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Abstract
Congestive heart failure (CHF) is a leading cause of death in the United States. WANDA is a
wireless health project that leverages sensor technology and wireless communication to monitor
the health status of patients with CHF. The first pilot study of WANDA showed the system’s
effectiveness for patients with CHF. However, WANDA experienced a considerable amount of
missing data due to system misuse, nonuse, and failure. Missing data is highly undesirable as
automated alarms may fail to notify healthcare professionals of potentially dangerous patient
conditions. In this study, we exploit machine learning techniques including projection adjustment
by contribution estimation regression (PACE), Bayesian methods, and voting feature interval
(VFI) algorithms to predict both non-binomial and binomial data. The experimental results show
that the aforementioned algorithms are superior to other methods with high accuracy and recall.
This approach also shows an improved ability to predict missing data when training on entire
populations, as opposed to training unique classifiers for each individual.

I. Introduction
Congestive heart failure is a leading cause of death in the United States with approximately
670,000 individuals diagnosed every year [1]. The sequelae of CHF are well known, with
frequent decompensation of the chronic state resulting in recurrent hospitalizations. Experts
believe that constant monitoring of patients with CHF is essential to a patient’s health.

Remote patient monitoring is a promising solution for an expanding population of CHF
patients who are unable to access clinics due to the lack of resources, location, or infirmity.
Medical care facilitated by remote technology has the potential to enable early detection of
key clinical symptoms indicative of CHF-related decompensation. Such remote technologies
can also enable health professionals to offer surveillance, advice, and continuity of care to
trigger early implementation of strategies that enhance adherence behaviors. WANDA [2][3]
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is a wireless health project that leverages sensor technologies and communication to monitor
the health status of patients with CHF. WANDA monitors vital signs and other information
deemed critical to CHF assessment, including weight, blood pressure, heart rate, activity,
and daily somatic awareness scale questionnaires [4][5][6]. The effectiveness of WANDA
for CHF patients was shown in [3].

However, the first randomized trial of WANDA experienced a considerable amount of
missing data: only 33% of the somatic questionnaires were completed; and 55.7% of data
had missing values for weight, systolic and diastolic blood pressure, and heart rate data.
Moreover, 22.2% of patients experienced system misuse and requested help to accustom
themselves the WANDA’s technologies. Missing data was further caused by system nonuse
and service disorder (such as a network failure, resulting in as much as 6.3% of all of the
missing data). Analysis found that system non-use was often due to patients’ lack of time or
interest to participate in the study. Notably, other studies have experienced similar data loss
[5][7]. It is critical for a remote monitoring system such as WANDA to collect and store all
monitored vital signs. Any unhealthy changes in a patient’s vital signs must be addressed
promptly in order to prevent further degradation of a patient’s health.

Missing data is especially common in randomized controlled trials. Wood’s study [8]
showed that 89% of 71 trials published in 2001 in well-known journals (British Medical
Journal, BMJ; Journal of the American Medical Association, JAMA; Lancet; and New
England Journal of Medicine, NEJM) reported having partly missing outcome values. Many
studies applied last observation carried forward, worst case imputation, and complete case
analysis techniques that can lead to biased results. To date, there has been no study on
missing data imputation in CHF randomized trials.

The objective of this study is to enhance the accuracy of CHF missing data imputation using
different data mining techniques. Data imputation allows a patient monitoring system to
detect an unhealthy change in a vital sign even when that data is not collected by the system.
In this work, we exploit the projection adjustment by contribution estimation (PACE)
regression method for predicting and imputing non-binomial data such questionnaire
responses. Bayesian methods and voting feature interval (VFI) are used to impute binomial
data. The results of these methods are compared using accuracy and correlation efficient
values for non-binomial cases, and recall values for binomial cases. The previous methods
are compared with several other popular data mining methods. The experimental results
show that the aforementioned methods are superior to other methods for CHF patient data
imputation.

