (as opposed to simply
relating these values to chance) in order to interpret clinical
value [89].

The use of binary classifiers is more common in ML
than regression models (i.e., continuous scores) due to be-
ing easier to train; however, a consequence of this ap-
proach is overlooking the severity of a condition [32].
Future studies should seek to model severity of mental
illnesses along a continuum. While these studies focused
on features that are considered risk factors for mental ill-
nesses, subsequent research should also consider investi-
gating protective factors like wisdom that can improve an
individual’s mental health [93, 94]. Finally, a challenge in
studies seeking to model rare events (e.g., suicide) or ill-
ness is that of highly imbalanced datasets (i.e., the event
rarely occurs or a relatively small portion of the population
develops the illness). In these instances, classifiers tend to
predict outcomes as the majority class (e.g., miss rare
events like suicide ideation) [95]. Techniques employed
in these studies to overcome this challenge included (i)
under-sampling (reducing number of samples in the major-
ity) [62¢], (ii) over-sampling (matching the ratio of major
and minor groups by duplicating samples for the minor
group) [59], and (iii) ensemble learning methods (combin-
ing several models to reduce variance and improve predic-
tions) [68, 77]; however, few studies (4/28) reported using
these techniques.

Discussion: Future Research Directions
and Recommendations

The World Health Organization defines health as, “a state of
complete physical, mental, and social well-being and not

merely the absence of disease or infirmity” [96]. If we lever-
age today’s available technologies, we can obtain continuous,
long-term monitoring of the unique bio-psycho-social profiles
of individuals [26] that impact their mental health. The
resulting amount of complex, multimodal data is too much
for a human to process in a meaningful way, but Al is well
suited to this task. As Al techniques continue to be refined and
improved, it may be possible to define mental illnesses more
objectively than the current DSM-5 classification schema
[97], identify mental illnesses at an earlier or prodromal stage
when interventions may be more effective, and tailor pre-
scribed treatments based on the unique characteristics of an
individual.

Areas Needing Additional Research for Al and Mental
Health

In order to discover new relationships between mental ill-
nesses and latent variables, very large, high-quality
datasets are needed. Obtaining such deeply phenotyped
large datasets poses a challenge for mental health research
and should be a collaborative priority (e.g., robust plat-
forms for data sharing among institutes). DL methods will
be increasingly necessary (over SML methods) to handle
these complex data, and the next challenge will be in en-
suring that these models are clinically interpretable rather
than a “black box” [13, 49, 98]. Transfer learning, where
an algorithm created for one purpose is adapted for a dif-
ferent purpose, will help to strengthen ML models and
improve their performance [99]. Transfer learning is al-
ready being applied to fields that rely heavily on image
analysis like pathology, radiology, and dermatology, in-
cluding commercial efforts to integrate these algorithms
in clinical settings [100, 101]. Flexible algorithms will
likely be a greater challenge for mental health due to the
heterogeneity in salient input data. Additionally, Al models
should have a life-long learning framework to prevent “cat-
astrophic forgetting” [102]. Collaborative efforts between
data scientists and clinicians to develop robust algorithms
will likely yield the best results.

AT algorithms will be developed from emerging data
sources, and these data may not be fully representative of
constructs of interest or populations. For example, social me-
dia data (e.g., “depressive” posts) may not be representative of
the construct of interest (depression). Posts containing words
indicative of depression could suggest a transient state of de-
pressive mood rather than a diagnosis of depression. Social
media posters also may exaggerate symptoms in online posts
or their comments could simply be contextual. Thus, the data
could be misconstrued due to the limited contextual informa-
tion [103]. The clinical usefulness of these platforms of rich
information requires more careful consideration, and studies
using social media need to be held to higher methodological
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standards. Finally, the use of Al to derive insights from data
may help to facilitate diagnosis, prognosis, and treatment;
however, it is important to consider the practicality of these
insights and whether they can be translated and implemented
in the clinic [89].

How Al Can Benefit Current Healthcare for Individuals
with Mental llinesses

Physician time is progressively limited as mental
healthcare needs grow and clinicians are burdened with
increased documentation requirements and inefficient tech-
nology. These problems are particularly cumbersome for
mental health practitioners who must rely on their uniquely
human skills in order to foster therapeutic rapport with
their patients and design personalized treatments. Use of
Al technology offers many benefits in addition to improv-
ing detection and diagnosis of mental illnesses. Al algo-
rithms can be harnessed to comprehensively draw meaning
from large and varied data sources, enable better under-
standing of the population-level prevalence of mental ill-
nesses, uncover biological mechanisms or risk/protective
factors, offer technology to monitor treatment progress
and/or medication adherence, deliver remote therapeutic
sessions or provide intelligent self-assessments to deter-
mine severity of mental illness, and perhaps most impor-
tantly enable mental health practitioners to focus on the
human aspects of medicine that can only be achieved
through the clinician—patient relationship [5, 20].

Ethical Considerations for Al in Mental Healthcare
Practice

To deploy Al responsibly, it is critical that algorithms used to
predict or diagnose mental health illnesses be accurate and not
lead to increased risk to patients. Moreover, those involved in
making decisions about the selection, testing, implementation,
and evaluation of Al technologies must be aware of ethical
challenges, including biased data (e.g., subjective and expres-
sive nature of clinical text data; linking of mental illnesses to
certain ethnicities) [104]. Accepted ethical principles used to
guide biomedical research including autonomy, beneficence,
and justice must be prioritized and in some cases augmented
[105]. It is critical that data and technology literacy gaps be
addressed for both patients and clinicians. Moreover, to our
knowledge there are no established standards to guide the use
of Al and other emerging technologies in healthcare settings
[106]. Computational scientists may train Al using datasets
that lack sufficient data to make meaningful assessments or
predictions [107]. Clinicians may not know how to manage
the depth of granular data nor be confident with a decision
produced by AI [108]. Institutional Review Boards have lim-
ited knowledge of emerging technologies, which makes risk
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assessment inconsistent [106]. For example, there are efforts
to link smartphone keystrokes and voice patterns to mood
disorders, and yet the public may not be aware such linkages
are possible [109]. Public communication about these algo-
rithms must be useful, contextual, and confer that tools sup-
plement, but do not replace, medical practice. Clearly, there is
a need to integrate ethics into the development of Al via re-
search and education and resources will need to be appropri-
ated for this purpose.

Concluding Remarks

Al is increasingly a part of digital medicine and will contribute
to mental health research and practice. A diverse community
of experts vested in mental health research and care, including
scientists, clinicians, regulators, and patients must communi-
cate and collaborate to realize the full potential of AI[110]. As
elegantly suggested by De Choudhury et al., a critical element
is combining human intelligence with Al to (1) ensure con-
struct validity, (2) appreciate unobserved factors not
accounted for in data, (3) assess the impact of data biases,
and (4) proactively identify and mitigate potential Al mistakes
[111]. The future of Al in mental healthcare is promising. As
researchers and practitioners vested in improving mental
healthcare, we must take an active role in informing the intro-
duction of Al into clinical care by lending our clinical exper-
tise and collaborating with data and computational scientists,
as well as other experts, to help transform mental health prac-
tice and improve care for patients.
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