
UCLA
UCLA Electronic Theses and Dissertations

Title
Effective Learning of Descriptive and Generator Models and Learning Representations for
Grid Cells and V1 Cells

Permalink
https://escholarship.org/uc/item/9gx2b92d

Author
Gao, Ruiqi

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9gx2b92d
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Effective Learning of Descriptive and Generator Models and Learning Representations for Grid

Cells and V1 Cells

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Ruiqi Gao

2021

© Copyright by

Ruiqi Gao

2021

ABSTRACT OF THE DISSERTATION

Effective Learning of Descriptive and Generator Models and Learning Representations for Grid

Cells and V1 Cells

by

Ruiqi Gao

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2021

Professor Song-Chun Zhu, Chair

In recent decades, deep learning has achieved tremendous successes in supervised learning; how-

ever, unsupervised learning and representation learning, i.e., learning the hidden structure of the

data without requiring expensive and time-consuming human annotation, remains a fundamental

challenge, which probably underlies the gap between current artificial intelligence and the intel-

ligence of a biological brain. In this thesis, we propose novel solutions to the problems in this

area. Specifically, we work on deep generative modeling, an important approach of unsupervised

learning, and representation learning inspired by structures in the brain.

• We propose efficient algorithms for learning descriptive models, which are also known

as energy-based models (EBMs). Despite an appealing class of generative models with a

number of desirable properties, the learning of descriptive models on high-dimensional space

remains challenging, which involves computationally expensive Markov chain Monte Carlo

(MCMC). To tackle this problem, we propose a multi-grid modeling and sampling method,

which learns descriptive models at multiple scales or resolutions and the MCMC sampling

follows a coarse-to-fine scheme. This approach enables efficient learning and sampling of

ii

descriptive models from large-scale image datasets with small-budget MCMC. Later on, we

extend this method to an improved version named diffusion recovery likelihood, where a

sequence of descriptive models are proposed and learned on increasingly noisy versions of

a dataset. Each descriptive model is trained by sampling from the conditional probability

of the data at a certain noise level given their noisy versions at a higher noise level, which

further releases the burden of MCMC.

• We develop dynamic and motion-based generator models which learn semantically mean-

ingful vector representations for spatial-temporal processes such as dynamic textures and

action sequences in video data. The models are capable of learning disentangled representa-

tions of appearance, trackable motion and intrackable motion in spatial-temporal processes

in a fully unsupervised manner. We also propose an efficient learning algorithm named al-

ternating back-propagation through time, which learns the proposed models using online

MCMC inference without resorting to auxiliary networks.

• We propose hybrid generative models that integrate the advantages of different classes

of generative models. Specifically, we propose a training algorithm flow contrastive esti-

mation to jointly estimate a descriptive model and a flow-based model, in which the two

models are iteratively updated based on a shared adversarial value function. The algorithm

is an extension of noise contrastive estimation (NCE) and combines the flexibility of descrip-

tive models and the tractability of flow-based models. We also study another hybrid model

where the descriptive model serves as a correction or an exponential tilting of the flow-based

model. We show that this model has a particularly simple form in the space of the latent vari-

ables of the flow-based model, and MCMC sampling of the descriptive model in the latent

space mixes well and traverses modes in the data space.

• We propose an optimization-based representational model of grid cells. Grid cells ex-

ist in the mammalian medial entorhinal cortex (mEC) and are so named because individual

neurons exhibit striking firing patterns that form hexagonal grids when the agent (such as

iii

a rat) navigates in a 2D open field. To understand how grid cells perform path integration,

we conduct theoretical analysis of a general representational model of grid cells where the

2D self-position of the agent is represented by a higher-dimensional vector and the 2D self-

motion is represented by a general transformation of the vector. We identify two conditions

for the general transformation and demonstrate an important geometric property of the gen-

eral transformation, i.e., local conformal embedding. We further investigate the simplest

transformation, i.e., the linear transformation, and uncover its explicit algebraic and geomet-

ric structure as a matrix Lie group of rotation. The model learns significant hexagon patterns

of grid cells and is capable of accurate path integration.

• We extend the representational model of grid cells to an optimization-based representa-

tional model of V1 simple cells. V1 stands for the primary visual cortex in the mammalian

brain, and V1 simple cells are highly specialized for low-level motion perception and pat-

tern recognition. We propose a representational model of V1 simple cells which couples the

following two components: (1) the vector representations of local contents of images and

(2) the matrix representations of local pixel displacements caused by the relative motions

between the agent and the objects in the 3D scene. The model can learn Gabor-like tun-

ings of V1 simple cells and similar to V1 simple cells, the learned adjacent neurons have

quadrature-phase relations.

iv

The dissertation of Ruiqi Gao is approved.

Tao Gao

Hongjing Lu

Ying Nian Wu

Song-Chun Zhu, Committee Chair

University of California, Los Angeles

2021

v

To my parents and Yutan

vi

TABLE OF CONTENTS

1 Introduction . 1

1.1 Generative modeling . 2

1.1.1 Descriptive model . 2

1.1.2 Generator model . 3

1.1.3 Hybrid model . 4

1.2 Biological plausible representational models . 5

1.2.1 Representational models of grid cells . 5

1.2.2 Representational models of V1 simple cells 6

1.2.3 Unified and general framework . 7

1.3 Research questions and contributions . 7

2 Descriptive models . 11

2.1 Deep descriptive models . 11

2.1.1 Maximum likelihood estimation . 11

2.1.2 Modifications of maximum likelihood estimation 12

2.1.3 Correspondence to discriminative models 15

2.2 Multi-grid modeling and sampling . 16

2.2.1 Related work . 17

2.2.2 Proposed algorithm . 18

2.2.3 Experiments . 20

2.2.4 Conclusion . 28

2.3 Diffusion recovery likelihood . 28

vii

2.3.1 From marginal to conditional . 31

2.3.2 Maximizing recovery likelihood . 32

2.3.3 Connection to variational inference and score matching 33

2.3.4 Diffusion recovery likelihood . 34

2.3.5 Experiments . 36

2.3.6 Conclusion . 43

Chapter appendices . 44

2.A Additional uncurated samples . 44

3 Dynamic generator model . 51

3.1 Introduction . 51

3.2 Model and learning algorithm . 55

3.2.1 Dynamic generator model . 55

3.2.2 Learning and inference algorithm . 56

3.2.3 Learning from multiple sequences . 59

3.3 Experiments . 61

3.4 Motion-based dynamic generator model . 70

3.4.1 Unsupervised disentanglement of appearance and motion 73

3.4.2 Unsupervised disentanglement of trackable and intrackable components . . 74

3.5 Conclusion . 75

4 Hybrid models . 79

4.1 Introduction . 79

4.1.1 Motivation . 79

viii

4.1.2 Flow-based model . 81

4.2 Flow contrastive estimation . 82

4.2.1 Noise contrastive estimation . 84

4.2.2 Flow contrastive estimation . 85

4.2.3 Semi-supervised learning . 86

4.2.4 Experiments . 88

4.2.5 Conclusion . 95

4.3 Descriptive model with flow-based backbone . 96

5 A representational model of grid cells . 98

5.1 Introduction . 98

5.2 General transformation . 99

5.2.1 Position embedding . 99

5.2.2 Transformation and path integration . 100

5.2.3 Group representation condition . 101

5.2.4 Egocentric self-motion . 101

5.2.5 Infinitesimal self-motion and directional derivative 101

5.2.6 Isotropic scaling condition . 102

5.3 Linear transformation . 103

5.3.1 Algebraic structure: matrix Lie algebra and Lie group 103

5.3.2 Geometric structure: rotation, periodicity, metic and error correction 105

5.3.3 Isotropic scaling condition and hexagon grid patterns 106

5.3.4 Modules . 106

5.4 Interaction with place cells . 107

ix

5.4.1 Place cells . 107

5.4.2 Basis expansion . 107

5.4.3 From group representation to basis functions 108

5.4.4 Decoding and re-encoding . 108

5.5 Learning . 109

5.6 Experiments . 110

5.6.1 Hexagon grid patterns . 111

5.6.2 Path integration . 112

5.7 Related work . 113

5.8 Conclusion and discussion . 115

Chapter appendices . 116

5.A Theoretical analysis . 116

5.A.1 Graphical illustrations of key equations 116

5.A.2 Proof of Theorem 1 on conformal embedding 116

5.A.3 Proof of Theorem 3 on error correction 118

5.A.4 Proof of Theorem 4 on hexagon grid patterns 119

5.A.5 From group representation to orthogonal basis functions 121

5.A.6 Decoding and re-encoding . 122

5.B Experiments . 124

5.B.1 Implementation details . 124

5.B.2 Learned patterns . 125

5.B.3 Error correction . 126

5.B.4 Ablation studies . 128

x

6 A representational model of V1 simple cells . 134

6.1 Introduction . 134

6.2 Representational model . 137

6.2.1 Vector representation . 137

6.2.2 Matrix representation . 138

6.3 Learning and Inference . 140

6.3.1 Loss functions for learning . 140

6.3.2 Inference of motion . 141

6.3.3 Unsupervised learning . 141

6.3.4 Biological interpretations of cells and synaptic connections 141

6.3.5 Spatiotemporal filters and recurrent implementation 142

6.4 Experiments . 143

6.5 Conclusion . 151

7 Conclusion . 153

References . 155

xi

LIST OF FIGURES

2.1 Synthesized images at multi-grids. From left to right: 4× 4 grid, 16× 16 grid and

64×64 grid. Synthesized image at each grid is obtained by 30 step Langevin sampling

initialized from the synthesized image at the previous coarser grid, beginning with the

1×1 grid. 16

2.2 Synthesized images from models learned from the CelebA dataset. From left to right:

observed images, images synthesized by DCGAN [RMC15], single-grid method and

multi-grid method. CD1 and persistent CD cannot synthesize realistic images and their

results are not shown. 21

2.3 Synthesized images generated by the multi-grid models learned from the LSUN bed-

rooms dataset. 22

2.4 Synthesized images generated by the multi-grid models learned from the CIFAR-10

dataset. Each row illustrates a category, and the multi-grid models are learned condi-

tional on the category. From top to bottom: airplane, automobile, bird, cat, deer, dog,

frog, horse, ship, truck. 23

2.5 Synthesized images by initializing the Langevin dynamics sampling from the same

1×1 image. Each block of 4 images are generated from the same 1×1 image. 23

2.6 Inpainting examples on CelebA dataset. In each block from left to right: the original

image, masked input, inpainted image by the multi-grid method. 26

2.7 Comparison of learning EBMs by diffusion recovery likelihood (Ours) versus marginal

likelihood (Short-run). 29

2.8 Generated samples on LSUN 1282 church outdoor (left), LSUN 1282 bedroom (cen-

ter) and CelebA 642 (right). 31

2.9 Illustration of diffusion recovery likelihood on 2D checkerboard example. Top: pro-

gressively generated samples. Bottom: estimated marginal densities. 32

xii

2.10 Generated samples on unconditional CIFAR-10 (left) and LSUN 642 church outdoor

(center) and LSUN 642 bedroom (right). 37

2.11 Interpolation results between the leftmost and rightmost generated samples. For top to

bottom: LSUN church outdoor 1282, LSUN bedroom 1282 and CelebA 642. 39

2.12 Image inpainting on LSUN church outdoor 1282 (left) and CelebA 642 (right). With

each block, the top row are mask images while the bottom row are inpainted images. . 39

2.13 Left: Adjusted step size of HMC over time step. Center: Acceptance rate over time

step. Right: Estimated log partition function over number of samples with different

number of sampling steps per time step. The x axis is plotted in log scale. 41

2.14 Long-run chain samples from model-T1k with different total amount of HMC steps.

From left to right: 1k steps, 10k steps and 100k steps. 42

2.A.1Generated samples on CIFAR-10. 45

2.A.2Generated samples on CelebA 64×64. 46

2.A.3Generated samples on LSUN church outdoor 128×128. FID=9.76 47

2.A.4Generated samples on LSUN bedroom 128×128. FID=11.27 48

2.A.5Generated samples on LSUN church outdoor 64×64. FID=7.02 49

2.A.6Generated samples on LSUN bedroom 64×64. FID=8.98 50

3.3.1 Generating dynamic textures. For each category, the first row displays 6 frames of the

observed sequence, and the second and third rows show the corresponding frames of

two synthesized sequences generated by the learned model. 62

3.3.2 Limited time pairwise comparison results. Each curve shows the “fooling” rates (real-

ism) over different exposure times. 63

3.3.3 Generated action patterns. For each inferred appearance vector, two synthesized videos

are displayed. 65

xiii

3.3.4 Video interpolation by interpolating between appearance latent vectors of videos at the

two ends. For each example, each column is one synthesized video. We show 3 frames

for each video in each column. 66

3.3.5 Learning from occluded videos. (a,b) For each experiment, the first row displays a

segment of the occluded sequence with black masks. The second row shows the cor-

responding segment of the recovered sequence. (c,d) The 3 frames with red bounding

box are recovered by the learning algorithm, and they are occluded in the training

stage. Each video has 70 frames and 50% frames are randomly occluded. 67

3.3.6 Image-to-video prediction. For each example, the first image is the static image frame,

and the rest are 6 frames of the predicted sequence. 71

3.4.1 Transferring motion to new appearance. (a) observed facial motion video. (b) The

learned motion. (c) The synthesized new “surprise” motions on the same appearance.

(d) Motion transfer to some new appearances in the testing set. (e) Motion transfer to

some cartoon appearance collected from Internet. (f) Motion transfer to some animal

faces collected from Internet. 77

3.4.2 The intrackability score vs the preference rate λ1 (the penalty parameter for the norm

of the residual image). The penalty parameter for smoothness is 0.005. 78

4.2.1 Comparison of trained EBM and Glow models on 2-dimensional data distributions. . . 89

4.2.2 Density estimation accuracy in 2D examples of a mixture of 8 Gaussian distributions. . 89

4.2.3 Synthesized examples from the Glow model learned by FCE. From left to right panels

are from SVHN, CIFAR-10 and CelebA datasets, respectively. The image size is 32×32. 90

4.2.4 SVHN test-set classification accuracy as a function of number of labeled examples.

The features from top layer feature maps are extracted and a linear classifier is learned

on the extracted features. 92

xiv

4.2.5 Illustration of FCE for semi-supervised learning on a 2D example, where the data

distribution is two spirals belonging to two categories. Within each panel, the top

left is the learned unconditional EBM. The top right is the learned Glow model. The

bottom is two class-conditional EBMs. For observed data, seven labeled points are

provided for each category. 94

5.2.1 The local 2D polar system around self-position x in the 2D physical space (a) is embedded

conformally as a 2D polar system around vector v(x) in the d-dimensional neural space (b),

with a scaling factor s (so that δ r in the physical space becomes sδ r in the neural space). . . . 100

5.4.1 Illustration of basis expansion model A(x,x′) = ∑
d
i=1 ui,x′vi(x), where vi(x) is the response

map of i-th grid cell, shown at the bottom, which shows 5 different i. A(x,x′) is the response

map of place cell associated with x′, shown at the top, which shows 3 different x′. ui,x′ is the

connection weight. 107

5.6.1 Hexagonal grid firing patterns emerge in the learned network. Every response map shows the

firing pattern of one neuron (i.e, one element of v) in the 2D environment. Every row shows

the firing patterns of the neurons within the same block or module. 110

5.6.2 Multi-modal distribution of grid scales of the learned model grid cells. The scale ratios closely

match the real data [SSS12]. 112

5.6.3 Learned response maps in ablation studies where a certain model assumption is removed. (a)

Remove the loss term L2. (b) Remove the assumption u(x′) ≥ 0. (c) Remove the skew-

symmetric assumption onB(θ). 113

5.6.4 The learned model can perform accurate path integration. (a) Black: example trajectory. Red:

inferred trajectory. (b) Path integration error over the number of time steps, for procedures with

re-encoding and without re-encoding. (c) Path integration error with fixed number of blocks

and different block sizes, for 50 and 100 time steps. The error band in (b) and error bar in (c)

are standard deviations computed over 1,000 episodes. 114

xv

5.A.1Color-coded illustration. (a) In the 2D physical space, the agent moves from x to x+ δx,

where δx = (δ r cosθ ,δ r sinθ), i.e., the agent moves by δ r along the direction θ . We also

show a displacement of δ r in a different direction. (b) In the d-dimensional neural space, the

vector v(x) is changed to v(x+δx) = F(v(x),δ r,θ) = v(x)+ fθ (v(x))δ r+o(δ r), where

the displacement is fθ (v(x))δ r = f0(v(x))δ r cosθ + fπ/2(v(x))δ r sinθ . Under the isotropic

condition that ‖ fθ (v(x))‖ is constant over θ , the local 2D self-motion δx at x in the 2D

physical space is embedded conformally into the neural space as a 2D subspace around v(x).

(c) Linear transformation, where fθ (v(x)) = B(θ)v(x). (d) 3D perspective view of linear

transformation as a rotation: v(x+δx) is a rotation of v(x), and the angle of rotation is µδ r,

where µ = ‖B(θ)v(x)‖/‖v(x))‖ (µ may depend on x). 117

5.A.2Correlation heatmap for each pair of the learned vi(x) and v j(x). The correlations are com-

puted over 40×40 lattice of x. 122

5.A.3Path integration error over number of time steps. The mean and standard deviation band is

computed over 1,000 episodes. “v” means decoding by Eq. (5.35), and “u” means decoding

by Eq. (5.36). The squared domain is 1m × 1m. 123

5.B.1 Autocorrelograms of the learned patterns of v(x). 125

5.B.2 Learned patterns of u(x) with 16 blocks of size 12 cells in each block. Every row shows the

learned patterns within the same block. 125

5.B.3 Histogram of grid orientations of the learned firing patterns of v(x). 126

5.B.4 Learned patterns of a block of B(θ). Each subfigure shows the value of an element in B(θ)

(vertical axis) over θ (horizontal axis). 127

5.B.5 Error correction results following the setting in Theorem 3. The error bar stands for the stan-

dard deviation over 1,000 trials. “v” means decoding by Eq. (5.35), and “u” means decoding

by Eq. (5.36). The squared domain is 1m × 1m. 128

xvi

5.B.6 Path integration results with different levels of injected errors. Left: Gaussian noise. The

magnitude of noise is measured using the average of the squared magnitudes of the units in

v(x) as the reference. Right: dropout masks. Certain percentage of units are randomly set to

zero at each step. “v” means decoding by Eq. (5.35), and “u” means decoding by Eq. (5.36).

The squared domain is 1m × 1m. 129

5.B.7 Learned neurons without loss term L2, which is the constraint on isotropic scaling condition.

More strip-like firing patterns emerge. 130

5.B.8 Learned neurons without the assumption of u(x′) ≥ 0. Hexagonal grid firing patterns also

emerge, with the grid activations being either positive/excitatory (in red color) or negative/inhibitory

(in blue color). 131

5.B.9 Learned neurons without skew-symmetric assumption ofB(θ). Hexagonal grid firing patterns

emerge in most of the neurons, with a block of square grid firing patterns. 131

5.B.10Learned patterns of v(x) with different block sizes. The total number of units is fixed at 192.

Every row shows the learned patterns within the same block. 132

5.B.11Left: learned neurons with a single block ofB(θ). The firing patterns has a single large scale,

meaning that the high frequency part of A(x,x′) is not fitted very well. Right: autocorrelo-

grams of the learned neurons. Some exhibit clear hexagon grid patterns, while the other do

not, probably because the scale of those grid patterns are beyond the scope of the whole area. . 133

6.1.1 Scheme of representation . 134

6.4.1 Learned results on V1Deform. (a) Learned units. Each block shows two learned units within

the same sub-vector. (b) Fitted Gabor patterns. (c) Distributions of spatial-frequency band-

width (in octaves) and spatial phase φ . 146

xvii

6.4.2 Learned results on band-pass image pairs from V1Deform. (a) Learned units. Each block

shows two learned units within the same sub-vector. (b) Distribution of the Gabor envelope

shapes in the width and length 2D-plane. (c) Difference of frequency f , orientation θ and

phase φ of paired units within each sub-vector. 147

6.4.3 Examples of inferred displacement field on V1Deform, V1FlyingObjects and MPI-Sintel. For

each block, from left to right are It , It+1, ground truth displacement field and inferred displace-

ment field by FlowNet 2.0 model and our learned model respectively. For each dataset, we

show the result of FlowNet 2.0 model with lower AEE among the pre-trained and trained ones.

The displacement fields are color coded [LYT10]. 149

6.4.4 Examples of inferred displacement fields by unsupervised learning. Within each block, the top

row shows the observed image frames, while the bottom row shows the inferred color-coded

displacement fields [LYT10]. 150

xviii

LIST OF TABLES

2.1 Inception scores on CIFAR-10. 22

2.2 Classification error of L2-SVM trained on the features learned from SVHN. 24

2.3 Classification error of CNN classifier trained on the features of three grids learned

from SVHN. 25

2.4 Quantitative evaluations for three types of masks. Lower values of error are better.

Higher values of PSNR are better. PCD, CD1, SG, CE and MG indicate persistent CD,

one-step CD, single-grid method, ContextEncoder and multi-grid method, respectively. 27

2.5 FID and inception scores on CIFAR-10. 38

2.6 Ablation of training objectives, time steps T and sampling steps K on CIFAR-10.

K = 0 indicates that we sample from the normal approximation. 38

2.7 FID scores on CelebA 642. 38

2.8 Test bits per dimension on CIFAR-10. † indicates that we estimate the bit per dimen-

sion with the approximated log partition function instead of analytically computing it.

See section 2.3.5.2. 39

3.3.1 Inception score for models trained on 9 classes of videos in UCF101 database. 66

3.3.2 Recovery errors in occlusion experiments . 69

4.2.1 FID scores for generated samples. For our method, we evaluate generative samples

from the learned Glow model. 91

4.2.2 Bits per dimension on testing data. † indicates that the log-likelihood is computed

based on models with estimated normalizing constant, and should be taken with a

grain of salt. 91

xix

4.2.3 Test set classification error of L2-SVM classifier trained on the concatenated features

learned from SVHN. DDGM stands for Deep Directed Generative Models. For fair

comparison, all the energy-based models or discriminative models are trained with the

same model structure. 93

4.2.4 Semi-supervised classification error (%) on the SVHN test set. † indicates that we

derive the results by running the released code. ∗ indicates that the method uses data

augmentation. The other cited results are provided by the original papers. Our results

are averaged over three runs. 97

5.6.1 Summary of gridness scores of the units learned from different models. To determine the valid

grid cells, we apply the same threshold of gridness score as in [BBU18], i.e., gridness score ¿

0.37. For our model, we run 5 trials and report the average and standard deviation. 112

6.4.1 Average endpoint error of the inferred displacement and number of paramters. (Abbreviation

FN2 refers to FlowNet 2.0.) . 150

6.4.2 Average endpoint error of the inferred displacement in unsupervised learning. 151

6.4.3 Ablation study measured by AEEs of motion inference and MSEs of multi-step animation,

learned from V1Deform dataset. 151

xx

ACKNOWLEDGMENTS

First and foremost I’d like to express my deepest gratitude towards my advisor Prof. Song-Chun

Zhu and effectively my co-advisor Prof. Ying Nian Wu. Thank Song-Chun for giving me the

opportunity to work in a large research lab and communicate and collaborate with lab mates of

various research interests. He has always influenced me with his long-term vision and persistence

for research. He gives me the courage to stick to difficult but valuable research topics, and reminds

me to think about larger scope when working on technical details. Ying Nian is the best advisor I

can ever imagine. One can think of many characteristics that make a great advisor: superb breadth

and width of knowledge, creative and original research ideas, detailed instructions, generous en-

couragement, insightful and constructive discussions, strong support in internship and job search.

Magically Ying Nian has all those, to the best extent possible. It is my great fortune to work with

him for the past five years. What I learned from Ying Nian is much beyond research: the peace

of mind, and a consistent set of principles that guide you through all hills and valleys in life. I am

deeply impressed and influenced by his taste in research and also his attitude towards life.

I would like to thank Prof. Hongjing Lu and Prof. Tao Gao for serving as my committee

members. Thanks for their time on my oral presentations and reviewing my thesis.

Many great minds have guided me through the journey. Jianwen Xie introduced me to the

world of generative modeling in the first year of my PhD, and has been my mentor and friend ever

since. He is the one who taught me the energy-based model and generator model. He also gave

me the first internship opportunity in the summer of 2018. Our extensive collaborations lead to

10 joint research papers. Much gratitude goes to Jianwen for his indispensable role in this thesis.

Yang Lu mentored me and gave me the strongest support on my first paper. He taught me a lot

about coding and writing and gave me the confidence on doing research. I would like to thank Zhen

Xu and Andrew Dai for hosting me at Google Brain during the summer of 2019, which leads to the

flow contrastive estimation paper. In the same summer, I was fortunate enough to work with Durk

Kingma and begin our fruitful collaborations. Durk hosted me at Google Brain in the summer

xxi

of 2020 and we have collaborated on the flow contrastive estimation and the diffusion recovery

likelihood papers. I would like to thank Durk’s incredibly strong support in my job search, and I

cannot wait for continuing our collaborations. I also appreciate Ben Poole for cohosting me in the

summer of 2020. I am fortunate enough to work with Xue-Xin Wei, from whom I learn all about

neuroscience related to grid cells and place cells. Thank Xue-Xin for giving me career advice and

unconditional support in my job search.

Many colleagues have supported me and played a mentorship role through my research, which

I sincerely appreciate. Erik Nijkamp taught me the flow-based models and we have collaborated

on the two hybrid models. Special thanks to Erik for the mutual support in summer 2019, when

both of us interned at Google. Siyuan Huang taught me about 3D vision and perception, which

leads to the collaboration on the work about V1 simple cells. I’d like to thank Yaxuan Zhu for close

collaborations and for applying the grid cell model to learning representations of 3D camera poses.

Thank Yang Song for the discussion and collaboration in summer 2020. Thank Will Grathwohl for

stimulating discussions. I do appreciate the support from my other colleagues and collaborators,

especially Tian Han, Xianglei Xing, Wenguan Wang, Zilong Zheng, Bo Pang, Pavel Sountsov,

Srinivas Vasudevan, Junpei Zhou, and Yufan Ren.

I enjoyed the time spent with my friends. Thanks to Yuejiao Sun, Weinan Song, Pengpeng Ji,

Ariel Pan, Haisong Lin, Jaden Tao, and many others, for board games and parties. Thanks to Jerry

Xu, Tengyu Liu, Hanlin Zhu, Yixin Zhu, Feng Gao, Yuanlu Xu, Xiaofeng Gao, Yiling Chen, Jingyu

Shao, Lifeng Fan, Arjun Akula, Mark Edmonds, Xiaojian Ma, Hangxin Liu, Jonathan Mitchell,

Sirui Xie, Yuxing Qiu, Xu Xie, Luyao Yuan, Tianyang Zhao, Chi Zhang, Qing Li, Baoxiong Jia,

Muzhi Han, Yixin Chen, Yizhou Zhao, and Shu Wang for chats about research and life.

During my job search, I was incredibly fortunate to have received guidance from researchers

in various institutions. Besides those mentioned above, I would like to especially thank Tianfu

Wu, Zhuowen Tu, Kevin Murphy, Yanqi Zhou, Han Zhang, Bo Dai, Colin Raffel, Adji Bousso

Dieng, Chen Sun, Hang Zhao, Yi Zhu, Arash Vahdat, Jan Kautz, Sifei Liu, and Yuandong Tian,

for helping me go through this stressful process.

xxii

Finally, thanks to my parents and Yutan Gu, for their continual support and love.

xxiii

VITA

2016–2021 Graduate Research Assistant, UCLA VCLA, Dr. Song-Chun Zhu

2020 Summer Research Intern, Google Brain, Dr. Diederik P. Kingma

2019 Summer Research Intern, Google Brain, Dr. Zhen Xu

2018 Summer Research Intern, Hikvision Research USA, Dr. Jianwen Xie

2018 Ph.D. Candidate in Statistics, UCLA

2016 B.E. in Statistics, Peking University, China

PUBLICATIONS

? denotes equal contributions

On path integration of grid cells: group representation and isotropic scaling. R Gao, J Xie, XX

Wei, SC Zhu, YN Wu. ArXiv, 2021.

Learning neural representation of camera pose with matrix representation of pose shift via view

synthesis. Y Zhu, R Gao, S Huang, SC Zhu, YN Wu. CVPR, 2021.

Learning energy-based models by diffusion recovery likelihood. R Gao, Y Song, B Poole, YN

Wu, DP Kingma. ICLR, 2021.

Learning energy-based model with flow-based backbone by neural transport MCMC. E Nijkamp?,

R Gao?, P Sountsov, S Vasudevan, B. Pang, SC Zhu, YN Wu. ArXiv, 2020.

Flow contrastive estimation of energy-based model. R Gao, E Nijkamp, DP Kingma, Z Xu, AM

Dai, YN Wu. CVPR, 2020.

Learning V1 simple cells with vector representations of local contents and matrix representations

xxiv

of local motions. R Gao, J Xie, S Huang, Y Ren, SC Zhu, YN Wu. ArXiv, 2020.

Generative VoxelNet: learning energy-based models for 3D shape synthesis and analysis. J Xie?,

Z Zheng?, R Gao, W Wang, SC Zhu, YN Wu. TPAMI, 2020.

Deformable generator networks: unsupervised disentanglement of appearance and geometry. X

Xing, R Gao, T Han, SC Zhu, and YN Wu. TPAMI, 2020.

Motion-based generator model: unsupervised disentanglement of appearance, trackable and in-

trackable motions in dynamic patterns. J Xie?, R Gao?, Z Zheng, SC Zhu, YN Wu. AAAI, 2020.

Representation learning: a statistical perspective. J Xie, R Gao, E Nijkamp, SC Zhu, YN Wu.

ARSIA, 2020.

Learning grid cells as vector representation of self-position coupled with matrix representation of

self-motion. R Gao?, J Xie?, SC Zhu, YN Wu. ICLR, 2019.

Learning dynamic generator model by alternating back-propagation through time. J Xie?, R Gao?,

Z Zheng, SC Zhu, YN Wu. AAAI, 2019.

Unsupervised disentanglement of appearance and geometry by deformable generator network. X

Xing, T Han, R Gao, SC Zhu, YN Wu. CVPR, 2019.

A tale of three probabilistic families: discriminative, descriptive and generative models. YN Wu,

R Gao, T Han, SC Zhu. Quarterly of Applied Mathematics, 2019.

Learning generative ConvNets via multigrid modeling and sampling. R Gao?, Y Lu?, J Zhou, SC

Zhu, YN Wu. CVPR, 2018.

Cooperative Training of Descriptor and Generator Networks. J Xie, Y Lu, R Gao, SC Zhu, YN

Wu. TPAMI, 2018.

Learning descriptor networks for 3D shape synthesis and analysis. J Xie?, Z Zheng?, R Gao, W

Wang, SC Zhu, YN Wu. CVPR, 2018.

Cooperative learning of energy-based model and latent variable model via MCMC teaching. J Xie,

Y Lu, R Gao, YN Wu. AAAI, 2018.

Exploring Generative Perspective of Convolutional Neural Networks by Learning Random Field

Models. Y Lu, R Gao, SC Zhu, YN Wu. Statistics and Its Interface, 2018.

xxv

CHAPTER 1

Introduction

Learning representations of data is an important problem in statistics and machine learning. While

the origin of learning representations can be traced back to factor analysis and multidimensional

scaling in statistics, it has become a central theme in deep learning with important applications

in computer vision and computational neuroscience. However, two challenges remain for repre-

sentation learning in the field of machine learning and deep learning: (1) data efficiency or label

efficiency, the ability to learn from few datapoints or data with few labels; (2) generalization, the

ability to transfer the learned knowledge to new tasks or environments. The goal of this thesis is to

propose novel solutions to tackle these challenges.

Generative modeling, as an important unsupervised learning approach, has the promise of

learning meaningful representations of the input while requiring little or no human annotations.

Since such representations can be learned from large-scale unlabeled datasets and are not task-

specific, downstream solutions based on the learned representations can potentially be more data-

efficient and robust to change of tasks or environments. In this thesis, we work on developing and

advancing various types of generative models, with the ultimate goal of learning better representa-

tions and intermediate applications such as image/video generations.

On the other hand, human is good at learning from few datapoints and can adapt to new tasks

or environments quickly thanks to the biological brain. Understanding structures and function-

alities of the brain can potentially inspire more human-like models in machine learning. To this

end, in this thesis, we propose generic optimization-based representational models with the same

functionality of the certain types of neurons in the brain, with the hope that the artificial neurons

1

can share similar activities or activation patterns to the biological neurons.

1.1 Generative modeling

One theme of this thesis is deep generative modeling. As the name suggests, generative models can

generate examples such as images, texts, and speeches. Equipped with deep neural networks as

powerful function approximators, modern generative models can generate highly realistic images

and texts. Such generative models are consistent with the brain’s ability to imagine and fantasize.

In more technical terms, such models provide a unified framework for supervised, unsupervised

and semi-supervised learning, the last of which is about learning from a large amount of unlabeled

data and a small amount of labeled data. In this thesis, we focus on developing and advancing the

descriptive models and generator models, which represent two major directions in the area of deep

generative models.

1.1.1 Descriptive model

The descriptive model, also known as the energy-based model (EBM), defines an unnormalized

probability density on high dimensional input examples such as images via an energy function so

that examples with low energies have high probabilities to be observed. This model can be traced

back to the Gibbs distribution in statistical mechanics. Compared to other types of generative

models, the descriptive model enjoys several distinct advantages, such as the free-form energy

function with almost no constraints, which can be parametrized by any existing network structure,

and direct correspondence to discriminative models, which can therefore unify supervised learning

and unsupervised learning in an elegant way. The learning of such a model follows an “analysis by

synthesis” scheme, which involves sampling data from the current model, and then updating the

model parameters based on the difference between the sampled data and the observed data. The

challenge lies in the fact that the sampling step usually requires iterative Markov chain Monte Carlo

(MCMC), such as Langevin dynamics or Hamiltonian Monte Carlo, which can be time-consuming

2

and difficult to converge on high-dimensional data space.

To solve this problem, We propose a multi-grid modeling and sampling method that achieves

efficient learning of descriptive models on large-scale image datasets. The idea is to learn descrip-

tive models at a sequence of resolutions and the sampling follows a progressively coarse-to-fine

scheme. The learning scheme has a similar effect to simulated annealing where the temperature of

the model decreases gradually, and therefore makes MCMC more efficient.

More recently, we further extend this method to an algorithm named diffusion recovery like-

lihood, where a sequence of descriptive models are proposed and learned on increasingly noisy

versions of a dataset. Each marginal descriptive model is trained with recovery likelihood, which

maximizes the conditional probability of the data at a certain noise level given their noisy versions

at a higher noise level. Optimizing recovery likelihood is more tractable than marginal likelihood,

as sampling from the conditional distributions is much easier than sampling from the marginal dis-

tributions. That is, we learn marginal descriptive models at different noise levels and use sequential

conditional distributions to ease the sampling. Using this method, we push descriptive models to

the state-of-the-art of generative models in terms of both sample quality and density estimation.

1.1.2 Generator model

A generator model assumes latent structure behind the input signals, usually in the form of a latent

vector, and maps the latent vector to the high-dimensional example such as an image by a non-

linear transformation parametrized by a deep neural network. The challenge is to infer such latent

variables given observed examples during training. We aim at developing an efficient learning

method and meanwhile learning disentangled latent representations for different components of

the data, such as the appearance and motion in videos.

To this end, we develop a dynamic generator model for spatial-temporal processes, where

the latent vector follows a transition model and the transition is parametrized by a feedforward

neural network or in general a recurrent neural network, and the latent vector generates the video

3

frame by a deep network as the emission model. We also propose a maximum likelihood learning

algorithm called alternating back-propagation through time, which alternates between inferring

the latent noise vectors by Langevin dynamics and updating the parameters by gradient descent

on a reconstruction error. The gradient computations in both steps can be accomplished by back-

propagation through time. Unlike VAE [KW13] or GAN [GPM14], our method can learn generator

models without auxiliary networks.