II. Methodology
A. Subjects and Datasets

WANDA was approved by the UCLA institutional review board (IRB). Since November
2009, the WANDA system has been used for health data collection on 26 different subjects.
The population of the participants is approximately 68% male; 40% White, 13% Black, 32%
Latino, and 15% Asian/Pacific Islander, with a mean age of approximately 68.7 ± 12.1.
Study participants were all provided with Bluetooth weight scales, blood pressure monitors,
land line gateways, and personal activity monitor devices [2]. Each captured data instance
for the study comprises 37 different attributes, including: timestamps; weight; diastolic/
systolic blood pressure; heart rate; metabolic equivalents (METs); calorie expenditure; and
numeric responses to twelve somatic awareness questions. Each data instance is gathered
from each subject once a day. The total number of instances used in this study is 1090.
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This study uses the missing at random (MAR) hypothesis [9]. MAR assumes that missing
data is dependent on observed data. Hence, missing data can be predicted by resident data.

B. Non-binomial Case Imputation
WANDA employs the Heart Failure Somatic Awareness Scale (HFSAS, [10]) which is a 12-
item Likert-type scale to measure awareness of signs and symptoms specific to CHF. A 4-
point Likert-type scale is used to ascertain how much a patient is bothered by a symptom (0:
not at all, 1: a little, 2: a great deal, 3: extremely).

In order to predict missing answers, we exploit the projection adjustment by contribution
estimation regression algorithm (PACE) [11] (rounding any non-integer value returned by
PACE). This method is based on maximum likelihood estimation (MLE) and an empirical
Bayes framework to minimize the Kullback-Leibler (KL) distance between the original and
the estimation function. First, the PACE algorithm transforms parameters using MLE’s
asymptotic normality property [12] to convert the original parameters. The algorithm utilizes
the empirical Bayes estimator in (1):

(1)

where θ̌(x) is the estimator, f(xi|θi)is a probability density function (PDF) and Gk is a
consistent estimator of G which is the mixing distribution of the mixture fG(x) = ∫ f(x|θ)dG.
Using (2), the developed algorithm minimizes the KL distance between f and f̃ in (2):

(2)

This method especially shows better results in high dimensional data spaces and is applied
to complete cases that have all 12 answered questions to evaluate the accuracy.

C. Binomial Case Imputation
A binomial approach is used to predict alarms normally triggered by abnormal data values
(e.g., drastic weight changes, unhealthy blood pressure, etc.) given missing data. For
example, the system should trigger an alarm if a patient has an extreme change in weight –
even when the weight value was not collected by WANDA. We use naïve Bayes, a Bayesian
network, and VFI to detect such changes in order to alert caregivers.

Naïve Bayes and Bayesian network classifiers are algorithms that approach the classification
problem using the conditional probabilities of the features [13]. A Bayesian network is a
directed acyclic graph (DAG) over a set of variables X, where the outgoing edges of a
variable xi specifies all variables that depend on xi. The probability of an outcome is
determined as:

(3)

where X = (x1,x2,…, xk) is a set of variables, and par(x) is the set of parents of x in a
Bayesian network. The probability of the instance belonging to a single class is calculated
by using the prior probabilities of classes and the feature values for an instance. Naive
Bayesian method assumes that features are independent and there are no hidden or latent
attributes in the prediction process. As such, the experimental results for naïve Bayes and
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Bayesian network can be slightly different as  for naïve Bayes and

 for Bayesian network where N(x) is the number of sets or instances.

VFI is a categorical classification algorithm and considers each feature independently as
Bayes methods [14]. The classification of a new instance is based on a vote among the
classifications built by the value of each feature. While training, the VFI algorithm
constructs intervals for each feature. For the classification, a single value and the votes of
each class in that interval are calculated for each interval. For each class c, feature f gives a
vote value:

(4)

where interval_class_count[f,i,c] is the number of instances of class c which is a member of
interval i of feature f. The class with the highest total vote is predicted to be the class of the
test instance.

In the Bayes methods, each feature participates in the classification by assigning probability
for each class and the final probability of a class is the product of each probability measured
on each feature. In VFI, each feature distributes its vote among classes and the final vote of
a class is the sum of each vote given the features.

All 1090 instances of data are complete (i.e., contain all 37 data values). Instances were
divided into to two groups: training and testing. Values from the testing set predicted by the
data imputation techniques were compared to their actual values to evaluate the
effectiveness of each system.