More recently, we further generalize the model to explicitly incorporate trackable and intrack-

able motion, which can be inferred automatically from the video data in an unsupervised manner.

Such models can be useful for learning intuitive physics, and can serve as the dynamic model for

model-based reinforcement learning.

1.1.3 Hybrid model

We also work on integrating or jointly training different families of generative models to combine

the best of their worlds. Specifically, we develop a flow contrastive estimation method to jointly

learn a descriptive model and a flow-based model in a discriminative manner, without resorting to

MCMC. A flow-based model transforms a latent vector to the image via a sequence or a flow of

transformations. Unlike the generator model, the latent vector of the flow-based model is of the

same dimension as the image, and the transformations are invertible and the probability density

of the data is analytically tractable. However, due to the highly constrained form of the trans-

formations, one usually needs to compose a large number of transformations in order to model

complex signals such as images. Our joint training method combines the tractability of the flow-

based model and the flexibility of the descriptive model. We also adapt the proposed method to

semi-supervised learning and achieve competitive performance on this task.

Besides, we propose a tight coupling of a descriptive model and a flow-based model, by learn-

ing a descriptive model with a flow-based model serving as a backbone, so that the descriptive

model is a correction or an exponential tilting of the flow-based model. We show that the model

4

has a particularly simple form in the space of the latent variables of the flow-based model, and

MCMC sampling of the descriptive model in the latent space mixes well and traverses modes in

the data space. This enables proper sampling and learning of descriptive models. To the best

of our knowledge, our work is the first where MCMC sampling is mixing for descriptive models

parametrized by modern convolution neural networks.

1.2 Biological plausible representational models

For advancing representation learning in machine learning, it is appealing to borrow inspirations

from the biological brain and develop representational models that can meaningfully approximate

and explain the structure and activities in the brain. This is the second theme of this thesis. The

hope is that by learning and approximating the brain, we would end up with more powerful and

meaningful representational models in machine learning. In the first theme of generative modeling,

the vector representation in generator models has been widely used and explored especially after

the development of deep learning. Sometimes the vector is colloquially called “thought vector”.

In this theme, we show that it is also of fundamental importance to learn matrix representation for

continuous motions or transformations.

1.2.1 Representational models of grid cells

Grid cells, together with place cells, are two types of neurons widely existing in mammalian brains

and are in charge of an agent’s self-navigation. The discovery of grid cells and place cells was

honored by the Nobel prize in physiology and medicine in 2014. Place cells, located in the hip-

pocampus, fire at a single position when the agent (e.g., a rat) moves within an environment, while

more surprisingly, grid cells, located in the medial entorhinal cortex (mEC), fire at regular hexagon

grids of positions as the agent moves. It is desirable to study representational models that can learn

and explain such hexagon grid patterns of grid cells as well as the connection between grid cells

and place cells.

5

To this end, we develop a representational model for grid cells, where the grid cells form a

vector representation of the self-position of the agent, and when the agent moves, the vector is

rotated by a matrix that represents the displacement. This model gives a natural explanation of

the hexagon grid patterns observed in grid cells. Interestingly, it is similar to the mathematical

formulation of quantum physics, where the position of a particle is represented by a vector and the

displacement is represented by a matrix or an operator acting on the vector. Matrix representation

of group is also of fundamental importance in modern mathematics.

More recently, we conduct a theoretical analysis of a more general representation model of

path integration by grid cells, where the 2D self-position is encoded as a high dimensional vector,

and the 2D self-motion is represented by a general transformation of the vector. We identify two

conditions for the transformation. One is a group representation condition that is necessary for path

integration. The other is an isotropic scaling condition that ensures locally conformal embedding,

so that the error in the vector representation translates proportionally to the error in the 2D self-

position. Then we investigate the simplest transformation, i.e., the linear transformation, uncover

its explicit algebraic and geometric structure as matrix Lie group of rotation, and integrate the

path integration model of grid cells and the basis expansion model connecting grid cells and place

cells. Finally, with our optimization-based approach, we manage to learn hexagon grid patterns

that share similar properties of the grid cells in the rodent brain. The learned model is capable of

accurate long-distance path integration.

1.2.2 Representational models of V1 simple cells

V1 stands for the primary visual cortex in the mammalian brain, and it is highly specialized for

motion perception and pattern recognition. It is known that V1 simple cells exhibit Gabor-like

tunings and adjacent simple cells have quadrature-phase relations (e.g., sine and cosine pairs). The

study of V1 simple cells motivates one of the most prominent models in machine learning, sparse

coding. Different from sparse coding, we develop a representational model of V1 simple cells

by incorporating the representation of perceived motions, where we learn a vector representation

6

for the local content received from sensory, and a matrix representation for the local displacement

caused by the relative motions between the agent and the objects in the 3D scenes. This model

naturally learns and explains patterns of V1 simple cells, and can be used for motion inference.

1.2.3 Unified and general framework

Summarizing the representational models of grid cells and V1 simple cells, while vector represen-

tation may be considered a “noun”, matrix representation may be considered a “verb”. In terms

of neuroscience, the vector representation corresponds to the activities of neurons, and the matrix

representation corresponds to synaptic connections. This general framework may be applicable to

more activities in brain and machine intelligence. We also apply this idea to modeling the change

of images under ego-motion, which is an important problem in computer vision and human vision.

It may shed light on how the brain represents the three-dimensional environment.

1.3 Research questions and contributions

We formulate the research questions and contributions in this thesis as follows.

Research question 1: Is it possible to achieve efficient learning and proper sampling of deep

descriptive models by maximum likelihood type of algorithms?

In Chapter 2 and [GLZ18], we propose multi-grid modeling and sampling algorithm that

achieves efficient learning of deep descriptive models on large image datasets. After training,

we can generate realistic samples from the learned models with a small budget MCMC.

Despite being able to learn and generate realistic samples, MCMC is still computationally

expensive and generally not converging, in the sense that samples from long-run Markov chains can

differ greatly from observed samples. Thus in Chapter 2 and [GSP20], we propose a more efficient

training algorithm, diffusion recovery likelihood, to tractably learn and sample from a sequence

of descriptive models trained on increasingly noisy versions of a dataset. With this approach, we

7

push descriptive models to state-of-the-art generative models in terms of both sample quality and

likelihood estimation. Moreover, we demonstrate that the long-run MCMC samples do not diverge

and still represent realistic images.

To further encourage MCMC mixing, in Chapter 4 and [NGS20], we propose to learn a de-

scriptive model with a flow-based model serving as a backbone. We show that the model has

a particularly simple form in the latent space of the flow-based model, and sampling of the de-

scriptive model by neural transport MCMC mixes well and is able to traverse modes in the data

space.

Research question 2: Is it possible to estimate deep descriptive models in a completely

MCMC-free manner?

In Chapter 4 and [GNK20], we answer this question in the affirmative. Specifically, we propose

a training method to jointly estimate a descriptive model and a flow-based model, in which the two

models are iteratively updated based on a shared value function. The update of the descriptive

model is based on noise contrastive estimation (NCE), with the flow-based model serving as an

adaptively updated strong noise distribution. With this NCE-based framework, we can totally avoid

MCMC sampling. We show the efficacy of the learned descriptive model via unsupervised feature

learning. Furthermore, the proposed training method can be easily adapted to semi-supervised

learning, using the direct correspondence of the descriptive model to a discriminative model. We

achieve competitive results to the state-of-the-art semi-supervised learning methods.

Research question 3: How can we propose a generator model for modeling spatial-temporal

processes and develop the corresponding learning algorithm?

In Chapter 3 and [XGZ19], we propose a dynamic generator that contains two components:

(1) an emission model which is a generator network that maps the state vector to the frame im-

age, and (2) a transition model which is a recurrent neural network in the state space. We also

develop an efficient learning algorithm for the dynamic generator model, namely alternating back-

propagation through time. This algorithm does not require any auxiliary network. In Chapter 3 and

8

[XGZ20], we further generalize the model by introducing latent state vectors that explicitly model

trackable and intrackable motion. This generalized model can learn disentangled representations

of appearance, trackable and intrackable motion in a fully unsupervised manner.

Research question 4: Can we develop optimization-based representational models with min-

imally simple assumptions that can meaningfully approximate activities of neurons in biological

brains?

We answer this question by studying two types of neurons in mammalian brains: (1) grid cells

in the medial entorhinal cortex (mEC), which is hypothesized to participate in the path integra-

tion process, and (2) V1 simple cells in the primary visual cortex, which is essential to motion

perception and pattern recognition.

In Chapter 5 and [GXZ18a, GXW20], we conduct a theoretical analysis of a general repre-

sentational model of path integration by grid cells, where the 2D self-position is encoded as a

higher dimensional vector, and the 2D self-motion is represented by a general transformation of

the vector. We identify two minimally simple conditions on the transformation, under which we

derive the clear local geometric structure of the vector representation in the neural space and a nat-

ural explanation to the error correction by grid cells. By investigating the simplest special case of

the transformation, i.e., the linear transformation, we uncover its explicit algebraic and geometric

structure as a matrix Lie group of rotation. With our optimization-based approach, we can learn

significant hexagon grid patterns that share similar properties of the grid cells in the rodent brain.

The learned model is capable of accurate long-distance path integration.

In Chapter 6 and [GXZ18b], we propose a representational model that may shed light on

V1 simple cells. This model shares a similar idea to the representational model of grid cells in

[GXZ18a]. Given an image pair such as consecutive video frames that are related by local dis-

placements, the local contents of images are represented by vectors and the local displacements

of the images are represented by matrices operating on the vectors. With this simple model, we

are able to learn Gabor-like filter pairs of quadrature phases, which match the profile of Macaque

V1 simple cells. We also achieve competitive results on optical flow estimation with the learned

9

model.

10

CHAPTER 2

Descriptive models

2.1 Deep descriptive models

This chapter studies the problem of learning deep descriptive models, also known as deep energy-

based models (EBMs) [LCH06, Hin02a, HOW06, HOT06, SH09, LGR09, NCK11, LZW16, XLZ16,

XZW17a, JLT17] of images 1. EBMs define an unnormalized density that is the exponential of the

negative energy function. The energy function is directly defined as a (learned) scalar function of

the input, and is often parameterized by a neural network. Specifically, let x ∼ pdata(x) denote a

training example, and pθ (x) denote a model’s probability density function that aims to approxi-

mates pdata(x). An EBM is defined as:

pθ (x) =
1

Zθ

exp(fθ (x)), (2.1)

where Zθ =
∫

exp(fθ (x))dx is the partition function, which is analytically intractable for high-

dimensional x. For images, we parameterize fθ (x) with a convolutional neural network with a

scalar output.

2.1.1 Maximum likelihood estimation

The energy-based model can be estimated from unlabeled data by maximum likelihood estimation

(MLE). Suppose we observe training examples {xi, i = 1, ...,n} from unknown true distribution

pdata(x). We can view this dataset as forming empirical data distribution, and thus expectation

1The main contributions in this chapter were first described in [GLZ18, GSP20].

11

with respect to pdata(x) can be approximated by averaging over the training examples. In MLE, we

seek to maximize the log-likelihood function

L (θ) =
1
n

n

∑
i=1

log pθ (xi)
.
= Ex∼pdata[log pθ (x)]. (2.2)

Maximizing the log-likelihood function is equivalent to minimizing the Kullback-Leibler diver-

gence KL(pdata||pθ) for large n. Its gradient can be written as:

− ∂

∂θ
KL(pdata||pθ) = Epdata

[
∂

∂θ
fθ (x)

]
−Epθ

[
∂

∂θ
fθ (x)

]
, (2.3)

which is the difference between the expectations of the gradient of fθ (x) under pdata and pθ re-

spectively. The expectations can be approximated by averaging over the observed examples and

synthesized samples generated from the current model pθ (x) respectively. Generating synthesized

samples from pθ (x) can be done with Markov Chain Monte Carlo (MCMC) such as Langevin

dynamics (or Hamiltonian Monte Carlo [GC11]), which iterates

xτ+1 = xτ +
δ 2

2
∇x fθ (xτ)+δετ , (2.4)

where τ indexes the time, δ is the step size, and ετ ∼N (0,I). The MLE of pθ (x) seeks to cover

all the models of pdata(x). Given the flexibility of model form of fθ (x), the MLE of pθ (x) has the

chance to approximate pdata(x) reasonably well.

Challenge of learning EBMs. The difficulty lies in the fact that the probability distribution or

the energy function of the learned model is likely to be multi-modal if the training data are high

dimensional and highly varied. The MCMC may have difficulty traversing different modes and

may take a long time to converge.

2.1.2 Modifications of maximum likelihood estimation

In this subsection, we review modifications of maximum likelihood estimation (MLE) for learning

energy-based models.

12

Contrastive divergence. The MCMC sampling of pθ may take a long time to converge, espe-

cially if the learned pθ is multi-modal, which is often the case because pdata is usually multi-modal.

In order to learn from large datasets, we can only afford small budget MCMC, i.e., within each

learning iteration, we can only run MCMC for a small number of steps. To meet such a challenge,

[Hin02a] proposed the contrastive divergence (CD) method, where within each learning iteration,

we initialize the finite-step MCMC from each x in the current training batch to obtain a synthesized

example x̃. The parameters are then updated according to the learning gradient (2.3).

Let Mθ be the transition kernel of the finite-step MCMC that samples from pθ (x). For any

probability distribution p(x) and any Markov transition kernel M, let Mp(x′) =
∫

p(x)M(x,x′)dx

denote the marginal distribution obtained after running M starting from p. The learning gradient

of CD approximately follows the gradient of the difference between two Kullback-Leibler (KL)

divergences:

KL(pdata‖pθ)−KL(Mθ pdata‖pθ), (2.5)

thus the name “contrastive divergence”. If Mθ pdata is close to pθ , then the second divergence is

small, and the CD estimate is close to maximum likelihood which minimizes the first divergence.

However, it is likely that pdata and the learned pθ are multi-modal. It is expected that pθ is smoother

than pdata, i.e., pdata is “colder” than pθ in the language of simulated annealing [KGV83]. If pdata

is different from pθ , it is unlikely that Mθ pdata becomes much closer to pθ due to the trapping of

local modes. This may lead to bias in the CD estimate.

A persistent version of CD [Tie08] is to initialize the MCMC from the observed xi in the

beginning, and then in each learning epoch, the MCMC is initialized from the synthesized x̃i

obtained in the previous epoch. The persistent CD may still face the challenge of traversing and

exploring different local energy minima.

Modified and adversarial CDs. The original CD initializes MCMC sampling from the data

distribution pdata. We may modify it by initializing MCMC sampling from a given distribution p0,

13

in the hope that Mθ p0 is closer to pθ than Mθ pdata. The learning gradient approximately follows

the gradient of

KL(pdata‖pθ)−KL(Mθ p0‖pθ). (2.6)

That is, we run a finite-step MCMC from a given initial distribution P0, and use the resulting

samples as synthesized examples to approximate the expectation in (2.3). The approximation

can be made more accurate using annealed importance sampling [Nea01a]. Following the idea

of simulated annealing, p0 should be a “smoother” distribution than pθ (the extreme case is to

start from white noise p0). Unlike persistent CD, here the finite-step MCMC is non-persistent,

sometimes also referred to as “cold start”, where the MCMC is initialized from a given p0 within

each learning iteration, instead of from the examples synthesized by the previous learning epoch.

The cold start version is easier to implement for mini-batch learning.

With the multi-grid method (to be introduced in the next section), at each grid, p0 is the dis-

tribution of the images generated by the previous coarser grid. At the smallest grid, p0 is the

one-dimensional histogram of the 1×1 versions of the training images.

Another possibility is to recruit a generator network qα(x) as an approximated direct sampler

[KB16, DAB17], so that pθ and qα can be jointly learned by the adversarial CD:

min
pθ

max
qα

[KL(pdata‖pθ)−KL(qα‖pθ)] . (2.7)

That is, the learning of pθ is modified CD with qα supplying synthesized examples, and the learn-

ing of qα is based on minqα
KL(qα‖pθ), which is a variational approximation. The adversarial

CD is related to Wasserstein GAN [ACB17b], except that the former regularizes the entropy of the

generator, while the latter regularizes the critic.

[XLG17] also studied the problem of joint learning of the energy-based model and the genera-

tor model. The learning of the energy-based model is based on the modified CD:

KL(pdata‖pθ)−KL(Mθ qα‖pθ), (2.8)

14

with qα taking the role of P0, whereas the learning of the generator is based on how Mθ qα mod-

ifies qα , and is accomplished by at+1 = argminα KL(Mθ qαt‖qα), i.e., qα accumulates MCMC

transitions to be close to the stationary distribution of Mθ , which is pθ .

In this chapter, we would not consider recruiting a generator network, so that we do not need

to worry about the mismatch between the generator model and the energy-based model. In other

words, instead of relying on a learned approximate direct sampler, we endeavor to develop a small

budget MCMC for sampling.

2.1.3 Correspondence to discriminative models

The energy-based model corresponds to a discriminative model or a classifier in the following sense

[DLW14, XLZ16, Tu07, LJT17, JLT17]. Suppose there are K categories and for each category k,

the data is modeled by an EBM pθk(x) with parameters θk, in addition to the background category

p0(x). The neural networks fθk(x) for k = 1, ...,K may share common lower layers. Let ρk be

the prior probability of category k, k = 0, ...,K. Then by Bayes rule, the posterior probability for

classifying an example x to the category k is a softmax multi-class classifier

p(k|x) =
exp(fθk(x)+bk)

∑
K
k=0 exp(fθk(x)+bk)

, (2.9)

where bk = log(ρk/ρ0)− logZ(θk), and for k = 0, fθ0(x) = 0, b0 = 0. Conversely, if we have the

softmax classifier (2.9), then the distribution of each category is pθk(x) of the form (2.1).

That is to say, an EBM can be derived from the commonly used discriminative model, but

unlike the discriminative model, an EBM is endowed with the gift of imagination in that it can

generate images by sampling from the probability distribution of the model. As a result, the EBM

can be learned in an unsupervised setting without requiring class labels. Conversely, a class-

conditional EBM can also be turned into a discriminative model for classification.

15

2.2 Multi-grid modeling and sampling

To address the challenge of learning energy-based models under the constraint of finite budget

MCMC, we propose a multi-grid method to learn EBMs at multiple scales or grids [GLZ18].

Specifically, for each training image, we obtain its multi-grid versions by repeated down-scaling.

Our method learns a separate EBM at each grid. Within each iteration of our learning algorithm,

for each observed training image, we generate the corresponding synthesized images at multiple

grids. Specifically, we initialize the finite-step MCMC sampling from the minimal 1×1 version of

the training image, and the synthesized image at each grid serves to initialize the finite-step MCMC

that samples from the model of the subsequent finer grid. See Figure 2.1 for an illustration, where

we sample images sequentially at 3 grids, with 30 steps of the Langevin dynamics at each grid.

After obtaining the synthesized images at the multiple grids, the models at the multiple grids are

updated separately and simultaneously based on the differences between the synthesized images

and the observed training images at different grids.

Figure 2.1: Synthesized images at multi-grids. From left to right: 4× 4 grid, 16× 16 grid and

64×64 grid. Synthesized image at each grid is obtained by 30 step Langevin sampling initialized

from the synthesized image at the previous coarser grid, beginning with the 1×1 grid.

The advantages of the proposed method are as follows.

(1) The finite-step MCMC is initialized from the 1×1 version of the observed image, instead

of the original observed image. Thus the synthesized image is much less biased by the observed

16

image compared to the original CD.

(2) The learned models at coarser grids are expected to be smoother than the models at finer

grids. Sampling the models at increasingly finer grids sequentially is like a simulated annealing

process [KGV83] that helps the MCMC to mix.

(3) Unlike the original CD or persistent CD, the learned models are equipped with a fixed

budget MCMC to generate new synthesized images from scratch, because we only need to initialize

the MCMC by sampling from the one-dimensional histogram of the 1× 1 version of the training

images.

We show that the proposed method can learn realistic models of images. The learned models

can be used for image processing such as image inpainting. The learned feature maps can be used

for subsequent tasks such as classification.

The contributions of this section are as follows. We propose a multi-grid method for learning

energy-based models. We show empirically that the proposed method outperforms the original

CD, persistent CD, as well as single-grid learning. More importantly, we show that a small budget

MCMC is capable of generating diverse and realistic patterns.

2.2.1 Related work

Our method is related to CD [Hin02a] for training energy-based models. In general, both the

data distribution of the observed training examples and the learned model distribution can be

multi-modal, and the data distribution can be even more multi-modal than the model distribu-

tion. The finite-step MCMC of CD initialized from the data distribution may only explore local

modes around the training examples, thus the finite-step MCMC may not get close to the model

distribution. This can also be the case with persistent CD [Tie08]. In contrast, our method initial-

izes the finite-step MCMC from the minimal 1×1 version of the original image, and the sampling

of the model at each grid is initialized from the image sampled from the model at the previous

coarser grid. The model distribution at the coarser grid is expected to be smoother than the model

17

distribution at the finer grid, and the coarse to fine MCMC is likely to generate varied samples

from the learned models. As a result, the learned models obtained by our method can be closer to

the maximum likelihood estimate than the original CD.

The multi-grid Monte Carlo method originated from statistical physics [GS89]. The motivation

for multi-grid Monte Carlo is that reducing the scale or resolution leads to a smoother or less multi-

modal distribution. Our work is perhaps the first to apply multi-grid sampling to the learning of

deep energy-based models. The difference between our method and the multi-grid MCMC in

statistical physics is that in the latter, the distribution of the lower resolution is obtained from the

distribution of the higher resolution. In our work, the models at different grids are learned from

training images at different resolutions directly and separately.

Our learning method is based on maximum likelihood. Building on the early work of [Tu07],

[JLT17, LJT17] have developed an introspective learning method to learn the energy-based model,

where the energy function is discriminatively learned. It is possible to apply multi-grid learning

and sampling to their method.

2.2.2 Proposed algorithm

For an image x, let (x(s),s = 0, ...,S) be the multi-grid versions of x, with x(0) being the minimal

1×1 version of x, and x(S) = x. For each x(s), we can divide the image grid into squared blocks of

d×d pixels. We can reduce each d×d block into a single pixel by averaging the intensity values

of the d× d pixels. Such a down-scaling operation maps x(s) to x(s−1). Conversely, we can also

define an up-scaling operation, by expanding each pixel of x(s−1) into a d× d block of constant

intensity to obtain an up-scaled version x̂(s) of x(s−1). The up-scaled x̂(s) is not identical to the

original x(s) because the high resolution details are lost. The mapping from x(s) to x(s−1) is a linear

projection onto a set of orthogonal basis vectors, each of which corresponds to a d×d block. The

up-scaling operation is a pseudo-inverse of this linear mapping. In general, d does not even need

to be an integer (e.g., d = 1.5) for the existence of the linear mapping and its pseudo-inverse.

18

Let p(s)
θ (s)(x(s)) be the energy-based model at grid s. p(0) can be simply modeled by a one-

dimensional histogram of x(0) pooled from the 1×1 versions of the training images.

Within each learning iteration, for each training image xi in the current learning batch, we

initialize the finite-step MCMC from the 1× 1 image x(0)i . For s = 1, ...,S, we sample from the

current p(s)
θ (s)(x(s)) by running l steps of the Langevin dynamics from the up-scaled version of x̃(s−1)

i

sampled at the previous coaser grid. After that, for s = 1, ...,S, we update the model parameters

θ (s) based on the difference between the synthesized {x̃(s)i } and the observed {x(s)i } according to

Eq. (2.3).

Algorithm 1 provides the details of the multi-grid method.

In the above sampling scheme, p(0) can be sampled directly because it is a one-dimensional

histogram. Each p(s) is expected to be smoother than p(s+1). Thus the sampling scheme is sim-

ilar to simulated annealing, where we run finite-step MCMC through a sequence of probability

distributions that are increasingly multimodal (or cold), in the hope of reaching and exploring ma-

jor modes of the model distributions. The learning process then shifts these major modes toward

the observed examples, while sharpening these modes along the way, in order to memorize the

observed examples with these major modes of the model distributions.

Let p(s)data be the data distribution of {x(s)i }. Let p(s)
θ (s) be the model at grid s. Let P(s)

θ (s−1) be the

up-scaled version of the model p(s−1)
θ (s−1) . Specifically, let x(s−1) ∼ p(s−1)

θ (s−1) be a random example at

grid s−1, and let x̂(s) be the up-scaled version of x(s−1), then P(s)
θ (s−1) is the distribution of x̂(s). Let

M(s)
θ (s) be the Markov transition kernel of l-step Langevin dynamics that samples p(s)

θ (s) . The learning

gradient of the multi-grid method at grid s approximately follows the gradient of the difference

between two KL divergences:

KL
(

p(s)data‖p(s)
θ (s)

)
−KL

(
M(s)

θ (s)P
(s)
θ (s−1)‖p(s)

θ (s)

)
. (2.10)

P(s)
θ (s−1) is smoother than p(s)

θ (s) , and M(s)
θ (s) will evolve P(s)

θ (s−1) to a distribution close to p(s)
θ (s) by creating

details at the current resolution. If we use the original CD by initializing MCMC from p(s)data, then

we are sampling a multi-modal (cold) distribution p(s)
θ (s) by initializing from a presumably even

19

Algorithm 1 Multi-grid sampling and learning
Input:

(1) training examples {x(s)i ,s = 1, ...,S, i = 1, ...,n},

(2) number of Langevin steps l,

(3) number of learning iterations T .

Output:

(1) estimated parameters (θ (s),s = 1, ...,S),

(2) synthesized examples {x̃(s)i ,s = 1, ...,S, i = 1, ...,n}.

1: Let t← 0, initialize θ (s),s = 1, ...,S.

2: repeat

3: For i = 1, ...,n, initialize x̃(0)i = x(0)i .

4: For s = 1, ...,S, initialize x̃(s)i as the up-scaled version of x̃(s−1)
i , and run l steps of the

Langevin dynamics to evolve x̃(s)i , each step following Eq. (2.4).

5: For s = 1, ...,S, update θ
(s)
t+1 = θ

(s)
t +γtL′(θ

(s)
t), with step size γt , where L′(θ (s)

t) is computed

according to equation (2.3).

6: Let t← t +1.

7: until t = T

more multi-modal (or colder) distribution p(s)data, and we may not expect the resulting distribution

to be close to the target p(s)
θ (s) .

2.2.3 Experiments

Project page: The code and more results can be found at http://www.stat.ucla.edu/

˜ruiqigao/multigrid/main.html.

We learn the models at 3 grids: 4× 4, 16× 16 and 64× 64, which we refer to as grid1, grid2

20

and grid3, respectively. That is, we set S = 3 (number of grids), d = 4 (reducing each 4×4 block

to a pixel in the down-scaling operation).

We conduct qualitative and quantitative experiments to evaluate our method with respect to

several baseline methods. The first baseline is the single-grid method: starting from a 1×1 image,

we directly upscale it to 64×64 and sample a 64×64 image using a single EBM. The other two

baselines are CD1 (running 1 step Langevin dynamics from the observed images) and persistent

CD. Both CD baselines initialize the MCMC sampling from the observed images. See [GLZ18]

for more details.

2.2.3.1 Synthesis

Observed DCGAN single-grid method multi-grid method

Figure 2.2: Synthesized images from models learned from the CelebA dataset. From left to right:

observed images, images synthesized by DCGAN [RMC15], single-grid method and multi-grid

method. CD1 and persistent CD cannot synthesize realistic images and their results are not shown.

We learn multi-grid models from five datasets: CelebA [LLW15], Large-scale Scene Under-

standing (LSUN) [SX15], CIFAR-10 [KH09], Street View Housing Numbers (SVHN) [NWC11]

and MIT places205 [ZLX14]. In the CelebA dataset, we randomly sample 10,000 images for train-

ing. Figure 2.2 show synthesized images generated by models learned from CelebA dataset. We

also show synthesized images generated by models learned by DCGAN [RMC15] and the single-

grid method. CD1 and persistent CD cannot synthesize realistic images, thus we do not bother

21

(a) Original images (b) Synthesized images

Figure 2.3: Synthesized images generated by the multi-grid models learned from the LSUN bed-

rooms dataset.

to show their synthesis results. Compared with the single-grid method, images generated by the

multi-grid method are more realistic. The results from multi-grid models are comparable to the

results from DCGAN. Figure 2.3 shows synthesized images from models learned from the LSUN

bedrooms dataset, which contains more than 3 million training images. The SVHN dataset con-

sists of color images of house numbers collected by Google Street View. The training set consists

of 73,257 images and the testing set has 26,032 images. We learn the models in an unsupervised

manner. MIT places205 contains images of 205 scene categories. We learn from a single category.

Table 2.1: Inception scores on CIFAR-10.

Real images DCGAN multi-grid method

Inception score 11.237 6.581 6.565

CIFAR-10 includes various object categories and has 50,000 training examples. Figure 2.A.1

shows the synthesized images generated by models learned by the multi-grid method conditional

on each category. In this experiment, we run 40 steps of the Langevin dynamics for each grid, and

in the final synthesis after learning, we disable the noise term in the Langevin dynamics, which

22

Figure 2.4: Synthesized images generated by the multi-grid models learned from the CIFAR-10

dataset. Each row illustrates a category, and the multi-grid models are learned conditional on the

category. From top to bottom: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.

slightly improves the synthesis quality. We evaluate the quality of synthesized images quanti-

tatively using the average inception score [SGZ16] in Table 2.1. The multi-grid method gets a

comparable inception score as DCGAN as reported in [LW17].

To check the diversity of Langevin dynamics sampling, we synthesize images by initializing

the Langevin dynamics from the same 1× 1 image. As shown in Figure 2.5, after 90 steps of

Langevin dynamics, the sampled images from the same 1×1 image are different from each other.

Figure 2.5: Synthesized images by initializing the Langevin dynamics sampling from the same

1×1 image. Each block of 4 images are generated from the same 1×1 image.

23

2.2.3.2 Unsupervised feature learning for classfication

Table 2.2: Classification error of L2-SVM trained on the features learned from SVHN.

Test error rate with # of labeled images 1,000 2,000 4,000

Persistent CD [Tie08] 45.74 39.47 34.18

One-step CD [Hin02a] 44.38 35.87 30.45

Wasserstein GAN [ACB17b] 43.15 38.00 32.56

Deep directed generative models [KB16] 44.99 34.26 27.44

DCGAN[RMC15] 38.59 32.51 29.37

single-grid method 36.69 30.87 25.60

multi-grid method 30.23 26.54 22.83

To evaluate the features learned by the multi-grid method, we perform a semi-supervised clas-

sification experiment by following the same procedure outlined in [RMC15]. That is, we use the

multi-grid method as a feature extractor. We first train a multi-grid model on the combination of

SVHN training and testing sets in an unsupervised way. Then we train a regularized L2-SVM on

the learned representations of grid 3. For a fair comparison, we adopt the discriminator structure

of [RMC15] for grid 3, which has 4 convolutional layers of 5× 5 filters with 64, 128, 256 and

512 channels respectively. The features from all the convolutional layers are max pooled and con-

catenated to form a 15,360-dimensional vector. We randomly sample 1000, 2000 and 4000 labeled

examples from the training dataset to train the SVM and test on the testing dataset. Within the same

setting, we compare the learned features of the multi-grid method with the single-grid method, per-

sistent CD [Tie08], one-step CD [Hin02a], Wasserstein GAN [ACB17b], deep directed generative

models [KB16] and DCGAN [RMC15]. Table 2.2 shows the classification results, indicating that

the multi-grid method learns strong features.

24

Table 2.3: Classification error of CNN classifier trained on the features of three grids learned from

SVHN.

Test error rate with # of labeled images 1,000 2,000 4,000

DGN [KMR14] 36.02 - -

Virtual adversarial [MMK15] 24.63 - -

Auxiliary deep generative model [MSS16] 22.86 - -

Supervised CNN with the same structure 39.04 22.26 15.24

multi-grid method + CNN classifier 19.73 15.86 12.71

Next, we try to combine the learned features of three grids together. Specifically, we build a

two-layer classification CNN on top of the top layer feature maps of three grids. The first layer is a

3×3 stride 1 convolutional layer with 64 channels operated separately on the feature maps of the

three grids. Then the outputs from the three grids are concatenated to form a 34,624-dimensional

vector. A fully connected layer is added on top of the vector. We train this classifier using 1000,

2000 and 4000 labeled examples that are randomly sampled from the training set. As shown in

Table 2.3, our method achieves a test error rate of 19.73% for 1,000 labeled images. For com-

parison, we train a classification network from scratch with the same structure (three networks as

used in the multi-grid method plus two layers for classification) on the same labeled training data.

It has a significantly higher error rate of 39.04% for 1,000 labeled training images. Our method

also outperforms some methods that are specifically designed for semi-supervised learning, such

as DGN [KMR14], virtual adversarial [MMK15] and auxiliary deep generative model [MSS16].

25

2.2.3.3 Image inpainting

We further test our method on image inpainting. In this task, we try to learn the conditional

distribution pθ (xM|xM̄) by our models, where M consists of pixels to be masked, and M̄ consists of

pixels not to be masked. In the training stage, we randomly place the mask on each training image,

but we assume xM is observed in training. We follow the same learning and sampling algorithm as

in Algorithm 1, except that in the sampling step (i.e., step 4 in Algorithm 1), in each Langevin step,

only the masked part of the image is updated, and the unmasked part remains fixed as observed.

This is a generalization of the pseudo-likelihood estimation [Bes74], which corresponds to the case

where M consists of one pixel. It can also be considered a form of associative memory [Hop82].

After learning pθ (xM|xM̄) from the fully observed training images, we then use it to inpaint the

masked testing images, where the masked parts are not observed.

Figure 2.6: Inpainting examples on CelebA dataset. In each block from left to right: the original

image, masked input, inpainted image by the multi-grid method.

We use 10,000 face images randomly sampled from CelebA dataset to train the model. We set

the mask size at 32×32 for training. During training, the size of the mask is fixed but the position

is randomly selected for each training image. Another 1,000 face images are randomly selected

26

Table 2.4: Quantitative evaluations for three types of masks. Lower values of error are better.

Higher values of PSNR are better. PCD, CD1, SG, CE and MG indicate persistent CD, one-step

CD, single-grid method, ContextEncoder and multi-grid method, respectively.

Mask PCD CD1 SG CE MG

Mask 0.056 0.081 0.066 0.045 0.042

Error Doodle 0.055 0.078 0.055 0.050 0.045

Pepper 0.069 0.084 0.054 0.060 0.036

Mask 12.81 12.66 15.97 17.37 16.42

PSNR Doodle 12.92 12.68 14.79 15.40 16.98

Pepper 14.93 15.00 15.36 17.04 19.34

from CelebA dataset for testing. We find that during the testing, the mask does not need to be

restricted to 32× 32 square mask. So we test three different shapes of masks: 1) 32× 32 square

mask, 2) doodle mask with approximately 25% missing pixels, and 3) pepper and salt mask with

approximately 60% missing pixels. Figure 2.6 shows some inpainting examples.

We perform quantitative evaluations using two metrics: 1) reconstruction error measured by

the per-pixel difference and 2) peak signal-to-noise ratio (PSNR). Metrics are computed between

the inpainting results obtained by different methods and the original face images on the masked

pixels. We compare with persistent CD, CD1 and the single-grid method. We also compare with

the ContextEncoder [PKD16] (CE). We re-train the CE model on 10,000 training face images for

a fair comparison. As our tested masks are not in the image center, we use the “inpaintRandom”

version of the CE code and randomly place a 32× 32 mask in each image during training. The

results are shown in Table 2.4. It shows that the multi-grid method works well for the inpainting

task.

27

2.2.4 Conclusion

This section seeks to address the fundamental question of whether we can learn energy-based

models purely by themselves without recruiting extra networks such as generator networks. This

question is important both conceptually and practically because the energy-based models corre-

spond directly to discriminative classifiers. Being able to learn and sample from such models also

provides us a valuable alternative to GAN methods, by relieving us from the concerns with issues

such as mismatch between two different classes of models, as well as instability in learning.

To answer the above question, we propose a multi-grid method for learning energy-based mod-

els. Our work seeks to facilitate the learning of such models by developing small budget MCMC

initialized from a simple distribution for sampling from the learned models. We show that our

method can learn realistic models of images and the learned models can be useful for tasks such as

image processing and classification.

2.3 Diffusion recovery likelihood

For the previous section, we demonstrate that it is indeed possible to learn deep energy-based

models (EBMs) and generate realistic samples on large image datasets with finite budget MCMC.

However, learning EBMs on high-resolution image datasets still remains challenging. Moreover,

we observe another challenge of learning EBMs. As demonstrated in Figure 2.7, training EBMs

with finite budget MCMC results in malformed energy landscapes [NHZ19], even if the sam-

ples from the model look reasonable. The reason is that the sampling chains with finite budget

MCMC is still not converging, leading to biased synthesized samples when estimating gradients

for updating the model. For image datasets, the energy potentials learned with non-convergent

MCMC even do not have a valid steady-state, in the sense that samples from long-run Markov

chains can differ greatly from observed samples, making it difficult to evaluate the learned energy

potentials.

28

Figure 2.7: Comparison of learning EBMs by diffusion recovery likelihood (Ours) versus marginal

likelihood (Short-run).

The root reason for the non-convergent MCMC is still that the energy landscape of the EBMs is

too complicated. Hence we would like to answer a question: can we simplify the energy potentials

when doing sampling to make it more MCMC friendly? This is the motivation of the work in this

section.

Our method is inspired by another line of work, diffusion probabilistic models. Originating

from [SWM15], such a model is to learn from a diffused version of the data, which are obtained

from the original data via a diffusion process that sequentially adds Gaussian white noise. From

such diffusion data, one can learn the conditional model of the data at a certain noise level given

their noisy versions at the higher noise level of the diffusion process. After learning the sequence

of conditional models that invert the diffusion process, one can then generate synthesized images

from Gaussian white noise images by ancestral sampling. Building on [SWM15], [HJA20] further

developed the method, obtaining strong image synthesis results.

Inspired by [SWM15] and [HJA20], we propose a diffusion recovery likelihood method to

tackle the challenge of training EBMs directly on a dataset by instead learning a sequence of EBMs

for the marginal distributions of the diffusion process [GSP20]. The sequence of marginal EBMs

is learned with recovery likelihoods that are defined as the conditional distributions that invert the

diffusion process. Compared to standard maximum likelihood estimation (MLE) of EBMs, learn-

ing marginal EBMs by diffusion recovery likelihood only requires sampling from the conditional

29

distributions, which is much easier than sampling from the marginal distributions. After learning

the marginal EBMs, we can generate synthesized images by a sequence of conditional samples

initialized from the Gaussian white noise distribution. Unlike [HJA20] that approximates the re-

verse process by normal distributions, in our case the conditional distributions are derived from the

marginal EBMs, which are more flexible. The framework of recovery likelihood was originally

proposed in [BYA13]. In our work, we adapt it to learning the sequence of marginal EBMs from

the diffusion data.

We would like to emphasize that our goal is still to learn marginal EBMs at different noise

levels, and we use sequential conditional distributions to ease the sampling, which is similar to

simulated annealing sampling.

Our work is also related to the denoising score matching method of [Vin11], which was fur-

ther developed by [SE19, SE20] for learning from diffusion data. The training objective used for

diffusion probabilistic models is a weighted version of the denoising score matching objective, as

revealed by [HJA20]. These methods learn the score functions (the gradients of the energy func-

tions) directly, instead of using the gradients of learned energy functions as in EBMs. On the other

hand, [SMS18] parametrizes the score function as the gradient of an MLP energy function, and

[SH19] further unifies denoising score matching and neural empirical Bayes.

We demonstrate the efficacy of diffusion recovery likelihood on CIFAR-10, CelebA and LSUN

datasets. The generated samples are of high fidelity and comparable to GAN-based methods. On

CIFAR-10, we achieve FID 9.58 and inception score 8.30, exceeding existing methods of learning

explicit EBMs to a large extent. We also demonstrate that diffusion recovery likelihood outper-

forms denoising score matching from diffusion data if we naively take the gradients of explicit en-

ergy functions as the score functions. More interestingly, by using a thousand diffusion time steps,

we demonstrate that even very long MCMC chains from the sequence of conditional distributions

produce samples that represent realistic images. With the faithful long-run MCMC samples from

the conditional distributions, we can accurately estimate the marginal partition function at zero

noise level by importance sampling, and thus evaluate the normalized density of data under the

30

Figure 2.8: Generated samples on LSUN 1282 church outdoor (left), LSUN 1282 bedroom (center)

and CelebA 642 (right).

EBM.

2.3.1 From marginal to conditional

Given the difficulty of sampling from the marginal density pθ (x), we use the recovery likelihood

defined by the density of the observed sample conditional on a noisy sample perturbed by isotropic

Gaussian noise. Specifically, let x̃ = x+σε be the noisy observation of x, where ε ∼N (0,I).

Suppose pθ (x) is defined by the EBM in Eq. (2.1), then the conditional EBM can be derived as

pθ (x|x̃) =
1

Z̃θ (x̃)
exp
(

fθ (x)−
1

2σ2‖x̃−x‖2
)
, (2.11)

where Z̃θ (x̃) =
∫

exp
(

fθ (x)− 1
2σ2‖x̃−x‖2

)
dx is the partition function of this conditional EBM.

Compared to pθ (x) (Eq. (2.1)), the extra quadratic term 1
2σ2‖x̃− x‖2 in pθ (x|x̃) constrains the

energy landscape to be localized around x̃, making the latter less multi-modal and easier to sample

from. As we will show later, when σ is small, pθ (x|x̃) is approximately a single mode Gaussian

31

Figure 2.9: Illustration of diffusion recovery likelihood on 2D checkerboard example. Top: pro-

gressively generated samples. Bottom: estimated marginal densities.

distribution, which greatly reduces the burden of MCMC.

A more general formulation is x̃ = ax+σε, where a is a positive constant. In that case, we can

let y = ax, and treat y as the observed sample. Assume pθ (y) = 1
Zθ

exp(fθ (y)), then by change of

variable, the density function of x can be derived as gθ (x) = apθ (ax).

2.3.2 Maximizing recovery likelihood

With the conditional EBM, assume we have observed samples xi ∼ pdata(x) and the corresponding

perturbed samples x̃i = xi +σεi for i = 1, ...,n. We define the recovery log-likelihood function as

J (θ) =
1
n

n

∑
i=1

log pθ (xi|x̃i). (2.12)

The term recovery indicates that we attempt to recover the clean sample xi from the noisy sample

x̃i. Thus, instead of maximizing L (θ) in Eq. (2.2), we can maximize J (θ), whose distributions

are easier to sample from. Specifically, we generate synthesized samples by K steps of Langevin

dynamics that iterates

xτ+1 = xτ +
δ 2

2
(∇x fθ (xτ)+

1
σ2 (x̃−xτ))+δετ . (2.13)

The model is then updated following the same learning gradients as MLE (Eq. (2.3)), because the

quadratic term − 1
2σ2‖x̃−x‖2 is not related to θ . Following the classical analysis of MLE, we can

show that the point estimate given by maximizing recovery likelihood is an unbiased estimator of

32

the true parameters, which means that given enough data, a rich enough model and exact synthesis,

maximizing the recovery likelihood learns θ such that pdata(x) = pθ (x).

2.3.2.1 Normal Approximation to Conditional

When the variance of perturbed noise σ2 is small, pθ (x|x̃) can be approximated by a normal

distribution via a first order Taylor expansion at x̃. Specifically, the negative conditional energy is

−Eθ (x|x̃) = fθ (x)−
1

2σ2‖x̃−x‖2 (2.14)

.
= fθ (x̃)+ 〈∇x fθ (x̃),x− x̃〉− 1

2σ2‖x̃−x‖2 (2.15)

=− 1
2σ2

[
‖x− (x̃+σ

2
∇x fθ (x̃))‖2]+ c, (2.16)

where c include terms irrelevant of x In the above approximation, we do not perform second-order

Taylor expansion because σ2 is small, and ‖x̃−x‖2/2σ2 will dominate all the second-order terms

from Taylor expansion. Thus we can approximate pθ (x|x̃) by a Gaussian approximation p̃θ (x|x̃):

p̃θ (x|x̃) = N
(
x; x̃+σ

2
∇x fθ (x̃),σ2) . (2.17)

We can sample from this distribution using:

xgen = x̃+σ
2
∇x fθ (x̃)+σε, (2.18)

where ε∼N (0, I). This resembles a single step of Langevin dynamics, except that σε is replaced

by
√

2σε in Langevin dynamics. This normal approximation has two traits: (1) it verifies the fact

that the conditional density pθ (x|x̃) can be generally easier to sample from when σ is small; (2) it

provides hints of choosing the step size of Langevin dynamics, as discussed in section 2.3.4.

2.3.3 Connection to variational inference and score matching

The normal approximation to the conditional distribution leads to a natural connection to diffu-

sion probabilistic models [SWM15, HJA20] and denoising score matching [Vin11, SE19, SE20,

33

SMS18, SH19]. Specifically, in diffusion probabilistic models, instead of modeling pθ (x) as an

energy-based model, it recruits variational inference and directly models the conditional density as

pθ (x|x̃)∼N
(
x̃+σ

2sθ (x̃),σ2) , (2.19)

which is in agreement with the normal approximation (Eq. (2.17)), with sθ (x) = ∇x fθ (x). On the

other hand, the training objective of denoising score matching is to minimize

1
2σ2 Ep(x,x̃)[‖x− (x̃+σ

2sθ (x̃))‖2], (2.20)

where sθ (x) is the score of the density of x̃. This objective is in agreement with the objective of

maximizing log-likelihood of the normal approximation (Eq. (2.16)), except that for normal ap-

proximation, ∇x fθ (·) is the score of density of x, instead of x̃. However, the difference between

the scores of density of x and x̃ is of O(σ2), which is negligible when σ is sufficiently small. We

can further show that the learning gradient of maximizing log-likelihood of the normal approx-

imation is approximately the same as the learning gradient of maximizing the original recovery

log-likelihood with one step of Langevin dynamics. It indicates that the training process of max-

imizing recovery likelihood agrees with the one of diffusion probabilistic models and denoising

score matching when σ is small.

As the normal approximation is accurate only when σ is small, it requires many time steps in

the diffusion process for this approximation to work well, which is also reported in [HJA20] and

[SE20]. In contrast, the diffusion recovery likelihood framework can be more flexible in choosing

the number of time steps and the magnitude of σ .

2.3.4 Diffusion recovery likelihood

As we discuss, sampling from pθ (x|x̃) becomes simple only when σ is small. In the extreme case

when σ → ∞, pθ (x|x̃) converges to the marginal distribution pθ (x), which is again highly multi-

modal and difficult to sample from. To keep σ small and meanwhile equip the model with the

ability to generate new samples initialized from white noise, inspired by [SWM15] and [HJA20],

34

we propose to learn a sequence of recovery likelihoods, on gradually perturbed observed data based

on a diffusion process. Specifically, assume a sequence of perturbed observations x0,x1, ...,xT such

that

x0 ∼ pdata(x); xt+1 =
√

1−σ2
t+1xt +σt+1εt+1, t = 0,1, ...T −1. (2.21)

The scaling factor
√

1−σ2
t+1 ensures that the sequence is a spherical interpolation between the

observed sample and Gaussian white noise. Let yt =
√

1−σ2
t+1xt , and we assume a sequence of

conditional EBMs

pθ (yt |xt+1) =
1

Z̃θ ,t(xt+1)
exp

(
fθ (yt , t)−

1
2σ2

t+1
‖xt+1−yt‖2

)
, t = 0,1, ...,T −1, (2.22)

where fθ (yt , t) is defined by a neural network conditioned on t.

We follow the learning algorithm in Section 2.3.2. A question is how to determine the step

size schedule δt of Langevin dynamics. Inspired by the sampling procedure of the normal approx-

imation (Eq. (2.18)), we set the step size δt = bσt , where b < 1 is a tuned hyperparameter. This

schedule turns out to work well in practice. Thus the K steps of Langevin dynamics iterates

yτ+1
t = yτ

t +
b2σ2

t
2

(∇y fθ (yτ
t , t)+

1
σ2

t
(xt+1−yτ

t))+bσtε
τ . (2.23)

Algorithm 2 summarizes the training procedure. After training, we initialize the MCMC sampling

from Gaussian white noise, and the synthesized sample at each time step serves to initialize the

MCMC that samples from the model of the previous time step. See algorithm 3. To show the

efficacy of our method, Figures 2.9 and 2.7 display several 2D toy examples learned by diffusion

recovery likelihood.

35

Algorithm 2 Training
repeat

Sample t ∼ Unif({0, ...,T −1}).

Sample pairs (yt ,xt+1).

Set synthesized sample y−t = xt+1.

for τ ← 1 to K do

Update y−t according to Eq. (2.23).

end for

Update θ following the gradients
∂

∂θ
fθ (yt , t)− ∂

∂θ
fθ (y−t , t).

until converged.

Algorithm 3 Progressive sampling

Sample xT ∼N (0,I).

for t← T −1 to 0 do

yt = xt+1.

for τ ← 1 to K do

Update yt according to Eq. (2.23).

end for

xt = yt/
√

1−σ2
t+1.

end for

return x0.

2.3.5 Experiments

To show that diffusion recovery likelihood is flexible for diffusion process of various magnitudes

of noise, we test the method under two settings: (1) T = 6, with K = 30 steps of Langevin dynamic

per time step; (2) T = 1000, with sampling from normal approximation. (2) resembles the noise

schedule of [HJA20] and the magnitude of noise added at each time step is much smaller compared

to (1). For both settings, we set σ2
t to increase linearly. The network structure of fθ (x, t) is based on

Wide ResNet [ZK16] and we remove weight normalization. t is encoded by Transformer sinusoidal

position embedding as in [HJA20]. For (1), we find that including another scaling factor ct to the

step size δt helps. Henceforth we simply refer to the two settings as T6 and T1k.

2.3.5.1 Image generation

Figures 2.8 and 2.10 display uncurated samples generated from learned models on CIFAR-10,

CelebA 64×64, LSUN 64×64 and 128×128 datasets under T6 setting. The samples are of high

fidelity and comparable to GAN-based methods. See chapter appendix for more generated sam-

36

ples. Tables 2.5 and 2.7 summarize the quantitative evaluations on CIFAR-10 and CelebA datasets,

in terms of Frechet Inception Distance (FID) [HRU17] and inception scores [SGZ16]. On CIFAR-

10, our model achieves a FID score of 9.58 and an inception score of 8.30, which outperforms

existing methods of learning explicit energy-based models to a large extent, and is superior to

a majority of GAN-based methods. On CelebA, our model obtains results comparable with the

state-of-the-art GAN-based methods, and outperforms score-based methods [SE19, SE20]. Note

that the score-based methods [SE19, SE20] and diffusion probabilistic models [HJA20] directly

parametrize and learn the score of data distribution, whereas our goal is to learn explicit energy-

based models.

Figure 2.10: Generated samples on unconditional CIFAR-10 (left) and LSUN 642 church outdoor

(center) and LSUN 642 bedroom (right).

37

Table 2.5: FID and inception scores on CIFAR-10.

Model FID↓ Inception↑

GAN-based

WGAN-GP [GAA17] 36.4 7.86 ± .07

SNGAN [MKK18] 21.7 8.22 ± .05

SNGAN-DDLS [CZS20] 15.42 9.09 ± .10

StyleGAN2-ADA [KAH20] 3.26 9.74 ± .05

Score-based

NCSN [SE19] 25.32 8.87 ± .12

NCSN-v2 [SE20] 10.87 8.40 ± .07

DDPM [HJA20] 3.17 9.46 ± .11

Explicit EBM-conditional

CoopNets [XZF19] - 7.30

EBM-IG [DM19] 37.9 8.30

JEM [GWJ19] 38.4 8.76

Explicit EBM

Muli-grid [GLZ18] 40.01 6.56

CoopNets [XLG16] 33.61 6.55

EBM-SR [NHZ19] - 6.21

EBM-IG [DM19] 38.2 6.78

Ours (T6) 9.58 8.30 ± .11

Table 2.6: Ablation of training objectives,

time steps T and sampling steps K on

CIFAR-10. K = 0 indicates that we sam-

ple from the normal approximation.

Setting / Objective FID↓ Inception↑

T = 1, K = 180 32.12 6.72 ± 0.12

T = 1000, K = 0 22.58 7.71 ± 0.08

T = 1000, K = 0 (DSM) 21.76 7.76 ± 0.11

T = 6, K = 10 - -

T = 6, K = 30 9.58 8.30 ± 0.11

T = 6, K = 50 9.36 8.46 ± 0.13

Table 2.7: FID scores on CelebA 642.

Model FID↓

QA-GAN [PC19] 6.42

COCO-GAN [LCC19] 4.0

NVAE [VK20] 14.74

NCSN [SE19] 25.30

NCSN-v2 [SE20] 10.23

EBM-SR [NHZ19] 23.02

EBM-Triangle [HNZ20] 24.70

Ours (T6) 5.98

38

Figure 2.11: Interpolation results between the leftmost and rightmost generated samples. For top

to bottom: LSUN church outdoor 1282, LSUN bedroom 1282 and CelebA 642.

Table 2.8: Test bits per dimension on CIFAR-

10. † indicates that we estimate the bit per di-

mension with the approximated log partition

function instead of analytically computing it.

See section 2.3.5.2.

Model BPD↓

DDPM [HJA20] 3.70

Glow [KD18] 3.35

Flow++ [HCS19] 3.08

GPixelCNN [OKE16] 3.03

Sparse Transformer [CGR19] 2.80

DistAug [JCC20] 2.56

Ours† (T1k) 3.18

Figure 2.12: Image inpainting on LSUN

church outdoor 1282 (left) and CelebA 642

(right). With each block, the top row are mask

images while the bottom row are inpainted images.

Interpolation. As shown in Figure 2.11, our model is capable of smooth interpolation between

two generated samples. Specifically, for two samples x(0)0 and x(1)0 , we do a sphere interpolation

between the initial white noise images x(0)T and x(1)T and the noise terms of Langevin dynamics ε(0)t,τ

and ε(1)t,τ for every sampling step at every time step.

39

Image inpainting. A promising application of energy-based models is to use the learned model

as a prior model for image processing, such as image inpainting, denoising and super-resolution

[GLZ18, DM19, SE19]. In Figure 2.12, we demonstrate that the learned models by maximiz-

ing recovery likelihoods are capable of realistic and semantically meaningful image inpainting.

Specifically, given a masked image and the corresponding mask, we first obtain a sequence of per-

turbed masked images at different noise levels. The inpainting can be easily achieved by running

Langevin dynamics progressively on the masked pixels while keeping the observed pixels fixed at

decreasingly lower noise levels.

Ablation study. Table 2.6 summarizes the results of ablation study on CIFAR-10. We investigate

the effect of changing the numbers of time steps T and sampling steps K. First, to show that it

is beneficial to learn by diffusion recovery likelihood, we compare against a baseline approach

(T = 1,K = 180) where we use only one-time step, so that the recovery likelihood becomes a

marginal likelihood. The approach is adopted by [NHZ19] and [DM19]. For a fair comparison,

we equip the baseline method with the same budget of MCMC sampling as our T6 setting (i.e.,

180 sampling steps). Our method outperforms this baseline method by a large margin. Also, the

models are trained more efficiently as the number of sampling steps per iteration is reduced and

amortized by time steps.

Next, we report the sample quality of setting T1k. We test two training objectives for this

setting: (1) maximizing recovery likelihoods (T = 1000, K = 0) and (2) maximizing the approxi-

mated normal distributions (T=1000, K=0 (DSM)). As mentioned in section 2.3.3, (2) is equivalent

to the training objectives of denoising score matching [SE19, SE20] and diffusion probabilistic

model [HJA20], except that the score functions are taken as the gradients of explicit energy func-

tions. In practice, for a direct comparison, (2) follows the same implementation as in [HJA20],

except that the score function is parameterized as the gradients of the explicit energy function used

in our method. (1) and (2) achieve similar sample quality in terms of quantitative metrics, where

(2) results in a slightly better FID score yet a slightly worse inception score. This verifies the fact

40

that the training objectives of (1) and (2) are consistent. Both (1) and (2) performs worse than set-

ting T6. A possible explanation is that the sampling error may accumulate with many time steps,

so that a more flexible schedule of time steps accompanied by a certain amount of sampling steps

is preferred.

Last, we examine the influence of varying the number of sampling steps while fixing the num-

ber of time steps. The training becomes unstable when the number of sampling steps is not enough

(T = 6,K = 10), and more sampling steps lead to better sample quality. However, since K = 50

does not gain significant improvement versus K = 30, yet of much higher computational cost, we

keep K = 30 for image generation on all datasets.

2.3.5.2 Long-run chain analysis

Besides achieving high-quality generation, a perhaps equally important aspect of learning EBMs is

to obtain a faithful energy potential. A principal way to check the validity of the learned potential

is to perform long-run sampling chains and see if the samples still remain realistic. However, as

pointed out in [NHH19], almost all existing methods of learning EBMs fail in getting realistic long-

run chain samples. In this subsection, we demonstrate that by composing a thousand diffusion time

steps (T1k setting), we can form steady long-run MCMC chains for the conditional distributions.

Figure 2.13: Left: Adjusted step size of HMC over time step. Center: Acceptance rate over time

step. Right: Estimated log partition function over number of samples with different number of

sampling steps per time step. The x axis is plotted in log scale.

41

First, we prepare a faithful sampler for conducting long-run sampling. Specifically, after train-

ing the model under T 1k setting by maximizing diffusion recovery likelihood, for each time step,

we first sample from the normal approximation and count it as one sampling step, and then use

Hamiltonian Monte Carlo (HMC) [Nea11] with 2 leapfrog steps to perform the consecutive sam-

pling steps. To obtain a reasonable schedule of sampling step size, for each time step we adap-

tively adjust the step size of HMC to make the average acceptance rate range in [0.6,0.9], which

is computed over 1000 chains for 100 steps. Figure 2.13 displays the adjusted step size (left) and

acceptance rate (center) over time step. The adjusted step size increases logarithmically. With this

step size schedule, we generate long-run chains from the learned sequence of conditional distribu-

tions. As shown in Figure 2.14, images remain realistic for even 100k sampling steps in total (i.e.,

100 sampling steps per time step), resulting in FID 24.89. This score is close to the one computed

on samples generated by 1k steps (i.e., sampled from normal approximation), which is 25.12. As a

further check, we recruit a No-U-Turn Sampler [HG14] with the same step size schedule as HMC

to perform long-run sampling, where the samples also remain realistic.

Figure 2.14: Long-run chain samples from model-T1k with different total amount of HMC steps.

From left to right: 1k steps, 10k steps and 100k steps.

More interestingly, given the faithful long-run MCMC samples from the conditional distribu-

tions, we can estimate the log ratio of the partition functions of the marginal distributions, and

further estimate the partition function of pθ (y0). The strategy is based on annealed importance

sampling [Nea01b]. The right subfigure of Figure 2.13 depicts the estimated log partition function

of pθ (y0) over the number of MCMC samples used. To verify the estimation strategy and again

check the long-run chain samples, we conduct multiple runs using samples generated with different

42

numbers of HMC steps and display the estimation curves. All the curves saturate to values close

to each other at the end, indicating the stability of long-run chain samples and the effectiveness

of the estimation strategy. With the estimated partition function, by change of variable, we can

estimate the normalized density of data as gθ (x0) =
√

1−σ2
1 pθ (

√
1−σ2

1 x0). We report test bits

per dimension on CIFAR-10 in Table 2.8. Note that the result should be taken with a grain of salt,

because the partition function is estimated by samples and it is a stochastic lower bound of the true

value, that will converge to the true value when the number of samples grows large.

2.3.6 Conclusion

In this section, we propose to learn EBMs by diffusion recovery likelihood, a variant of MLE

applied to diffusion processes. We achieve high-quality image synthesis, and with a thousand

noise levels, we obtain faithful long-run MCMC samples that indicate the validity of the learned

energy potentials. Since this method can learn EBMs efficiently with a small budget of MCMC,

we are also interested in scaling it up to higher resolution images and investigating this method in

other data modalities in the future.

43

CHAPTER APPENDIX

2.A Additional uncurated samples

Figures 2.A.1, 2.A.2, 2.A.3, 2.A.4, 2.A.5 and 2.A.6 show uncurated samples from the learned mod-

els by diffusion recovery likelihood under T6 setting on CIFAR-10, CelebA 642, LSUN church outdoor

1282, LSUN bedroom 1282, LSUN church outdoor 642 and LSUN bedroom 642 datasets.

44

Figure 2.A.1: Generated samples on CIFAR-10.

45

Figure 2.A.2: Generated samples on CelebA 64×64.

46

Figure 2.A.3: Generated samples on LSUN church outdoor 128×128. FID=9.76

47

Figure 2.A.4: Generated samples on LSUN bedroom 128×128. FID=11.27

48

Figure 2.A.5: Generated samples on LSUN church outdoor 64×64. FID=7.02

49

Figure 2.A.6: Generated samples on LSUN bedroom 64×64. FID=8.98

50

CHAPTER 3

Dynamic generator model

3.1 Introduction

The model

Most physical phenomena in our visual environments are spatial-temporal processes. In this chap-

ter, we study a generative model for spatial-temporal processes such as dynamic textures and action

sequences in video data1. The model is a non-linear generalization of the linear state-space model

proposed by [DCW03] for dynamic textures. The model of [DCW03] is a hidden Markov model,

which consists of a transition model that governs the transition probability distribution in the state

space, and an emission model that generates the observed signal by a mapping from the state space

to the signal space. In the model of [DCW03], the transition model is an auto-regressive model in

the d-dimensional state space, and the emission model is a linear mapping from the d-dimensional

state vector to the D-dimensional image. In [DCW03], the emission model is learned by treating

all the frames of the input video sequence as independent observations, and the linear mapping

is learned by principal component analysis via singular value decomposition. This reduces the

D-dimensional image to a d-dimensional state vector. The transition model is then learned on the

sequence of d-dimensional state vectors by a first-order linear autoregressive model.

Given the high approximation capacity of the modern deep neural networks, it is natural to

replace the linear structures in the transition and emission models of [DCW03] by the neural net-

works. This leads to the following dynamic generator model that has the following two com-

1The main contributions in this chapter were first described in [XGZ19, XGZ20].

51

ponents. (1) The emission model, which is a generator network that maps the d-dimensional

state vector to the D-dimensional image via a top-down deconvolution network. (2) The transi-

tion model, where the state vector of the next frame is obtained by a non-linear transformation of

the state vector of the current frame as well as an independent Gaussian white noise vector that

provides randomness in the transition. The non-linear transformation can be parametrized by a

feedforward neural network or multi-layer perceptron. In this model, the latent random vectors

that generate the observed data are the independent Gaussian noise vectors, also called innovation

vectors in [DCW03]. The state vectors and the images can be deterministically computed from

these noise vectors.

Learning algorithm

Such dynamic models have been studied in the computer vision literature recently, notably [TLY17].

However, the models are usually trained by the generative adversarial networks (GAN) [GPM14]

with an extra discriminator network that seeks to distinguish between the observed data and the

synthesized data generated by the dynamic model. Such a model may also be learned by vari-

ational auto-encoder (VAE) [KW13] together with an inference model that infers the sequence

of noise vectors from the sequence of observed frames. Such an inference model may require a

sophisticated design.

In this chapter, we show that it is possible to learn the model on its own using an alternating

back-propagation through time (ABPTT) algorithm, without recruiting a separate discriminator

model or an inference model. The ABPTT algorithm iterates the following two steps. (1) In-

ferential back-propagation through time, which samples the sequence of noise vectors given the

observed video sequence using the Langevin dynamics, where the gradient of the log posterior

distribution of the noise vectors can be calculated by back-propagation through time. (2) Learn-

ing back-propagation through time, which updates the parameters of the transition model and the

emission model by gradient ascent, where the gradient of the log-likelihood with respect to the

model parameters can again be calculated by back-propagation through time.

52

The alternating back-propagation (ABP) algorithm was originally proposed for the static gen-

erator network [HLZ17]. We show that it can be generalized to the dynamic generator model.

In our experiments, we show that we can learn the dynamic generator models using the ABPTT

algorithm for dynamic textures and action sequences.

Two advantages of the ABPTT algorithm for the dynamic generator models are convenience

and efficiency. The algorithm can be easily implemented without designing an extra network.

Because it only involves back-propagation through time with respect to a single model, the com-

putation is very efficient.

Disentangled representations

On the other hand, a fundamental challenge in understanding dynamic patterns is learning disen-

tangled representations to separate the underlying factorial components of the observations without

supervision [BCV13, MZZ16]. For example, given a video dataset of human facial expressions,

a disentangled representation can include the face’s appearance attributes (such as color, identity,

and gender), the trackable motion attributes (such as movements of eyes, lip, and noise), and the

intrackable motion attributes (such as illumination change). A disentangled representation of dy-

namic patterns is useful in manipulable video generation and calculating video statistics. The goal

of this chapter is not only to provide a representational model for video generation, but also for

video understanding by disentangling appearance, trackable and intrackable motions in an unsu-

pervised manner. In terms of the underlying physical processes and the perception of the dynamic

patterns, they are largely about motions, i.e., movements of pixels or constituent elements, and it

is desirable to have a model that is based explicitly on the motions.

To this end, we further generalize the dynamic generator model to a motion-based dynamic

generator model. Specifically, in the emission model, we let the hidden state generate the displace-

ment field, which warps the trackable component in the previous image frame to generate the next

frame while adding a simultaneously emitted residual image to account for the change that cannot

53

be explained by the deformation. Thus, each image frame is decomposed into a trackable compo-

nent that is obtained by warping the previous frame and an intrackable component in the form of

the simultaneously generated residual image.

Related work

The proposed learning method is related to the following themes of research.

Dynamic textures. The original dynamic texture model [DCW03] is linear in both the transition

model and the emission model. Our work is concerned with a dynamic model with non-linear

transition and emission models. See also [TBD18] and references therein for some recent work on

dynamic textures.

Chaos modeling. The non-linear dynamic generator model has been used to approximate chaos

in a recent work [PLH17]. In the chaos model, the innovation vectors are given as inputs, and the

model is deterministic. In contrast, in the model studied in this chapter, the innovation vectors are

independent Gaussian noise vectors, and the model is stochastic.

GAN and VAE. The dynamic generator model can also be learned by GAN or VAE. See

[TLY17] [SMS17] and [VPT16] for recent video generative models based on GAN. However,

GAN does not infer the latent noise vectors. In VAE [KW13], one needs to design an inference

model for the sequence of noise vectors, which is a non-trivial task due to the complex depen-

dency structure. Our method does not require an extra model such as a discriminator in GAN or

an inference model in VAE.

Models based on spatial-temporal filters or kernels. The patterns in the video data can also

be modeled by spatial-temporal filters by treating the data as 3D (2 spatial dimensions and 1

temporal dimension), such as a 3D energy-based model [XZW17b] where the energy function

is parametrized by a 3D bottom-up ConvNet, or a 3D generator model [HLX19] where a top-down

3D ConvNet maps a latent random vector to the observed video data. Such models do not have a

dynamic structure defined by a transition model, and they are not convenient for predicting future

54

frames.

Contribution

The main contribution of this chapter lies in the combination of the dynamic generator model and

the alternating back-propagation through time algorithm, as well as a novel generalization of the

dynamic generator model to disentangle the appearance, trackable and intrackable motions. Both

the model and algorithm are simple and natural, and their combination can be very useful for

modeling and analyzing spatial-temporal processes. The model is one-piece in the sense that (1)

the transition model and emission model are integrated into a single latent variable model. (2) The

learning of the dynamic model is end-to-end, which is different from [HLZ17]’s treatment. (3) The

learning of our model does not need to recruit a discriminative network (like GAN) or an inference

network (like VAE), which makes our method simple and efficient in terms of computational cost

and model parameter size. (4) The generalized model can learn disentangled representations in

a purely unsupervised settings without ground truth or pre-inferred displacement fields or optical

flows.

3.2 Model and learning algorithm

3.2.1 Dynamic generator model

Let x= (xt , t = 1, ...,T) be the observed video sequence, where xt is a frame at time t. The dynamic

generator model consists of the following two components [XGZ19]:

st = fα(st−1,ξt), (3.1)

xt = gβ (st)+εt , (3.2)

where t = 1, ...,T . (3.15) is the transition model, and (3.19) is the emission model. st is the

d-dimensional hidden state vector. ξt ∼ N (0,I) is the noise vector of a certain dimensional-

ity. The Gaussian noise vectors (ξt , t = 1, ...,T) are independent of each other. The sequence of

55

(st , t = 1, ...,T) follows a non-linear auto-regressive model, where the noise vector ξt encodes the

randomness in the transition from st−1 to st in the d-dimensional state space. fα is a feedforward

neural network or multi-layer perceptron, where α denotes the weight and bias parameters of the

network. We can adopt a residual form [HZR16a] for fα to model the change of the state vector. xt

is the D-dimensional image, which is generated by the d-dimensional hidden state vector st . gβ is a

top-down convolutional network (sometimes also called deconvolution network), where β denotes

the weight and bias parameters of this top-down network. εt ∼N (0,σ2ID) is the residual error.

We let θ = (α,β) denote all the model parameters.

Let ξ = (ξt , t = 1, ...,T). ξ consists of the latent random vectors that need to be inferred from

x. Although xt is generated by the state vector st , s = (st , t = 1, ...,T) are generated by ξ. In fact,

we can write x = hθ (ξ)+ ε, where hθ composes fα and gβ over time, and ε = (εt , t = 1, ...,T)

denotes the observation errors.

3.2.2 Learning and inference algorithm

Let p(ξ) be the prior distribution of ξ. Let pθ (x|ξ)∼N (hθ (ξ),σ
2I) be the conditional distribu-

tion of x given ξ, where I is the identity matrix whose dimension matches that of x. The marginal

distribution is pθ (x) =
∫

p(ξ)pθ (x|ξ)dξ with the latent variable ξ integrated out. We estimate

the model parameter θ by the maximum likelihood method that maximizes the observed-data log-

likelihood log pθ (x), which is analytically intractable. In contrast, the complete-data log-likelihood

log pθ (ξ,x), where pθ (ξ,x) = p(ξ)pθ (x|ξ), is analytically tractable. The following identity links

the gradient of the observed-data log-likelihood log pθ (x) to the gradient of the complete-data

log-likelihood log pθ (ξ,x):

56

∂

∂θ
log pθ (x) =

1
pθ (x)

∂

∂θ
pθ (x)

=
1

pθ (x)

∫ [
∂

∂θ
log pθ (ξ,x)

]
pθ (ξ,x)dξ

= Epθ (ξ|x)

[
∂

∂θ
log pθ (ξ,x)

]
, (3.3)

where pθ (ξ|x) = pθ (ξ,x)/pθ (x) is the posterior distribution of the latent ξ given the observed

x. The above expectation can be approximated by Monte Carlo average. Specifically, we sample

from the posterior distribution pθ (ξ|x) using the Langevin dynamics:

ξ(τ+1) = ξ(τ)+
δ 2

2
∂

∂ξ
log pθ (ξ

(τ)|x)+δzτ , (3.4)

where τ indexes the time step of the Langevin dynamics (not to be confused with the time step of

the dynamics model, t), zτ ∼N (0,I) where I is the identity matrix whose dimension matches

that of ξ, and ξ(τ) = (ξ
(τ)
t , t = 1, ...,T) denotes all the sampled latent noise vectors at time step

τ . δ is the step size of the Langevin dynamics. We can correct for the finite step size by adding

a Metropolis-Hastings acceptance-rejection step. After sampling ξ ∼ pθ (ξ|x) using the Langevin

dynamics, we can update θ by stochastic gradient ascent

∆θ ∝
∂

∂θ
log pθ (ξ,x), (3.5)

where the stochasticity of the gradient ascent comes from the fact that we use Monte Carlo to

approximate the expectation in (5.2). The learning algorithm iterates the following two steps. (1)

Inference step: Given the current θ , sample ξ from pθ (ξ|x) according to (3.4). (2) Learning step:

Given ξ, update θ according to (3.5). We can use a warm start scheme for sampling in step (1).