III. Results
For non-binomial data, PACE [11], linear [16], simple linear [17] and isotonic regression
[18] methods were applied. Table 1 shows the correlation coefficient values of each method
to predict each answer ai. Correlation coefficient is a measure of the least square fitting
values between the predicted and original data. For a given N data points (X,Y), the
correlation coefficient ρX,Y is given as equation (5) where COV(X,Y) is a covariance
between X and Y and σX, σY are standard deviation values of X and Y. The experimental
results show that PACE regression method works better on average than other given
regression methods.

(5)

After calculating the coefficient and constant variables, the developed algorithm determines
missing values using PACE regression (rounding any non-integer value returned by PACE).
The accuracies of the obtained values range between 85.7% and 98.5% (Figure 1).

The binomial case predicts a potential abnormal vital sign when no data value exists within
WANDA’s database using other existing attributes. C4.5 [19], random tree [20], naïve
Bayes [21], Bayesian network [22], VFI [23], nearest neighbor [24], PART [25], DTNB
[26], decision table [27], and rotation table [28] algorithms were applied and their recall
values were compared. For each method, ten-fold cross validation was applied. In ten-fold
validation, the original sample is randomly partitioned into ten subsets and a single subset is
held as a testing model, with the remaining nine subsets are used as training data. This cross-
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validation process is then repeated ten times, using a new subset as a testing model for each
repetition. Recall values are given as:

(6)

where Tp is true positive and Fn is false negative. The experimental result (Table 2) shows
that naive Bayes, Bayesian network, and VFI have recall values of up to 0.7 for weight,
0.714 for systolic blood pressure, 0.889 for diastolic blood pressure and 0.906 for heart rate
values.

Classifiers were trained in two ways. First, unique classifiers were created for each
individual where only data collected from an individual was used to predict values from the
same individual. Second, a grouped classifier was created using data from the entire
population. Both the individual and grouped classifiers were compared using ten-fold
validation to test data from 16 patients. The recall values of weight, blood pressure, and
heart rate are improved when training on the entire group’s data as compared with training
each individual’s data separately (Table 3). For questionnaire data, the accuracies of results
were also better when training on all patients’ data. When training individually, 75% of
patients’ data showed 0% accuracy. This is because the entire group has bigger number of
data and many individual share similarities in monitored attributes, such as age, symptoms
of CHF, etc.

IV. Conclusion
Heart failure is a leading cause of death in the United States with approximately 4,600,000
Americans suffering from heart failure. The wireless health monitoring system WANDA
exploits sensors and wireless communication techniques to monitor and provide guidance
and feedback to patients with CHF. WANDA was shown to be highly effective for patients
with CHF [3]. However, the first pilot study of WANDA experienced a considerable amount
of missing data.

This study enhanced the accuracy of the CHF missing data using the PACE regression
method for predicting and imputing non-binomial data; and Bayesian methods and voting
feature interval for binomial data. The experimental results show that PACE regression
works better than linear regression, simple linear regression, and isotonic regression
methods with accuracy values of more than 85.7%. The experiment comparing Bayes and
VFI methods with other algorithms proves that Bayes and VFI algorithms work better
(Table 2) with recall values of up to 0.7 for weight, 0.714 for systolic blood pressure, 0.889
for diastolic blood pressure and 0.906 for heart rate values. This study also showed that
increased accuracy is obtained by training on a large population as opposed to training the
classifiers for each individual independently.
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Figure 1.
Accuracies of the predicted data for non-binomial cases
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Table 2

Recall values of weight, systolic, diastolic blood pressure and heart rate values

Weight Systolic Diastolic Heart Rate

C 4.5 0 0 0.17 0.16

Random Tree 0.05 0 0.11 0.19

Naïve Bayes 0.7 0.71 0.89 0.91

Bayesian Network 0.65 0.71 0.78 0.78

VFI 0.65 0.71 0.67 0.78

Nnge 0.05 0 0.11 0.28

PART 0.08 0 0.28 0.25

DTNB 0.03 0 0.44 0.13

Decision Table 0 0 0.22 0.06

Rotation Forest 0.05 0 0.17 0.03
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