Specifically, when running the Langevin dynamics, we start from the current ξ, and run a finite

number of steps. Then we update θ in step (2) using the sampled ξ. Such a stochastic gradient

ascent algorithm has been analyzed by [You99].

Since ∂

∂ξ log pθ (ξ|x) = ∂

∂ξ log pθ (ξ,x), both steps (1) and (2) involve derivatives of

log pθ (ξ,x) =−
1
2

[
‖ξ‖2 +

1
σ2‖x−hθ (ξ)‖2

]
+ const,

57

where the constant term does not depend on ξ or θ . Step (1) needs to compute the derivative

of log pθ (ξ,x) with respect to ξ. Step (2) needs to compute the derivative of log pθ (ξ,x) with

respect to θ . Both can be computed by back-propagation through time. Therefore the algorithm

is an alternating back-propagation through time algorithm. Step (1) can be called inferential back-

propagation through time. Step (2) can be called learning back-propagation through time.

To be more specific, the complete-data log-likelihood log pθ (ξ,x) can be written as (up to an

additive constant, assuming σ2 = 1)

L(θ ,ξ) =−1
2

T

∑
t=1

[
‖xt−gβ (st)‖2 +‖ξt‖2] . (3.6)

The derivative with respect to β is

∂L
∂β

=
T

∑
t=1

(xt−gβ (st))
∂gβ (st)

∂β
. (3.7)

The derivative with respect to α is

∂L
∂α

=
T

∑
t=1

(xt−gβ (st))
∂gβ (st)

∂ st

∂ st

∂α
, (3.8)

where ∂ st
∂α

can be computed recursively. To infer ξ, for any fixed time point t0,

∂L
∂ξt0

=
T

∑
t=t0+1

(xt−gβ (st))
∂gβ (st)

∂ st

∂ st

∂ξt0
−ξt0, (3.9)

where ∂ st
∂ξt0

can again be computed recursively.

A minor issue is the initialization of the transition model. We may assume that s0 ∼N (0,I).

In the inference step, we can sample s0 together with ξ using the Langevin dynamics.

It is worth mentioning the difference between our algorithm and the variational inference.

While variational inference is convenient for learning a regular generator network, for the dynamic

generator model studied in this chapter, it is not a simple task to design an inference model that

infers the sequence of latent vectors ξ= (ξt , t = 1, ...,T) from the sequence of x = (xt , t = 1, ...,T).

In contrast, our learning method does not require such an inference model and can be easily im-

plemented. The inference step in our model can be done via directly sampling from the posterior

58

distribution pθ (ξ|x), which is powered by back-propagation through time. Additionally, our model

directly targets maximum likelihood, while model learning via variational inference is to maximize

a lower bound.

3.2.3 Learning from multiple sequences

We can learn the model from multiple sequences of different appearances but of similar motion

patterns. Let x(i) = (x(i)t , t = 1, ...,T) be the i-th training sequence, i = 1, ...,n. We can use an

appearance (or content) vector a(i) for each sequence to account for the variation in appearance.

The model is of the following form

s(i)t = fα(s
(i)
t−1,ξ

(i)
t), (3.10)

x(i)t = gβ (s
(i)
t ,a(i))+ε(i)t , (3.11)

where a(i) ∼N (0,I), and a(i) is fixed over time for each sequence i. To learn from such training

data, we only need to add the Langevin sampling of a(i). If the motion sequences are of different

motion patterns, we can also introduce another vector m(i) ∼N (0,I) to account for the variations

of motion patterns, so that the transition model becomes s(i)t = fα(s
(i)
t−1,ξ

(i)
t ,m(i)) with m(i) fixed

for the sequence i.

Recently [TLY17] studies a similar model where the transition model is modeled by a recurrent

neural network (RNN) with another layer of hidden vectors. [TLY17] learns the model using GAN.

In comparison, we use a simpler Markov transition model and we learn the model by alternating

back-propagation through time. Even though the latent state vectors follow a Markovian model,

the observed sequence is non-Markovian.

Algorithm 1 summarizes the learning and inference algorithm for multiple sequences with

appearance vectors. If we learn from a single sequence such as dynamic texture, we can remove

the appearance vector a(i), or simply fix it to a zero vector.

59

Algorithm 4 Learning and inference by alternating back-propagation through time (ABPTT)

Require: (1) training sequences {x(i) = (x(i)t , t = 1, ...,T), i = 1, ...,n}

(2) number of Langevin steps l

(3) number of learning iterations N.

Ensure: (1) learned parameters θ = (α,β)

(2) inferred noise vectors ξ(i) = (ξ
(i)
t , t = 1, ...,T).

1: Initialize θ = (α,β). Initialize ξ(i) and a(i). Initialize k = 0.

2: repeat

3: Inferential back-propagation through time: For i = 1, ...,n, sample ξ(i) and a(i) by run-

ning l steps of Langevin dynamics according to (3.4), starting from their current values.

4: Learning back-propagation through time: Update α and β by gradient ascent according

to (3.8) and (3.7).

5: Let k← k+1

6: until k = N

60

3.3 Experiments

Learn to generate dynamic textures

We first learn the model for dynamic textures, which are sequences of images of moving scenes

that exhibit stationarity in time. We learn a separate model from each example. The video clips

for training are collected from DynTex++ dataset of [GA10] and the Internet. Each observed

video clip is prepared to be of the size 64 pixels × 64 pixels × 60 frames. Check [XGZ19] for

implementation details. We can synthesize dynamic textures from the learned model by firstly

randomly initializing the initial hidden state s0, and then following Equation (3.15) and (3.19) to

generate a sequence of images with a sequence of innovation vectors {ξt} sampled from Gaussian

distribution. In practice, we use ”burn-in” to throw away some iterations at the beginning of the

dynamic process to ensure the transition model enters the high probability region (i.e., the state

sequence {st} converges to stationarity), no matter where s0 starts from.

Figure 3.3.1 shows several generation results. For each example, the first row displays 6 frames

of the observed 60-frame sequence, while the second and third rows display 6 frames of two

synthesized sequences of 120 frames in length, which are generated by the learned model.

Similar to [TBD18], we perform a human perceptual study to evaluate the perceived realism of

the synthesized examples. We randomly select 20 different human users. Each user has sequen-

tially presented a pair of synthesized and real dynamic textures in a random order, and asked to

select which one is fake after viewing them for a specified exposure time. The “fooling” rate, which

is the user error rate in discriminating real versus synthesized dynamic textures, is calculated to

measure the realism of the synthesized results. Higher “fooling” rate indicates more realistic and

convincing synthesized dynamic textures. “Perfect” synthesized results correspond to a fooling

rate of 50% (i.e., random guess), meaning that the users are unable to distinguish between the syn-

thesized and real examples. The number of pairwise comparisons presented to each user is 36 (12

categories × 3 examples). The exposure time is chosen from discrete durations between 0.3 and

3.6 seconds.

61

ob
s

sy
n1

sy
n2

(a) burning fire heating a pot

ob
s

sy
n1

sy
n2

(b) flapping flag

ob
s

sy
n1

sy
n2

(c) waterfall

ob
s

sy
n1

sy
n2

(d) flashing lights

Figure 3.3.1: Generating dynamic textures. For each category, the first row displays 6 frames

of the observed sequence, and the second and third rows show the corresponding frames of two

synthesized sequences generated by the learned model.
62

300 600 1200 2400 3600
Exposure time (ms)

0.0

0.1

0.2

0.3

0.4

0.5

Fo
ol

 ra
te

 /
Us

er
 e

rro
r

Method
Ours
Doretto
MoCoGAN
TwoStream

Figure 3.3.2: Limited time pairwise comparison results. Each curve shows the “fooling” rates

(realism) over different exposure times.

We compare our model with three baseline methods, such as LDS (linear dynamic system)

[DCW03], TwoStream [TBD18] and MoCoGAN [TLY17], for dynamic texture synthesis in terms

of “fooling” rate on 12 dynamic texture videos (e.g., waterfall, burning fire, waving flag, etc).

Figure 3.3.2 summarizes the comparative result by showing the “fooling” rate as a function

of exposure time across methods. We can find that as the given exposure time becomes longer, it

becomes easier for the users to observe the difference between the real and synthesized dynamic

textures. More specifically, the “fooling” rate decreases as exposure time increases, and then

remains at the same level for longer exposures. Overall, our method can generate more realistic

dynamic textures than other baseline methods. The result also shows that the linear model (i.e.,

LDS) outperforms the more sophisticated baselines (i.e., TwoStream and MoCoGAN). The reason

is that when learning from a single example, the MoCoGAN may not fit the training data very

well due to the unstable and complicated adversarial training scheme as well as a large number of

parameters to be learned, and the TwoStream method has a limitation that it cannot handle dynamic

textures that have structured background (e.g., burning fire heating a pot).

63

Learn to generate action patterns with appearance consistency

We learn the model from multiple examples with different appearances by using a 100-dimensional

appearance vector. We infer the appearance vector and the initial state via a 15-step Langevin

dynamics within each iteration of the learning process. We learn the model using the Weizmann

action dataset [GBS07], which contains 81 videos of 9 people performing 9 actions, including

jacking, jumping, walking, etc, as well as an animal action dataset that includes 20 videos of 10

animals performing running and walking collected from the Internet. Each video is scaled to 64×

64 pixels ×30 frames. We adopt the same structure of the model as the one in Section 3.3, except

that the emission model takes the concatenation of the appearance vector and the hidden state as

input. For each experiment, a single model is trained on the whole dataset without annotations.

The dimensions of the hidden state s and the Gaussian noise ξ are set to be 100 and 50 respectively

for the Weizmann action dataset, and 3 and 100 for the animal action dataset.

Figure 3.3.3 shows some synthesized results for each experiment. To synthesize video, we

randomly pick an appearance vector inferred from the observed video and generate a new mo-

tion pattern for that specified appearance vector by the learned model with a noise sequence of

{ξt , t = 1, ..,T} and an initial state s0 sampled from Gaussian white noise. We show two different

synthesized motions for each appearance vector. With a fixed appearance, the learned model can

generate diverse motions with a consistent appearance.

Figure 3.3.4 shows two examples of video interpolation by interpolating between appearance

vectors of videos at the two ends. We conduct these experiments on some videos selected from

categories “blooming” and “melting” in the dataset of [ZB16]. For each example, the videos at the

two ends are generated with the appearance vectors inferred from the two observed videos. Each

video in the middle is obtained by first interpolating the appearance vectors of the two end videos,

and then generating the videos using the dynamic generator. All the generated videos use the

same set of noise sequence {ξt} and s0 randomly sampled from Gaussian white noise. We observe

smooth transitions in contents and motions of all the generated videos and that the intermediate

64

sy
n1

sy
n2

person 1
sy

n1
sy

n2

person 2

(a) synthesizing human actions (Weizmann dataset)

sy
n1

sy
n2

lion

sy
n1

sy
n2

tiger

(b) synthesizing animal actions (animal action dataset)

Figure 3.3.3: Generated action patterns. For each inferred appearance vector, two synthesized

videos are displayed.

videos are also physically plausible.

We compare with MoCoGAN and TGAN [SMS17] by training on 9 selected categories (e.g.,

PlayingCello, PlayingDaf, PlayingDhol, PlayingFlute, PlayingGuitar, PlayingPiano, PlayingSi-

65

(a) blooming

(b) melting

Figure 3.3.4: Video interpolation by interpolating between appearance latent vectors of videos at

the two ends. For each example, each column is one synthesized video. We show 3 frames for

each video in each column.

tar, PlayingTabla, and PlayingViolin) of videos in the UCF101 [SZS12] database and following

[SMS17] to compute the inception score. Table 3.3.1 shows comparison results. Our model out-

performs the MoCoGAN and TGAN in terms of inception score.

Table 3.3.1: Inception score for models trained on 9 classes of videos in UCF101 database.

Reference ours MoCoGAN TGAN

11.05±0.16 8.21±0.09 4.40±0.04 5.48±0.06

Learn from incomplete data

Our model can learn from videos with occluded pixels and frames. We adapt our algorithm to this

task with minimal modification involving the computation of ∑
T
t=1 ‖xt−gβ (st)‖2. In the setting of

66

(a) ocean

(b) playing

(c) windmill

(d) flag

Figure 3.3.5: Learning from occluded videos. (a,b) For each experiment, the first row displays a

segment of the occluded sequence with black masks. The second row shows the corresponding

segment of the recovered sequence. (c,d) The 3 frames with red bounding box are recovered by

the learning algorithm, and they are occluded in the training stage. Each video has 70 frames and

50% frames are randomly occluded.

learning from fully observed videos, it is computed by summing over all the pixels of the video

frames, while in the setting of learning from partially visible videos, we compute it by summing

over only the visible pixels of the video frames. Then we can continue to use the alternating back-

67

propagation through time (ABPTT) algorithm to infer {ξt , t = 1, ...,T} and s0, and then learn β

and α . With inferred {ξt} and s0, and learned β and α , the video with occluded pixels or frames

can be automatically recovered by gβ (st), where the hidden state can be recursively computed by

st = fα(st−1,ξt).

Eventually, our model can achieve the following tasks: (1) recover the occluded pixels of

training videos. (2) synthesize new videos by the learned model. (3) recover the occluded pixels

of testing videos using the learned model. Different from those inpainting methods where the prior

model has already been given or learned from fully observed training data, our recovery experiment

is about an unsupervised learning task, where the ground truths of the occluded pixels are unknown

in training the model for recovery. It is also worth mentioning that learning from incomplete data

can be difficult for GANs (e.g., MoCoGAN), because of their lack of an adaptive inference process

in the training stage. Here “adaptive” means the inference can be performed on input images with

different sets of occluded pixels. We test our recovery algorithm on 6 video sequences collected

from DynTex++ dataset.

We have two types of occlusions: (1) single region mask occlusion, where a 60× 60 mask is

randomly placed on each 150×150 image frame of each video. (2) missing image frames, where

50% of the image frames are randomly blocked in each video. For each type of occlusion exper-

iment, we measure the recovery errors by the average per-pixel difference between the recovered

video sequences and the original ones (The range of pixel intensities is [0, 255]), and compare

with STGCN [XZW17b], which is a spatial-temporal deep convolutional energy-based model that

can recover missing pixels of videos by synthesis during the learning process. We also report re-

sults obtained by generic spatial-temporal Markov random field models with potentials that are `1

or `2 difference between pixels of nearest neighbors that are defined in both spatial and temporal

domains, and the recovery is accomplished by synthesizing missing pixels via Gibbs sampling.

Table 3.3.2 shows the comparison results. Some qualitative results for recovery by our models are

displayed in Figure 3.3.5.

68

Table 3.3.2: Recovery errors in occlusion experiments

(a) single region masks

ours STGCN MRF-`1 MRF-`2

flag 7.8782 8.1636 10.6586 12.5300

fountain 5.6988 6.0323 11.8299 12.1696

ocean 3.3966 3.4842 8.7498 9.8078

playing 4.9251 6.1575 15.6296 15.7085

sea world 5.6596 5.8850 12.0297 12.2868

windmill 6.6827 7.8858 11.7355 13.2036

Avg. 5.7068 6.2681 11.7722 12.6177

(b) 50% missing frames

ours STGCN MRF-`1 MRF-`2

flag 5.0874 5.5992 10.7171 12.6317

fountain 5.5669 8.0531 19.4331 13.2251

ocean 3.3666 4.0428 9.0838 9.8913

playing 5.2563 7.6103 22.2827 17.5692

sea world 4.0682 5.4348 13.5101 12.9305

windmill 6.9267 7.5346 13.3364 12.9911

Avg. 5.0454 6.3791 14.7272 13.2065

Learn to animate static image

A conditional version of the dynamic generator model can be used for video prediction given a

static image. Specifically, we learn a mapping from a static image frame to the subsequent frames.

We incorporate an extra encoder eγ , where γ denotes the weight and bias parameters of the encoder,

to map the first image frame x(i)0 into its appearance or content vector a(i) and state vector s(i)0 . The

dynamic generator takes the state vector s(i)0 as the initial state and uses the appearance vector

a(i) to generate the subsequent video frames {x(i)t , t = 1, ...,T} for the i-th video. The conditional

69

model is of the following form

[s(i)0 ,a(i)] = eγ(x
(i)
0), (3.12)

s(i)t = fα(s
(i)
t−1,ξ

(i)
t), (3.13)

x(i)t = gβ (s
(i)
t ,a(i))+ε(i)t . (3.14)

We learn both the encoder and the dynamic generator (i.e., transition model and emission model)

together by alternating back-propagation through time. The appearance vector and the initial state

are no longer hidden variables that need to be inferred in training. Once the model is learned, given

a testing static image, the learned encoder eγ extracts from it the appearance vector and the initial

state vector, which generate a sequence of images by the dynamic generator.

We test our model on burning fire dataset [XZW17b], and MUG Facial Expression dataset

[ND10]. The encoder has 3 convolutional layers with numbers of channels {64,128,256}, filter

sizes {5,3,3} and sub-sampling factors {2,2,1} at different layers, and one fully connected layer

with the output size equal to the dimension of the appearance vector (100) plus the dimension of

the hidden state (80). The dimension of ξ is 20. The other configurations are similar to what we

used in Section 3.3. We qualitatively display some results in Figure 3.3.6, where each row is one

example of image-to-video prediction. For each example, the left image is the static image frame

for testing, and the rest are 6 frames of the predicted video sequence. The results show that the

predicted frames by our method have fairly plausible motions.

3.4 Motion-based dynamic generator model

In this section, we generalize the dynamic generator model to further represent motion explic-

itly [XGZ20]. Specifically, Let X = (Xt , t = 0,1, ...,T) be the observed video sequence of dy-

namic pattern, where Xt is a frame at time t, and Xt is defined on the 2D rectangle lattice D. The

70

(a) burning fire

(b) facial expression

Figure 3.3.6: Image-to-video prediction. For each example, the first image is the static image

frame, and the rest are 6 frames of the predicted sequence.

71

motion-based model for the dynamic patterns consists of the following components:

st = (sM
t ,sR

t) = f1(st−1,ht), (3.15)

Mt = (δ (x,y),∀(x,y) ∈ D) = f2(sM
t), (3.16)

Rt = f3(sR
t), (3.17)

It = f4(It−1,Mt), (3.18)

Xt = It +Rt +εt , (3.19)

where t = 1, ...,T .

In the above model, f = (fi, i = 0,1,2,3) are neural networks parameterized by θ = (θi, i =

0,1,2,3).

Equation (3.15) is the transition model, where st is the state vector at time t, ht ∼N (0,I) is

a hidden Gaussian white noise vector, where I is the identity matrix. ht are independent over t. f1

defines the transition from st−1 to st .

The state vector st consists of two sub-vectors. One is sM
t for motion. The other is sR

t for

residual. While sM
t generates the motion of the trackable part of the image frame Xt−1, sR

t generates

the non-trackable part of Xt .

Specifically, in Equation (3.16), sM
t generates the field of pixel displacement Mt , which consists

of the displacement δ (x,y) of pixel (x,y) in the image domain D. Mt is a 2D image, because the

displacement δ = (δx,δy) is 2D. f2 defines the mapping from sM
t to Mt . In Equation (3.18), Mt is

used to warp the trackable part It−1 of the previous image frame Xt−1 by a warping function f4,

which is given by bilinear interpolation. There is no unknown parameter in f4. In Equation (3.17),

sR
t generates the residual image Rt . f3 defines the mapping from sR

t to Rt . In Equation (3.19),

the image frame Xt is the sum of the warped image It and the residual image Rt , plus a Gaussian

white noise error εt ∼N (0,σ2I). We assume the variance σ2 is given. In Equation (3.20), the

initial trackable frame I0 is generated by an generator f0 from an appearance hidden variable c that

72

follows Gaussian distribution. To initialize the first frame X0, we use the following method:

I0 = f0(c), R0 = f3(sR
0), X0 = I0 +R0 +ε0. (3.20)

Multiple sequences. Similar to the dynamic generator, this motion-based dynamic genera-

tor model can be easily generalized to handle multiple sequences. We only need to introduce

a sequence-specific vector a, sampled from a Gaussian white noise prior distribution. For each

video sequence, this vector a is fixed, and it can be concatenated to the state vector st in both the

transition model and the emission model. We may also let a = (aM,aR), so that aM is concatenated

to sM
t to generate Mt , and aR is concatenated to sR

t to generate Rt . This enables us to disentangle

motion patterns and appearance patterns in the video sequence.

Intrackability. For the image Xt , we define It to be the trackable part because it is obtained

by the movements of pixels, and we define Rt to be the non-trackable part. The intrackability of

the sequence can be defined as the ratio between the average of the `2 norm of the non-trackable

part Rt and the norm of the image Xt , where the average is over the time frames.

Summarized form. Let h = (ht , t = 1, ...,T). h consist of the hidden random vectors that

need to be inferred from X = (Xt , t = 0,1, ...,T). We can also include the latent variable c into h

for notation simplicity. Although Xt is generated by the state vector st , s = (st , t = 0,1, ...,T) are

generated by h. In fact, we can write X = fθ (h)+ ε, where fθ composes f0, f1, f2, f3 and f4 over

time t, and ε= (εt , t = 0,1, ...,T) denotes the observation errors.

We use the same alternating back-propagation through time (ABPTT) algorithm to learn this

model as for the dynamic generator model.

3.4.1 Unsupervised disentanglement of appearance and motion

To study the performance of the proposed model for disentanglement of appearance and motion,

we perform a motion transfer experiment. Figure 3.4.1 demonstrates the results. Figure 3.4.1 (a)

displays some image frames of one observed video where a woman is performing a surprise ex-

pression. We first learn a model from the observed video. Figure 3.4.1 (b) visualizes the learned

73

motion. We then fix the inferred appearance latent vector and synthesize new surprise facial ex-

pressions by randomly sampling the latent vectors of the learned model. Two new synthesized

“surprise” expressions on the same women are shown in Figure 3.4.1 (c). We further study trans-

ferring the learned motion to some unseen appearances. We select two unseen faces from the

testing set. We apply the learned motion (i.e., the learned warping sequence) to the first frame of

each testing video, and generate new image sequences, as shown in Figure 3.4.1 (d). We can also

apply the learned motion to some faces from other domains. Figure 3.4.1 (e) shows two examples

of transferring the learned motion to the cartoon face images. In each example, the image frame

shown in the first column is the input appearance, and the rest image frames are generated when we

apply the learned warping sequence to the input appearance. We can even apply the learned human

facial expression motion to non-human appearances, such as animal faces (see Figure 3.4.1(f)).

3.4.2 Unsupervised disentanglement of trackable and intrackable components

Intrackability (or trackability) is an important concept of motion patterns, which has been stud-

ied in [GZ12]. It was demonstrated in [WZG08, GZ12, HXZ15] that trackability changes over

scales, densities, and stochasticity of the dynamics. For example, the trackability of a video of the

waterfall will depend on the distance between the observed target and the observer. Besides, the

observer’s preference for interpreting dynamic motions via tracking appearance details is a sub-

jective factor to affect the perceived trackability of a dynamic pattern in the visual system of the

brain.

In the context of our model, we can define intractability as the ratio between the average of `2

norm of the non-tractable residual image Rt and the average of the `2 norm of the observed image

Xt . This ratio depends on the penalty parameter λ1 of the `2 norm of Rt used in the learning stage.

This penalty parameter corresponds to the subjective preference mentioned above. The larger the

preference λ1 is, the larger extent to which we interpret a video by trackable contents, the less the

residuals, and the less intrackability score.

74

Our model can unsupervised disentangle the trackable and intrackable components of the train-

ing videos. The intrackability can be directly obtained as a result of learning the model, where we

do not need the ground truth or pre-inferred optical flows. In addition, the intrackability is defined

in terms of the coherent motion pattern learned from the whole video sequence by our model.

Figure 3.4.2 shows a curve of intrackability scores under different preference rates (λ1 =

0.5,1,2 and 5) for each of 10 different dynamic patterns. One typical image frame is illustrated for

each of the video clips that we used. The penalty parameter for smoothness is fixed to be 0.005.

The results are reasonable and consistent with our empirical observations and intuitions. For ex-

ample, under the same subjective preference, a video with structured background and slow-motion

tends to have a lower intrackability score because one can track the elements in motion easily (e.g.,

a video clip exhibiting boiling water in a static pot), while a video with fast and random motion

tends to have a higher intrackability score due to the loss of track of the elements in the video (e.g.,

a video clip exhibiting burning flame or flowing water). Moreover, we find that as the preference

λ1 increases, the intrackability of all videos decreases, because the model seeks to interpret each

video using more trackable motion.

3.5 Conclusion

This chapter studies a dynamic generator model for spatial-temporal processes. The model is

a non-linear generalization of the linear state-space model where the non-linear transformations

in the transition and emission models are parameterized by neural networks. The model can be

conveniently and efficiently learned by an alternating back-propagation through time (ABPTT)

algorithm that alternatively samples from the posterior distribution of the latent noise vectors and

then updates the model parameters.

The model can be generalized to a motion-based dynamic generator model by including ran-

dom vectors to account for trackable and intrackable motions explicitly, and the learning algorithm

can still apply to the generalized models. The generalized model is capable of disentangling the

75

image sequence into appearance, trackable and intrackable motions and we can learn the model

without ground truth or pre-inference of the movements of the pixels or the optical flows. They are

automatically inferred in the learning process.

76

ob
s

(a) observed facial expression (surprise)

m
ot

io
n

(b) learned motion (surprise)
sy

n1
sy

n2

(c) synthesize 2 new “surprise” motions on the same appearance

te
st

1
te

st
2

(d) apply the learned motion to some appearances in the testing set

te
st

3
te

st
4

(e) apply the learned motion to cartoon appearances

te
st

5
te

st
6

(f) apply the learned motion to animal appearances

Figure 3.4.1: Transferring motion to new appearance. (a) observed facial motion video. (b) The

learned motion. (c) The synthesized new “surprise” motions on the same appearance. (d) Motion

transfer to some new appearances in the testing set. (e) Motion transfer to some cartoon appearance

collected from Internet. (f) Motion transfer to some animal faces collected from Internet.

77

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

1 2 3 4 5
Preference 1

0.05

0.10

0.15

0.20

0.25

0.30

0.35

In
tra

ck
ab

ilit
iy

flame
waterfall2
water_fountain
falling_water
fire
flag
flag2
stone_water
flashing_light
boiling_water

Figure 3.4.2: The intrackability score vs the preference rate λ1 (the penalty parameter for the norm

of the residual image). The penalty parameter for smoothness is 0.005.

78

CHAPTER 4

Hybrid models

4.1 Introduction

In this chapter, we introduce two hybrid models which couple a descriptive model, also known

as an energy-based model (EBM), and a flow-based model to combine the best of two worlds1.

The first one is a loose coupling where we jointly estimate an energy-based model and a flow-

based model based on a shared value function, while the second one is a tight coupling where we

learn EBM with a flow-based model serving as a backbone, so that the EBM is a correction or an

exponential tilting of the flow-based model. In this section, we begin by introducing the flow-based

model and the motivation to combine the two families of models.

4.1.1 Motivation

Recently, flow-based models (henceforth simply called flow models) have gained popularity as a

type of deep generative model [DKB14, DSB16, GCB18, BDJ18, KBE19, TVA19, DBM19] and

for use in variational inference [KW13, RM15, KSJ16].

Flow models have two properties that set them apart from other types of deep generative mod-

els: (1) they allow for efficient evaluation of the density function, and (2) they allow for efficient

sampling from the model. See the next subsection for the detailed formulation of a flow-based

model. Efficient evaluation of the log-density allows flow models to be directly optimized towards

the log-likelihood objective, unlike variational autoencoders (VAEs) [KW13, RMW14], which are

1The main contributions in this chapter were first described in [GNK20, NGS20]

79

optimized towards a bound on the log-likelihood, and generative adversarial networks (GANs)

[GPM14]. Auto-regressive models [Gra13, ODZ16, SKC17], on the other hand, are (in princi-

ple) inefficient to sample from, since synthesis requires computation that is proportional to the

dimensionality of the data.

These properties of efficient density evaluation and efficient sampling are typically viewed as

advantageous. However, they have a potential downside: these properties also act as assumptions

on the true data distribution that they are trying to model. By choosing a flow model, one is making

the assumption that the true data distribution is one that is in principle simple to sample from, and is

computationally efficient to normalize. In addition, flow models assume that the data is generated

by a finite sequence of invertible functions. If these assumptions do not hold, flow-based models

can result in a poor fit.

On the other end of the spectrum of deep generative models lies the family of descriptive

models, also known as energy-based models (EBMs). As introduced in Chapter 2, energy-based

models define an unnormalized density that is the exponential of the negative energy function.

The energy function is directly defined as a (learned) scalar function of the input, and is often

parameterized by a neural network, such as a convolutional network [LBB98, KSH12]. Evaluation

of the density function for a given data point involves calculating a normalizing constant, which

requires an intractable integral. Sampling from EBMs is expensive and requires approximation as

well, such as computationally expensive Markov Chain Monte Carlo (MCMC) sampling. EBMs,

therefore, do not make any of the two assumptions above: they do not assume that the density

of data is easily normalized, and they do not assume efficient synthesis. Moreover, they do not

constrain the data distribution by invertible functions.

Contrasting an EBM with a flow model, the former is on the side of representation where

different layers represent features of different complexities, whereas the latter is on the side of

learned computation, where each layer, or each transformation, is like a step in the computation.

The EBM is like an objective function or a target distribution whereas the flow model is like a finite

step iterative algorithm or a learned sampler. Borrowing language from reinforcement learning

80

[FCA16], the flow model is like an actor whereas the EBM is like a critic or an evaluator. The

EBM can be simpler and more flexible in form than the flow model which is highly constrained,

and thus the EBM may capture the modes of the data distribution more accurately than the flow

model. In contrast, the flow model is capable of direct generation via ancestral sampling, which is

sorely lacking in an EBM. It may thus be desirable to couple the two models together, combining

the tractability of the flow model and the flexibility of EBM. This is the goal of this chapter.

4.1.2 Flow-based model

A flow model is of the form

x = gα(z); z∼ q0(z), (4.1)

where q0 is a known noise distribution. gα is a composition of a sequence of invertible transforma-

tions where the log-determinants of the Jacobians of the transformations can be explicitly obtained.

α denotes the parameters. Let qα(x) be the probability density of the model given a datapoint x

with parameter α . Then under the change of variables qα(x) can be expressed as

qα(x) = q0(g−1
α (x))|det(∂g−1

α (x)/∂x)|. (4.2)

More specifically, suppose gα is composed of a sequence of transformations gα = gα1 ◦ · · · ◦

gαm . The relation between z and x can be written as z↔ h1↔ ··· ↔ hm−1↔ x. And thus we have

qα(x) = q0(g−1
α (x))Πm

i=1|det(∂hi−1/∂hi)|, (4.3)

where we define z := h0 and x := hm for conciseness. With carefully designed transformations,

as explored in flow-based methods, the determinant of the Jacobian matrix (∂hi−1/∂hi) can be

incredibly simple to compute. The key idea is to choose transformations whose Jacobian is a

triangle matrix, so that the determinant becomes

|det(∂hi−1/∂hi)|= Π|diag(∂hi−1/∂hi)|. (4.4)

The following are the two scenarios for estimating qα :

81

(1) Generative modeling by MLE [DKB14, DSB16, KD18, GCB18, BDJ18, KBE19, TVA19],

based on minα KL(pdata‖qα), where again Epdata can be approximated by average over observed

examples.

(2) Variational approximation to an unnormalized target density p [KW13, RM15, KSJ16,

KW14, KKH19], based on minα KL(qα‖p), where

KL(qα‖p) = Eqα
[logqα(x)]−Eqα

[log p(x)] (4.5)

= Ez[logq0(z)− log |det(g′α(z))|]−Eqα
[log p(x)]. (4.6)

KL(qα‖p) is the difference between energy and entropy, i.e., we want qα to have low energy but

high entropy. KL(qα‖p) can be calculated without inversion of gα .

When qα appears on the right of KL-divergence, as in (1), it is forced to cover most of the

modes of pdata, When qα appears on the left of KL-divergence, as in (2), it tends to chase the

major modes of p while ignoring the minor modes [Mur12, FR12]. As shown in the following

section, our proposed method learns a flow model by combining (1) and (2).

4.2 Flow contrastive estimation

In this section, we study a training method to jointly estimate an energy-based model and a flow-

based model, in which the two models are iteratively updated based on a shared adversarial value

function [GNK20]. Our joint training method is inspired by the noise contrastive estimation (NCE)

of [GH10], where an EBM is learned discriminatively by classifying the real data and the data

generated by a noise model. In NCE, the noise model must have an explicit normalized density

function. Moreover, it is desirable for the noise distribution to be close to the data distribution

for accurate estimation of the EBM. However, the noise distribution can be far away from the

data distribution. The flow model can potentially transform or transport the noise distribution to a

distribution closer to the data distribution. With the advent of strong flow-based generative models

[DKB14, DSB16, KD18], it is natural to recruit the flow model as the contrast distribution for

82

noise contrastive estimation of the EBM.

However, even with the flow-based model pre-trained by maximum likelihood estimation (MLE)

on the data distribution, it may still not be strong enough as a contrast distribution, in the sense that

the synthesized examples generated by the pre-trained flow model may still be distinguished from

the real examples by a classifier based on an EBM. Thus, we want the flow model to be a stronger

contrast or a stronger training opponent for EBM. To achieve this goal, we can simply use the same

objective function of NCE, which is the log-likelihood of the logistic regression for classification.

While NCE updates the EBM by maximizing this objective function, we can also update the flow

model by minimizing the same objective function to make the classification task harder for the

EBM. Such update of the flow model combines MLE and variational approximation, and helps

correct the over-dispersion of MLE. If the EBM is close to the data distribution, this amounts to

minimizing the Jensen-Shannon divergence (JSD) [GPM14] between the data distribution and the

flow model. In this sense, the learning scheme relates closely to GANs [GPM14]. However, unlike

GANs, which learns a generator model that defines an implicit probability density function via a

low-dimensional latent vector, our method learns two probabilistic models with explicit probability

densities (a normalized one and an unnormalized one).

The contributions of this section are as follows. We explore a parameter estimation method that

couples the estimation of an EBM and a flow model using a shared objective function. It improves

NCE with a flow-transformed noise distribution, and modifies the MLE of the flow model to ap-

proximate JSD minimization, and helps correct the over-dispersion of MLE. Experiments on 2D

synthetic data show that the learned EBM achieves accurate density estimation with a much sim-

pler network structure than the flow model. On real image datasets, we demonstrate a significant

improvement in the synthesis quality of the flow model, and the effectiveness of unsupervised fea-

ture learning by the energy-based model. Furthermore, we show that the proposed method can be

easily adapted to semi-supervised learning, achieving performance comparable to state-of-the-art

semi-supervised methods.

83

4.2.1 Noise contrastive estimation

Noise contrastive estimation (NCE) can be used to learn the EBM, by including the normaliz-

ing constant as another learnable parameter. Specifically, for an energy-based model pθ (x) =
1

Z(θ) exp[fθ (x)], we define pθ (x) = exp[fθ (x)− c], where c = logZ(θ). c is now treated as a free

parameter, and is included into θ . Suppose we observe training examples {xi, i = 1, ...,n}, and we

have generated examples {x̃i, i = 1, ...,n} from a noise distribution q(x). Then θ can be estimated

by maximizing the following objective function:

J(θ) = Epdata

[
log

pθ (x)
pθ (x)+q(x)

]
+Eq

[
log

q(x)
pθ (x)+q(x)

]
, (4.7)

which transforms estimation of EBM into a classification problem.

The objective function connects to logistic regression in supervised learning in the following

sense. Suppose for each training or generated examples we assign a binary class label y: y = 1 if x

is from training dataset and y = 0 if x is generated from q(x). In logistic regression, the posterior

probabilities of classes given the data x are estimated. As the data distribution pdata(x) is unknown,

the class-conditional probability p(·|y = 1) is modeled with pθ (x). And p(·|y = 0) is modeled by

q(x). Suppose we assume equal probabilities for the two class labels, i.e., p(y = 1) = p(y = 0) =

0.5. Then we obtain the posterior probabilities:

pθ (y = 1|x) = pθ (x)
pθ (x)+q(x)

:= u(x,θ). (4.8)

The class-labels y are Bernoulli-distributed, so that the log-likelihood of the parameter θ becomes

l(θ) =
n

∑
i=1

logu(xi;θ)+
n

∑
i=1

log(1−u(x̃i;θ)), (4.9)

which is, up to a factor of 1/n, an approximation of eqn. 4.7.

The choice of the noise distribution q(x) is a design issue. Generally speaking, we expect q(x)

to satisfy the following: (1) analytically tractable expression of normalized density; (2) easy to

draw samples from; (3) close to data distribution. In practice, (3) is important for learning a model

over high-dimensional data. If q(x) is not close to the data distribution, the classification problem

would be too easy and would not require pθ to learn much about the modality of the data.

84

4.2.2 Flow contrastive estimation

A natural improvement to NCE is to transform the noise so that the resulting distribution is closer to

the data distribution. This is exactly what the flow model achieves. That is, a flow model transforms

a known noise distribution q0(z) by a composition of a sequence of invertible transformations

gα(·). It also fulfills (1) and (2) of the requirements of NCE. However, in practice, we find that

a pre-trained qα(x), such as learned by MLE, is not strong enough for learning an EBM pθ (x)

because the synthesized data from the MLE of qα(x) can still be easily distinguished from the real

data by an EBM. Thus, we propose to iteratively train the EBM and flow model, in which case the

flow model is adaptively adjusted to become a stronger contrast distribution or a stronger training

opponent for EBM. This is achieved by a parameter estimation scheme similar to GAN, where

pθ (x) and qα(x) play a minimax game with a unified value function: minα maxθ V (θ ,α),

V (θ ,α) = Epdata

[
log

pθ (x)
pθ (x)+qα(x)

]
+Ez

[
log

qα(gα(z))
pθ (gα(z))+qα(gα(z))

]
, (4.10)

where Epdata is approximated by averaging over observed samples {xi, i = 1, ...,n}, while Ez is

approximated by averaging over negative samples {x̃i, i = 1, ...,n} drawn from qα(x), with zi ∼

q0(z) independently for i = 1, ...,n. In the experiments, we choose Glow [KD18] as the flow-based

model. The algorithm can either start from a randomly initialized Glow model or a pre-trained one

by MLE. Here we assume equal prior probabilities for observed samples and negative samples. It

can be easily modified to the situation where we assign a higher prior probability to the negative

samples, given the fact we have access to infinite amount of free negative samples.

The objective function can be interpreted from the following perspectives:

(1) Noise contrastive estimation for EBM. The update of θ can be seen as noise contrastive esti-

mation of pθ (x), but with a flow-transformed noise distribution qα(x) which is adaptively updated.

The training is essentially a logistic regression. However, unlike regular logistic regression for

classification, for each xi or x̃i, we must include logqα(xi) or logqα(x̃i) as an example-dependent

bias term. This forces pθ (x) to replicate qα(x) in addition to distinguishing between ppdata(x) and

qα(x), so that pθ (xi) is in general larger than qα(xi), and pθ (x̃i) is in general smaller than qα(x̃i).

85

(2) Minimization of Jensen-Shannon divergence for the flow model. If pθ (x) is close to the

data distribution, then the update of α is approximately minimizing the Jensen-Shannon divergence

between the flow model qα and data distribution pdata:

JSD(qα‖pdata) = KL(pdata‖(pdata +qα)/2)+KL(qα‖(pdata +qα)/2). (4.11)

Its gradient w.r.t. α equals the gradient of −Epdata[log((pθ +qα)/2)]+KL(qα‖(pθ +qα)/2). The

gradient of the first term resembles MLE, which forces qα to cover the modes of data distribution,

and tends to lead to an over-dispersed model, which is also pointed out in [KD18]. The gradient of

the second term is similar to reverse Kullback-Leibler divergence between qα and pθ , or variational

approximation of pθ by qα , which forces qα to chase the modes of pθ [Mur12, FR12]. This may

help correct the over-dispersion of MLE, and combines the two scenarios of estimating the flow-

based model qα as described in subsection 4.1.2.

(3) Connection with GAN. Our parameter estimation scheme is closely related to GAN. In

GAN, the discriminator D and generator G play a minimax game: minG maxDV (G,D),

V (G,D) = Epdata [logD(x)]+Ez [log(1−D(G(zi)))] . (4.12)

The discriminator D(x) is learning the probability ratio pdata(x)/(pdata(x)+ pG(x)), which is about

the difference between pdata and pG [FCA16]. In the end, if the generator G learns to perfectly

replicate pdata, then the discriminator D ends up with a random guess. However, in our method,

the ratio is explicitly modeled by pθ and qα . pθ must contain all the learned knowledge in qα ,

in addition to the difference between pdata and qα . In the end, we learn two explicit probability

distributions pθ and qα as approximations to pdata.

Henceforth we simply refer to the proposed method as flow contrastive estimation, or FCE.

4.2.3 Semi-supervised learning

A class-conditional energy-based model can be transformed into a discriminative model in the

following sense. Suppose there are K categories k = 1, ...,K, and the model learns a distinct density

86

pθk(x) for each k. The networks fθk(x) for k = 1, ...,K may share common lower layers, but with

different top layers. Let ρk be the prior probability of category k, for k = 1, ...,K. Then the posterior

probability for classifying x to the category k is a softmax multi-class classifier

P(k|x) =
exp(fθk(x)+bk)

∑
K
l=1 exp(fθl(x)+bl)

, (4.13)

where bk = log(ρk)− logZ(θk).

Given this correspondence, we can modify FCE to do semi-supervised learning. Specifically,

assume {(xi,yi), i = 1, ...,m} are observed examples with labels known, and {xi, i = m+1, ...,m+

n} are observed unlabeled examples. For each category k, we can assume that class-conditional

EBM is in the form

pθk(x) =
1

Z(θk)
exp[fθk(x)] = exp[fθk(x)− ck], (4.14)

where fθk(x) share all the weights except for the top layer. And we assume equal prior probability

for each category. Let θ denotes all the parameters from class-conditional EBMs {θk,k = 1, ...,K}.

For labeled examples, we can maximize the conditional posterior probability of label y, given x

and the fact that x is an observed example (instead of a generated example from qα). By Bayes

rule, this leads to maximizing the following objective function over θ :

Llabel(θ) = Epdata(x,y) [log pθ (y|x,y ∈ {1, ...,K})]

= Epdata(x,y)

[
log

pθy(x)

∑
K
k=1 pθk(x)

]
,

(4.15)

which is similar to a classifier in the form.

For unlabeled examples, the probability can be defined by an unconditional EBM, which is in

the form of a mixture model:

pθ (x) =
K

∑
i=1

pθ (x|y = k)p(y = k) =
1
K

K

∑
i=1

pθk(x), (4.16)

Together with the generated examples from qα(x), we can define the same value function V (θ ,α)

as eqn. 4.10 for the unlabeled examples. The joint estimation algorithm alternate the following

two steps: (1) update θ by maxθ Llabel(θ) +V (θ ,α); (2) update α by minα V (θ ,α). Due to

87

the flexibility of EBM, fθk(x) can be defined by any existing state-of-the-art network structures

designed for semi-supervised learning.

4.2.4 Experiments

For FCE, we adaptively adjust the numbers of updates for EBM and Glow: we first update EBM

for a few iterations until the classification accuracy is above 0.5, and then we update Glow until the

classification accuracy is below 0.5. We use Adam [KB14] with learning rate α = 0.0003 for the

EBM and Adamax [KB14] with learning rate α = 0.00001 for the Glow model. Code and more

results can be found at http://www.stat.ucla.edu/˜ruiqigao/fce/main.html

4.2.4.1 Density estimation on 2D synthetic data

Figure 4.2.1 demonstrates the results of FCE on several 2D distributions, where FCE starts from

a randomly initialized Glow. The learned EBM can fit multi-modal distributions accurately, and

forms a better fit than Glow learned by either FCE or MLE. Notably, the EBM is defined by a much

simpler network structure than Glow: for Glow we use 10 affine coupling layers, which amount

to 30 fully-connected layers, while the energy-based model is defined by a 4-layer fully-connected

network with the same width as Glow. Another interesting finding is that the EBM can fit the

distributions well, even if the flow model is not a perfect contrastive distribution.

For the distribution depicted in the first row of Figure 4.2.1, which is a mixture of eight Gaus-

sian distributions, we can compare the estimated densities by the learned models with the ground

truth densities. Figure 4.2.2 shows the mean squared error of the estimated log-density over num-

bers of training iterations of EBMs. We show the results of FCE either starting from a randomly

initialized Glow (’rand’) or a Glow model pre-trained by MLE (’trained’), and compare with NCE

with a Gaussian noise distribution. FCE starting from a randomly initialized Glow converges in

fewer iterations. Both settings of FCE achieve a lower error rate than NCE.

88

Data Glow-MLE Glow-FCE EBM-FCE

Figure 4.2.1: Comparison of trained EBM and Glow models on 2-dimensional data distributions.

Figure 4.2.2: Density estimation accuracy in 2D examples of a mixture of 8 Gaussian distributions.

89

Figure 4.2.3: Synthesized examples from the Glow model learned by FCE. From left to right panels

are from SVHN, CIFAR-10 and CelebA datasets, respectively. The image size is 32×32.

4.2.4.2 Learning on real image datasets

We conduct experiments on the Street View House Numbers (SVHN) [NWC11], CIFAR-10 [KH09]

and CelebA [LLW18] datasets. We resized the CelebA images to 32×32 pixels, and used 20,000

images as a test set. We initialize FCE with a pre-trained Glow model, trained by MLE, for the

sake of efficiency. We again emphasize the simplicity of the EBM model structure compared to

Glow. For Glow, depth per level [KD18] is set as 8, 16, 32 for SVHN, CelebA and CIFAR-10

respectively. Figure 4.2.3 depicts synthesized examples from learned Glow models. To evaluate

the fidelity of synthesized examples, Table 4.2.1 summarizes the Fréchet Inception Distance (FID)

[HRU17] of the synthesized examples computed with the Inception V3 [SVI16] classifier. The

fidelity is significantly improved compared to Glow trained by MLE, and is competitive to the

other generative models. In Table 4.2.2, we report the average negative log-likelihood (bits per

dimension) on the testing sets. The log-likelihood of the learned EBM is based on the estimated

normalizing constant (i.e., a parameter of the model) and should be taken with a grain of salt.

For the learned Glow model, the log-likelihood of the Glow model estimated with FCE is slightly

lower than the log-likelihood of the Glow model trained with MLE.

90

Table 4.2.1: FID scores for generated samples. For our method, we evaluate generative samples

from the learned Glow model.

Method SVHN CIFAR-10 CelebA

VAE [KW13] 57.25 78.41 38.76

DCGAN [RMC15] 21.40 37.70 12.50

Glow [KD18] 41.70 45.99 23.32

FCE (Ours) 20.19 37.30 12.21

Table 4.2.2: Bits per dimension on testing data. † indicates that the log-likelihood is computed

based on models with estimated normalizing constant, and should be taken with a grain of salt.

Model SVHN CIFAR-10 CelebA

Glow-MLE 2.17 3.35 3.49

Glow-FCE (Ours) 2.25 3.45 3.54

EBM-FCE (Ours) †2.15 †3.27 †3.40

91

4.2.4.3 Unsupervised feature learning

To further explore the EBM learned with FCE, we perform unsupervised feature learning with

features from a learned EBM. Specifically, we first conduct FCE on the entire training set of SVHN

in an unsupervised way. Then, we extract the top layer feature maps from the learned EBM, and

train a linear classifier on top of the extracted features using only a subset of the training images

and their corresponding labels. Figure 4.2.4 shows the classification accuracy as a function of the

number of labeled examples. Meanwhile, we compare our method with a supervised model with

the same model structure as the EBM, and is trained only on the same subset of labeled examples

each time. We observe that FCE outperforms the supervised model when the number of labeled

examples is small (less than 2000).

Figure 4.2.4: SVHN test-set classification accuracy as a function of number of labeled examples.

The features from top layer feature maps are extracted and a linear classifier is learned on the

extracted features.

Next, we try to combine features from multiple layers together. Specifically, following the

same procedure outlined in [RMC15], the features from the top three convolutional layers are max

pooled and concatenated to form a 14,336-dimensional vector of feature. A regularized L2-SVM

is then trained on these features with a subset of training examples and the corresponding labels.

92

Table 4.2.3: Test set classification error of L2-SVM classifier trained on the concatenated features

learned from SVHN. DDGM stands for Deep Directed Generative Models. For fair comparison,

all the energy-based models or discriminative models are trained with the same model structure.

Method
of labeled data

1000 2000 4000

WGAN [ACB17a] 43.15 38.00 32.56

WGAN-GP [GAA17] 40.12 32.24 30.63

DDGM [KB16] 44.99 34.26 27.44

DCGAN [RMC15] 38.59 32.51 29.37

SN-GAN [MKK18] 40.82 31.24 28.69

MMD-GAN-rep [WSH18] 36.74 29.12 25.23

Persistent CD [Tie08] 45.74 39.47 34.18

One-step CD [Hin02b] 44.38 35.87 30.45

Multigrid sampling [GLZ18] 30.23 26.54 22.83

FCE (Ours) 27.07 24.12 22.05

Table 4.2.3 summarizes the results of using 1,000, 2,000 and 4,000 labeled examples from the

training set. At the top part of the table, we compare with methods that estimate an EBM or

a discriminative model coupled with a generator network. At the middle part of the table, we

compare with methods that learn an EBM with contrastive divergence (CD) and modified versions

of CD. For a fair comparison, we use the same model structure for the EBMs or discriminative

models used in all the methods. The results indicate that FCE outperforms these methods in terms

of the effectiveness of learned features.

4.2.4.4 Semi-supervised learning

In section 4.2.3 we show that FCE can be generalized to perform semi-supervised learning. We

emphasize that for semi-supervised learning, FCE not only learns a classification boundary or a

93

Figure 4.2.5: Illustration of FCE for semi-supervised learning on a 2D example, where the data

distribution is two spirals belonging to two categories. Within each panel, the top left is the learned

unconditional EBM. The top right is the learned Glow model. The bottom is two class-conditional

EBMs. For observed data, seven labeled points are provided for each category.

posterior label distribution p(y|x). Instead, the algorithm ends up with K estimated probabilistic

distributions p(x|y = k),k = 1, ...K for observed examples belonging to K categories. Figure 4.2.5

illustrates this point by showing the learning process on a 2D example, where the data distribution

consists of two twisted spirals belonging to two categories. Seven labeled points are provided for

each category. As the training goes, the unconditional EBM pθ (x) learns to capture all the modes

of the data distribution, which is in the form of a mixture of class-conditional EBMs pθ1(x) and

pθ2(x). Meanwhile, by maximizing the objective function Llabel(θ) (eqn. 4.15), pθ (x) is forced to

project the learned modes into different spaces, resulting in two well-separated class-conditional

EBMs. As shown in Figure 4.2.5, within a single mode of one category, the EBM tends to learn a

smoothly connected cluster, which is often what we desire in semi-supervised learning.

Then we test the proposed method on a dataset of real images. Following the setting in

[MMK18], we use two types of CNN structures (‘Conv-smallqand ‘Conv-largeq) for EBMs, which

are commonly used in state-of-the-art semi-supervised learning methods. Before the joint train-

ing starts, EBMs are firstly trained for 50,000 iterations with the Glow model fixed. In practice,

this helps EBMs keep pace with the pre-trained Glow model, and equips EBMs with reasonable

classification ability. We report the performance at this stage as ‘FCE-init’. Also, since virtual

94

adversarial training (VAT) [MMK18] has been demonstrated as an effective regularization method

for semi-supervised learning, we consider adopting it as an additional loss for learning the EBMs.

More specifically, the loss is defined as the robustness of the conditional label distribution around

each input data point against local perturbations. ‘FCE + VAT’ indicates the training with VAT.

Table 4.2.4 summarizes the results of semi-supervised learning on the SVHN dataset. We

report the mean error rates and standard deviations over three runs. All the methods listed in the

table belong to the family of semi-supervised learning methods. Our method achieves competitive

performance to these state-of-the-art methods. ‘FCE + VAT’ results show that the effectiveness

of FCE does not overlap much with the existing semi-supervised methods, and thus they can be

combined to further boost the performance.

4.2.5 Conclusion

This section explores joint training of an energy-based model with a flow-based model, by com-

bining the representational flexibility of the energy-based model and the computational tractability

of the flow-based model. We may consider the learned energy-based model as the learned rep-

resentation, while the learned flow-based model as the learned computation. This method can be

considered as an adaptive version of noise contrastive estimation where the noise is transformed by

a flow model to make its distribution closer to the data distribution and to make it a stronger con-

trast to the energy-based model. Meanwhile, the flow-based model is updated adaptively through

the learning process, under the same adversarial value function.

In future work, we intend to generalize the joint training method by combining the energy-

based model with other normalized probabilistic models, such as auto-regressive models. We

also intend to explore other joint training methods such as those based on adversarial contrastive

divergence [KB16, DAB17, HNF18] or divergence triangle [HNF18].

95

4.3 Descriptive model with flow-based backbone

As mentioned in Chapter 2, the maximum likelihood estimation of the descriptive model, also

known as the energy-based model (EBM), follows an “analysis by synthesis” scheme. In the

synthesis step, synthesized examples are generated by sampling from the current model. In the

analysis step, the model parameters are updated based on the statistical difference between the

synthesized examples and the observed examples. The synthesis step usually requires Markov

chain Monte Carlo (MCMC) sampling, such as Langevin dynamics [Lan08] or Hamiltonian Monte

Carlo (HMC) [Nea11].

However, gradient-based MCMC sampling in high dimensional data space, such as image

space, generally does not mix (unless we instead sample from conditional distribution as in dif-

fusion recovery likelihood), which is a fundamental issue from a statistical perspective. Without

being able to generate fair examples from the model, the estimated gradient of the maximum likeli-

hood learning can be highly biased, and the learned model parameters can be far from the unbiased

estimator given by MLE. Even if we can learn the model by other means without resorting to

MCMC sampling, e.g., by flow contrastive estimation (FCE) [GH10, GNK19], it is still necessary

to be able to draw fair examples from the learned model for the purpose of model checking or

downstream applications based on the learned model.

To tackle this problem, we propose to learn an EBM with a flow-based model as a backbone

model or base measure, so that the EBM is in the form of a correction, or an exponential tilting, of

the flow-based model [NGS20]. Specifically, we learn an EBM by correcting a relatively simple

flow-based model with a relatively simple energy function parameterized by a free-form convo-

lutional neural network. We show that the resulting EBM has a particularly simple form in the

space of the latent variables of the flow-based model. MCMC sampling of the EBM in the latent

space, which is a simple special case of neural transport MCMC [HSD19], mixes well and is able

to traverse modes in the data space. This enables proper sampling and learning of EBMs. Please

refer to [NGS20] for more details.

96

Table 4.2.4: Semi-supervised classification error (%) on the SVHN test set. † indicates that we

derive the results by running the released code. ∗ indicates that the method uses data augmentation.

The other cited results are provided by the original papers. Our results are averaged over three runs.

Method
of labeled data

500 1000

SWWAE [ZMG15] 23.56

Skip DGM [MSS16] 16.61 (±0.24)

Auxiliary DGM [MSS16] 22.86

GAN with FM [SGZ16] 18.44 (±4.8) 8.11 (±1.3)

VAT-Conv-small [MMK18] 6.83 (±0.24)

on Conv-small used in [SGZ16, MMK18]

FCE-init 9.42 (±0.24) 8.50 (±0.26)

FCE 7.05 (±0.28) 6.35 (±0.12)

Π model [LA16] 7.05 (±0.30) 5.43 (±0.25)

VAT-Conv-large [MMK18] †8.98 (±0.26) 5.77 (±0.32)

Mean Teacher [TV17] 5.45 (±0.14) 5.21 (±0.21)

Π model∗ [LA16] 6.83 (±0.66) 4.95 (±0.26)

Temporal ensembling∗ [LA16] 5.12 (±0.13) 4.42 (±0.16)

on Conv-large used in [LA16, MMK18]

FCE-init 8.86 (±0.26) 7.60 (±0.23)

FCE 6.86 (±0.18) 5.54 (±0.18)

FCE + VAT 4.47 (±0.23) 3.87 (±0.14)

97

CHAPTER 5

A representational model of grid cells

5.1 Introduction

Imagine walking in the darkness. Purely based on the sense of self-motion, one can gain a

sense of self-position by integrating the self-motion - a process often referred to as path inte-

gration [Dar73, EJ04, HFM05, FBB08, MBJ06]. While the exact neural underpinning of path in-

tegration remains unclear, it has been hypothesized that the grid cells [HFM05, FHW08, YWU11,

KJB12, JWM13, DBB10] in the mammalian medial entorhinal cortex (mEC) may be involved in

this process [GAS18, RWP19, HBZ16]. The grid cells are so named because individual neurons

exhibit striking firing patterns that form hexagonal grids when the agent (such as a rat) navigates in

a 2D open field [FMW04, HFM05, FT06, BF09, SF11, BWZ07, CWZ13, AIL09, PSR13, AB20].

The grid cells also interact with the place cells in the hippocampus [OK79]. Unlike a grid cell that

fires at the vertices of a lattice, a place cell often fires at a single (or a few) locations.

The purpose of this chapter is to understand how the grid cells may perform path integration

calculations1. We study a general optimization-based representational model in which the 2D self-

position is represented by a higher-dimensional vector and the 2D self-motion is represented by

a transformation of the vector. The vector representation can be considered position encoding

or position embedding, where the elements of the vector may be interpreted as activities of a

population of grid cells. The transformation can be realized by a recurrent network that acts on the

vector. Our focus is to study the properties of the transformation.

1The main contributions in this chapter were first described in [GXZ18a, GXW20]

98

Specifically, we identify two conditions for the transformation: a group representation condi-

tion and an isotropic scaling condition, under which we demonstrate that the local neighborhood

around a self-position in the 2D physical space is embedded conformally as a 2D neighborhood

around the vector representation of the self-position in the neural space.

We then investigate the simplest special case of the transformation, i.e., linear transformation,

that forms a matrix Lie group of rotation, under which case we show that the isotropic scaling

condition is connected to the hexagonal grid patterns of the grid cells. Our numerical experiments

demonstrate that our model learns clear hexagon grid patterns of multiple scales which share ob-

served properties of the grid cells in the rodent brain, by optimizing a simple loss function. The

learned model is also capable of accurate long-distance path integration.

Contributions. Our work contributes to understanding the grid cells from the perspective of

representation learning. We conduct novel theoretical analysis of (1) general transformation for

path integration by identifying two key conditions and a local conformal embedding property,

(2) linear transformation by revealing the algebraic and geometric structure and connecting the

isotropic scaling condition and the hexagon grid patterns, and (3) integration of linear transfor-

mation model and basis expansion model. Experimentally we learn clear hexagon grid patterns

that are consistent with biological observations, and the learned model is capable of accurate path

integration.

5.2 General transformation

5.2.1 Position embedding

Consider an agent (e.g., a rat) navigating within a 2D open field. Let x = (x1,x2) be the self-

position of the agent. We assume that the self-position x in the 2D physical space is represented

by the response activities of a population of d neurons (e.g., d = 200), which form a vector v(x) =

(vi(x), i = 1, ...,d)> in the d-dimensional “neural space”, with each element vi(x) representing the

99

(a) physical space (b) neural space

Figure 5.2.1: The local 2D polar system around self-position x in the 2D physical space (a) is embedded

conformally as a 2D polar system around vector v(x) in the d-dimensional neural space (b), with a scaling

factor s (so that δ r in the physical space becomes sδ r in the neural space).

firing rate of one neuron when the animal is at location x.

v(x) can be called position encoding or position embedding. Collectively, (v(x),∀x) forms

a codebook of x ∈ R2, and (v(x),∀x) is a 2D manifold in the d-dimensional neural space, i.e.,

globally we embed R2 as a 2D manifold in the neural space. Locally, we identify two conditions

under which the 2D local neighborhood around x is embedded conformally as a 2D neighborhood

around v(x) with a scaling factor. See Fig. 5.2.1. As shown in Section 5.3.3, the conformal

embedding is connected to the hexagon grid patterns.

5.2.2 Transformation and path integration

At self-position x, if the agent makes a self-motion ∆x = (∆x1,∆x2), then it moves to x+∆x.

Correspondingly, the vector representation v(x) is transformed to v(x+∆x). The general form

of the transformation can be formulated as:

v(x+∆x) = F(v(x),∆x). (5.1)

The transformation F(·,∆x) can be considered a representation of ∆x, which forms a 2D additive

group. We call Eq. (5.1) the transformation model. It can be implemented by a recurrent network

to derive a path integration model: if we start from x0, and make a sequence of moves (∆xt , t =

1, ...,T), then the vector is updated by vt = F(vt−1,∆xt), where v0 = v(x0), and t = 1, ...,T .

100

5.2.3 Group representation condition

The solution to the transformation model (Eq. (5.1)) should satisfy the following condition.

Condition 1. (Group representation condition) (v(x),∀x) and (F(v,∆x),∀∆x) form a represen-

tation of the 2D additive Euclidean group R2 in the sense that

F(v(x),∆x1 +∆x2) = F(F(v(x),∆x1),∆x2), (5.2)

for any ∆x1 and ∆x2, and for any x.

The reason is that the agent can move in one step by ∆x1+∆x2, or first move by ∆x1, and then

move by ∆x2. Both paths would end up at the same x+∆x1 +∆x2, which is represented by the

same v(x+∆x1 +∆x2). It is a necessary self-consistent condition for the transformation model

(Eq. (5.1)).

5.2.4 Egocentric self-motion

Self-motion can also parametrized egocentrically as (∆r,θ), where ∆r is the displacement along

the direction θ ∈ [0,2π], so that ∆x= (∆x1 = ∆r cosθ ,∆x2 = ∆r sinθ). The egocentric self-motion

could be more biologically plausible where θ is encoded by head direction, and ∆r can be inter-

preted as the speed along direction θ . The transformation model then becomes

v(x+∆x) = F(v(x),∆r,θ), (5.3)

where we continue to use F(·) for the transformation (with slight abuse of notation). (∆r,θ) form

a polar coordinate system around x.

5.2.5 Infinitesimal self-motion and directional derivative

In this subsection, we derive the transformation model for infinitesimal self-motion. While we use

∆x or ∆r to denote finite (non-infinitesimal) self-motion, we use δx or δ r to denote infinitesimal

101

self-motion. At self-position x, for an infinitesimal displacement δ r along direction θ , δx =

(δx1 = δ r cosθ ,δx2 = δ r sinθ). See Fig. 5.2.1 (a) for an illustration. Given that δ r is infinitesimal,

a first order Taylor expansion of F(v(x),δ r,θ) with respect to δ r gives us

v(x+δx) = F(v(x),δ r,θ) = F(v(x),0,θ)+F ′(v(x),0,θ)δ r+o(δ r)

= v(x)+ fθ (v(x))δ r+o(δ r), (5.4)

where F(v(x),0,θ) = v(x) because zero displacement does not change v(x), and fθ (v(x)) :=

F ′(v(x),0,θ) is the first derivative of F(v(x),∆r,θ) with respect to ∆r at ∆r = 0. fθ (v(x)) is the

directional derivative of F(·) at self-position x and direction θ .

5.2.6 Isotropic scaling condition

With the directional derivative, we define the second condition as follows, which leads to locally

conformal embedding and is connected to hexagon grid pattern.

Condition 2. (Isotropic scaling condition) For any fixed x, ‖ fθ (v(x))‖ is constant over θ .

Let f0(v(x)) denote fθ (v(x)) for θ = 0, and fπ/2(v(x)) denote fθ (v(x)) for θ = π/2. Then

we have the following theorem: .

Theorem 1. Assume group representation condition 1 and isotropic scaling condition 2. At any

fixed x, for the local motion δx = (δ r cosθ ,δ r sinθ) around x, let δv = v(x+ δx)−v(x) be

the change of vector and s = ‖ fθ (v(x))‖, then we have ‖δv‖= s‖δx‖. Moreover,

δv = fθ (v(x))δ r+o(δ r) = f0(v(x))δ r cosθ + fπ/2(v(x))δ r sinθ +o(δ r), (5.5)

where f0(v(x)) and fπ/2(v(x)) are two orthogonal basis vectors of equal norm s.

See chapter appendix for a proof and Fig. 5.2.1(b) for an illustration. Theorem 1 indicates that

the local 2D polar system around self-position x in the 2D physical space is embedded conformally

as a 2D polar system around vector v(x) in the d-dimensional neural space, with a scaling factor

s (our analysis is local for any fixed x, and s may depend on x).

102

Why isotropic scaling and conformal embedding? The neurons are intrinsically noisy. Dur-

ing path integration, the errors may accumulate in v. Moreover, when inferring self-position from

a visual image, it is possible the v is inferred first with error, and then x is decoded from the

inferred v. Due to isotropic scaling and conformal embedding, locally we have ‖δv‖ = s‖δx‖,

which guarantees that the `2 error in v translates proportionally to the `2 error in x, so that there

will not be adversarial perturbations in v(x) that cause excessively big errors in x. Section 5.3.2

presents explicit analysis on error correction.

5.3 Linear transformation

After studying the general transformation, we now investigate the linear transformation of v(x),

for the following reasons. (1) It is the simplest transformation for which we can derive explicit

algebraic and geometric results. (2) It enables us to connect the isotropic scaling condition to

hexagon grid patterns. (3) In Section 5.4, we integrate it with the basis expansion model, which is

also linear in v(x).

For finite (non-infinitesimal) self-motion, the linear transformation model is:

v(x+∆x) = F(v(x),∆x) =M(∆x)v(x), (5.6)

whereM(∆x) is a matrix. The group representation condition becomes

M(∆x1 +∆x2) =M(∆x2)M(∆x1), (5.7)

i.e., M(∆x) is a matrix representation of self-motion ∆x. For egocentric parametrization of self-

motion (∆r,θ), we can further write M(∆x) =Mθ (∆r) for ∆x = (∆r cosθ ,∆r sinθ), and the

linear model becomes v(x+∆x) = F(v(x),∆r,θ) =Mθ (∆r)v(x).

5.3.1 Algebraic structure: matrix Lie algebra and Lie group

For the linear model (Eq. (5.6)), the directional derivative can be expressed as: fθ (v(x)) =

F ′(v(x),0,θ) = B(θ)v(x), where B(θ) is a d× d matrix only depending on the direction θ .

103

For infinitesimal self-motion, the transformation model in Eq. (5.4) becomes

v(x+δx) = (I+B(θ)δ r)v(x)+o(δ r), (5.8)

where I is the identity matrix. It can be considered a linear recurrent network where B(θ) is the

learnable weight matrix. We have the following theorem for the algebraic structure of the linear

transformation.

Theorem 2. Assume the linear transformation model so that for infinitesimal self-motion (δ r,θ),

the model is in the form of Eq. (5.8), then for finite displacement ∆r,

v(x+∆x) =Mθ (∆r)v(x) = exp(B(θ)∆r)v(x). (5.9)

Proof. We can divide ∆r into N steps, so that δ r = ∆r/N→ 0 as N→ ∞, and

v(x+∆x) = (I+B(θ)(∆r/N)+o(1/N))Nv(x)→ exp(B(θ)∆r)v(x) (5.10)

as N→ ∞. The matrix exponential map is defined by exp(A) = ∑
∞
n=0 An/n!.

The above math underlies the relationship between matrix Lie algebra and matrix Lie group [Tay02].

For a fixed θ , the set of Mθ (∆r) = exp(B(θ)∆r) for ∆r ∈ R forms a matrix Lie group, which is

both a group and a manifold. The tangent space of Mθ (∆r) at identity I is called matrix Lie

algebra. B(θ) is the basis of this tangent space, and is often referred to as the generator matrix.

Path integration. The path integration model then becomes as follows. If the agent starts

from x0, and make a sequence of moves ((∆rt ,θt), t = 1, ...,T), then the vector representation of

self-position is updated by

vt = exp(B(θt)∆rt)vt−1, (5.11)

where v0 = v(x0), and t = 1, ...,T .

Approximation to exponential map. For a finite but small ∆r, exp(B(θ)∆r) can be approxi-

mated by a second-order (or higher-order) Taylor expansion

exp(B(θ)∆r) = I+B(θ)∆r+B(θ)2
∆r2/2+o(∆r2). (5.12)

104

5.3.2 Geometric structure: rotation, periodicity, metic and error correction

If we assume B(θ) = −B(θ)>, i.e., skew-symmetric, then I+B(θ)δ r in Eq. (5.8) is approxi-

mately a rotation matrix operating on v(x), due to the fact that (I+B(θ)δ r)(I+B(θ)δ r)> =

I+O(δ r2). For finite ∆r, exp(B(θ)∆r) is also a rotation matrix, as it equals to the product of N

matrices I +B(θ)(∆r/N) (Eq. (5.10)). The geometric interpretation is that, if the agent moves

along the direction θ in the physical space, the vector v(x) is rotated by the matrix B(θ) in the

neural space, while the `2 norm ‖v(x)‖2 remains fixed. We may interpret ‖v(x)‖2 = ∑
d
i=1 vi(x)

2

as the total energy of grid cells. See Fig. 5.2.1(b).

The angle of rotation is given by ‖B(θ)v(x)‖δ r/‖v(x)‖, because ‖B(θ)v(x)‖δ r is the arc

length and ‖v(x)‖ is the radius. If we further assume the isotropic scaling condition, which be-

comes that ‖ fθ (v(x))‖ = ‖B(θ)v(x)‖ is constant over θ for the linear model, then the angle of

rotation can be written as µδ r, where µ = ‖B(θ)v(x)‖/‖v(x)‖ is independent of θ . Geometri-

cally, µ tells us how fast the vector rotates in the neural space as the agent moves in the physical

space. In practice, µ can be much bigger than 1 for the learned model, thus the vector rotates back

to itself in a short distance, causing the periodic patterns in the elements of v(x). µ captures the

notion of metric.

For µ� 1, the conformal embedding in Fig. 5.2.1 (b) magnifies the local motion in Fig. 5.2.1

(a), and this enables error correction [SF11]. More specifically, we have the following explicit

result.

Theorem 3. Assume the linear transformation model (Eq. (5.8)) and the isotropic scaling con-

dition 2. For any fixed x, let µ = ‖B(θ)v(x)‖/‖v(x)‖. Suppose the neurons are noisy: v =

v(x)+ ε, where ε ∼N (0,τ2Id) and τ2 = α2(‖v(x)‖2/d), so that α2 measures the variance of

noise relative to the average magnitude of (vi(x)
2, i = 1, ...,d). Suppose the agent infers its 2D

position x̂ from v by x̂ = argminx′ ‖v− v(x′)‖2, i.e., v(x̂) is the projection of v onto the 2D

manifold formed by (v(x′),∀x′). Then we have

E‖x̂−x‖2 = 2α
2/(µ2d). (5.13)

105

See chapter appendix for proof. A similar result can be obtained for the general transformation

model. By the above theorem, error correction of grid cells is due to two factors: (1) higher

dimensionality d of v(x) for encoding 2D x, and (2) a magnifying µ� 1 (our analysis is local for

any fixed x, and µ may depend on x).

5.3.3 Isotropic scaling condition and hexagon grid patterns

In this subsection, we make the connection between the isotropic scaling condition 2 in the linear

model and the emergence of hexagon grid patterns, which can be created by linearly mixing three

Fourier plane waves whose directions are 2π/3 apart. We show such linear mixing satisfies the

linear model and the isotropic scaling condition.

Theorem 4. Let e(x) = (exp(i〈a j,x〉), j = 1,2,3)>, where (a j, j = 1,2,3) are three 2D vectors of

equal norm, and the angle between every pair of them is 2π/3. Let v(x) =Ue(x), whereU is an

arbitrary unitary matrix. Let B(θ) = U ∗D(θ)U , where D(θ) = diag(i〈a j,q(θ)〉, j = 1,2,3),

with q(θ) = (cosθ ,sinθ)>. Then (v(x),B(θ)) satisfies the linear transformation model (Eq.

(5.8)) and the isotropic scaling condition 2. Moreover,B(θ) is skew-symmetric.

See chapter appendix for proof. We would like to emphasize that the above theorem is to give

a solution to our model, but our optimization-based model does not assume any superposition

of Fourier basis functions as in the theorem. Our experimental results are learned purely by

optimizing a loss function based on the simple assumptions of our model with generic vectors and

matrices.

5.3.4 Modules

Biologically, it is well established that grid cells are organized in discrete modules [BHB07,

SSS12] or blocks. We thus partition the vector v(x) into K blocks, v(x) = (vk(x),k = 1, ...,K).

Correspondingly the generator matrices B(θ) = diag(Bk(θ),k = 1, ...,K) are block diagonal, so

that each sub-vector vk(x) is rotated by a sub-matrixBk(θ). For the general transformation model,

106

each sub-vector is transformed by a separate sub-network. By the same argument as in subsection

5.3.2, let µk = ‖Bkvk(x)‖/‖vk(x)‖, then µk is the metric of module k.

5.4 Interaction with place cells

5.4.1 Place cells

For each v(x), we need to uniquely decode x globally. This can be accomplished with place

cells. Specifically, each place cell fires when the agent is at a specific position. Let A(x,x′)

be the response map for the place cell associated with position x′. It measures the adjacency

between x and x′. A commonly used form of A(x,x′) is the Gaussian adjacency kernel A(x,x′) =

exp(−‖x−x′‖2/(2σ2)).

5.4.2 Basis expansion

Figure 5.4.1: Illustration of basis expansion model A(x,x′) = ∑
d
i=1 ui,x′vi(x), where vi(x) is the response

map of i-th grid cell, shown at the bottom, which shows 5 different i. A(x,x′) is the response map of place

cell associated with x′, shown at the top, which shows 3 different x′. ui,x′ is the connection weight.

A popular model that connects place cells and grid cells is the following basis expansion model

(or PCA-based model) [DSM16]:

A(x,x′) = 〈v(x),u(x′)〉=
d

∑
i=1

ui,x′vi(x), (5.14)

107

where v(x) = (vi(x), i = 1, ...,d)>, and u(x′) = (ui,x′, i = 1, ...,d)>. Here (vi(x), i = 1, ...,d)

forms a set of d basis functions (which are functions of x) for expanding A(x,x′) (which is a

function of x for each place x′), while u(x′) is the read-out weight vector for place cell at x′, and

needs to be learned. See Fig. 5.4.1 for an illustration. Experimental results on biological brains

have shown that the connections from grid cells to place cells are excitatory [ZYM13, ROS18].

We thus assume that ui,x′ ≥ 0 for all i and x′.

5.4.3 From group representation to basis functions

The vector representation v(x) generated (or constrained) by the linear transformation model (Eq.

(5.6)) can serve as basis functions of the PCA-based basis expansion model (Eq. (5.14)), due to the

fundamental theorems of Schur [Zee16] and Peter-Weyl [Tay02], which reveal the root of Fourier

analysis and generalize it to general groups. Specifically, if M(∆x) is an irreducible unitary

representation of ∆x that forms a compact Lie group, then the elements {Mi j(∆x)} form a set of

orthogonal basis functions of ∆x. Let v(x) =M(x)v(0) (where we choose the origin 0 as the

reference point). The elements of v(x), i.e., (vi(x), i = 1, ...,d), are linear mixings of the basis

functions {Mi j(x)}, so that they themselves form a new set of basis functions that serve to expand

(A(x,x′),∀x′) that parametrizes the place cells.

The basis expansion model (or PCA-based model) (Eq. 5.14) assumes that the basis functions

are orthogonal, while in our work, we do not make the orthogonality assumption. Interestingly,

the learned transformation model generates basis functions that are close to being orthogonal au-

tomatically. See chapter appendix for more detailed explanation and experimental result.

5.4.4 Decoding and re-encoding

For a neural response vector v, such as vt in Eq. (5.11), the response of the place cell associated

with location x′ is 〈v,u(x′)〉. We can decode the position x̂ by examining which place cell has

108

the maximal response, i.e.,

x̂= argmax
x′
〈v,u(x′)〉. (5.15)

After decoding x̂, we can re-encode v← v(x̂) for error correction. Decoding and re-encoding can

also be done by directly projecting v onto the manifold (v(x),∀x), which gives similar results.

See chapter appendix for more analysis and experimental results.

5.5 Learning

We learn the model by optimizing a loss function defined based on three model assumptions dis-

cussed above: (1) the basis expansion model (Eq. (5.14)), (2) the linear transformation model

(Eq. (5.9)) and (3) the isotropic scaling condition 2. The input is the set of adjacency kernels

A(x,x′),∀x,x′. The unknown parameters to be learned are (1) (v(x) = (vk(x),k = 1, ...,K),∀x),

(2) (u(x′),∀x′) and (3) (B(θ),∀θ). We assume that there are K modules or blocks and B(θ) is

skew-symmetric, so thatB(θ) are parametrized as block-diagonal matrices (Bk(θ),k= 1, ...,K),∀θ)

and only the lower triangle parts of the matrices need to be learned. The loss function is de-

fined as a weighted sum of simple `2 loss terms constraining the three model assumptions: L =

L0 +λ1L1 +λ2L2, where

L0 = Ex,x′[A(x,x
′)−〈v(x),u(x′)〉]2, (basis expansion) (5.16)

L1 =
K

∑
k=1

Ex,∆x‖vk(x+∆x)− exp(Bk(θ)∆r)vk(x)‖2, (transformation) (5.17)

L2 =
K

∑
k=1

Ex,θ ,∆θ [‖Bk(θ +∆θ)vk(x)‖−‖Bk(θ)vk(x)‖]2. (isotropic scaling) (5.18)

λ1 and λ2 are chosen so that the three loss terms are of similar magnitudes. A(x,x′) are given as

Gaussian adjacency kernels. For regularization, we add a penalty on ‖u(x′)‖2, and further assume

u(x′) ≥ 0 so that the connections from grid cells to place cells are excitatory [ZYM13, ROS18].

However, note that u(x′)≥ 0 is not necessary for the emergence of hexagon grid patterns as shown

in the ablation studies.

109

Expectations in L0, L1 and L2 are approximated by Monte Carlo samples. L is minimized by

Adam [KB14] optimizer. See chapter appendix for implementation details.

5.6 Experiments

Figure 5.6.1: Hexagonal grid firing patterns emerge in the learned network. Every response map shows

the firing pattern of one neuron (i.e, one element of v) in the 2D environment. Every row shows the firing

patterns of the neurons within the same block or module.

We conduct numerical experiments to learn the representations as described in Section 5.5.

Specifically, we use a square environment with size 1m × 1m, which is discretized into a 40×40

lattice. For direction, we discretize the circle [0,2π] into 144 directions and use nearest neighbor

linear interpolations for values in between. We use the second-order Taylor expansion (5.12) to

approximate the exponential map exp(B(θ)∆r). The self displacement ∆r are sampled within a

small range, i.e., ∆r is smaller than 3 grids on the lattice. For A(x,x′), we use a Gaussian adjacency

kernel with σ = 0.07. v(x) is of d = 192 dimensions, which is partitioned into K = 16 modules,

each of which has 12 cells.

110

5.6.1 Hexagon grid patterns

Fig. 5.B.10 shows the learned firing patterns of v(x) = (vi(x), i = 1, ...,d) over the 40×40 lattice

of x. Every row shows the learned units belonging to the same block or module. Regular hexagon

grid patterns emerge. Within each block or module, the scales and orientations are roughly the

same, but with different phases or spatial shifts. For the learnedB(θ), each element shows regular

sine/cosine tuning over θ . See to chapter appendix for more learned patterns.

We further investigate the characteristics of the learned firing rate patterns (i.e., v(x)) using

measures adopted from the grid cell literature. Specifically, the hexagonal regularity, scale and

orientation of grid-like patterns are quantified using the gridness score, grid scale and grid orien-

tation [LAC10, SFH06], which are determined by taking a circular sample of the autocorrelogram

of the response map. Table 5.6.1 summarizes the results of gridness scores and comparisons with

other optimization-based approaches [BBU18, SMG19]. We apply the same threshold to deter-

mine whether a learned neuron can be considered a grid cell as in [BBU18] (i.e., gridness score

¿ 0.37). For our model, 73.10% of the learned neurons exhibit significant hexagonal periodicity

in terms of gridness scores. Fig. 5.6.2 shows the histogram of grid scales of learned grid cell

neurons (mean 0.33, range 0.21 to 0.49), which follows a multi-modal distribution. The ratio

between neighboring modes is roughly 1.52 and 1.51, which closely match the theoretical predic-

tions [WPB15, SMH15] and also the empirical results from rodent grid cells [SSS12]. Collectively,

these results reveal striking, quantitative correspondence between the properties of our model neu-

rons and those of the grid cells in the brain.

111

Figure 5.6.2: Multi-modal distribution

of grid scales of the learned model grid

cells. The scale ratios closely match the

real data [SSS12].

Table 5.6.1: Summary of gridness scores of the units

learned from different models. To determine the valid

grid cells, we apply the same threshold of gridness score

as in [BBU18], i.e., gridness score ¿ 0.37. For our model,

we run 5 trials and report the average and standard devi-

ation.

Model Gridness score % of grid cells

[BBU18] (LSTM) 0.18 25.20

[SMG19] (RNN) 0.48 56.10

Ours 0.90 ± 0.044 73.10 ± 1.33

Ablation studies. We conduct ablation studies to examine whether certain model assumptions

are empirically important for the emergence of hexagon grid patterns. The conclusions are high-

lighted as follows: (1) The loss term L2 in Eq. (5.18) for isotropic scaling is necessary for learning

hexagon grid patterns. (2) The constraint u(x′)≥ 0 is not necessary for learning hexagon patterns,

but the activations can be either excitatory or inhibitory without the constraint. (3) The skew-

symmetric assumption on B(θ) is not important for learning hexagon grid patterns. (4) Hexagon

patterns always emerge regardless of the choice of block size and number of blocks. (5) Multiple

blocks or modules are necessary for the emergence of hexagon grid patterns of multiple scales.

See Fig. 5.6.3 for several learned patterns and chapter appendix for the full studies.

5.6.2 Path integration

We then examine the ability of the learned model on performing multi-step path integration, which

can be accomplished by recurrently updating vt (Eq. (5.11)) and decoding vt to xt for t = 1, ...,T

(Eq. (5.15)). Re-encoding vt ← v(xt) after decoding is adopted. Fig. 5.6.4(a) shows an example

trajectory of accurate path integration for number of time steps T = 30. As shown in Fig. 5.6.4(b),

with re-encoding, the path integration error remains close to zero over a duration of 500 time steps

112

(a) without L2 (b) without u(x′)≥ 0 (c) without skew-symmetry

Figure 5.6.3: Learned response maps in ablation studies where a certain model assumption is removed.

(a) Remove the loss term L2. (b) Remove the assumption u(x′) ≥ 0. (c) Remove the skew-symmetric

assumption onB(θ).

(< 0.01 cm, averaged over 1,000 episodes), even if the model is trained with the single-time-step

transformation model (Eq. (5.17)). Without re-encoding, the error goes slightly higher but still

remains small (ranging from 0.0 to 4.2 cm, mean 1.9 cm in the 1m × 1m environment). Fig.

5.6.4(c) summarizes the path integration performance by fixing the number of blocks and altering

the block size. The performance of path integration would be improved as the block size becomes

larger, i.e., more units or cells in each module. When block size is larger than 16, path integration

is very accurate for the time steps tested.

Error correction. See chapter appendix for numerical experiments on error correction, which

show that the learned model is still capable of path integration when we apply Gaussian white

noise errors or Bernoulli drop-out errors to vt .

5.7 Related work

Our work is related to several lines of previous research on modeling grid cells. First, RNN

models have been used to model grid cells and path integration. The traditional approach uses

simulation-based models with hand-crafted connectivity, known as Continuous Attractor Neural

Network (CAN) [AA92, BF09, CWZ13, PSR13, AB20]. On the other hand, more recently two

pioneering works [CW18, BBU18] developed optimization-based RNN approaches to learn the

113

Figure 5.6.4: The learned model can perform accurate path integration. (a) Black: example trajectory. Red:

inferred trajectory. (b) Path integration error over the number of time steps, for procedures with re-encoding

and without re-encoding. (c) Path integration error with fixed number of blocks and different block sizes,

for 50 and 100 time steps. The error band in (b) and error bar in (c) are standard deviations computed over

1,000 episodes.

path integration model and discovered that grid-like response patterns could emerge in the opti-

mized networks. These results are further substantiated in [SMG19, CWC20]. Our work analyzes

the properties of the general recurrent model for path integration, and our method belongs to the

scheme of optimization-based approaches.

Second, our work differs from the PCA-based basis expansion models [DSM16, SMG19,

SBG17] in that, unlike PCA, we make no assumption about the orthogonality between the ba-

sis functions, and the basis functions are generated by the transformation model. Furthermore, in

previous basis expansion models [DSM16, SMG19], place fields with Mexican-hat patterns (with

balanced excitatory center and inhibitory surround) had to be assumed in order to obtain hexago-

nal grid firing patterns. However, experimentally measured place fields in biological brains were

instead well-characterized by Gaussian functions. Crucially, in our model, hexagonal grids emerge

from learning with Gaussian place fields, and there is no need to assume any additional surround

mechanisms or difference of Gaussian kernels.

In earlier work, we propose matrix representation of 2D self-motion [GXZ18a], while this

chapter analyzes general transformation, and our investigation of the special case of the linear

model reveals matrix Lie algebra and matrix Lie group structure, and connects the isotropic scaling

114

condition to hexagon grid patterns. Our work also connects the linear transformation model to the

basis expansion model.

5.8 Conclusion and discussion

This chapter analyzes the recurrent model for path integration calculations by grid cells. We iden-

tify a group representation condition and an isotropic scaling condition that give rise to the locally

conformal embedding of the self-motion. We study a linear prototype model that has a matrix

Lie algebra and matrix Lie group structure, and connect the isotropic scaling condition to hexagon

grid patterns. In addition to these theoretical investigations, our numerical experiments demon-

strate that our model can learn hexagon grid patterns for the response maps of grid cells, and the

learned model is capable of accurate path integration.

115

CHAPTER APPENDIX

5.A Theoretical analysis

5.A.1 Graphical illustrations of key equations

Fig. 5.A.1 illustrates key equations in the main text as well as in the chapter appendix.

5.A.2 Proof of Theorem 1 on conformal embedding

Proof: See Fig. 5.A.1(a) and (b) for an illustration. Consider the self-motion δx=(δ r cosθ ,δ r sinθ),

v(x+δx) = F(v(x),δ r,θ) = v(x)+ fθ (v(x))δ r+o(δ r). (5.19)

We can decompose the self-motion δx into two steps. First move along the direction 0 by δ r cosθ ,

and then move along the direction π/2 by δ r sinθ . Then under the group representation condi-

tion:

v(x+δx) = F [F(v(x),δ r cosθ ,0),δ r sinθ ,π/2)]

= F [v(x)+ f0(v(x))δ r cosθ +o(δ r),δ r sinθ ,π/2]

= [v(x)+ f0(v(x))δ r cosθ]+ fπ/2[v(x)+ f0(v(x))δ r cosθ +o(δ r)]δ r sinθ +o(δ r)

= v(x)+ f0(v(x))δ r cosθ + fπ/2(v(x))δ r sinθ +o(δ r), (5.20)

The last equation holds because assuming the derivative f ′
π/2(v(x)) exists, then by first-order

Taylor expansion,

fπ/2[v(x)+ f0(v(x))δ r cosθ +o(δ r)]δ r sinθ (5.21)

=[fπ/2(v(x))+ f ′
π/2(v(x)) f0(v(x))δ r cosθ +o(δ r)]δ r sinθ (5.22)

= fπ/2(v(x))δ r sinθ +o(δ r). (5.23)

Since v(x+δx)=v(x)+ fθ (v(x))δ r+o(δ r), by Eq. (5.20) we have fθ (v(x))= f0(v(x))cosθ +

116

(a) physical space (b) neural space

(c) linear transformation (d) as rotation

Figure 5.A.1: Color-coded illustration. (a) In the 2D physical space, the agent moves from x to x+

δx, where δx = (δ r cosθ ,δ r sinθ), i.e., the agent moves by δ r along the direction θ . We also show a

displacement of δ r in a different direction. (b) In the d-dimensional neural space, the vector v(x) is changed

to v(x+ δx) = F(v(x),δ r,θ) = v(x)+ fθ (v(x))δ r + o(δ r), where the displacement is fθ (v(x))δ r =

f0(v(x))δ r cosθ + fπ/2(v(x))δ r sinθ . Under the isotropic condition that ‖ fθ (v(x))‖ is constant over θ ,

the local 2D self-motion δx at x in the 2D physical space is embedded conformally into the neural space as

a 2D subspace around v(x). (c) Linear transformation, where fθ (v(x)) =B(θ)v(x). (d) 3D perspective

view of linear transformation as a rotation: v(x+δx) is a rotation of v(x), and the angle of rotation is µδ r,

where µ = ‖B(θ)v(x)‖/‖v(x))‖ (µ may depend on x).

fπ/2(v(x))sinθ , which is a 2D basis expansion. We are yet to prove that the two basis vectors

f0(v(x)) and fπ/2(v(x)) are orthogonal with equal norm.

For notational simplicity, let v1 = f0(v(x)) and v2 = fπ/2(v(x)). Then under the isotropic

scaling condition, ‖v1‖= ‖v2‖= ‖ fθ (v(x))‖= s, and fθ (v(x)) = v1 cosθ +v2 sinθ for any θ .

117

Then we have that for any θ ,

s2 = ‖ fθ (v(x))‖2 = ‖v1 cosθ +v2 sinθ‖2 = s2 +2〈v1,v2〉cosθ sinθ . (5.24)

Thus 〈v1,v2〉= 0, i.e., f0(v(x))⊥ fπ/2(v(x)). This leads to the conformal embedding of the local

2D polar system in the physical space as a 2D polar system in the d-dimensional neural space, with

a scaling factor s (which may depend on x). �

5.A.3 Proof of Theorem 3 on error correction

We first prove the following result about the general transformation.

Proposition 1. Assume the general transformation model (Eq. (5.19)) and the isotropic scaling

condition. For any fixed x, let s = ‖ fθ (v(x))‖, which is independent of θ . Suppose the neurons

are noisy: v = v(x)+ ε, where ε ∼N (0,τ2Id), and d is the dimensionality of v. Suppose the

agent infers its 2D position x̂ from v by x̂= argminx′ ‖v−v(x′)‖2, i.e., v(x̂) is the projection of

v onto the 2D manifold formed by (v(x′),∀x′). Then we have

E‖x̂−x‖2 = 2τ
2/s2. (5.25)

Proof: By theorem 1, for a fixed self-position x, we embed the 2D local neighborhood around

x as a local 2D plane around v(x) in the d-dimensional neural space. A local perturbation in

self-position, δx, is translated into a local perturbation in v(v+δx), so that

‖δv‖2 = ‖ fθ (v(x))δ r+o(δ r)‖2 = s2‖δx‖2, (5.26)

where δv = v(x+δx)−v(x).

Suppose the agent infers its 2D position x̂ by x̂ = argminx′ ‖v−v(x′)‖2, which amounts to

projecting v onto the local 2D plane around v(x). The projected vector v(x̂) on the local 2D

plane is v(x) + δv, where δv is the projection of ε onto the 2D plane. More specifically, let

(v1,v2) be an orthonormal basis of the local 2D plane centered at v(x). Then δv can be written

118

as e1v1 + e2v2, where

e= (e1,e2)
> = (v1,v2)

>
ε ∼N (0,τ2I2). (5.27)

Let δx= x̂−x. Due to isotropic scaling and conformal embedding, the `2 squared error trans-

late according to

‖δx‖2 = ‖δv‖2/s2 = (e2
1 + e2

2)/s2, (5.28)

whose expectation is 2τ2/s2. Thus E‖x̂−x‖2 = 2τ2/s2.�

Proof of Theorem 3: It is reasonable to assume τ2 = α2(‖v(x)‖2/d), where α2 measures the

variance of noise relative to ‖v(x)‖2/d, which is the average of (vi(x)
2, i = 1, ...,d). In other

words, α2 measures the noise level.

In the linear case, the metric is

µ = ‖ fθ (v(x))‖/‖v(x)‖= ‖B(θ)v(x))‖/‖v(x)‖= s/‖v(x)‖, (5.29)

which measures how fast v(x) rotates in the neural space as x changes. Then

E‖δx‖2 = 2α
2/(µ2d). (5.30)

The above scaling shows that error correction depends on two factors. One is the metric µ , and the

other is the dimensionality d, i.e., the number of neurons. These correspond to two phases of error

correction. One is to project the d-dimensional ε to the 2-dimensional δv. The bigger d is, the

bigger the error correction. The other is to translate ‖δv‖2 to ‖δx‖2. The bigger µ is, the bigger

the error correction. �

5.A.4 Proof of Theorem 4 on hexagon grid patterns

Proof: Let e(x) = (exp(i〈a j,x〉), j = 1,2,3)>, where (a j, j = 1,2,3) are three 2D vectors of

equal norm, and the angle between every pair of them is 2π/3. Let v(x) =Ue(x), whereU is an

119

arbitrary unitary matrix, i.e., U ∗U = I . Then ‖v(x)‖2 = ‖e(x)‖2 = 3 ∀x, and e(x) =U ∗v(x).

For self-motion δx= (δ r cosθ ,δ r sinθ) = q(θ)δ r, let

Λ(δx,θ) = diag(exp(〈a j,δx〉), j = 1,2,3)

= diag(exp(〈a j,q(θ)〉δ r), j = 1,2,3)

= I+diag(i〈a j,q(θ)〉), j = 1,2,3)δ r+o(δ r)

= I+D(θ)δ r+o(δ r). (5.31)

Then

v(x+δx) =Ue(x+δx)

=UΛ(δx,θ)e(x)

=UΛ(δx,θ)U ∗v(x)

= (I+UD(θ)U ∗v(x)δ r)v(x)+o(δ r)

= (I+B(θ)δ r)v(x)+o(δ r), (5.32)

whereB(θ) =UD(θ)U ∗, andB(θ) =−B(θ)∗. For isotropic condition,

‖B(θ)v(x)‖2 = ‖D(θ)e(x)‖2

=
3

∑
j=1
〈a j,q(θ)〉2

= const‖a j‖2‖q(θ)‖2 = const‖a j‖2, (5.33)

which is independent of θ , because (a j, j = 1,2,3) forms a tight frame in 2D.

One example of U is the following matrix:

1√
3


1 1 1

1 exp(i2π/3) exp(−i2π/3)

1 exp(−i2π/3) exp(i2π/3)

 (5.34)

The resulting (vi(x), i= 1,2,3) have the same orientation but different phases, i.e., they are spatially

shifted versions of each other. �

120

The limitation of Theorem 4 is that we only show v(x) =Ue(x) satisfies the linear model and

the isotropic scaling condition, but we did not show that linear model with the isotropic condition

only has solutions that are hexagon grid patterns.

5.A.5 From group representation to orthogonal basis functions

Group representation is a central theme in modern mathematics. In particular, it leads to a deep

understanding and generalization of Fourier analysis or harmonic analysis.

For the set of {∆x} that form a group, a matrix representationM(∆x) is equivalent to another

representation M̃(∆x) if there exists an invertible matrix P such that M̃(∆x) = PM(∆x)P−1

for each x. A matrix representation is reducible if it is equivalent to a block diagonal matrix

representation, i.e., we can find a matrix P , such that PM(∆x)P−1 is block diagonal for every

∆x. Suppose the group is a finite group or a compact Lie group, and M is a unitary represen-

tation, i.e., M(∆x) is a unitary matrix. If M is block-diagonal, M = diag(Mk,k = 1, ...,K),

with non-equivalent blocks, and each block Mk cannot be further reduced, then the matrix ele-

ments (Mki j(∆x)) are orthogonal basis functions of ∆x. Such orthogonality relations are proved

by Schur [Zee16] for finite group, and by Peter-Weyl for compact Lie group [Tay02]. For our case,

theoretically the group of displacements ∆x in the 2D domain is R2, but we learn our model within

a finite range, and we further discretize the range into a lattice. Thus the above orthogonal relations

hold.

In our model, we also assume block diagonal M , and we call each block a module. However,

we do not assume each module is irreducible, i.e., each module itself may be further diagonalized

into a block diagonal matrix of irreducible sub-blocks. Thus the elements within the same module

vk(x) may be linear mixings of orthogonal basis functions of the irreducible sub-blocks, and the

linear mixings themselves are not necessarily orthogonal.

Fig. 5.A.2 visualizes the correlation between pairs of the learned vi(x) and v j(x), i, j = 1, ...,d.

For different i and j, the correlations between different vi(x) and v j(x) are close to zero; i.e., they

121

Figure 5.A.2: Correlation heatmap for each pair of the learned vi(x) and v j(x). The correlations are

computed over 40×40 lattice of x.

are nearly orthogonal to each other. The average absolute value of correlation is 0.09, and the

within-block average value is about the same as the between-block average value.

Unlike previous work on learning basis expansion model (or PCA-based model [DSM16]), we

do not constrain the basis functions v(x) = (vi(x), i = 1, ...,d) to be orthogonal to each other.

Instead, we constrain them by our path integration model via the loss term L1. Nonetheless, the

learned vi(x) are close to being orthogonal in our experiments.

5.A.6 Decoding and re-encoding

In the above analysis, the projection of v onto the local 2D plane around v(x) is x̂= argminx′ ‖v−

v(x′)‖2, which, for the linear model, amounts to decoding v to x̂ via

x̂= argmax
x′
〈v,v(x′)〉, (5.35)

because ‖v(x′)‖2 is constant. We project v to v(x̂), which is an re-encoding of v.

We can also perform decoding via the learned u(x′):

x̂= argmax
x′
〈v,u(x′)〉, (5.36)

122

and re-encoding v← v(x̂). For the above decoding, the heat map

h(x′) = 〈v,u(x′)〉= 〈v(x),u(x′)〉+ 〈ε,u(x′)〉= A(x,x′)+e(x′), (5.37)

where e(x′)= 〈ε,u(x′)〉∼N (0,α2‖v(x)‖2‖u(x′)‖2/d). For A(x,x′)= exp(−‖x−x′‖2/(2σ2))=

〈v(x),u(x′)〉, if σ2 is small, A(x,x′) decreases to 0 quickly, i.e., if ‖x′−x‖> c, then A(x,x′)<

exp(−c2/(2σ2)), and the chance for the maximum of h(x′) to be achieved at an x′ so that

‖x′−x‖ > c can be very small. The above analysis also provides a justification for regulariz-

ing ‖u(x′)‖2 in learning.

For error correction, we want to use small σ2. However, for path planning, we need large σ2

so that we can assess the adjacency as well as the change of the adjacency between the position on

the path and the target position even if they are far apart.

Figure 5.A.3: Path integration error over number of time steps. The mean and standard deviation band is

computed over 1,000 episodes. “v” means decoding by Eq. (5.35), and “u” means decoding by Eq. (5.36).

The squared domain is 1m × 1m.

In the experiments in the main text, we use Eq. (5.36) for decoding. In Fig. 5.A.3, we also

show the results of path integration using Eq. (5.35) for decoding, whose performance is even

better than Eq. (5.36). Especially the error would remain 0 over 300 time steps and 1,000 episodes

using Eq. (5.35) with re-encoding. The advantage of (5.35) is that error correction is achieved

within the grid cells system itself without interacting with the place cells.

123

5.B Experiments

5.B.1 Implementation details

Monte Carlo samples. The expectations in loss terms are approximated by Monte Carlo sam-

ples. Here we detail the generation of Monte Carlo samples. For (x,x′) used in L0 =Ex,x′ [A(x,x′)−

〈v(x),u(x′)〉]2, x is first sampled uniformly within the entire domain, and then the displacement

dx between x and x′ is sampled from a normal distribution N (0,σ2I2), where σ = 0.48. This

is to ensure that nearby samples are given more emphasis. We let x′ = x+ dx, and those pairs

(x,x′) within the range of domain (i.e., 1m × 1m, 40× 40 lattice) are kept as valid data. For

(x,∆x) used in L1 = Ex,∆x|v(x+∆x)− exp(B(θ)∆r)v(x)|2, ∆x is sampled uniformly within a

circular domain with radius equal to 3 grids and (0,0) as the center. Specifically, ∆r2, the squared

length of ∆x, is sampled uniformly from [0,3] grids, and θ is sampled uniformly from [0,2π]. We

take the square root of the sampled ∆r2 as ∆r and let ∆x= (∆r cosθ ,∆r sinθ). Then x is uniformly

sampled from the region such that both x and x+∆x are within the range of domain. For (θ ,∆θ)

used in L2 = ∑
K
k=1 Ex,θ ,∆θ [‖Bk(θ +∆θ)vk(x)‖−‖Bk(θ)vk(x)‖]2, we uniformly sample θ and

θ +∆θ from discretized angles, i.e., 144 directions discretized for circle [0,2π]. We will study

sampling only small ∆θ in the future.

Training details. The model is trained for 14,000 iterations. At each iteration, the samples are

generated online. For the first 8,000 iterations, we update all learnable parameters, while for the

following iterations, we fix the learned v(x) and update the other learnable parameters. The initial

learning rate is set as 0.003 and is decreased by a factor of 0.5 every 500 iterations after 8,000

iterations. We use Adam [KB14] optimizer. The model is trained on a single Titan XP GPU. We

apply the maximum batch size that can fit into the single GPU, which is 90,000. It takes about 3.5

hours to train the model on a single Titan XP GPU.

124

5.B.2 Learned patterns

Fig. 5.B.1 displays the autocorrelograms of learned patterns of v(x).

Figure 5.B.1: Autocorrelograms of the learned patterns of v(x).

Fig. 5.B.2 shows the learned patterns of u(x) with 16 blocks of 12 cells in each block. Regular

hexagon patterns also emerge.

Figure 5.B.2: Learned patterns of u(x) with 16 blocks of size 12 cells in each block. Every row shows the

learned patterns within the same block.

Because A(x,x′) is a sharp Gaussian kernel, it contains a whole range of frequencies in the 2D

Fourier domain. The learned response maps of the grid cells span a range of frequencies or scales

too. Each module or block focuses on a certain frequency band, or a ring in the 2D Fourier domain,

125

which corresponds to the metric of the module. The isotropic condition serves to constrain each

module to be within a ring of 2D frequencies. Different modules collectively pave the whole range

of frequencies.

It is worth noting that, consistent with the experiential observations, we assume individual

place field A(x,x′) to exhibit a Gaussian shape, rather than a Mexican-hat pattern (with bal-

anced excitatory center and inhibitory surround) as assumed in previous basis expansion models

[DSM16, SMG19] of grid cells. The Mexican-hat difference of Gaussians pattern occupies a ring

in the 2D Fourier domain. It corresponds to a module in our model. But we use isotropic condition

to enforce each module to be within a ring, and we use different modules to pave the whole Fourier

domain.

For learned firing patterns of v(x), we also display the histogram of grid orientations in Fig.

5.B.3, where we do not observe clear clusters.

Figure 5.B.3: Histogram of grid orientations of the learned firing patterns of v(x).

In Fig. 5.B.4, we show the learned patterns of a block ofB(θ). Each element shows significant

sine/cosine tuning over θ . For the other blocks, the patterns are all similar.

5.B.3 Error correction

We begin by aessing the ability of error correction of the learned system following the setting in

Theorem 3. Specifically, for a given location x, suppose the neurons are perturbed by Gaussian

noise: v = v(x)+ ε, where ε ∼N (0,τ2Id) and τ2 = α2(‖v(x)‖2/d), so that α2 measures the

126

Figure 5.B.4: Learned patterns of a block ofB(θ). Each subfigure shows the value of an element inB(θ)

(vertical axis) over θ (horizontal axis).

variance of noise relative to the average magnitude of (vi(x)
2, i = 1, ...,d) and α measures the

relative standard deviation. We infer the 2D position x̂ from v by x̂ = argminx′ ‖v− v(x′)‖2.

Fig. 5.B.5 displays the inference error over the relative standard deviation α of the added Gaussian

noise. We also show the results using the learned u(x′) for inference (Eq. (5.36)). The system

works remarkably well even if α = 2.

We further assess the ability of error correction in long-distance path integration. Specifically,

along the way of path integration, at every time step t, two types of errors are introduced to vt : (1)

Gaussian noise or (2) dropout masks, i.e., a certain percentage of units are randomly set to zero.

Fig. 5.B.6 summarizes the path integration performance with different levels of injected errors

127

Figure 5.B.5: Error correction results following the setting in Theorem 3. The error bar stands for the

standard deviation over 1,000 trials. “v” means decoding by Eq. (5.35), and “u” means decoding by Eq.

(5.36). The squared domain is 1m × 1m.

for T = 100, using v(x′) (Eq. (5.35)) or u(x′) (Eq. (5.36)) for decoding. The results show that

re-encoding at each step helps error correction, especially for dropout masks. For Gaussian noise,

even without decoding and re-encoding at each step, decoding at the final step alone is capable of

removing much of the noise. Notably, with re-encoding, the path integration works well even if

Gaussian noise with α = 1 is added or 50% units are randomly dropped out at each step, indicating

that the learned system is robust to different sources of errors.

5.B.4 Ablation studies

Isotropic scaling condition is necessary for hexagon grid patterns. A natural question is

whether the isotropic scaling condition (condition 2) is important to learn hexagon grid patterns.

To verify this, we learn the model by removing the loss term L2 (equation 14 in the main text)

from the loss function, which constrains the model to meet condition 2. As shown in Fig. 5.B.7,

more strip-like patterns emerge without L2, indicating that condition 2 is important for isotropic

grid-like patterns to emerge.

128

Figure 5.B.6: Path integration results with different levels of injected errors. Left: Gaussian noise. The

magnitude of noise is measured using the average of the squared magnitudes of the units in v(x) as the

reference. Right: dropout masks. Certain percentage of units are randomly set to zero at each step. “v”

means decoding by Eq. (5.35), and “u” means decoding by Eq. (5.36). The squared domain is 1m × 1m.

Assumption of u(x′) ≥ 0 is not necessary for hexagon grid patterns. During training, we

make an assumption of u(x′) ≥ 0 to make sure the connections from grid cells to place cells

are excitatory [ZYM13, ROS18]. However, we want to emphasize this is not a key assumption

leading to hexagon patterns in our model. Fig. 5.B.8 demonstrates the learned neurons in the

network without assuming u(x′) ≥ 0, where hexagonal grid firing patterns also emerge. The

average gridness score is 0.82 and the percentage of grid cells is 87.50%. However, the grid

activations could be either positive/excitatory (in red color) or negative/inhibitory (in blue color).

Skew-symmetric assumption ofB(θ) is not important for hexagon grid patterns. To derive

the clear geometric structure of the linear transformation model, we have assumed that B(θ) is

skew-symmetric, i.e., B(θ) = −B(θ)>. Nonetheless, this assumption is not important for the

emergence of hexagon grid patterns. Fig. 5.B.9 demonstrates the learned neurons without assum-

ing that B(θ) is skew-symmetric. Hexagon grid firing patterns emerge in most of the neurons,

with only one block of square grid firing patterns.

129

Figure 5.B.7: Learned neurons without loss term L2, which is the constraint on isotropic scaling condition.

More strip-like firing patterns emerge.

Number and sizes of blocks do not matter. It is worthwhile to mention that the emergence of

hexagonal grid firing patterns in the learned neurons are not due to the specific design of the block

size or the number of blocks. Fig. 5.B.10 visualizes the learned neurons by fixing the total amount

of neurons at 192 and altering the block size and number of blocks. Hexagon patterns emerge in

all the settings.

Multiple blocks or modules are necessary for learning grid patterns of multiple scales. We

further try to fully remove the assumption of blocks or modules; i.e., we learn a single block of

B(θ). Fig. 5.B.11 shows the learned neurons and the corresponding autocorrelograms. All the

learned neurons share similar large scales, which indicates that the high-frequency part of A(x,x′)

may not be fitted very well.

130

Figure 5.B.8: Learned neurons without the assumption of u(x′) ≥ 0. Hexagonal grid firing patterns also

emerge, with the grid activations being either positive/excitatory (in red color) or negative/inhibitory (in blue

color).

Figure 5.B.9: Learned neurons without skew-symmetric assumption of B(θ). Hexagonal grid firing pat-

terns emerge in most of the neurons, with a block of square grid firing patterns.

131

(a) Block size = 16

(b) Block size = 24

(c) Block size = 32

(d) Block size = 64

Figure 5.B.10: Learned patterns of v(x) with different block sizes. The total number of units is fixed at

192. Every row shows the learned patterns within the same block.
132

Figure 5.B.11: Left: learned neurons with a single block of B(θ). The firing patterns has a single large

scale, meaning that the high frequency part of A(x,x′) is not fitted very well. Right: autocorrelograms of

the learned neurons. Some exhibit clear hexagon grid patterns, while the other do not, probably because the

scale of those grid patterns are beyond the scope of the whole area.

133

CHAPTER 6

A representational model of V1 simple cells

6.1 Introduction

Our understanding of the primary visual cortex or V1 [HW59] is still very limited [OF05]. In par-

ticular, mathematical and representational models for V1 are still in short supply. Two prominent

examples of such models are sparse coding [OF97] and independent component analysis (ICA)

[BS97]. Although such models do not provide detailed explanations of V1 at the level of neuronal

dynamics, they help us understand the computational problems being solved by V1.

Figure 6.1.1: Scheme of representation

Inspired by the representational model of grid cells in the last chapter, we propose a represen-

tational model towards understanding V1, which is to model image pairs that are related by local

pixel displacements1. The image pair can be consecutive frames of a video sequence, where the

1The main contributions in this chapter were first described in [GXZ18b].

134

local pixel displacements are caused by the relative motions between the agent and the objects in

the 3D environment. Perceiving such local motions can be crucial for inferring ego-motion, object

motions, and 3D depth information.

As is the case with existing models, we expect our model to explain only limited aspects of V1,

some of which are: (1) The receptive fields of V1 simple cells resemble Gabor filters [Dau85]. (2)

Adjacent simple cells have quadrature phase relationship [PR81]. (3) The V1 cells are capable of

perceiving local motions. While existing models can all explain (1), our model can also account

for (2) and (3) naturally. Compared to models such as sparse coding and ICA, our model serves a

more direct purpose of perceiving local motions.

Our model consists of the following two components.

(1) Vector representation of local image content. The local content around each pixel is repre-

sented by a high-dimensional vector. Each unit in the vector is obtained by a linear filter. These

local filters or wavelets are assumed to form a normalized tight frame, i.e., the image can be recon-

structed from the vectors using the linear filters as the basis functions.

(2) Matrix representation of local displacement. The change of the image from the current

time frame to the next time frame is caused by the displacements of the pixels. Each possible

displacement is represented by a matrix that acts on the vector. When the image changes according

to the displacements, the vector at each pixel is multiplied by the matrix that represents the local

displacement, in other words, the vector at each pixel is rotated by the matrix representation of the

displacement of this pixel.

See Figure 6.1.1 for an illustration, where the image is illustrated by the big rectangle. A pixel

is illustrated by a dot. The local image content is illustrated by a small square around it. The

displacement of the pixel is illustrated by a short arrow, which is within the small square. The

vector representation of the local image content is represented by a long vector, which rotates as

the image undergoes deformation due to the pixel displacements. Section 6.2 explains the notation.

One motivation of our work comes from Fourier analysis. An image patch I can be expressed

135

by the Fourier decomposition I = ∑k ckei〈ωk,x〉. Assuming the image patch undergoes a smooth

motion so that all the pixels are shifted by a constant displacement dx, the shifted image patch

J(x) = I(x−dx) = ∑k cke−i〈ωk,dx〉ei〈ωk,x〉. The change from the complex number ck to cke−i〈ωk,dx〉

corresponds to rotating a 2D vector by a 2× 2 matrix. We emphasize that our model does not

assume Fourier basis or its localized version such as Gabor filters. The model figures it out with

generic vector and matrix representations.

We train this representational model on image pairs where in each pair, the second image is a

deformed version of the first image, and the deformation is either known or inferred. We learn the

encoding matrices for vector representation and the matrices that represent the pixel displacements

from the training data.

Our experiments show that our method learns V1-like units that can be well approximated by

Gabor filters with quadrature phase relationships. The profile of learned units matches one of the

simple cells in Macaque V1 very well. After learning the encoding matrices for vector representa-

tion and the matrix representations of the displacements, we can infer the displacement field using

the learned model. Compared to current optical flow estimation methods [DFI15, IMS17], which

use complex deep neural networks to predict the optical flow, our model is much simpler and is

based on explicit vector and matrix representations. We also demonstrate comparable results to

these methods, in terms of the inference of the displacement field.

In terms of biological interpretation, the vectors can be interpreted as activities of groups of

neurons, and the matrices can be interpreted as synaptic connections. See subsections 6.3.4 and

6.3.5 for details.

136

6.2 Representational model

6.2.1 Vector representation

Let {I(x),x ∈ D} be an image observed at a certain instant, where x = (x1,x2) ∈ D is the 2D

coordinates of pixel. D is the image domain (e.g., 128×128). We represent the image I by vectors

{v(x),x ∈ D−}, where each v(x) is a vector defined at pixel x, and D− may consist of a sub-

sampled set of pixels in D (e.g., sub-sampled every 8 pixels). V = {v(x),x ∈D−} forms a vector

representation of the whole image.

We assume the vector encoding is linear and convolutional. Specifically, let I[x] be a squared

patch (e.g., 16× 16) of I centered at x. We can make I[x] into a vector (e.g., 256 dimensional).

Let

v(x) =W I[x], x ∈ D−, (6.1)

be the linear encoder, whereW is the encoding matrix that encodes I[x] into a vector v(x), andW

is the same for all x, i.e., convolutional. The rows ofW are the linear filters and can be displayed

as local image patches of the same size as the image patch I[x]. We can write V =W I, if we treat

I as a vector, and the rows ofW are the shifted or translated versions ofW .

Tight frame and isometry. We assume that W is an auto-encoding normalized tight frame.

Specifically, let W (x) denote the translation of filter W to pixel x and zero-padding the pixels

outside the filters. Each column ofW (x) is of the same dimension as I, then

I =W>V = ∑
x

W>(x)v(x), (6.2)

Thus, the linear filters for bottom-up encoding also serve as basis functions for top-down decoding.

Both the encoder and decoder can be implemented by convolutional linear neural networks.

The normalized tight frame assumption can be justified by the fact that for two images I and

J, we have 〈W I,W J〉= I>W>W J = 〈I,J〉, that is, the vector representation preserves the inner

137

product. As a result, ‖W I‖= ‖I‖, ‖W J‖= ‖J‖, thus the vector representation also preserves the

angle and has the isometry property.

When the image I changes from It to It+1, its vector representation V changes from Vt to Vt+1,

and the angle between It and It+1 is the same as the angle between Vt and Vt+1.

Sub-vectors. The vector v(x) can be high-dimensional. We further divide v(x) into K sub-

vectors, v(x) = (v(k)(x),k = 1, ...,K). Each sub-vector is obtained by an encoding sub-matrix

W (k), i.e., v(k)(x) =W (k)I[x], k = 1, ...,K, where W (k) consists of the rows of W that corre-

spond to v(k). According to the normalized tight frame assumption, we have

I = ∑
x∈D−

K

∑
k=1
W (k)>v(k)(x). (6.3)

In practice, we find that this assumption is necessary for the emergence of the V1-like receptive

field.

6.2.2 Matrix representation

Let It be the image at time frame t. Suppose the pixels of It undergo local displacements, where

the displacement at pixel x is δ (x). We assume that δ (x) is within a squared range ∆ (e.g.,

[−6,6]× [−6,6] pixels) that is inside the range of It [x] (e.g., 16×16 pixels). We assume the dis-

placement field (δ (x),∀x) is locally smooth, i.e., pixels within each local path undergoes similar

displacements. Let It+1 be the resulting image. Let vt(x) be the vector representation of It [x],

and let vt+1(x) be the vector representation of It+1[x]. Then vt(x) = (v
(k)
t (x),k = 1, ...,K), and

vt+1(x) = (v
(k)
t+1(x),k = 1, ...,K).

138

The transition from It to It+1 is illustrated by the following diagram:

v
(k)
t (x)

M (k)(δ (x))×
−−−−→ v

(k)
t+1(x)

W (k) ↑ ↑ ↑W (k)

It
δ (x)

−−−−→ It+1

(6.4)

Specifically, we assume that

v
(k)
t+1(x) =M

(k)(δ (x))v
(k)
t (x), ∀x ∈ D−,k = 1, ...,K. (6.5)

That is, when I changes from It to It+1, v(k)(x) undergoes a linear transformation, driven by

a matrix M (k)(δ (x)), which depends on the local displacement δ (x). In terms of the whole

vector v(x) = (v(k)(x),k = 1, ...,K), we have vt+1(x) =M(δ (x))vt(x), where M(δ (x)) =

diag(M (k)(δ (x)),k = 1, ...,K) is the matrix representation of the local displacement δ (x).

Disentangled rotations. The linear transformations of the sub-vectors v(k)(x) can be considered

as rotations. Here we use the word “rotation” in the loose sense without strictly enforcingM (k)(δ)

to be orthogonal. v(x) is like a multi-arm clock, with each arm v(k)(x) rotated by M (k)(δ (x)).

The rotations of v(k)(x) for different k and x are disentangled. Here disentanglement means that

the rotation of a sub-vector does not depend on other sub-vectors. This enables the agent to sense

the displacement of a pixel only by sensing the rotations of the sub-vectors at this pixel without

having to establish the correspondences between the pixels of consecutive frames.

Parametrization. We can discretize the displacement δ (x) into a finite set of possible val-

ues {δ}, and we learn a separate M (k)(δ) for each δ . We can also learn a parametric version

of M (k)(δ) as the second order Taylor expansion of a matrix-valued function of δ = (δ1,δ2),

M (k)(δ) = I +B
(k)
1 δ1 +B

(k)
2 δ2 +B

(k)
11 δ 2

1 +B
(k)
22 δ 2

2 +B
(k)
12 δ1δ2, where I is the identity matrix,

and B(k) = (B
(k)
1 ,B

(k)
2 ,B

(k)
11 ,B

(k)
22 ,B

(k)
12) are matrices of coefficients of the same dimensionality

asM (k)(δ).

139

Local mixing. If δ (x) is large, v(k)t+1(x) may contain information from adjacent image patches of

It in addition to It [x]. We can generalize the motion model in Equation (6.5) to allow local mixing

of encoded vectors. Let S be a local support centered at 0. We assume that

v
(k)
t+1(x) = ∑

dx∈S
M(k)(δ (x),dx)v(k)t (x+dx) (6.6)

In the learning algorithm, we discretize dx and learn a separate M(k)(δ ,dx) for each dx.

6.3 Learning and Inference

The input data consist of the triplets (It ,(δ (x),x∈D−),It+1), where (δ (x)) is the given displace-

ment field. The learned model consists of matrices (W (k),M (k)(δ),k = 1, ...,K,δ ∈ ∆), where ∆

is the range of δ . In the case of parametric M (k), we learn the B matrices in the second order

Taylor expansion in subsection 6.2.2.

6.3.1 Loss functions for learning

We use the following loss functions:

(1) Rotation loss

L1,x,k =
∥∥∥W (k)It+1[x]−M (k)(δ (x))W (k)It [x]

∥∥∥2
. (6.7)

For local mixing generalization,

L1,x,k =
∥∥∥W (k)It+1[x]−∑dx∈S M

(k)(δ (x),dx)W (k)It(x+dx)
∥∥∥2

. (6.8)

(2) Reconstruction loss

L2 =
∥∥∥It−∑x∈D−

W>W It [x]
∥∥∥2

+
∥∥∥It+1−∑x∈D−

W>W It+1[x]
∥∥∥2

. (6.9)

In practice, we learn the model by a weighted sum of the expectations of ∑
K
k=1 ∑x∈D− L1,x,k

and L2, where the expectations are taken over the training pairs of images and the corresponding

displacement fields.

140

6.3.2 Inference of motion

After learning (W (k),M(k)(δ),∀k,∀δ), for a testing pair (It ,It+1), we can infer the pixel displace-

ment field (δ (x),x ∈ D−) by minimizing the rotation loss: δ (x) = argmaxδ∈∆ L1,x(δ), where

L1,x(δ) = ∑
K
k=1

∥∥∥W (k)It+1[x]−M (k)(δ)W (k)It [x]
∥∥∥2

= ‖W It+1[x]−M(δ)W It [x]‖2. (6.10)

This algorithm is efficient because it can be parallelized for all x ∈ D− and for all δ ∈ ∆.

If we learn a parametric model for (M (k)(δ)), we can infer the displacement field (δ (x),∀x)

by minimizing ∑xL1,x(δ (x)) using gradient descent with an initialization of (δ (x)) from random

small values. To encourage the smoothness of the displacement field, we add the penalty term

‖Oδ (x)‖2.

6.3.3 Unsupervised learning

We can easily adapt the learning of the model to an unsupervised manner, without knowing the

pixel displacement field (δ (x),x ∈ D−). Specifically, we can iterate the following two steps: (1)

update model parameters by loss functions defined in section 6.3.1; (2) infer the displacement field

as described in 6.3.2. To eliminate the ambiguity of the representation of (M (k)(δ)) with respect

to δ , we use a parametric model for (M (k)(δ)), and add a regularization term ‖It+1−ω(It ,δ)‖2

in the inference step, where ω(·, ·) is a differentiable warping function. To summarize, we infer

the displacement field (δ (x),x ∈ D−) by minimizing:

∑x
L1,x(δ)+‖Oδ‖2 +‖It+1−ω(It ,δ)‖2 . (6.11)

In practice, for each image pair at each iteration, we start the inference by running gradient descent

on the inferred displacement field from the last iteration.

6.3.4 Biological interpretations of cells and synaptic connections

The learned (W (k),M (k)(δ)),∀k,δ) can be interpreted as synaptic connections. For each k,W (k)

corresponds to one set of connection weights. Suppose δ ∈ ∆ is discretized, then for each δ ,

141

M(k)(δ) corresponds to one set of connection weights, and (M (k)(δ),δ ∈ ∆) corresponds to mul-

tiple sets of connection weights. After computing v(k)t,x =W (k)It [x], M (k)(δ)v
(k)
t,x is computed

simultaneously for every δ ∈ ∆. Then δ (x) is inferred by max pooling according to Equation

(6.10).

v
(k)
t,x can be interpreted as activities of simple cells, and ‖v(k)t,x‖2 can be interpreted as activity

of a complex cell. If M (k)(δ) is close to a rotation matrix, then we have norm stability so that

‖v(k)t,x‖ ≈ ‖v
(k)
t+1,x‖, which is related to the slowness property [HHV03, WS02].

6.3.5 Spatiotemporal filters and recurrent implementation

If we enforce norm stability or the orthogonality ofM (k)(δ), then minimizing ‖vt+1,x−M(δ)vt,x‖2

over δ ∈ ∆ is equivalent to maximizing 〈vt+1,x,M(δ)vt,x〉, which in turn is equivalent to maxi-

mizing ‖vt+1,x+M(δ)vt,x‖2 so that vt+1,x and M(δ)vt,x are aligned. This alignment criterion

can be conveniently generalized to multiple consecutive frames, so that we can estimate the veloc-

ity at x by maximizing the m-step alignment score ‖u‖2, where

u=
m

∑
i=0
M(δ)m−ivt+i,x =

m

∑
i=0
M(δ)m−iW It+i[x] (6.12)

consists of responses of spatiotemporal filters, and ‖u‖2 corresponds to the energy of motion δ in

the motion energy model [AB85] for direction selective cells. Thus our model is connected with

the motion energy model. Moreover, our model enables a recurrent network for computing u by

ui =vt+i,x+M(δ)ui−1 for i= 0, ...,m, withu−1 = 0, andu=um. This recurrent implementation

is much more efficient and biologically plausible than the plain implementation of spatiotemporal

filtering which requires memorizing all the It+i for i = 0, ...,m. See [PS17] for a discussion of

biological plausibility of recurrent implementation of spatiotemporal filtering in general.

142

6.4 Experiments

We learn our model (W (k),M (k)(δ),k = 1, ...,K) from image pairs (It ,It+1) with its displacement

field (δ (x)). The number of sub-vectors K = 40, and the number of units in each sub-vector

v(k)(x) is 2. We use Adam [KB14] with learning rate lr = 0.0008 for updating the models. We

conduct experiments on two synthetic datasets and two public datasets to demonstrate the efficacy

of the proposed model. We also analyze the effects of the sub-vector dimensionality and sub-

sampling rate in the ablation study.

Synthetic and public datasets

For the proposed model, we want to learn from local motions within local contents. However, exist-

ing datasets such as Flying Chairs [DFI15], FlyingThings3D [MIH16], and KITTI flow [GLU12]

contain image pairs with large motions, which are unlikely consecutive frames of motion percep-

tion. To this end, we generate two synthetic datasets:

V1Deform. For this dataset, we consider random smooth deformations for natural images.

Specifically, We obtain the training data by collecting static images for (It) and simulate the dis-

placement field (δ (x)). The simulated displacement field is then used to transform It to obtain

It+1. We retrieve natural images as It from MIT places365 dataset [ZKL16]. The images are

scaled to 128 × 128. We sub-sample the pixels of images into a m×m grid (m = 4 in the experi-

ments), and randomly generate displacements on the grid points, which serve as the control points

for deformation. Then δ (x) for x∈D can be obtained by spline interpolation of the displacements

on the control points. We get It+1 by warping It using δ (x) [JSZ15]. When generating a displace-

ment δ = (δ1,δ2), both δ1 and δ2 are randomly sampled from a range of [−6,+6]. We synthesize

20,000 pairs for training and 3,000 pairs for testing.

V1FlyingObjects. For this dataset, we consider separating the displacement field into mo-

tions of the background and foreground, to jointly simulate the self-motion of the agent and the

motion of the objects in the natural 3D scenes. To this end, we apply affine transformations to

143

background images collected from MIT places365 [ZKL16] and foreground objects from a public

2D object dataset COIL-100 [NNM96]. The background images are scaled to 128×128, and the

foreground images are randomly rescaled. To generate motion, we randomly sample affine pa-

rameters of translation, rotation, and scaling for both the foreground and background images. The

motions of the foreground objects are relative to the background images, which can be explained

as the relative motion between the moving object and agent. We tune the distribution of the affine

parameters to keep the range of the displacement fields within [−6,+6], which is consistent with

the V1Deform dataset. Together with the mask of the foreground object and the sampled transfor-

mation parameters, we render the image pair (It ,It+1) and its displacement field (δ (x)) for each

pair of the background image and foreground image.

For the foreground objects, we obtain the estimated masks from [tev06], resulting in 96 objects

with 72 views per object available. We generate 14,411 synthetic image pairs with their corre-

sponding displacement fields and further split 12,411 pairs for training and 2,000 pairs for testing.

Compared with previous optical flow datasets like Flying Chairs [DFI15] and scene flow datasets

like FlyingThings3D [MIH16], the proposed V1FlyingObjects dataset has various foreground ob-

jects with more realistic texture and smoother displacement fields, which simulates more realistic

environments.

We shall release the two synthetic datasets, which are suitable for studying local motions and

perceptions. Besides, we also use two public datasets:

MPI-Sintel. MPI-Sintel [BWS12, WBS12] is a public dataset designed for the evaluation

of optical flow derived from rendered artificial scenes, with special attention to realistic image

properties. Since MPI-Sintel is relatively small, which contains around a thousand image pairs,

we use it only for testing the learned models in the inference of the displacement field. We use the

final version of MPI-Sintel and resize each frame into a size of 128× 128. We select frame pairs

whose motions are within the range of [−6,+6], resulting in 384 frame pairs in total.

MUG Facial Expression. MUG Facial Expression dataset [APD10] records natural facial

expression videos of 86 subjects sitting in front of one camera. This dataset has no ground truth

144

of the displacement field, which we use for unsupervised learning. 200 videos with 30 frames are

randomly selected for training, and another 100 videos are sampled for testing.

Learned Gabor-like units with quadrature phase relationship

In this section, we show and analyze the learned units. The size of the filter is 16× 16, with a

sub-sampling rate of 8 pixels. Figure 6.4.1(a) displays the learned units, i.e., rows of W (k), on

V1Deform. The units are learned with non-parametric M(δ), i.e., we learn a separate M(δ) for

each displacement. δ (x) is discretized with an interval of 0.5. Similar patterns can be obtained by

using a parametric version of M(δ). V1-like patterns emerge from the learned units. Moreover,

within each sub-vector, the orientations and frequencies of learned units are similar, while the

phases are different.

To further analyze the spatial profile of the learned units, we fit every unit by a two di-

mensional Gabor function [JP87]: h(x′,y′) = Aexp(−(x′/
√

2σx′)
2− (y′/

√
2σy′))cos(2π f x′+φ),

where (x′,y′) is obtained by translating and rotating the original coordinate system (x0,y0): x′ =

(x− x0)cosθ +(y− y0)sinθ ,y′ = −(x− x0)sinθ +(y− y0)cosθ . The fitted Gabor patterns are

shown in Figure 6.4.1(b), with the average fitting r2 equal to 0.96 (std = 0.04). The average

spatial-frequency bandwidth is 1.13 octaves, with range of 0.12 to 4.67. Figure 6.4.1(c) shows the

distribution of the spatial-frequency bandwidth, where the majority falls within range of 0.5 to 2.5.

The characteristics are reasonably similar to those of simple-cell receptive fields in the cat [ITS00]

(weighted mean 1.32 octaves, range of 0.5 to 2.5) and the macaque monkey [FGN85] (median

1.4 octaves, range of 0.4 to 2.6). To analyze the distribution of the spatial phase φ , we follow the

method in [Rin02] to transform the parameter φ into an effective range of 0 to π/2, and plot the

histogram of the transformed φ in Figure 6.4.1(c). The strong bimodal with phases clustering near

0 and π/2 is consistent with those of the macaque monkey [Rin02].

In the above experiment, we fix the size of the convolutional filters (16× 16 pixels). A more

reasonable model is to have different sizes of convolutional filters, with small size filters capturing

145

(a) Learned units (b) Fitted Gabors (c) Frequency and phase

Figure 6.4.1: Learned results on V1Deform. (a) Learned units. Each block shows two learned units within

the same sub-vector. (b) Fitted Gabor patterns. (c) Distributions of spatial-frequency bandwidth (in octaves)

and spatial phase φ .

high-frequency content and large size filters capturing low-frequency content. For fixed-size filters,

they should only account for the image content within a frequency band. To this end, we smooth

every image by two Gaussian smoothing kernels (kernel size 8, σ = 1,4), and take the difference

between the two smoothed images as the input image of the model. The effect of the two smoothing

kernels is similar to a bandpass filter so that the input images are constrained within a certain

range of frequencies. The learned filters on V1Deform are shown in Figure 6.4.2(a). Again for

every unit, we fit it by a two dimensional Gabor function, resulting in an average fitting r2 = 0.83

(std = 0.12). Following the analysis of [Rin02, RS07], a scatter plot of nx = σx f versus ny = σy f is

constructed in Figure 6.4.2(b) based on the fitted parameters, where nx and ny represent the width

and length of the Gabor envelopes measured in periods of the cosine waves. Compared to Sparsenet

[OF96, OF97], the units learned by our model have more similar structure to the receptive fields

of simples cells of Macaque monkey.

We also compare the learned units within each sub-vector in Figure 6.4.2(c). Within each sub-

vector, the frequency f and orientation θ of the paired units tend to be the same. More importantly,

146

most of the paired units differ in phase φ by approximately π/2, consistent with the quadratic phase

relationship between adjacent simple cells [PR81, EH97].

(a) Learned units

(b) Gabor envelope shapes of the learned units

(c) Profile of paired units within each sub-vector

Figure 6.4.2: Learned results on band-pass image pairs from V1Deform. (a) Learned units. Each block

shows two learned units within the same sub-vector. (b) Distribution of the Gabor envelope shapes in the

width and length 2D-plane. (c) Difference of frequency f , orientation θ and phase φ of paired units within

each sub-vector.

Inference of displacement field

We test the learned representations in terms of inferring the displacement field (δ (x)) between

pairs of frames (It ,It+1). To get valid image patches for inference, we leave out those displace-

ments at image border (8 pixels at each side).

We use non-parametric M(δ) and the local mixing motion model (Equation (6.6)), where

the local support S is in a range of [−4,+4], and dx is taken with a sub-sampling rate of 2.

After obtaining the inferred displacement field (δ (x)) by the learned model, we also train a

CNN model with ResNet blocks [HZR16b] to refine the inferred displacement field. In train-

ing this CNN, the input is the inferred displacement field, and the output is the ground truth

147

displacement field, with least-squares regression loss. This refinement CNN is to approximate

the processing in visual areas V2-V6 that integrates and refines the motion perception in V1

[GIM02, LK02, MD85, BB05, AK75]. We learn the models from the training sets of V1Deform

and V1FlyingObjects datasets respectively, and test on the corresponding test sets. We also test the

model learned from V1FlyingObjects on MPI-Sintel.

Table 6.4.1 summarizes the average endpoint error (AEE) of the inferred results. We compare

with several baseline methods, including FlowNet 2.0 and its variants [DFI15, IMS17], for which

we test both the trained models (’trained’) on our datasets and the released models pre-trained on

large scale datasets (’pre-trained’). Note that for MPI-Sintel, a pre-trained baseline model gives

better performance compared to the one trained on V1FlyingObjects, probably because these meth-

ods train deep and complicated neural networks with a large amount of parameters to predict opti-

cal flows in supervised manners, which may require large scale data to fit and transfer to different

domains. On the other hand, our model can be treated as a simple one-layer auto-encoder network,

accompanied by weight matrices representing motions. As shown in Table 6.4.1, our model has

about 88 times fewer parameters than FlowNet 2.0 and 21 times fewer parameters than the light

FlowNet2-C model. We achieve competitive performance compared to these baseline methods.

Figure 6.4.3 displays several examples of the inferred displacement field. Inferred results from the

FlowNet 2.0 models are shown as a qualitative comparison. For each dataset, we show the result

of the FlowNet 2.0 model with lower AEE among the pre-trained and trained ones.

Unsupervised learning

We further test the unsupervised learning of the proposed method. For unsupervised learning, we

scale the images to size 64× 64. The size of the filter is 8× 8, with a sub-sampling rate of 4

pixels. Displacements at the image border (4 pixels at each side) are left out. We train the model

on MUG Facial Expression and V1FlyingObjects datasets. Figure 6.4.4 shows some examples of

inferred displacement fields on the testing set of MUG Facial Expression. The inference results

are reasonable, which capture the motions around eyes, eyebrows, chin, or mouth. For the model

148

It It+1 Gt FN2 Ours It It+1 Gt FN2 Ours

Figure 6.4.3: Examples of inferred displacement field on V1Deform, V1FlyingObjects and MPI-Sintel.

For each block, from left to right are It , It+1, ground truth displacement field and inferred displacement field

by FlowNet 2.0 model and our learned model respectively. For each dataset, we show the result of FlowNet

2.0 model with lower AEE among the pre-trained and trained ones. The displacement fields are color coded

[LYT10].

trained on V1FlyingObjects, we test on the testing set of V1FlyingObjects and MPI-Sintel. Table

6.4.2 summarizes the quantitative results. We include comparisons with several baseline methods

for unsupervised optical flow estimation: Unsup [JHD16] and UnFlow [MHR18] and its variants,

which are also trained on V1FlyingObjects. The proposed model achieves better performance

compared with baseline models.

149

Table 6.4.1: Average endpoint error of the inferred displacement and number of paramters. (Abbreviation

FN2 refers to FlowNet 2.0.)

V1Deform V1FlyingObjects MPI-Sintel
param. (M)

pre-trained trained pre-trained trained pre-trained trained

FN2-C 1.324 1.130 0.852 1.034 0.363 0.524 39.18

FN2-S 1.316 0.213 0.865 0.261 0.410 0.422 38.68

FN2-CS 0.713 0.264 0.362 0.243 0.266 0.346 77.87

FN2-CSS 0.629 0.301 0.299 0.303 0.234 0.450 116.57

FN2 0.686 0.205 0.285 0.265 0.146 0.278 162.52

Ours - 0.258 - 0.442 - 0.337 1.82

Ours-ref - 0.156 - 0.202 - 0.140 1.84

Figure 6.4.4: Examples of inferred displacement fields by unsupervised learning. Within each block, the

top row shows the observed image frames, while the bottom row shows the inferred color-coded displace-

ment fields [LYT10].

Ablation Study

We perform ablation studies to analyze the effect of two components of the proposed model: (1)

dimensionality of sub-vectors; (2) sub-sampling rate. Besides comparing AEE of motion infer-

ence, we also test if the learned model can make multi-step animations of image frames given the

sequence of displacement fields, by predicting the vector representation consecutively and decod-

150

Table 6.4.2: Average endpoint error of the inferred displacement in unsupervised learning.

Unsup UnFlow-C UnFlow-CS UnFlow-CSS Ours

V1FlyingObjects (train) 0.379 0.336 0.374 0.347 0.245

V1FlyingObjects (test) 0.811 0.399 0.394 0.453 0.316

MPI-Sintel 0.440 0.198 0.248 0.202 0.101

ing to image frames. Per-pixel mean squared error (MSE) of the predicted next five image frames

is reported. Table 6.4.3 summarizes the results learned from V1Deform. The dimensionality of

sub-vectors controls the complexity of the motion matrices, which is set to a minimum of 2 in

the experiments. As the dimensionality of sub-vectors increases, the error rates of the two tasks

decrease first and then increase. We emphasize that with higher dimensionality of sub-vectors,

e.g., 4 or 6, Gabor-like patterns still emerge. On the other hand, the sub-sampling rate can be

changed to make the adjacent image patches connect with each other more loosely or tightly. As

shown in Table 6.4.3, a sub-sampling rate of 8, which is half of the filter size, leads to the optimal

performance.

Table 6.4.3: Ablation study measured by AEEs of motion inference and MSEs of multi-step animation,

learned from V1Deform dataset.

Sub-vector dimension

2 4 6 8 12

Infer AEE 0.44 0.421 0.406 0.412 0.420

Animation MSE 8.122 7.986 7.125 7. 586 8.017

Sub-sampling rate

4 8 16

Infer AEE 0.654 0.444 0.532

Animation MSE 11.139 8.122 10.293

6.5 Conclusion

In this chapter we propose a simple representational model that couples vector representations of

local image contents and matrix representations of local motions. Our model learns Gabor-like

151

units with quadrature phases. We also give biological interpretations of the learned model and

connect it to the spatiotemporal energy model. Our model is novel, and it is our hope that it adds

to our understanding of motion perception in V1 in terms of modeling and inference.

152

CHAPTER 7

Conclusion

Unsupervised learning and representation learning form an important aspect of modern machine

learning. With the development of deep learning and advance in computational efficiency, the

models in this area become incredibly flexible leading to important applications in computer vision

and computational neuroscience. In this thesis, we demonstrate novel models and algorithms to

push the development of unsupervised learning and representation learning.

One theme of this thesis is deep generative models, which is an important family of models

in unsupervised learning. We are mainly interested in developing efficient and scalable learning

algorithms of the descriptive model and generator model. Our contributions include: (1) with

multi-grid modeling and sampling, we show that it is possible to train and sample from a deep

descriptive model by maximum likelihood type learning algorithm, with small budget MCMC. (2)

By optimizing diffusion recovery likelihoods, we further improve the learning of descriptive mod-

els by improving the sampling as sequential conditional sampling. Moreover, our long-run MCMC

samples do not diverge and still represent realistic images, allowing us to accurately estimate the

normalized density of data even for high-dimensional datasets. (3) We propose a dynamic gen-

erator model for spatial-temporal processes, and develop an efficient learning algorithm, namely

alternating back-propagation through time. Such an algorithm is capable of estimating the dynamic

generator model without recruiting any auxiliary model like in VAE or GAN. The model is further

generalized to a motion-based dynamic generator model to learn disentangled representations of

appearance, trackable and intrackable motion in a fully unsupervised manner. (4) We propose two

hybrid models that couple a descriptive model and a flow-based model to combine the best of two

153

worlds. The first one (flow contrastive estimation) is to jointly estimate a descriptive model and a

flow-based model by optimizing a shared adversarial value function. Such a model enables effi-

cient estimation of descriptive models without MCMC, and achieves competitive performance on

semi-supervised learning. The second one is to learn a descriptive model with a flow-based model

serving as a backbone, so that the descriptive model is a correction or an exponential tilting of the

flow-based model. With this model, we show that sampling of the descriptive model can mix well

and traverse different modes by neural transport MCMC.

The other theme of this thesis is representation learning that is inspired by and can meaning-

fully approximate structures and activities in the brain. We are particularly interested in two types

of neurons: (1) grid cells in the mammalian medial entorhinal cortex (mEC) which is hypothe-

sized to be involved in mental navigation, or more precisely the path integration process. (2) V1

simple cells in the mammalian primary visual cortex, which is essential for low-level motion per-

ception and pattern recognition. Our contributions include: (1) we conduct theoretical analysis of

a general representation model of path integration by grid cells. We identify two conditions on

the transformation under which we demonstrate that the local geometry of the neural space is a

conformal embedding of the 2D physical space. Then we investigate the simplest transformation,

i.e., the linear transformation, and uncover its explicit algebraic and geometric structure as a matrix

Lie group of rotation. With our optimization-based approach, we manage to learn hexagon grid

patterns that share similar properties of the grid cells in the rodent brain. The learned model is ca-

pable of accurate long-distance path integration. (2) We propose a representational model to shed

light on V1 simple cells. The local contents of images are presented by vectors, and the local pixel

displacements are represented by matrices operated on the vectors. We show that by training on

consecutive video frames, our model can learn Gabor-like filter pairs of quadrature phases, which

closely match the profile of Macaques V1 simple cells. The learned model achieves competitive

performance on optical flow estimation.

154

REFERENCES

[AA92] Daniel J Amit and Daniel J Amit. Modeling brain function: The world of attractor
neural networks. Cambridge university press, 1992.

[AB85] Edward H Adelson and James R Bergen. “Spatiotemporal energy models for the per-
ception of motion.” Josa a, 2(2):284–299, 1985.

[AB20] Haggai Agmon and Yoram Burak. “A theory of joint attractor dynamics in the hip-
pocampus and the entorhinal cortex accounts for artificial remapping and grid cell
field-to-field variability.” eLife, 9:e56894, 2020.

[ACB17a] Martin Arjovsky, Soumith Chintala, and Bottou. “Wasserstein gan.” arXiv preprint
arXiv:1701.07875, 2017.

[ACB17b] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein gan.” arXiv
preprint arXiv:1701.07875, 2017.

[AIL09] Licurgo de Almeida, Marco Idiart, and John E Lisman. “The input–output transfor-
mation of the hippocampal granule cells: from grid cells to place fields.” Journal of
Neuroscience, 29(23):7504–7512, 2009.

[AK75] JM Allman and JH Kass. “The dorsomedial cortical visual area: a third tier area in the
occipital lobe of the owl monkey (Aotus trivirgatus).” Brain research, 100(3):473–
487, 1975.

[APD10] Niki Aifanti, Christos Papachristou, and Anastasios Delopoulos. “The MUG facial ex-
pression database.” In 11th International Workshop on Image Analysis for Multimedia
Interactive Services WIAMIS 10, pp. 1–4. IEEE, 2010.

[BB05] Richard T Born and David C Bradley. “Structure and function of visual area MT.”
Annu. Rev. Neurosci., 28:157–189, 2005.

[BBU18] Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Pi-
otr Mirowski, Alexander Pritzel, Martin J Chadwick, Thomas Degris, Joseph Modayil,
et al. “Vector-based navigation using grid-like representations in artificial agents.”
Nature, 557(7705):429, 2018.

[BCV13] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learning: A
review and new perspectives.” IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

[BDJ18] Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. “Invertible residual net-
works.” arXiv preprint arXiv:1811.00995, 2018.

155

[Bes74] Julian Besag. “Spatial interaction and the statistical analysis of lattice systems.” Jour-
nal of the Royal Statistical Society. Series B (Methodological), pp. 192–236, 1974.

[BF09] Yoram Burak and Ila R Fiete. “Accurate path integration in continuous attractor net-
work models of grid cells.” PLoS computational biology, 5(2):e1000291, 2009.

[BHB07] Caswell Barry, Robin Hayman, Neil Burgess, and Kathryn J Jeffery. “Experience-
dependent rescaling of entorhinal grids.” Nature neuroscience, 10(6):682–684, 2007.

[BS97] Anthony J Bell and Terrence J Sejnowski. “The independent components of natural
scenes are edge filters.” Vision research, 37(23):3327–3338, 1997.

[BWS12] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. “A naturalistic open source movie
for optical flow evaluation.” In A. Fitzgibbon et al. (Eds.), editor, European Conf. on
Computer Vision (ECCV), Part IV, LNCS 7577, pp. 611–625. Springer-Verlag, Octo-
ber 2012.

[BWZ07] Hugh T Blair, Adam C Welday, and Kechen Zhang. “Scale-invariant memory rep-
resentations emerge from moire interference between grid fields that produce theta
oscillations: a computational model.” Journal of Neuroscience, 27(12):3211–3229,
2007.

[BYA13] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. “Generalized denoising
auto-encoders as generative models.” In Advances in neural information processing
systems, pp. 899–907, 2013.

[CGR19] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. “Generating long se-
quences with sparse transformers.” arXiv preprint arXiv:1904.10509, 2019.

[CW18] Christopher J Cueva and Xue-Xin Wei. “Emergence of grid-like representations by
training recurrent neural networks to perform spatial localization.” arXiv preprint
arXiv:1803.07770, 2018.

[CWC20] Christopher J Cueva, Peter Y Wang, Matthew Chin, and Xue-Xin Wei. “Emergence
of functional and structural properties of the head direction system by optimization of
recurrent neural networks.” International Conferences on Learning Representations
(ICLR), 2020.

[CWZ13] Jonathan J Couey, Aree Witoelar, Sheng-Jia Zhang, Kang Zheng, Jing Ye, Benjamin
Dunn, Rafal Czajkowski, May-Britt Moser, Edvard I Moser, Yasser Roudi, et al. “Re-
current inhibitory circuitry as a mechanism for grid formation.” Nature neuroscience,
16(3):318–324, 2013.

[CZS20] Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull,
Yuan Cao, and Yoshua Bengio. “Your GAN is Secretly an Energy-based Model
and You Should use Discriminator Driven Latent Sampling.” arXiv preprint
arXiv:2003.06060, 2020.

156

[DAB17] Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, and Aaron
Courville. “Calibrating energy-based generative adversarial networks.” arXiv
preprint arXiv:1702.01691, 2017.

[Dar73] Charles Darwin. “Origin of certain instincts.”, 1873.

[Dau85] John G Daugman. “Uncertainty relation for resolution in space, spatial frequency, and
orientation optimized by two-dimensional visual cortical filters.” JOSA A, 2(7):1160–
1169, 1985.

[DBB10] Christian F Doeller, Caswell Barry, and Neil Burgess. “Evidence for grid cells in a
human memory network.” Nature, 463(7281):657, 2010.

[DBM19] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. “Neural spline
flows.” In Advances in Neural Information Processing Systems, pp. 7509–7520, 2019.

[DCW03] Gianfranco Doretto, Alessandro Chiuso, Ying Nian Wu, and Stefano Soatto. “Dy-
namic textures.” International Journal of Computer Vision, 51(2):91–109, 2003.

[DFI15] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. v.d. Smagt,
D. Cremers, and T. Brox. “FlowNet: Learning Optical Flow with Convolutional Net-
works.” In IEEE International Conference on Computer Vision (ICCV), 2015.

[DKB14] Laurent Dinh, David Krueger, and Yoshua Bengio. “Nice: Non-linear independent
components estimation.” arXiv preprint arXiv:1410.8516, 2014.

[DLW14] Jifeng Dai, Yang Lu, and Ying-Nian Wu. “Generative modeling of convolutional
neural networks.” arXiv preprint arXiv:1412.6296, 2014.

[DM19] Yilun Du and Igor Mordatch. “Implicit generation and generalization in energy-based
models.” arXiv preprint arXiv:1903.08689, 2019.

[DSB16] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using
real nvp.” arXiv preprint arXiv:1605.08803, 2016.

[DSM16] Yedidyah Dordek, Daniel Soudry, Ron Meir, and Dori Derdikman. “Extracting grid
cell characteristics from place cell inputs using non-negative principal component
analysis.” Elife, 5:e10094, 2016.

[EH97] Robert C Emerson and Morgan C Huang. “Quadrature subunits in directionally selec-
tive simple cells: counterphase and drifting grating responses.” Visual neuroscience,
14(2):373–385, 1997.

[EJ04] Ariane S Etienne and Kathryn J Jeffery. “Path integration in mammals.” Hippocam-
pus, 14(2):180–192, 2004.

157

[FBB08] Ila R Fiete, Yoram Burak, and Ted Brookings. “What grid cells convey about rat
location.” Journal of Neuroscience, 28(27):6858–6871, 2008.

[FCA16] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. “A connection be-
tween generative adversarial networks, inverse reinforcement learning, and energy-
based models.” arXiv preprint arXiv:1611.03852, 2016.

[FGN85] KH Foster, James P Gaska, M Nagler, and DA Pollen. “Spatial and temporal fre-
quency selectivity of neurones in visual cortical areas V1 and V2 of the macaque
monkey.” The Journal of physiology, 365(1):331–363, 1985.

[FHW08] Marianne Fyhn, Torkel Hafting, Menno P Witter, Edvard I Moser, and May-Britt
Moser. “Grid cells in mice.” Hippocampus, 18(12):1230–1238, 2008.

[FMW04] Marianne Fyhn, Sturla Molden, Menno P Witter, Edvard I Moser, and May-Britt
Moser. “Spatial representation in the entorhinal cortex.” Science, 305(5688):1258–
1264, 2004.

[FR12] Charles W Fox and Stephen J Roberts. “A tutorial on variational Bayesian inference.”
Artificial intelligence review, 38(2):85–95, 2012.

[FT06] Mark C Fuhs and David S Touretzky. “A spin glass model of path integration in rat
medial entorhinal cortex.” Journal of Neuroscience, 26(16):4266–4276, 2006.

[GA10] Bernard Ghanem and Narendra Ahuja. “Maximum margin distance learning for dy-
namic texture recognition.” In European Conference on Computer Vision (ECCV), pp.
223–236, 2010.

[GAA17] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. “Improved training of wasserstein gans.” In Advances in neural informa-
tion processing systems, pp. 5767–5777, 2017.

[GAS18] Mariana Gil, Mihai Ancau, Magdalene I Schlesiger, Angela Neitz, Kevin Allen, Ro-
drigo J De Marco, and Hannah Monyer. “Impaired path integration in mice with
disrupted grid cell firing.” Nature neuroscience, 21(1):81–91, 2018.

[GBS07] Lena Gorelick, Moshe Blank, Eli Shechtman, Michal Irani, and Ronen Basri. “Ac-
tions as space-time shapes.” IEEE transactions on pattern analysis and machine in-
telligence, 29(12):2247–2253, 2007.

[GC11] Mark Girolami and Ben Calderhead. “Riemann manifold langevin and hamiltonian
monte carlo methods.” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214, 2011.

[GCB18] Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and David Du-
venaud. “Ffjord: Free-form continuous dynamics for scalable reversible generative
models.” arXiv preprint arXiv:1810.01367, 2018.

158

[GH10] Michael Gutmann and Aapo Hyvärinen. “Noise-contrastive estimation: A new es-
timation principle for unnormalized statistical models.” In Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics, pp. 297–304,
2010.

[GIM02] Michael S Gazzaniga, RB Ivry, and GR Mangun. “Cognitive Neuroscience, New
York: W. W.”, 2002.

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite.” In Conference on Computer Vision
and Pattern Recognition (CVPR), 2012.

[GLZ18] Ruiqi Gao, Yang Lu, Junpei Zhou, Song-Chun Zhu, and Ying Nian Wu. “Learning
generative convnets via multi-grid modeling and sampling.” In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 9155–9164, 2018.

[GNK19] Ruiqi Gao, Erik Nijkamp, Diederik P Kingma, Zhen Xu, Andrew M Dai, and
Ying Nian Wu. “Flow Contrastive Estimation of Energy-Based Models.” arXiv
preprint arXiv:1912.00589, 2019.

[GNK20] Ruiqi Gao, Erik Nijkamp, Diederik P Kingma, Zhen Xu, Andrew M Dai, and
Ying Nian Wu. “Flow contrastive estimation of energy-based models.” In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7518–7528, 2020.

[GPM14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial nets.” In
Advances in neural information processing systems, pp. 2672–2680, 2014.

[Gra13] Alex Graves. “Generating sequences with recurrent neural networks.” arXiv preprint
arXiv:1308.0850, 2013.

[GS89] Jonathan Goodman and Alan D Sokal. “Multigrid monte carlo method. conceptual
foundations.” Physical Review D, 40(6):2035, 1989.

[GSP20] Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. “Learn-
ing Energy-Based Models by Diffusion Recovery Likelihood.” arXiv preprint
arXiv:2012.08125, 2020.

[GWJ19] Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mo-
hammad Norouzi, and Kevin Swersky. “Your Classifier is Secretly an Energy Based
Model and You Should Treat it Like One.” arXiv preprint arXiv:1912.03263, 2019.

[GXW20] Ruiqi Gao, Jianwen Xie, Xue-Xin Wei, Song-Chun Zhu, and Ying Nian Wu. “On
Path Integration of Grid Cells: Group Representation and Isotropic Scaling.” arXiv
preprint arXiv:2006.10259, 2020.

159

[GXZ18a] Ruiqi Gao, Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. “Learning grid cells
as vector representation of self-position coupled with matrix representation of self-
motion.” arXiv preprint arXiv:1810.05597, 2018.

[GXZ18b] Ruiqi Gao, Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. “Learning Vector Rep-
resentation of Content and Matrix Representation of Change: Towards a Representa-
tional Model of V1.” arXiv preprint arXiv:1902.03871, 2018.

[GZ12] Haifeng Gong and Song-Chun Zhu. “Intrackability: Characterizing video statis-
tics and pursuing video representations.” International journal of computer vision,
97(3):255–275, 2012.

[HBZ16] Aidan J Horner, James A Bisby, Ewa Zotow, Daniel Bush, and Neil Burgess. “Grid-
like processing of imagined navigation.” Current Biology, 26(6):842–847, 2016.

[HCS19] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. “Flow++: Im-
proving flow-based generative models with variational dequantization and architecture
design.” arXiv preprint arXiv:1902.00275, 2019.

[HFM05] Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard I Moser.
“Microstructure of a spatial map in the entorhinal cortex.” Nature, 436(7052):801,
2005.

[HG14] Matthew D Hoffman and Andrew Gelman. “The No-U-Turn sampler: adaptively
setting path lengths in Hamiltonian Monte Carlo.” J. Mach. Learn. Res., 15(1):1593–
1623, 2014.

[HHV03] Aapo Hyvärinen, Jarmo Hurri, and Jaakko Väyrynen. “Bubbles: a unifying frame-
work for low-level statistical properties of natural image sequences.” JOSA A,
20(7):1237–1252, 2003.

[Hin02a] Geoffrey E Hinton. “Training products of experts by minimizing contrastive diver-
gence.” Neural Computation, 14(8):1771–1800, 2002.

[Hin02b] Geoffrey E Hinton. “Training products of experts by minimizing contrastive diver-
gence.” Neural computation, 14(8):1771–1800, 2002.

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic mod-
els.” arXiv preprint arXiv:2006.11239, 2020.

[HLX19] Tian Han, Yang Lu, Xianglei Xing, and Ying Nian Wu. “Learning Generator Net-
works for Dynamic Patterns.” In IEEE Winter Conference on Applications of Com-
puter Vision (WACV), 2019.

[HLZ17] Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. “Alternating Back-
Propagation for generator network.” In 31st AAAI Conference on Artificial Intelli-
gence, 2017.

160

[HNF18] Tian Han, Erik Nijkamp, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, and Ying Nian
Wu. “Divergence triangle for joint training of generator model, energy-based model,
and inference model.” arXiv preprint arXiv:1812.10907, 2018.

[HNZ20] Tian Han, Erik Nijkamp, Linqi Zhou, Bo Pang, Song-Chun Zhu, and Ying Nian Wu.
“Joint Training of Variational Auto-Encoder and Latent Energy-Based Model.” In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 7978–7987, 2020.

[Hop82] John J Hopfield. “Neural networks and physical systems with emergent collec-
tive computational abilities.” Proceedings of the national academy of sciences,
79(8):2554–2558, 1982.

[HOT06] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast Learning Algorithm
for Deep Belief Nets.” Neural Computation, 18:1527–1554, 2006.

[HOW06] Geoffrey E Hinton, Simon Osindero, Max Welling, and Yee-Whye Teh. “Unsuper-
vised discovery of nonlinear structure using contrastive backpropagation.” Cognitive
Science, 30(4):725–731, 2006.

[HRU17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. “Gans trained by a two time-scale update rule converge to a local nash
equilibrium.” In Advances in Neural Information Processing Systems, pp. 6626–6637,
2017.

[HSD19] Matthew Hoffman, Pavel Sountsov, Joshua V Dillon, Ian Langmore, Dustin Tran, and
Srinivas Vasudevan. “NeuTra-lizing bad geometry in Hamiltonian Monte Carlo using
neural transport.” arXiv preprint arXiv:1903.03704, 2019.

[HW59] David H Hubel and Torsten N Wiesel. “Receptive fields of single neurones in the cat’s
striate cortex.” The Journal of physiology, 148(3):574–591, 1959.

[HXZ15] Zhi Han, Zongben Xu, and Song-Chun Zhu. “Video Primal Sketch: A Unified
Middle-Level Representation for Video.” Journal of Mathematical Imaging and Vi-
sion, 53(2):151–170, 2015.

[HZR16a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition.” In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[HZR16b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Identity mappings in
deep residual networks.” In European conference on computer vision, pp. 630–645.
Springer, 2016.

161

[IMS17] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. “FlowNet 2.0:
Evolution of Optical Flow Estimation with Deep Networks.” In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jul 2017.

[ITS00] Naoum P Issa, Christopher Trepel, and Michael P Stryker. “Spatial frequency maps
in cat visual cortex.” Journal of Neuroscience, 20(22):8504–8514, 2000.

[JCC20] Heewoo Jun, Rewon Child, Mark Chen, John Schulman, Aditya Ramesh, Alec Rad-
ford, and Ilya Sutskever. “Distribution Augmentation for Generative Modeling.” In
Proceedings of Machine Learning and Systems 2020, pp. 10563–10576. 2020.

[JHD16] J Yu Jason, Adam W Harley, and Konstantinos G Derpanis. “Back to basics: Unsu-
pervised learning of optical flow via brightness constancy and motion smoothness.”
In European Conference on Computer Vision, pp. 3–10. Springer, 2016.

[JLT17] Long Jin, Justin Lazarow, and Zhuowen Tu. “Introspective classification with convo-
lutional nets.” In Advances in Neural Information Processing Systems, pp. 823–833,
2017.

[JP87] Judson P Jones and Larry A Palmer. “An evaluation of the two-dimensional Gabor fil-
ter model of simple receptive fields in cat striate cortex.” Journal of neurophysiology,
58(6):1233–1258, 1987.

[JSZ15] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. “Spatial transformer net-
works.” In Advances in neural information processing systems, pp. 2017–2025, 2015.

[JWM13] Joshua Jacobs, Christoph T Weidemann, Jonathan F Miller, Alec Solway, John F
Burke, Xue-Xin Wei, Nanthia Suthana, Michael R Sperling, Ashwini D Sharan, Itzhak
Fried, et al. “Direct recordings of grid-like neuronal activity in human spatial naviga-
tion.” Nature neuroscience, 16(9):1188, 2013.

[KAH20] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo
Aila. “Training generative adversarial networks with limited data.” arXiv preprint
arXiv:2006.06676, 2020.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization.”
arXiv preprint arXiv:1412.6980, 2014.

[KB16] Taesup Kim and Yoshua Bengio. “Deep directed generative models with energy-based
probability estimation.” arXiv preprint arXiv:1606.03439, 2016.

[KBE19] Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey
Levine, Laurent Dinh, and Durk Kingma. “VideoFlow: A flow-based generative
model for video.” arXiv preprint arXiv:1903.01434, 2019.

162

[KD18] Diederik P Kingma and Prafulla Dhariwal. “Glow: Generative flow with invert-
ible 1x1 convolutions.” In Advances in Neural Information Processing Systems, pp.
10215–10224, 2018.

[KGV83] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et al. “Optimization by simulated
annealing.” science, 220(4598):671–680, 1983.

[KH09] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from
tiny images.” Technical report, Citeseer, 2009.

[KJB12] Nathaniel J Killian, Michael J Jutras, and Elizabeth A Buffalo. “A map of visual space
in the primate entorhinal cortex.” Nature, 491(7426):761, 2012.

[KKH19] Ilyes Khemakhem, Diederik P Kingma, and Aapo Hyvärinen. “Variational
Autoencoders and Nonlinear ICA: A Unifying Framework.” arXiv preprint
arXiv:1907.04809, 2019.

[KMR14] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.
“Semi-supervised learning with deep generative models.” In Advances in Neural In-
formation Processing Systems, pp. 3581–3589, 2014.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks.” In Advances in neural information pro-
cessing systems, pp. 1097–1105, 2012.

[KSJ16] Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and
Max Welling. “Improved variational inference with inverse autoregressive flow.” In
Advances in neural information processing systems, pp. 4743–4751, 2016.

[KW13] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes.” arXiv
preprint arXiv:1312.6114, 2013.

[KW14] Diederik Kingma and Max Welling. In International Conference on Machine Learn-
ing, pp. 1782–1790, 2014.

[LA16] Samuli Laine and Timo Aila. “Temporal ensembling for semi-supervised learning.”
arXiv preprint arXiv:1610.02242, 2016.

[LAC10] Rosamund F Langston, James A Ainge, Jonathan J Couey, Cathrin B Canto, Tale L
Bjerknes, Menno P Witter, Edvard I Moser, and May-Britt Moser. “Development of
the spatial representation system in the rat.” Science, 328(5985):1576–1580, 2010.

[Lan08] Paul Langevin. On the theory of Brownian motion. 1908.

[LBB98] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. “Gradient-based
learning applied to document recognition.” Proceedings of the IEEE, 86(11):2278–
2324, 1998.

163

[LCC19] Chieh Hubert Lin, Chia-Che Chang, Yu-Sheng Chen, Da-Cheng Juan, Wei Wei, and
Hwann-Tzong Chen. “COCO-GAN: generation by parts via conditional coordinat-
ing.” In Proceedings of the IEEE International Conference on Computer Vision, pp.
4512–4521, 2019.

[LCH06] Yann LeCun, Sumit Chopra, Rata Hadsell, Mare’Aurelio Ranzato, and Fu Jie Huang.
“A tutorial on energy-based learning.” 2006.

[LGR09] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical representa-
tions.” In International Conference on Machine Learning, pp. 609–616, 2009.

[LJT17] Justin Lazarow, Long Jin, and Zhuowen Tu. “Introspective neural networks for gener-
ative modeling.” In Proceedings of the IEEE International Conference on Computer
Vision, pp. 2774–2783, 2017.

[LK02] David C Lyon and Jon H Kaas. “Evidence for a modified V3 with dorsal and ventral
halves in macaque monkeys.” Neuron, 33(3):453–461, 2002.

[LLW15] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep learning face at-
tributes in the wild.” In Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 3730–3738, 2015.

[LLW18] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Large-scale celebfaces
attributes (celeba) dataset.” Retrieved August, 15:2018, 2018.

[LW17] Qiang Liu and Dilin Wang. “Learning Deep Energy Models: Contrastive Divergence
vs. Amortized MLE.” arXiv preprint arXiv:1707.00797, 2017.

[LYT10] Ce Liu, Jenny Yuen, and Antonio Torralba. “Sift flow: Dense correspondence across
scenes and its applications.” IEEE transactions on pattern analysis and machine in-
telligence, 33(5):978–994, 2010.

[LZW16] Yang Lu, Song-Chun Zhu, and Ying Nian Wu. “Learning FRAME Models Using
CNN Filters.” In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[MBJ06] Bruce L McNaughton, Francesco P Battaglia, Ole Jensen, Edvard I Moser, and May-
Britt Moser. “Path integration and the neural basis of the’cognitive map’.” Nature
Reviews Neuroscience, 7(8):663, 2006.

[MD85] Jeffrey Moran and Robert Desimone. “Selective attention gates visual processing in
the extrastriate cortex.” Science, 229(4715):782–784, 1985.

[MHR18] Simon Meister, Junhwa Hur, and Stefan Roth. “UnFlow: Unsupervised learning of
optical flow with a bidirectional census loss.” In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

164

[MIH16] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey
Dosovitskiy, and Thomas Brox. “A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation.” In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 4040–4048, 2016.

[MKK18] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. “Spectral
normalization for generative adversarial networks.” arXiv preprint arXiv:1802.05957,
2018.

[MMK15] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii. “Dis-
tributional smoothing by virtual adversarial examples.” stat, 1050:2, 2015.

[MMK18] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. “Virtual adver-
sarial training: a regularization method for supervised and semi-supervised learning.”
IEEE transactions on pattern analysis and machine intelligence, 41(8):1979–1993,
2018.

[MSS16] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. “Aux-
iliary deep generative models.” arXiv preprint arXiv:1602.05473, 2016.

[Mur12] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[MZZ16] Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh, Pablo Sprech-
mann, and Yann LeCun. “Disentangling factors of variation in deep representation
using adversarial training.” In Advances in Neural Information Processing Systems,
pp. 5040–5048, 2016.

[NCK11] Jiquan Ngiam, Zhenghao Chen, Pang W Koh, and Andrew Y Ng. “Learning deep en-
ergy models.” In Proceedings of the 28th international conference on machine learn-
ing (ICML-11), pp. 1105–1112, 2011.

[ND10] C. Papachristou N. Aifanti and A. Delopoulos. “The MUG Facial Expression
Database.” In Proceedings of 11th Int. Workshop on Image Analysis for Multimedia
Interactive Services (WIAMIS), pp. 12–14, 2010.

[Nea01a] Radford M Neal. “Annealed Importance Sampling.” Statistics and Computing, 11,
2001.

[Nea01b] Radford M Neal. “Annealed importance sampling.” Statistics and computing,
11(2):125–139, 2001.

[Nea11] Radford M Neal. “MCMC using Hamiltonian dynamics.” Handbook of Markov
Chain Monte Carlo, 2, 2011.

[NGS20] Erik Nijkamp, Ruiqi Gao, Pavel Sountsov, Srinivas Vasudevan, Bo Pang, Song-Chun
Zhu, and Ying Nian Wu. “Learning energy-based model with flow-based backbone
by neural transport mcmc.” arXiv preprint arXiv:2006.06897, 2020.

165

[NHH19] Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. “On
the anatomy of mcmc-based maximum likelihood learning of energy-based models.”
arXiv preprint arXiv:1903.12370, 2019.

[NHZ19] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. “On Learning
Non-Convergent Short-Run MCMC Toward Energy-Based Model.” arXiv preprint
arXiv:1904.09770, 2019.

[NNM96] Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. “Columbia object image
library (coil-20).” 1996.

[NWC11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y
Ng. “Reading digits in natural images with unsupervised feature learning.” 2011.

[ODZ16] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. “Wavenet:
A generative model for raw audio.” arXiv preprint arXiv:1609.03499, 2016.

[OF96] Bruno A Olshausen and David J Field. “Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images.” Nature, 381(6583):607, 1996.

[OF97] Bruno A Olshausen and David J Field. “Sparse coding with an overcomplete basis
set: A strategy employed by V1?” Vision Research, 37(23):3311–3325, 1997.

[OF05] Bruno A Olshausen and David J Field. “How close are we to understanding V1?”
Neural computation, 17(8):1665–1699, 2005.

[OK79] John O’Keefe. “A review of the hippocampal place cells.” Progress in neurobiology,
13(4):419–439, 1979.

[OKE16] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves,
et al. “Conditional image generation with pixelcnn decoders.” In Advances in neural
information processing systems, pp. 4790–4798, 2016.

[PC19] KANCHARLA Parimala and Sumohana and Channappayya. “Quality Aware Gener-
ative Adversarial Networks.” In Advances in Neural Information Processing Systems,
pp. 2948–2958, 2019.

[PKD16] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A
Efros. “Context encoders: Feature learning by inpainting.” In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544, 2016.

[PLH17] Jaideep Pathak, Zhixin Lu, Brian R Hunt, Michelle Girvan, and Edward Ott. “Us-
ing machine learning to replicate chaotic attractors and calculate Lyapunov ex-
ponents from data.” Chaos: An Interdisciplinary Journal of Nonlinear Science,
27(12):121102, 2017.

166

[PR81] Daniel A Pollen and Steven F Ronner. “Phase relationships between adjacent simple
cells in the visual cortex.” Science, 212(4501):1409–1411, 1981.

[PS17] Marius Pachitariu and Maneesh Sahani. “Visual motion computation in recurrent neu-
ral networks.” bioRxiv, p. 099101, 2017.

[PSR13] Hugh Pastoll, Lukas Solanka, Mark CW van Rossum, and Matthew F Nolan. “Feed-
back inhibition enables theta-nested gamma oscillations and grid firing fields.” Neu-
ron, 77(1):141–154, 2013.

[Rin02] Dario L Ringach. “Spatial structure and symmetry of simple-cell receptive fields in
macaque primary visual cortex.” Journal of neurophysiology, 88(1):455–463, 2002.

[RM15] Danilo Jimenez Rezende and Shakir Mohamed. “Variational inference with normaliz-
ing flows.” arXiv preprint arXiv:1505.05770, 2015.

[RMC15] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representation
learning with deep convolutional generative adversarial networks.” arXiv preprint
arXiv:1511.06434, 2015.

[RMW14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic back-
propagation and approximate inference in deep generative models.” arXiv preprint
arXiv:1401.4082, 2014.

[ROS18] David C Rowland, Horst A Obenhaus, Emilie R Skytøen, Qiangwei Zhang, Cliff G
Kentros, Edvard I Moser, and May-Britt Moser. “Functional properties of stellate cells
in medial entorhinal cortex layer II.” Elife, 7:e36664, 2018.

[RS07] Martin Rehn and Friedrich T Sommer. “A network that uses few active neurones to
code visual input predicts the diverse shapes of cortical receptive fields.” Journal of
computational neuroscience, 22(2):135–146, 2007.

[RWP19] Thomas Ridler, Jonathan Witton, Keith G Phillips, Andrew D Randall, and Jonathan T
Brown. “Impaired speed encoding is associated with reduced grid cell periodicity in a
mouse model of tauopathy.” bioRxiv, p. 595652, 2019.

[SBG17] Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. “The hip-
pocampus as a predictive map.” Nature neuroscience, 20(11):1643, 2017.

[SE19] Yang Song and Stefano Ermon. “Generative modeling by estimating gradients of the
data distribution.” In Advances in Neural Information Processing Systems, pp. 11895–
11907, 2019.

[SE20] Yang Song and Stefano Ermon. “Improved techniques for training score-based gener-
ative models.” arXiv preprint arXiv:2006.09011, 2020.

167

[SF11] Sameet Sreenivasan and Ila Fiete. “Grid cells generate an analog error-correcting code
for singularly precise neural computation.” Nature neuroscience, 14(10):1330, 2011.

[SFH06] Francesca Sargolini, Marianne Fyhn, Torkel Hafting, Bruce L McNaughton, Menno P
Witter, May-Britt Moser, and Edvard I Moser. “Conjunctive representation of posi-
tion, direction, and velocity in entorhinal cortex.” Science, 312(5774):758–762, 2006.

[SGZ16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. “Improved techniques for training gans.” In Advances in neural information
processing systems, pp. 2234–2242, 2016.

[SH09] Ruslan Salakhutdinov and Geoffrey E Hinton. “Deep boltzmann machines.” In AIS-
TATS, 2009.

[SH19] Saeed Saremi and Aapo Hyvarinen. “Neural empirical bayes.” Journal of Machine
Learning Research, 20:1–23, 2019.

[SKC17] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. “Pixelcnn++:
Improving the pixelcnn with discretized logistic mixture likelihood and other modifi-
cations.” arXiv preprint arXiv:1701.05517, 2017.

[SMG19] Ben Sorscher, Gabriel Mel, Surya Ganguli, and Samuel A Ocko. “A unified theory for
the origin of grid cells through the lens of pattern formation.” 2019.

[SMH15] Martin Stemmler, Alexander Mathis, and Andreas VM Herz. “Connecting multiple
spatial scales to decode the population activity of grid cells.” Science Advances,
1(11):e1500816, 2015.

[SMS17] Masaki Saito, Eiichi Matsumoto, and Shunta Saito. “Temporal generative adversarial
nets with singular value clipping.” In IEEE International Conference on Computer
Vision (ICCV), 2017.

[SMS18] Saeed Saremi, Arash Mehrjou, Bernhard Schölkopf, and Aapo Hyvärinen. “Deep
energy estimator networks.” arXiv preprint arXiv:1805.08306, 2018.

[SSS12] Hanne Stensola, Tor Stensola, Trygve Solstad, Kristian Frøland, May-Britt Moser,
and Edvard I Moser. “The entorhinal grid map is discretized.” Nature, 492(7427):72,
2012.

[SVI16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wo-
jna. “Rethinking the inception architecture for computer vision.” In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826,
2016.

[SWM15] Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, and Surya Ganguli.
“Deep unsupervised learning using nonequilibrium thermodynamics.” arXiv preprint
arXiv:1503.03585, 2015.

168

[SX15] Fisher Yu Yinda Zhang Shuran Song and Ari Seff Jianxiong Xiao. “Construction of
a Large-scale Image Dataset using Deep Learning with Humans in the Loop.” arXiv
preprint arXiv:1506.03365, 2015.

[SZS12] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. “UCF101: A dataset of
101 human actions classes from videos in the wild.” arXiv preprint arXiv:1212.0402,
2012.

[Tay02] Michael Taylor. “Lectures on Lie groups.” Lecture Notes, available at http://www.
unc. edu/math/Faculty/met/lieg. html, 2002.

[TBD18] Matthew Tesfaldet, Marcus A. Brubaker, and Konstantinos G. Derpanis. “Two-Stream
Convolutional Networks for Dynamic Texture Synthesis.” In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[tev06] “GroundTruth100-for-COIL : 100 labelled images for object recognition tests.”, 2006.

[Tie08] Tijmen Tieleman. “Training restricted Boltzmann machines using approximations
to the likelihood gradient.” In Proceedings of the 25th international conference on
Machine learning, pp. 1064–1071. ACM, 2008.

[TLY17] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. “Mocogan: Decom-
posing motion and content for video generation.” arXiv preprint arXiv:1707.04993,
2017.

[Tu07] Zhuowen Tu. “Learning generative models via discriminative approaches.” In 2007
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, 2007.

[TV17] Antti Tarvainen and Harri Valpola. “Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results.” In Ad-
vances in neural information processing systems, pp. 1195–1204, 2017.

[TVA19] Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal, Laurent Dinh, and Ben Poole.
“Discrete Flows: Invertible Generative Models of Discrete Data.” arXiv preprint
arXiv:1905.10347, 2019.

[Vin11] Pascal Vincent. “A connection between score matching and denoising autoencoders.”
Neural Computation, 23(7):1661–1674, 2011.

[VK20] Arash Vahdat and Jan Kautz. “Nvae: A deep hierarchical variational autoencoder.”
Advances in Neural Information Processing Systems, 33, 2020.

[VPT16] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. “Generating videos with
scene dynamics.” In Advances In Neural Information Processing Systems (NIPS), pp.
613–621, 2016.

169

[WBS12] J. Wulff, D. J. Butler, G. B. Stanley, and M. J. Black. “Lessons and insights from
creating a synthetic optical flow benchmark.” In A. Fusiello et al. (Eds.), editor,
ECCV Workshop on Unsolved Problems in Optical Flow and Stereo Estimation, Part
II, LNCS 7584, pp. 168–177. Springer-Verlag, October 2012.

[WPB15] Xue-Xin Wei, Jason Prentice, and Vijay Balasubramanian. “A principle of economy
predicts the functional architecture of grid cells.” Elife, 4:e08362, 2015.

[WS02] Laurenz Wiskott and Terrence J Sejnowski. “Slow feature analysis: Unsupervised
learning of invariances.” Neural computation, 14(4):715–770, 2002.

[WSH18] Wei Wang, Yuan Sun, and Saman Halgamuge. “Improving mmd-gan training with
repulsive loss function.” arXiv preprint arXiv:1812.09916, 2018.

[WZG08] Ying Nian Wu, Song-Chun Zhu, and Cheng-En Guo. “From information scaling of
natural images to regimes of statistical models.” Quarterly of Applied Mathematics,
66:81–122, 2008.

[XGZ19] Jianwen Xie, Ruiqi Gao, Zilong Zheng, Song-Chun Zhu, and Ying Nian Wu. “Learn-
ing dynamic generator model by alternating back-propagation through time.” In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 5498–5507,
2019.

[XGZ20] Jianwen Xie, Ruiqi Gao, Zilong Zheng, Song-Chun Zhu, and Ying Nian Wu. “Motion-
Based Generator Model: Unsupervised Disentanglement of Appearance, Trackable
and Intrackable Motions in Dynamic Patterns.” In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, pp. 12442–12451, 2020.

[XLG16] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu. “Coopera-
tive training of descriptor and generator networks.” arXiv preprint arXiv:1609.09408,
2016.

[XLG17] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu. “Coopera-
tive training of descriptor and generator networks.” arXiv preprint arXiv:1609.09408,
2017.

[XLZ16] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. “A theory of generative
ConvNet.” In International Conference on Machine Learning, pp. 2635–2644, 2016.

[XZF19] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, and Ying Nian Wu. “Co-
operative Training of Fast Thinking Initializer and Slow Thinking Solver for Multi-
Modal Conditional Learning.” arXiv preprint arXiv:1902.02812, 2019.

[XZW17a] Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. “Synthesizing Dynamic Patterns
by Spatial-Temporal Generative ConvNet.” In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 7093–7101, 2017.

170

[XZW17b] Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. “Synthesizing dynamic patterns
by spatial-temporal generative convnet.” In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 7093–7101, 2017.

[You99] Laurent Younes. “On the convergence of Markovian stochastic algorithms with
rapidly decreasing ergodicity rates.” Stochastics: An International Journal of Proba-
bility and Stochastic Processes, 65(3-4):177–228, 1999.

[YWU11] Michael M Yartsev, Menno P Witter, and Nachum Ulanovsky. “Grid cells without
theta oscillations in the entorhinal cortex of bats.” Nature, 479(7371):103, 2011.

[ZB16] Yipin Zhou and Tamara L Berg. “Learning temporal transformations from time-lapse
videos.” In European Conference on Computer Vision (ECCV), pp. 262–277, 2016.

[Zee16] Anthony Zee. Group theory in a nutshell for physicists. Princeton University Press,
2016.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks.” arXiv preprint
arXiv:1605.07146, 2016.

[ZKL16] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Antonio Torralba, and Aude Oliva.
“Places: An image database for deep scene understanding.” arXiv preprint
arXiv:1610.02055, 2016.

[ZLX14] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva.
“Learning deep features for scene recognition using places database.” In Advances in
Neural Information Processing Systems, pp. 487–495, 2014.

[ZMG15] Junbo Zhao, Michael Mathieu, Ross Goroshin, and Yann Lecun. “Stacked what-where
auto-encoders.” arXiv preprint arXiv:1506.02351, 2015.

[ZYM13] Sheng-Jia Zhang, Jing Ye, Chenglin Miao, Albert Tsao, Ignas Cerniauskas, Deb-
ora Ledergerber, May-Britt Moser, and Edvard I Moser. “Optogenetic dissection of
entorhinal-hippocampal functional connectivity.” Science, 340(6128), 2013.

171

